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Edward P. Stabler

Mathematics of language learning

Abstract. This paper surveys prominent mathematical approaches to language
learning, with an emphasis on the common fundamental assumptions of various
approaches. All approaches adopt some restrictive assumption about the nature
of relevant causal influences, with much ongoing work directed to the problem of
discovery and justification of these assumptions.

There has been a long-standing debate among philosophers, psycholo-
gists and linguists about what knowledge, or what biases, human language
learners have at the outset. Are there languages that people could never
learn? Empiricists sometimes suggest that every pattern can be learned
(in some relevant sense of ‘learn’), while nativists suggest that humans are
biased or constrained to consider only certain kinds of hypotheses. With
the flourishing mathematical linguistics and learning theory in the last 50
years, a significant body of clear and uncontroversial mathematical results
has emerged, resolving some of the confusions of the earlier informal de-
bates and revealing some clearer questions. Many basic relations among the
various formalisms used to frame a learner’s hypotheses about language are
now rigorously understood, from Markov models and neural nets to cer-
tain formal versions of Chomskian grammars: some formalisms are strictly
weaker than others, and others are notational variants in the sense that
they define exactly the same patterns (or in probabilistic models, exactly
the same probability measures over patterns). In mathematical approaches,
given a proposed learning method, it is common to consider what kinds of
languages the method can successfully learn, where success is sometimes
modeled as convergence on a grammar for the language the learner is ex-
posed to (sometimes called ezact identification of the target language), or
where success consists in getting arbitrarily close to the target language in
a probabilistic sense. We can also consider whether the learner can succeed
just by observing example utterances, and whether the learner can succeed
when the data is incomplete, systematically biased, or noisy.

In a clear sense, scientific laws apply only in idealized settings, when
there are no extraneous disrupting influences. From Newtonian mechanics
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to Mendel’s or Fisher’s evolutionary models of reproducing populations, the
simple relations which hold in idealized settings are distorted to some ex-
tent in real applications by sometimes complex and often poorly understood
factors. The revolution in theoretical linguistics since the 1950’s was pre-
cipitated by the introduction of scientific and mathematical methods in the
study of language structure, methods that similarly require abstraction from
irrelevant factors. This point needs emphasizing again and again because,
first, the idealizations of linguistic theory are less familiar than the ‘fric-
tionless planes,’ ‘ideal gases,” and Mendelian ‘genes’ that every schoolchild
hears about. In the second place, people read linguistic theory expecting
to hear about the ‘language’ familiar from common sense, or from ethnic
and literary studies, when in reality the science must address something
more abstract.! As even the brief review provided below should make clear,
many different kinds of abstractions are involved in the various theoretical
proposals about human language and learning.

Although language learning has been a central focus in theoretical lin-
guistics, mathematical work on learning has had a life of its own. Note,
in particular, that while linguists are primarily concerned with linguistic
structure, the language learner must get the first clues about the language
without knowing what that structure is. The learner must infer the hid-
den structure of language (which Chomsky calls the internal ‘I-language’)
from audible and visible external (‘E-language’) clues provided in linguistic
settings. Along with many others, Chomsky (1981, p.10) has emphasized
this point, saying that for the learning problem, perceptible features of the
language have an epistemological priority; the learner must begin with the
aspects of language that can be identified before the grammar of the lan-
guage is known. So in order to define a collection of fixed learning problems
that can be studied, we must adopt some (simplified and idealized) assump-
tions about the perceived evidence available to the learner (e.g. sequences
of sounds uttered in certain contexts) and about the ‘target’ grammars to
be learned. With an understanding based on such assumptions, we can then
investigate whether, when confounding factors are controlled to the extent
possible, there is evidence of similar learning in people.

Linguistics and mathematical learning theory have had a significant im-
pact on each other, and many questions about human language learning
have become much clearer, but versions of the old debates remain, as will
become clear below. We will see that all of the mainstream mathematical
models adopt restrictive assumptions about the range of identifiable pat-
terns, as the nativist suggested, but the empiricist idea that the learner can
be regarded as a rational agent, constructing the most probable explanation
of the data, is also supported.

This paper briefly reviews some of the main applications of mathemati-
cal learning theory to language, emphasizing points of consensus that have
emerged, and the nature of some remaining controversies.
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1. Markov models

Although the connection between signs and what they signify seems arbi-
trary at first, and although it seems we can say whatever we like, pronounc-
ing our words as we please, even superficial inspection reveals regularities
that are preserved across utterances, across speakers, and even across lan-
guages. One class of these can be quantified with the simple models intro-
duced by Markov (1906, 1908). These models regard linguistic events as
the ‘states’ or ‘outcome events’ of a random variable at each moment of
utterance, subject to a very strict independence condition:

an infinite sequence X1, Xo,..., Xg, Xg+1,. .., of variables connected
in such a way that Xy for any k is independent of X1, Xo, ..., Xi_1,
in case X} is known.

That is, we can consider each word in a sequence of words, or each phoneme
in a sequence of phonemes, as an event (the outcome of a variable) that
depends only on the previous event and not on any earlier ones. Now called a
‘Markov chain’, a sequence with this simple kind of dependency is sometimes
depicted with a graph like this, (Jordan et al., 1999):

X)) x)

k k+1

Markov (1913) used a chain of this kind, with a random variable taking
two states to model the vowel and consonant sequences in the first 20,000
symbols of the Pushkin poem Fugene Onegin. When the transition proba-
bilities do not vary from one variable X;_; to the next X, the probabilities
of each state transition can be represented in a finite state diagram or, more
succinctly, in a matrix M. Markov found the following transition probabil-
ities on average:

C/0.128 V/0.337

[y [y
‘lil’ V/0.872 ‘lil'

In the matrix, the rows and columns correspond to the consonants C and
vowels V, respectively, so that row 1 column 2 represents the probability
of going from state C of Xj to state V of variable Xj,; (for any point
in time k). So for example, this model indicates that in the data, after
hearing a C, there is a 12.8% chance that the next symbol will be a C,
and a 87.2% chance of V. Elaborating these predictions a little more, the
model tells us that after hearing a C, the probability of hearing CCCC is
0.128* = 0.000268435, while VCVC is more than 1000 times more likely,
0.872 x 0.663 x 0.872 x 0.663 = 0.334241. The values in the matrix are

128 .872
M= <663.337>
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called the parameters of the model, and are sometimes represented as weights
rather than probabilities.? The learner can set these parameters according
to the relative frequencies of these transitions in the data — the simplest
kind of learning strategy. Markov shows that this simple model predicts
quite well the number of vowels and consonants in the text.

While the particular probabilities of consonant-vowel transitions vary
across speakers and languages, the general tendency to avoid long conso-
nant clusters and vowel combinations is universal (e.g. Greenberg, 1978;
Zec, 1995). Notice that the range of patterns that can be modeled with
this 2 state Markov chain is very limited. For example, an ‘avoid coda’
preference for syllable initial versus syllable final consonants cannot be rep-
resented. This limitation comes from the basic structure of the model, from
the number of states and Markov’s independence assumption; the question
of whether you are at the beginning or end of a syllable cannot be defined
simply by the previous sound. Obviously no amount of training the model
to get a more accurate probability matrix can overcome the bounds im-
posed by the choice of model. The interplay here between the stipulated
model structure and rational setting of model parameters is reminiscent of
the different emphases of nativists and empiricists.

The simple structure of Markov chains which makes them unable to
capture many of the dependencies among elements in language is also what
makes them so useful as a first approximation, and so they are still very
extensively used in models of language and of language learning, from the
classic beginnings of information theory (Shannon, 1948) to recent work on
language learning and evolution Niyogi (2006). In this review, focusing on
the linguists’ interest in finding models of language and learning that can
model the structures found in human language, we consider some of the
most important steps in that direction.

1.1. Hidden Markov models (HMMs)

The bounds of any particular Markov chain can be enlarged by allowing
more states, and an additional degree of freedom can be obtained by allowing
that the state is not perfectly represented by the utterance (or any other
observable data). Hidden Markov models (HMMs) take these steps, and
are probably the most widely used models for the sound patterns of speech
(Cappé, Moulines, and Rydén, 2005; Jelinek, 1999; Rabiner, 1989). In these
models, the states of the observable random variables ..., Oy, ... depend
on a Markov chain ..., Xj,... that is hidden in the sense that its states
cannot be directly observed, with the dependencies indicated by the diagram
(Jordan et al., 1999),
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This model is a step in the right direction. For example, we could model how
a language learner, observing a sequence of consonants and vowels, learns
that these are pronounced at the beginning, middle, and ends of syllables
even though the syllable structure is not explicitly given. Then outputs C,V
would be the observable events O;, and the associated positions in syllable
structure would be the hidden values of X;. Similarly, a learner hearing
a sequence of words may need to learn that a given kind of word O; is
associated with certain implicit, hidden positions X;, e.g., the beginning of
a noun phrase. HMMs can be specified by (i) a finite matrix M like the
one above, specifying the probabilities of each event X1 based on the
previous one Xy, together with (ii) a matrix O indicating the probability of
each possible output given the current state, and (iii) a matrix I indicating
the probabilities of starting in each state. So for example, a given range of
vowels or consonants will be more or less probable outputs at each point
in the production of parts of a syllable, which are not explicitly given, but
hidden, structural aspects of the input that the learner must discover. (In
speech recognition, the acoustic signal is often sampled in much smaller,
overlapping slices O;, thousands per second.)

One reason for the popularity of HMMs is the fact that when the tran-
sition probabilities of the hidden states and the output probabilities are
unknown, it is possible to adjust these probabilities in a way that makes
the data more probable. This fits with the very general empiricist conception
of learning (and of scientific investigation) as the identification of a model
that best explains for the data (Jaynes, 2003). These learning methods are
sometimes called gradient or variational, since they adjust the model in a
way guaranteed to improve the fit with the data. So again, these systems
have fixed bounds on the range of patterns that can be represented, coming
from the number of states in the model and the independence assumptions,
but within those bounds, a certain kind of learning is possible. One im-
portant wrinkle enters the picture here, coming from the careful study of
the complexity of various learning methods. Within the range delimited by
the fixed number of states, we can ask whether a gradient learning method
will always succeed in finding the transition probabilities giving the best fit
with the data. For standard methods, the answer is that these methods will
not, in general, find the best fit. In particular, the methods will fail when
there are local maxima, points that are not the best setting, but which are
surrounded by points that fit less well. We could abandon these gradient
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non-convex function of 2 dimensions convex function of 2 dimensions

methods in favor of learning strategies that are guaranteed to succeed, but
these are intractable in the general case (Terwijn, 2002).

So we have this rather surprising situation: the tractable learning meth-
ods cannot be guaranteed to find the best fit, even within the limits imposed
by the structure of the model, and so the performance of the various heuris-
tic methods for parameter setting then becomes a central research concern.

Expectation maximization (EM) methods (Dempster, Laird, and Ru-
bin, 1977) are most commonly used: each adjustment in weights is made to
increase the expected fit, and then the weights are re-estimated, until the ad-
justments needed are very small. If the adjustments get smaller and smaller,
approaching a particular point, we say the learner is converging. Ideally, the
learner will converge on the optimum fit, the best possible model of the
data, but gradient methods like EM will sometimes converge on points that
are locally but not globally optimal. Furthermore, EM is sometimes very
slow to converge, so many other learning methods are explored, including
the Newtonian methods more commonly used in other approximation prob-
lems (MachLachlan and Krishnan, 1997; Cappé, Buchoux, and Moulines,
1998; Minami, 2004)

1.2. Maximum entropy Markov models

There are some problems where the gradient methods will never get stuck on
a non-optimal hypothesis, a hypothesis from which all immediate changes
result in even less optimal ones. If the fit with a model varying along n
dimensions is convex,® then a class of relatively well-understood gradient
‘convex optimization’ methods may apply (Boyd and Vandenberghe, 2004).
In a convex space, any move towards a more probable model is a move
towards the global optimum. So why not just define our language mod-
els in such a way that the fit with the data varies as a convex function
of variation in model parameters? Berger, Della Pietra, and Della Pietra
(1996) show how convex model spaces can be constructed for the probabil-
ities of finitely many features, and McCallum, Freitag, and Pereira (2000)
extend the strategy to maximum entropy Markov models (MEMMs). which
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are carefully restricted so that the maximum likelihood is convex in the
weights associated with each such transition. Some other linguistic models
with convex search spaces have been explored too, including, for example,
assigning finitely many parts of speech to the words of English sentences
(Ratnaparkhi, 1996), parameter setting in probabilistic context free gram-
mars (Chi, 1999; Geman and Johnson, 2003), and the maxent phonotactics
of Wilson and Hayes (2008). Apart from the details of each of these pro-
posals, there are general empirical questions about whether the space of hy-
potheses available to human learners is really one in which, from any point,
the global optimum can be reached by successive improvements, climbing
along the gradient, and about whether it is methodologically appropriate
for linguists to seek grammar formalisms guaranteeing this. These are topics
of ongoing research.

2. Neural models

Although Markov’s work on quantitative analysis of event sequences dates
from 1906, HMMs with parameters inferred by computationally intensive
EM and other related methods have become widely used only since Demp-
ster, Laird, and Rubin (1977). So it is no surprise that Rosenblatt’s (1958)
work on the perceptron is often cited as the first serious work in learning
theory.* Inspired by the behavior of single neurons, a simple perceptron is
a function f with an associated ‘weight vector’ of real numbers w and a
‘threshold constant’ b, mapping vector x to 1 if and only if the dot product
of w and x is greater than b,

fx) =

1 ifw-x>0b
0 otherwise.

The idea here is very simple. Like a neuron that fires or not depending on
the particular weighting and stimulation of its input dendrites, this function
will become 1 according to the particular values of the coordinates of w and
the constant b. For example, two weights or probabilities in an HMM could
be representated by a particular point in the 2 dimensional plane, and the
firing of the neuron, telling us whether the point is in the concept or not, is
then determined by the constant b. The remarkable mathematical fact, the
fact that explains the particular form of this definition of the perceptron f,
is that in the 2-dimensional Cartesian plane, a point w and a constant b
define a line: let the line be all the points x such that w - x = b. Consider
for example the line in the following diagram:
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w = (2,3) and
b = 13 determine a line

that includes, e.g. y = (5,1)

With the values of w and b shown in the diagram, f is defined as the
function which maps everything above the line to 1, and everything on the
line or below to 0. The definition of a perceptron f in terms of a point
w and a constant b generalizes immediately to situations where w is a
point from 3-dimensional or even higher dimensional spaces. Geometrically,
corresponding to a line in 2 dimensions, a hyperplane is a set of points
x € R” such that w - x = b, and so the perceptron f, defined above, maps
all points on one side of the hyperplane to 0, and all other points to 1.

Although the perceptron may seem very artificial and mathematical at
first, it turns out that many concepts can be regarded as perceptron func-
tions, even concepts given by discrete, symbolic values. For example, to
learn a Boolean shape-color concept defined by a propositional formula like
red or not square, we can think of the propositions red and square as the
dimensions of R?, but where the concept actually takes values only at the
points where the propositions are either true (with value 1) or false (with
value 0). Then the concept red or not square can be depicted as on the left
below, showing the points where the concept is true with solid circles, lin-
early separable from the points where the concept is false which are drawn
with open circles,

¢ ¢

square * square *

1 1
red —= red —=

red V- square red @— square

The concept red or not square, but not both, which uses the exclusive-or (@),
obviously does not allow any line to separate the positive from the negative
points (Minsky and Papert, 1971). For geometrical concepts on the plane
(or higher dimensions), there are of course infinitely many concepts that are
not linearly separable, including such simple concepts as an ellipse in the
plane:
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linearly separable not linearly separable

Perceptrons are limited in this way. They can only describe concepts that
allow the positive and negative examples to be separated by a line (or hy-
perplane in higher dimensions).

The particular importance of the perceptron stems mainly from the fact
that it allows an extremely simple learning strategy. Suppose you begin with
some initial guess about w and b, but you are given example points x and
told whether they are examples of the concept or not. If x is an example of
the concept and your current guess about w and b is such that f(x) = 1,
then your guess already fits this data point and no change is needed. But if
f(x) =0, Rosenblatt proposed a very simple adjustment strategy. Roughly,
it suffices to add x, or some fraction of it, to w, moving the line towards
the data point.® This adjustment seems like something that fairly simple
neural mechanisms might be able to realize, and a guarantee that this kind of
method will learn any linearly separable concept was established by Novikoff
(1962).7

Many facts about language can be regarded as Boolean and hence at least
sometimes separable by hyperplanes. For example, can objects precede the
verb? Can the subject pronoun be unpronounced? But it seems that many
concepts in grammar are not naturally given as half of an n-dimensional
space. For example, does it even make sense to think of defining the grammar
of syllable structure this way, or the lexicon and syntax of French or English?
Surprisingly, it turns out that, by transforming a grammar or lexicon into
other (sometimes numerical, high-dimensional) forms, a remarkable range of
these options can be given a clear sense, allowing linear learners in domains
where they seemed impossible. This strategy is very briefly mentioned again
in §2.2 below.

2.1. Neural networks with hidden states

One strategy for extending neural models beyond the perceptron introduces
layers of ‘hidden’ perceptron-like units (neurons) between the n inputs from
R™ and the output. Learning strategies for the functions described by such
finite neural nets were not discovered until more than two decades after
the work on perceptrons, when Rumelhart, Hinton, and Williams (1986)
noticed a simple way to adjust all the weights of a network appropriately,
using a gradient strategy called ‘back-propagation’. This method propagates
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a correction to each neuron back from the output layer, moving the network
towards a local minimum error with an adjustment similar to the one made
by the perceptron learner. Rumelhart and McClelland (1986) use neural
nets to model the learning of the English past tense, capturing the fact that
learners often go through a phase of over-generalization. This project stim-
ulated a great deal of controversy and follow-up work (Pinker and Prince,
1988). Another seminal neural network model learns categories: Guenther
and Gjaja (1996) use neural networks to model the ‘perceptual magnet’
effect (Kuhl, 1991; Feldman and Griffiths, 2007), that is, the tendency for
discriminability of sounds to be reduced when they are similar to prototyp-
ical linguistic sounds, so that small deviations from prototypical sounds are
not noticed. However, standard neural network learners use gradient learn-
ing methods, and so can fail to find points with globally minimum error,
making the representation of the problem and initial values critical. And the
precise adjustment in weights required for back-propagation is not biolog-
ically realistic (Mazzoni, Andersen, and Jordan, 1991), prompting interest
in the feasibility of simpler ‘reinforcement’ learning strategies (Sutton and
Barto, 1998).

Optimality theoretic (OT) phonology and syntax may be seen as emerg-
ing from neural network fundamentals (Smolensky and Legendre, 2006),
with a special notion of ‘optimization’ emerging at the symbolic level from
a probabilistic, optimizing architecture. These grammars have very nice
learnability properties when explored at the discrete symbolic level dis-
cussed in §3 below (Tesar and Smolensky, 1998; Riggle, 2009). Discrete OT
grammars can be seen as a special case of probabilistic (‘harmonic’) gram-
mars with continuous probability measures, but it remains unclear how the
known grammar learning methods for these discrete systems should be im-
plemented in a neural network architecture. Some interesting proposals are
being explored recently (Goldrick and Daland, 2009; Magri, 2008).

2.2. Support vector machines (SVMs)

A different kind of response to the weakness of perceptron models was pro-
posed by Aizerman, Braverman, and Rozoner (1964), and developed recently
by (Vapnik, 1998) and many others. When a n-dimensional concept is not
linearly separable, sometimes it is easy to encode the concept in a higher
dimensional space in such a way that, in the larger space, it is linearly sep-
arable. For example, a 2 dimensional ellipse in the plane can be projected
into 3 dimensions in such a way that just its boundary is on a plane, so that
the positive and negative points can be separated.
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And notice that to find the best line (or hyperplane), what matters are the
examples that are closest to it; these points are sometimes called support
vectors. Increasing the dimension of the space the learner must consider can
involve a significant increase in complexity, but it need not always do so.
In some cases, it is possible for the learner to adjust the higher dimensional
hypothesis using feasible computation on their lower dimensional represen-
tations (Cristianini and Shawe-Taylor, 2000). This method has found useful
application even in problems that are known to be intractable in principle,
like learning all the Boolean functions (including exclusive-or) (Sadohara,
2001; Khardon and Servedio, 2004), and an increasing range of language
learning problems (Kontorovich, Cortes, and Mohri, 2006; Clark, Floréncio,
and Watkins, 2006; Kontorovich, Cortes, and Mohri, 2008). In the trans-
formed representations of these learning problems, perceptron-like linear
learning can be applied to identify complex concepts. It is quite conceivable
that illuminating extensions of these recent methods to human language
learning problems will be found.

3. Model selection and the nature of linguistic abstractions

The previous sections have ignored a fundamental (one might even say: the
fundamental) problem in language learning, sometimes called the ‘model
selection” problem: what kinds of models should be explored? In HMMs,
practical applications often require poorly understood decisions about how
many states are needed, and how they can depend on each other (Smyth,
Heckerman, and Jordan, 1997; Jordan et al., 1999). Similarly, in neural
nets, learning depends on the network size and topology. And in SVMs,
everything depends on the particular encoding of the problem. Many of
the traditional debates about initial biases and the rationality of language
learning really center on how this fundamental part of the learning problem
is handled.®

An empiricist tends to emphasize respects in which the learner’s response
to the data is rational and free from a priori bias, but searching all possible
models to find the best fit with the data is not a solution to this problem.
First, model fit (which can be quantified and estimated with measures of
‘mutual information’; etc.) is not a good criterion, since the fit with the data
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typically improves with larger models (Rasmussen and Ghahramani, 2001),
but simpler models often generalize better (‘Occam’s razor’). Second, even
if the standard of model comparison is chosen, searching through all the
options is impossible, and gradient-based stepwise models do not guarantee
good results. These issues have been approached in many different ways,
from asymptotic methods (Akaike, 1974; Schwarz, 1978), to bootstrap and
boosting methods (Efron, 1979; Efron and Tibshirani, 1994) and a wide
range of interesting Bayesian approaches (Raftery, 1995; Sato, 2001; Bishop,
2008; Beal, Ghahramani, and Rasmussen, 2002; Teh et al., 2006; Fox et al.,
2008; van Gael et al., 2008).

Model selection can also sometimes be done non-probabilistically. Some-
times it can be determined that a current hypothesis simply does not admit
the data; that is, the data has probability 0 given the hypothesis, signalling
that a different, sometimes more complex set of hypotheses should be consid-
ered. This is the basic idea behind many non-probabilistic, discrete learning
methods (Gold, 1967; Jain et al., 1999), methods which can be applied suc-
cessfully even when there are infinitely many models, some of which have
infinitely many states. The Chomskian tradition of generative syntax — and
perhaps all of the mainstream traditions in linguistic theory — can be re-
garded as a model-selection effort. Their goal is a class of hypotheses which
can be fit to any human language by parameter setting methods.

3.1. Model selection from example sequences

Many familiar languages can only be recognized by systems with infinitely
many states. For example, propositional logic is often written with paren-
theses to avoid ambiguity, so that red or not square, but not both is ((red V—
square)A—(red A—square)). Another notation that avoids ambiguity without
the use of parentheses is the prefix notation, AVred— square—Ared—square.
The language for this prefix notation can be described by a simple ‘context
free’ rewrite grammar like this one:

S—ASS  S—VSS S——S
S—red  S—esquare S—big

That is, the propositions red, square, big,...have the sentence category S,
and a conjunction is not (SAS) but ASS. The sentences of this language are
obtained by rewriting the category symbol S repeatedly in any way allowed
by the rules, as in

S = VSS = VredS = Vred—S = Vred—square.

Notice that this language includes Ared red and AAred red red but not Ared
or AAred red. Consider any device that can recognize this language, dis-
tinguishing grammatical sentences from nonsense strings. For any two dif-
ferent numbers n,m, the state of any recognizer after seeing A™ needs to
be different from the state of the recognizer after seeing A™, since these
two situations impose different requirements on what follows. Intuitively,
the recognizer needs to count the number of coordination symbols A that
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begin any sentence, and since the grammar imposes no limit on how many
there can be, the recognizer cannot be finite. That is, no ‘finite state model’
can represent this language.? Standard models of this language also impose
certain kinds of dependencies among the states — only certain states can
be reached from any given one. These dependencies among states are really
what is of interest in practical applications, since real world devices are not
infinite; they are described as if they were infinite in order to understand
the dependencies among their states.

The prefix notation for propositional calculus is a ‘very simple’ con-
text free language in a sense defined by Yokomori (2003). A very simple
context free language is one that can be defined with rules of the form
A — wBy...B, for n > 0, where for each pronounced symbol w, there
is exactly one rule. It is easy to see that the propositional language de-
fined above is very simple in this sense, and that, for any finite alphabet
of more than one pronounced word w, there are infinitely many very sim-
ple languages. It turns out that there is a learning algorithm which maps
every initial sequence of example sentences to a very simple grammar for
a language that includes that sample in such a way that, as the number
of samples approaches the whole language, the algorithm will eventually
exactly identify the language (Yokomori, 2003). That means, given certain
finite sequences of examples, the learner will construct a grammar that gen-
erates the example sentences together with infinitely many other sentences
that have not been seen, and this learner will eventually converge on a gram-
mar that is exactly right. In particular, given the examples red and —red,
the learner will already realize that the target language must contain —"red
for all n. The human language learner must generalize in something like this
way too, realizing at some point that not only are funny and really funny
good adjective phrases, but so is really™funny for any n.

3.2. Model selection from example structures

Empirical studies of human learning support the common sense observation
that children pay attention not only to the order of words in utterances, but
also to the meanings of words that are plausible in the discourse context
(Hirsh-Pasek and Golinkoff, 1996; Tomasello, 2003; Trueswell and Gleitman,
2004). That is, the evidence available to human language learners includes
more than example word sequences. Learners hearing Mary blicks John with
a novel word blick are likely to adopt a hypothesis about this word that
allows it to combine with the subject and object in the way other words do.
So instead of simply adjusting the grammar to allow Mary blicks John, the
learner may adjust the grammar to allow the structure

>
Mary <
blicks John
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where the arrows < and > ‘point’ to the expression that takes the other
as argument. That is, blicks takes John as an argument, and blicks John
takes Mary as an argument. Kanazawa (1996) has rigorously demonstrated
that, if lexical ambiguity is suitably restricted, a learner getting this kind of
structural evidence can identify a context free language, in the sense that, as
the example structures of the language approach the whole set, the learner
will, at some finite point, converge on a grammar that generates the whole
language, exactly.

Notice that the learner described here is in effect noticing that blicks is in
a ‘substitution class’” of elements that can occur in the context
Mary — John. Kanazawa’s (1996) learner generalizes this kind of struc-
turalist inference. This kind of learning is familiar in computer science too,
since it is similar to the type inference in programming languages. In many
programming languages where 0,1,2,... are integers, if we define f to be
the “is equal to 1”7 function by saying that fz is true if x = 1 and otherwise
false, the system will infer that f has the type int — ¢, where t is the type
of truth values. In a similar way, a learner who knows that John and Mary
denote entities e and that sentences denote truth values ¢, might conclude
from John blicks Mary that blicks denotes a function of type e — e — t.

Human languages are widely thought to require grammars that are more
expressive than context free grammars. Joshi (1985) has suggested that the
grammars required for human languages are ‘mildly context sensitive’, just
slightly more expressive than context free grammars. Kanazawa’s result ex-
tends easily to some of the larger classes of languages (Retoré and Bonato,
2001; Stabler et al., 2003; Fulop, 2007). The general strategy of consider-
ing learners that make use of convergent syntactic, prosodic, semantic and
discourse cues (data with more relevant ‘dimensions’) brings us closer to
models of the human learner’s predicament, but extending the formal re-
sults to human languages requires relaxing the non-ambiguity restrictions,
and restricting the data to structures that the learner could plausibly get
evidence for.

Notice that all these learners succeed only on a limited range of languages
(as the nativist would be inclined to emphasize), but the limited range can
still include infinitely many languages, where many of those languages each
require infinite state recognizers. Even in these cases, the learning methods
can be successful, and feasible.

4. The future

A number of results mentioned in this survey are relatively uncontroversial,
with consequences for every approach to language:

e A wide range of mathematical models of language learning are being
explored, involving different assumptions about the most important
or most relevant dependencies among the states responsible for the
sequences of linguistic elements.
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e In many classes of models, the problem of calculating the parameter
settings that maximize the probability of the evidence is intractable,
so various heuristic methods are used.

e A central goal of linguistic theory has been to determine which kind
of model is most appropriate (how many states, with what depen-
dencies). This model selection problem is typically done ‘by hand’,
and is still rather poorly understood.

The consensus around these points has been noted before (Pereira, 2000).
But certainly the last point is the most interesting. Recent theoretical lin-
guistics is focused on model selection, on determining what kinds of mod-
els are appropriate for describing human languages (roughly speaking: how
many states, and how can they depend on each other). Finding linguistic
universals, the bounds of variation, has been a central goal of generative
grammar at least since Chomsky (1965), and this methodological stance
has explicitly been related to the learning problem. Turning to the con-
tent of the proposals that have emerged in generative grammar, though,
the impact of mathematical learning models on mainstream linguistic the-
ory has been more marginal (though still significant, as noted for example
at the ends of §§1.2, 2.1, 2.2). This is no surprise, since model selection is
exactly where mathematical approaches have had the least to offer, and it
is also no suprise that this is where empiricist and nativist rhetoric remains
most prominent. But active and ongoing research in the interplay between
model selection and parameter tuning has illuminated much that had been
obscure, and this is certainly where the most important developments will
be.

Notes

“For helpful suggestions, I am grateful to Jeff Heinz, Greg Kobele, Katya
Pertsova, Kie Zuraw, Jason Riggle, and the editors of this issue.

The importance of abstraction is emphasized for example in Chapter 1 of
Chomsky’s (1965) Aspects of the Theory of Syntax. In recent work Chomsky (1996,
pp.7,15) is still repeating these fundamental themes and emphasizing the necessity:
“Idealization, it should be noted, is a misleading term for the only reasonable way
to approach a grasp of reality.”

2Typically, for probability p, the weight w = — log p.

3A function f : R® — R is ‘convex’ or ‘concave up’ if and only if for any
2,y € R and any 0 < a < 1, f(az + (1 - a)y) < af(z) + (1 — a)f(y) (Boyd
and Vandenberghe, 2004, §1.1). A function is ‘concave down’ if its negation is
concave up. Notice that since the axes are not labeled in the figures, we cannot
tell whether the function on the right is ‘concave up’ or ‘concave down.” Convex
optimization methods can of course apply in either case.

“For example, Vapnik (2000, p.1) and Duda, Hart, and Stork (2001, p.333).

Recall that for two vectors, x = (z1,...,2n) and y = (y1,...,yn), the dot
product x-y = > ", &;¥i, the sum of the products of the respective components.

5See for example the rigorous formulation of this method in Anderson (1995,
p.221) or Cristianini and Shawe-Taylor (2000, Table 2.1).

"For a modern text presentation see for example Anderson (1995, §8).
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8The distinction between ‘model selection’ and ‘parameter setting’ is prominent
in the literature, but it is an informal, qualitative distinction. It is of course
possible to define parameters in such a way that they determine the required
states of the model (thus, in effect, ‘selecting the model’); and it is also possible
to tune the parameters of infinite state systems: infinite neural nets (Hornik,
Stinchcombe, and White, 1989; Neal, 1996), infinite HMMs (Beal, Ghahramani,
and Rasmussen, 2002; Fox et al., 2008; van Gael et al., 2008), etc.

9This reasoning is formalized in the standard Myhill-Nerode theorem (Hopcroft
and Ullman, 1979, §3.4).
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