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Computational models of language universals:
Expressiveness, learnability and consequences

Every linguist is struck by similarities among even the most different
and most culturally isolated human languages. It is natural to assume that
some of these common properties, these language universals, might reflect
something about the way people can learn and use languages. In some rel-
evant sense, some of these properties may arise and be maintained even
in culturally isolated languages because of special restrictions on the range
of structural options available for human language learners. A bolder idea
is that some of these language universals may guarantee that the whole
class of languages with such properties is ‘learnable’ in a relevant sense.
While considerable progress has been made on finding ways to clearly artic-
ulate and assess possibilities of these sorts in precise computational models,
there has also been a shift to more sophisticated versions of a long-standing
traditional perspective: it may not be so much the formal structure of hu-
man languages, but the special kinds of fit between form and meaning that
give human languages their most distinctive properties, in which case some
early work on language acquisition may have characterized inappropriately
difficult learning problems. A more reasonable perspective on the learn-
ers’ predicament may recognize a certain non-arbitrariness in the relation
between structures and their semantic values, so that only certain kinds
of structures are expected to carry certain sorts of semantic values. This
can allow semantic properties of expressions to provide clues about syntac-
tic structure, and vice versa, enriching the evidence available to the learner.
This paper will review some fundamental results in this line of inquiry, from
universals formulated in terms of expressive power of grammars, to results
on learnable subsets of the languages defined by those grammars, leading fi-
nally to recent views on semantically-characterized grammatical universals.
Even restricting attention to hypotheses that are most empirically secure
and independent of any particular choice among the major traditions in
grammatical theory, the modern perspective is surprising in many respects
and quite different from anything that could have been conceived at the
1961 Conference on Language Universals (Greenberg, 1963).
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1. Universals of language complexity

Chomsky and others in the 1950’s noticed that languages can be classified
by the kinds of grammars that generate them, and that a straightforward
classification in terms of grammar also corresponds also to a classification of
the kinds of resources needed to recognize those languages (Chomsky, 1956).
This ‘Chomsky hierarchy’ has been considerably elaborated and integrated
into the theory of automata and complexity (Hopcroft and Ullman, 1979).
Finding the place of human languages in this hierarchy is of interest because
it provides an indication of what resources (memory, time) are required
to recognize and produce them. This may sound straightforward, but it
actually requires some sophistication to understand the project. In the first
place, human linguistic behavior is influenced by many things; we would
like to abstract away from coughs, interruptions, and memory limitations of
various sorts. We adopt similar abstractions when we say that a calculator
computes the sum or product function on integers. Such a claim is not
refuted by the behavior of the device when its power fails or when the
inputs exceed the memory limitations of the device.1 The motivation for
these abstractions is not merely simplicity. Rather, as in any science, we
hope to be factoring the explanation along lines that correspond to the real
causal sources of the behavior. The mechanisms involved in coughing or in
responding to interruptions are relevantly different from those involved in
producing or perceiving a fluent utterance. Consequently, to place human
languages in the Chomsky hierarchy is to adopt a certain kind of explanation
of human linguistic behavior, and so controversy is expected even among
the best-informed researchers.

There is another reason for interest in properties of human languages,
regarded as sets of sequences. These sequences, as produced in context and
subject to various kinds of ‘noise’, certainly comprise one of the most im-
portant sources of evidence available to language learners. We would like
to understand how perceptible properties of these unanalyzed sequences
shape early language acquisition. Grammatically sophisticated notions like
‘subject’, ‘modifier’, or ‘verb phrase’ are used in framing most familiar uni-
versals, but to understand the earliest stages of language acquisition it is
useful to identify universals that can apply before such sophisticated anal-
yses are available.2

A third reason for being interested in claims about language complexity
is that it provides a common basis for comparing grammars of very differ-
ent kinds. Linguists are often very concerned with the exact nature of the
description they provide of linguistic structures, and this concern is com-
pletely reasonable. For one thing, given the complexity of the domain being
described, the simplicity of our description is a practical concern. But this
also leads to a proliferation of descriptive formalisms – several major, dis-
tinct traditions and many very significant variants in each tradition – which
can be an obstacle to effective communication and critical assessment. In
the great diversity of formal proposals, though, an astounding convergence
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among a great range of independently proposed formalisms has been dis-
covered.

In the work of Joshi, Vijay-Shanker, and Weir (1991), Seki et al. (1991),
and Vijay-Shanker and Weir (1994) four independently proposed grammar
formalisms are shown to define exactly the same languages: a kind of head-
based phrase structure grammars (HGs), combinatory categorial grammars
(CCGs), tree adjoining grammar (TAGs), and linear indexed grammars
(LIGs). Furthermore, this class of languages is included in an infinite hi-
erarchy of languages that are defined by multiple context free grammars
(MCFG), multiple component tree adjoining grammars (MCTAGs), linear
context free rewrite systems (LCFRSs), and other systems. Later, it was
shown a certain kind of “minimalist grammar” (MG), a formulation of the
core mechanisms of Chomskian syntax – using the operations merge, move,
and a certain strict ‘shortest move condition’ – define exactly the same
class of languages (Michaelis, 2001; Harkema, 2001; Michaelis, 1998). These
classes of languages are positioned between the languages defined by con-
text free grammars (CFGs) and the languages defined by context sensitive
grammars (CSGs) like this,

(1) CFG ⊂ TAG ≡ CCG. . . ⊂ MCTAG ≡ MCFG ≡ MG. . . ⊂CSG

where ⊂ indicates proper subset relations between the definable languages
and ≡ relates formalisms that define exactly the same languages. The equiv-
alence ≡ is often called ‘weak’ since it considers only the definable sequences
and not the structures of derivations, but an inspection of the proofs of these
weak equivalence results reveals that they are not very difficult. The proofs
provide recipes for taking a grammar from one formalism and converting it
into an exactly equivalent grammar in another formalism. The recipes are
not difficult because, in an intuitive sense which has not yet been formally
captured,3 the recursive mechanisms of each of these formalisms are rather
similar. Furthermore, unlike earlier very expressive grammar formalisms4 it
is known that the classes boxed in (1) can both be recognized feasibly, by
‘polynomial time’ computations.

It may be a universal structural fact about human languages that they
are always included in one of the classes boxed in (1). Joshi (1985) proposes
a slightly weaker hypothesis, namely that human languages are ‘mildly con-
text sensitive’ (MCS) in the sense that they have (i) limited crossing de-
pendencies, (ii) constant growth, and (iii) polynomial parsing complexity.
A language is said to have “constant growth” if there is a bound k such
that whenever two sentences have lengths that differ by more than k, there
is a sentence of intermediate length. The intuition here is that sentences
are built up by simple combinations of smaller constituents (and so, for ex-
ample, they do not allow an operation of unbounded copying). The notion
of polynomial recognizability is discussed in any standard introduction to
formal languages and computing (Hopcroft, Motwani, and Ullman, 2000;
Lewis and Papadimitriou, 1981, for example). Both TAG languages and
MCFG languages are MCS in this sense, but other classes are too.
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The claims that human languages are definable by TAGs or MCFGs, or
that they are MCS, are very strong claims with significant computational
consequences. Mainstream work in linguistic theory can be seen as aiming
to sharpen these results with more precise characterizations of the recursive
mechanisms of grammar. But the basic claims mentioned here are also being
challenged on empirical grounds. For example there are proposals to the ef-
fect that the grammars need certain kinds of copying mechanisms (Michaelis
and Kracht, 1997; Stabler, 2004; Kobele, 2006), and this may require placing
human languages in a slightly larger class. The ‘parallel multiple context
free grammars’ (PMCFGs) defined by Seki et al. (1991) allow this kind
of copying, and remain efficiently recognizable, but they lack the constant
growth property. Many linguists like Joshi remain unpersuaded that any-
thing like reduplication is needed anywhere in the syntax (cf. Pullum 2006).
Other possible but less plausible threats to the MCS claims are more dras-
tic; many seemingly minor variations on MCS grammars yield systems that
can define any ‘recursively enumerable’ language (Gärtner and Michaelis,
2005; Kobele and Michaelis, 2005; Kobele, 2005, for example), in which case
the mechanisms of grammar would tell us essentially nothing about human
languages beyond the fact that they are finitely representable. But many lin-
guists feel that even the strong claim that human languages are universally
in the classes boxed in (1) is actually rather weak. They think this because,
in terms of the sorts of things linguists describe in human languages, these
computational claims tell us little about what human languages are like.

2. Learnable syntactic patterns: Gold

Perhaps stronger universal claims about language structure will come from
computational models of learning. Some basic syntactic universals may re-
flect properties of the language learning mechanism, and it might even be
the case that some of these properties guarantee the ‘learnability’ of human
languages, in some relevant sense.

One framework for addressing these issues is provided by Gold and others
(Gold, 1967; Jain et al., 1999). Noting that human learners seem to succeed
without explicit instruction or feedback (Braine, 1971; Bowerman, 1988),
one model of the evidence available to a learner is a ‘positive text’. Given any
language L, a text for that language is an infinite sequence containing all and
only strings of the language. A learner can then be regarded as a function
from longer and longer finite initial sequences of such a text to grammars,
guesses about the language of the text. We say the learner converges if on
some initial sequence of the text the learner makes a guess that does not
change with any longer initial sequence. We say the learner successfully
learns the text if the learner converges on a grammar that generates the
language of the text. The learner is said to be able to learn the language L
if the learner learns every text for that language. And finally a learner can
learn a class of languages L if and only if it learns every language in the
class.
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Obviously, this is not meant to provide a realistic picture of human
learning, but the framework is of interest for the insight it provides into the
conditions in which a generalizing learner can be guaranteed to succeed in
this simple sense of correctly identifying a text. A precise characterization
of the classes of languages which can be learned from positive text, in the
sense just defined, was provided by Angluin’s (1980) subset theorem, which
can be formulated this way:

A collection L of (recursively enumerable) languages is learnable just
in case, for every language L in the collection, you can find a finite
subset DL such that no language L′ in the collection includes DL

and is properly included in L.

DL

L

no such intermediate language L′

Using this theorem, it is easy to see that no learner can learn any class L
that contains all the finite languages and also one or more infinite languages.
For consider any one of the infinite languages L. Every one of the finite
subsets F ⊂ L is in L, and so is the larger set L′ that results from adding
one more element x ∈ L to F . So then for every finite F we have a situation
where F ⊂ L′ ⊂ L. That is, L has no finite distinguished subset of the sort
required by the theorem, and so L is not learnable. The intuition behind
this demonstration is clear: roughly, to conclude that a finite sample of data
indicates an infinite pattern is to conclude that the data is not simply a finite
stipulation that does not generalize; but the class of all finite languages is
one where every finite set of data might be a stipulation. From this result,
it follows that the none of classes indicated in (1) are learnable since they
too contain all the finite languages together with some infinite ones.

We can also use the subset theorem to show that any finite class L is
learnable. Any such finite class of languages can be listed L1, L2, . . . , Ln in
such a way that if j < i, then Li $⊆ Lj . Now, considering each Li in turn
and each earlier language, Lj , j < i, let let xi,j be some element that is
in Li but not in Lj. Then define DLi

= {xi,j | j < i}. It is easy to check
that each DLi

defined in this way is a ‘distinguishing subset’ satisfying the
requirements of the subset theorem, and so L is learnable. This example is
not very interesting, because the learnability of the class does not depend
on any ‘structural property’ in any intuitive sense. That is, the learner needs
no structural analysis of the expressions of the languages; all that matters
is the presence of some string not found in ‘earlier’ languages.
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It is worth briefly sketching a more interesting example to illustrate the
kind of result we would like to obtain for human languages, a class that is
learnable because of some interesting universal structural property. A finite
state language can be defined by a machine like the following,

(2)
0 1dp 2vp 3pp

The states of the machine are circled; 0 is the initial state; the final states
are doubly circled; and a string is in the language defined by the machine
just in case that it labels a path along the arcs from the initial state to a
final state.5 So the machine in (2) defines a language containing just two
strings, namely

(3) dp vp
dp vp pp

This finite state machine is deterministic in the sense that (i) it has at most
1 initial state, and (ii) no two arcs leaving any state have the same label.
It is not hard to show that no deterministic machine with fewer states can
define this same language.

We reverse a machine like the one shown above by (i) changing start
states to final states, (ii) changing final states to start states, and (iii) re-
versing every arc. It is clear that the reverse of the machine shown above
is not deterministic, since the reverse has two initial states. Now following
Angluin (1982), define a finite state language L as reversible just in case
the result of reversing the smallest deterministic finite state machine for L
yields another deterministic machine. Clearly then, every language consist-
ing of a single string is reversible, and so the class of reversible languages is
infinite. But example (2) shows that the class of reversible languages does
not include every finite language. And it is easy to see that the class includes
infinitely many infinite languages, like the one defined by this machine,

(4)

0 1dp 2vp

pp

Because of the loop on the final state, this machine defines the language
containing sentences with dp vp followed by 0 or more pp’s. In fact, An-
gluin proves that this infinite language is the smallest reversible language
that contains the two sentences in (3). In other words, if a learner knows
that the target language is reversible, and sees the two strings (3) then the
most conservative guess the learner can make is that the target language is
the infinite language defined by (4). It turns out that given any sample of
input strings, the smallest reversible language containing that sample can
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be efficiently computed, and a learner that always guesses this language will
successfully learn any reversible language.

Do human languages have a universal structural property that similarly
guarantees the learnability of human languages? There are two important
points to make here. The first is that the grammars (or machines) in the
examples above generate the data available to the learner. But in traditional
approaches to human language we factor the grammar into parts. The syn-
tax may determine the order of morphemes, but morphological and phono-
logical processes also have an influence on what is available to the learner.
In particular, notice that the definition of reversible explicitly depends on
the identities of the elements labeling each arc, requiring a kind of ‘for-
ward and backward’ non-ambiguity. All interesting positive learning results
are like this: the learner must be able to figure out the language structure
from the identities and positions of the elements in the data. So obviously,
in human languages, we can expect structural universals to emerge from
learning only when the data available to the learner is reflecting structural
properties. Most structural properties would be hidden if every morpheme
were silent, or if every morpheme sounded exactly like every other. So al-
ready we have a preliminary problem. Human languages allow homophony
of various kinds, and there is no apparent fixed, finite bound to the extent
of homophony. There are patterns of systematic homophony (syncretism)
found in human languages, and there is also some ‘random’ accidental ho-
mophony (Williams, 1994; Bobaljik, 2002; Pertsova, 2006), and we would
like to specify these things in such a way that we could determine the sorts
of structural properties which should be visible nevertheless.

For the moment, the standard move is to adopt a linguistically non-
standard understanding of the grammar and of what we mean by ‘structural
property’, extending these notions down to the identities of perceived forms,
e.g. morpheme sequences. And we adopt a psychologically non-standard
view of the data available to the learner: morpheme sequences. We would like
to remove these simplifications eventually, but they provide a preliminary
way to return to our question: Do human languages have a universal struc-
tural property that guarantees the learnability of human languages? Recent
work suggests that some phonotactic domains may have a basic property
that guarantees learnability (Heinz, 2006), but for syntax (extended in the
way just suggested to define languages of morpheme sequences), no such
property is known.6 For example, in reversible languages, if a word can be
added to the end of a sentence, that word can be iterated any number of
times, but this does not hold in human languages. For example, in English,
while sentence-final modifiers might be iterable, optional final words cannot
always be iterated:

(5) I see
I see it

* I see it it
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To determine how humans will generalize, what constructions can iterated or
extracted from, it seems we need to be able to identify things like modifiers,
arguments, and predicates. The way the learner generalizes must, it seems,
be based on an analysis of the input in terms of this kind. How can such
analyses be learned? The standard response is that we require semantic
information to obtain such analyses, and the evidence for this suggestion
is that terms like ‘modifier’, ‘argument’, and ‘predicate’ are semantically
loaded. But it is quite possible for items with distinctive semantic properties
to also have distinctive syntactic ones. We return to this matter in §4 below.

3. Learnable syntactic patterns: PAC

A different idea about a shortcoming of the Gold framework for learning
sketched above is that it does not accommodate ‘noise’ of any kind (coughs,
slips, false starts, intrusions of other languages), and the exact identification
criterion of success is too strict. We might get a rather different picture
of what is required for learning by adopting a probabilistic criterion of
success. One proposal of this kind is presented by Valiant (1984).7 Suppose
that a learner is presented with expressions according to some probability
distribution µ, where each expression is categorized as either being in the
target language L or not. In this setting, we can quantify the degree to which
the learner’s hypothesis h misses the target by letting it be the probability
of expressions in L − h and h − L.

errorµ

L h

As before the learner is a function from samples to hypotheses h, but now the
samples are drawn according to some arbitrary probability µ and classified
according to whether they are in the target language or not. We say a class of
languages (or ‘concepts’) is learnable if the learner will always be ‘probably
approximately correct’ (PAC) after some number m of examples, where m
can depend on how probably δ we want to be approximately ε correct. A
class L is ‘PAC learnable’ if and only if there is a learner and a function m
such that for all probability distributions µ, for every language L in L, for
every level of confidence 0 < δ < 1 and every margin of error 0 < ε < 1,
the learner’s guess after m(ε, δ) samples will be a hypothesis h, where the
probability that the hypothesis is within ε of the target is at least 1 − δ:

µ(errorµ ≤ ε) ≥ (1 − δ).
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Mastering this success criterion takes some study, but it has the very
nice property that a learner can be counted as successful even when some
extremely rare expressions would be misclassified. And some classes of lan-
guages can be PAC learned by learners that only revise their hypotheses
in response to ‘positive data’, data that is classified as being in the target
language. Furthermore, the PAC criterion has been shown to be the discrete
analog of a standard criterion for the consistent statistical approximation of
real-valued functions by ‘empirical risk minimization’ and related methods.8

The classes L that are learnable in this sense turn out to have an elegant
combinatorial characterization: a class L is PAC learnable if and only if it
has finite ‘VC dimension’.9

This convergence of results, the coincidence of independently proposed
criteria of success on such a simple combinatorial bound, suggests that this
work has in fact identified a robust and natural notion. So it is perhaps no
surprise that some researchers have proposed

Applying this approach to natural language. . . one concludes that the
family of learnable grammars must have a finite Vapnik Chervonenkis
(VC) dimension. (Niyogi 2004, p. 941; cf. also Poggio et al. 2004)

This would be a very significant restriction on the class of available lan-
guages. But the proposal requires an important qualification.

Many classes with infinite VC dimension are efficiently learnable in other
looser but still reasonable senses. For example, consider the problem of
learning conjunctions of positive or negated atomic propositions (these con-
junctions are often called ‘monomials’) from a sample of the situations of
models that makes them true, in a propositional calculus with infinitely
many propositional symbols. This space has infinite VC dimension, but if
we ‘parameterize’ the space by the number n of proposition symbols used,
then the complexity of the learning problem grows only polynomially with
respect to n, 1

ε
and 1

δ
(Kearns and Vazirani, 1994, Thm.1.2). When we con-

sider language-oriented problems like learning reversible languages, we find
that the space of reversible languages has infinite VC dimension.10 But in
this case, it has been difficult to find a way to parameterize the problem to
appropriately reveal its efficiency.11

In sum, to expect finite VC dimension for the available human languages
when we do not find it for the monomials or the reversible languages seems
unreasonable. A possible response is to say that, in a clear sense, the whole
class of monomials and the whole class of reversible languages is not ef-
ficiently learnable. That’s true, but in the first place, on reasonably sized
reversible language learning problems, Angluin’s learner is efficient. And in
the second place, there seems no principled (linguistic or cognitive) dividing
line between the ‘reasonably sized’ problems that we are likely to encounter
and the rest.

A more important point about this direction of research is this: the
adoption of the PAC success criterion or something similar obviously does
not address the main concern mentioned at the end of the previous section.
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That is, we have not discovered how to define the kinds of generalizations
made by human learners, and our universals of language complexity in §1
were rather weak, so these models do not yet explain the sorts of similarities
across languages noticed by linguists.

4. Syntactic-semantic relations: languages as logics

The common descriptions of language are all semantically-laden.12 Sub-
jects, objects, predicates, modifiers, names, anaphors, etc. – these are all
traditionally identified with criteria that are at least in part semantic. The
typological universals identified by Greenberg and others in the 1960’s, are
all expressed in such terms, as are more recent proposals in that tradi-
tion (Hawkins, 2005, for example). Much of recent syntactic theory is so
semantically-laden that the distinctions between semantic and syntactic ar-
guments can be difficult to discern. Furthermore, psychological studies of
acquisition confirm the commonsense idea that children and other language
learners use multiple cues to figure out what is meant by utterances. For
example, in one recent paper we find this suggestion:

. . . the learning procedure in some way makes joint use of the struc-
tures and situations that cooccur with verbs so as to converge on their
meanings. Neither source of evidence is strong or stable enough by
itself, but taken together they significantly narrow the search space.
(Lidz, Gleitman, and Gleitman, 2004)

Can we provide computational models of how this works? There has been
much activity in this area – much of it focused on making sense of the
Augustinian (398) idea that the meaning of a word like ‘cat’ might be de-
termined in part by noticing a common element in many of the situations
where that word is used. But here we will very briefly discuss two funda-
mental questions about the potential and limits of such learning strategies:
What is the nature of the fit between syntax and semantics such that a
learner could expect to find semantic evidence of syntactic structure, and
vice versa? And what kind of compositional structure do we find in human
languages?

4.1. The syntactic/semantic fit and ‘bootstrapping’

The fundamental approaches to learning discussed in §§2-3 extend imme-
diately to language learning situations where the target is a grammar that
defines form-meaning associations, and where the samples available to the
learner are (at least sometimes) of this form too. It is completely clear that
the availability of both forms and meanings in the data completely changes
the situation! For example, in the Gold paradigm, it is obvious that some
(sentence,meaning) texts are learnable where the text of sentences alone is
not. We can prove this with a simple example. Consider any class of lan-
guages containing all the finite languages and an infinite language – known
to be unlearnable in the Gold sense, as discussed in §2. Now pair each
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sentence with a meaning in the following way: let the expressions in the
finite languages all have distinct meanings (e.g. let them each denote dis-
tinct numbers), but let all the expressions in the infinite language all denote
the same thing (e.g. the number 1). Then, after seeing any 2 different (sen-
tence,meaning) pairs, the learner is in a position to know whether the target
language is infinite or not, and in either case, the learner has a strategy for
successful identification. It is also easy to define unlearnable classes of (sen-
tence,meaning) languages where the corresponding sentence-only languages
are easily identifiable. So we conclude immediately: when paired semantic
and syntactic information is available, the nature of the learning problem
varies fundamentally with the nature of the syntax-semantics relation.

Simple, artificial logics provide some useful examples of languages where
the meanings of expressions is not arbitrary. A logic is typically given by a
syntax that defines a set of expressions, a semantics that associates these
sequences with semantic values, and an inference relation that is defined on
expressions but which also preserves some semantic property. In systems like
this, there is a fit between syntactic and semantic properties; for example,
expressions that semantically denote binary functions on truth values are
syntactically elements that combine with two sentential expressions. More
interestingly, when there is a syntactic restriction on the number of elements
that play a certain syntactic role, the elements with that syntactic role
typically denote in semantic domains that are similarly restricted.

This perspective is extended to human languages by Keenan and Stabler
(2003) with particular attention to the extreme case of the ‘syntactic con-
stants’, elements that play unique roles in the grammar. While one proper
name can typically be replaced by any another without changing structure
in any human language, the syntactic constants are those words with unique
roles, elements that cannot be replaced by any other, in the expressions of
the language. In every sentence of standard English, for example, we can
replace the name Bill by Sam without affecting structural properties, but
there is no other element that can replace every occurrence of the infinitival
to; no other element can replace the auxiliary be; and so on for many other
elements. These syntactic constants, ‘grammatical words’, have a semantic
distinction too: on any reasonable approach, they do not denote the same
kinds of things that things like names or transitive verbs denote. Rather,
they tend to denote ‘semantic constants’, that is, semantic values that are
constant in the sense (roughly) that they do not depend on which individ-
uals have which properties.13

This is of particular interest in the present context for two reasons. In the
first place, it defines a setting in which various kinds of syntactic evidence
could bear on semantic properties, and vice versa. Clearly, in this kind of
setting, it is possible to get evidence about the semantic values of elements
that could not be learned with the Augustinian method of correlating ut-
terances with the situations of utterance. If the learner has access to both
syntax and to syntactically characterizable relations of plausible inference,
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then obviously the bearing on semantic hypotheses can be even more direct
(Stabler, 2005).

A second reason to take note of this kind of fit between syntax, seman-
tics and inference is that very prominent directions in current syntactic
research suggest that human languages may tie semantic value and syntac-
tic properties together very tightly across languages. For example, Szabolcsi
has proposed in a series of papers that quantifiers of various kinds occupy
distinct syntactic positions across languages (Szabolcsi, 1996; Szabolcsi and
Brody, 2003). And Cinque has proposed in a series of works that, across lan-
guages, adverbial elements appear in a fixed order (Cinque, 1999; Cinque,
2001). These are but two examples from an enormous range of proposals
that share the idea that the ties between syntactic role and semantic values
may be very rich indeed.

4.2. Compositional structure

Although it is now a commonplace that complex expressions take their
semantic values as a function of the semantic values of their parts, it is still
difficult to formulate this idea in a fully general, precise and substantial
way, so that it can underpin substantial linguistic universals, and so that
we can properly understand its relation to language acquisition and use.

Suppose we think of a human language as the set of expressions gener-
ated from a lexicon by some structure building rules (again setting aside the
worry that we want to factor the grammar into a syntax and some kind of
morphology, or other parts). To allow for structural ambiguity, let’s regard
the semantics as assigning semantic values to derivations. Then a simple
idea about compositional structure is this: the lexical elements have mean-
ings, and with each way of composing the parts is associated a function from
the meanings of the parts to the meanings of the resulting complex. The
language learner can master the whole language by identifying the meanings
of the parts and the semantic significance of the ways of combining expres-
sions. This simple picture cannot be right. It raises a puzzle about how the
language learner could proceed: What evidence from situations could lead
the language learner to the meanings of each component of that phrase? And
we would like a solution to this puzzle that is compatible with the fact that
human languages have so many idioms, so many complex expressions with
meanings that seem idiosyncratic – not just phrasal idioms (kick the bucket,
pop the question, chew the fat,. . . ) but also idiomatic compounds and fixed
phrases (by and large, in short, every which way, do away with, spick and
span, break a leg, monkey wrench, sunflower, traffic light, deadline, . . . ), and
special verb-particle constructions (take up/down/in/out/back/over, turn
up/down/over/in/out/around/off, hold up/down/off/out/over,. . . ).

It is reasonable to suppose that, at least to a good first approximation,
the learner’s first evidence about what the morphemes of a language are
is not semantic but combinatorial (Harris, 1957; Brent, 1999; Goldsmith,
2006). In that case, language learners may sometimes realize that an ex-
pression is complex and sometimes even have a good idea from situational
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cues what it means, but not know the meanings of the parts. Under what cir-
cumstances can such a learner proceed from information about the meanings
of sentences to an idea about the meanings of the parts of those sentences?
One approach to this idea has been inspired by a simple proposal from
(Frege, 1884, §60): “It is enough if the sentence as a whole has meaning; it
is this that confers on its parts also their content.”

Following Hodges (2001) and Westerst̊ahl (2004), suppose a language is
given by a lexicon {a, b, c, . . . , a1, b1, . . .} together with some rules
{f1, f2, . . . fn} for building complexes. A derivation can be given as a func-
tion expression like f1(a, b), and the semantics µ can be a partial function
from these derivations into some semantic domain. Let’s say that two deriva-
tions d1, d2 are synonymous with this semantics, d1 ≡µ d2, just in case they
have the same meaning µ(d1) = µ(d2). Then, the language is compositional
if for every rule f , f(a1, . . . , an) ≡µ f(b1, . . . , bn) whenever for each i be-
tween 1 and n, µ(ai) = µ(bi). In other words, the semantics is compositional
if substituting one synonymous element for another in a derivation leaves
the meaning of the complex unchanged. In this setting, suppose that a lan-
guage learner has acquired a fragment of English with a total compositional
semantics, and then the speaker hears an idiom like let the cat out of the bag
for the first time, with some evidence that it means something like reveal
the secret. Now it is clear that there are several ways to provide a composi-
tional extension of the language that accommodates this. One can maintain
compositionality by assuming the rules assembling the idiom are different
from the usual ones, leaving us free to set the interpretation of the idiom
even when the parts have exactly their usual meanings. But a more appeal-
ing extension introduces new senses for some of the words – for example
cat could be interpreted as the ‘secret’, and bag might even be interpreted
as ‘concealment’, in which case the complex could be interpreted compo-
sitionally. But for idioms lacking compositionally interpretable parts (like
perhaps kick the bucket), new senses could be introduced with no meanings
specified for them.

In sum, a simple version of compositionality appears to be compatible
with a reasonable range of proposals about how a language learner might
handle idioms and collocations of various kinds. Something like this seems
to represent a consensus now in the field,14 and while much remains mys-
terious in our models of language recognition and production, this picture
seems compatible with results of acquisition research.15 One hopes that
this recent work may lead to models of language acquisition and use that
will properly predict the range of idiomatic constructions found across lan-
guages, and be part of a picture in which we can make sense of the way
language learners identify semantic properties of linguistic elements. These
preliminaries appear to be essential first steps towards a realistic conception
of how semantically characterized elements appear in the configurations we
find across languages.
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5. Conclusions

The fact that humans notice certain kinds of patterns in small samples of
sentences, patterns that extend well beyond the sample, has the consequence
that many languages cannot be learned (as we see, in different ways, in the
formal results of Gold, Angluin, Valiant). It is natural to assume that the
human way of doing this will determine some structural universals of hu-
man languages. Our understanding of this matter has been shaped by two
rather recent developments. First, there has been an astounding convergence
among grammar formalisms on a certain ‘mildly context sensitive’ (MCS)
level of combinatorial complexity. There are still many controversies in this
area, but it appears that Joshi’s hypothesis that human languages are MCS
may be right or very close to right. Second, there has been a remarkable
convergence among independent characterizations of the learnable patterns.
Again, there are controversies, but it is clear that VC dimension provides
a relevant measure of learning complexity. With these two major conver-
gences, our understanding of language structure and learning complexity
has advanced considerably.

We began by asking: Do nontrivial universal properties of language struc-
ture reflect important properties of human language learning? And do some
of these structural properties guarantee that the class of all languages with
those properties is a ‘learnable’ class in some relevant sense? This last ques-
tion certainly must be answered negatively if by ‘structural’ we refer to
purely syntactic structure. Since purely structural properties typically de-
termine neither the sequences of perceptible forms nor their semantic prop-
erties, structure alone is not enough to determine the learning problem.
Human language learning depends, for example, on the fact that the pro-
nunciation dog does not change arbitrarily in every utterance, and on the
fact that many utterances of dog are perceptibly different from at least many
other morphemes, but these are not matters of syntactic structure. So to
set the stage for learning structural properties of expressions, we need to
worry about the bounds or pressures limiting syncretism and accidental ho-
mophony. Standardly, one proceeds by adopting simplifying assumptions,
assuming that such bounds will be forthcoming. Still, our initial questions
remain largely open.

The standard idea about why these questions remain open is that we
must first bridge the gulf between the perceptible properties of unanalyzed
linguistic input and the terms of linguistic analysis (cf. note 2). In computa-
tional models, we can stipulate that one or another expression is a subject
or a modifier or whatever, but this does not take us toward an explanation
until the stipulations are understood and hence removable. To get to such
terms without stipulation, it is typically assumed that semantic cues may
be essential, as discussed at the end of §2 and in §4, but even this is not
established. In particular, the role of grammatical constants as indicators
of structure has not been fully explored. When the computational bases of



Computational models of language universals 15

traditional analyses are better understood, then can hope for explanations
of how traditional universals emerge.

Obtaining clear open questions is an achievement, and the terms for
addressing them must derive from secure foundations in learning and com-
plexity theory. The computational foundations reviewed here are almost en-
tirely new since the 1961 meeting on universals. It is certain that the next
40 years will yield a much deeper and more comprehensive understanding
of language universals and how they emerge.
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Notes

1This is standardly recognized in the literature. For example, in Chomsky’s
1956 paper we find,

We might avoid this consequence by an arbitrary decree that there is a
finite upper limit to sentence length in English. This would serve no useful
purpose, however. . . (Chomsky, 1956, p.115)

And in recent introductions to formal languages and computation, we find remarks
like this:

Viewing the computer as a finite state system. . . is not satisfying mathe-
matically or realistically. It places an artificial limit on memory capacity,
thereby failing to capture the real essence of computation. (Hopcroft and
Ullman, 1979, p.14)

The suggestion is not that the limitations are unimportant or uninteresting, but
just that we may get a more revealing and accurate understanding from an ac-
count that factors the definition of grammatical patterns away from the interfering
factors.

2This point has been noted often before in both linguistic work and studies of
language acquisition. For example,

In short, a problem that is central to understanding the learning of syntax
is that of arriving at a theory of how the child determines appropriate base
structures for the types of sentences that appear in the corpus. However,
the peculiarly abstract relation between base structures and sentences un-
fits any of the usual learning mechanisms for explaining their assimilation.
(Fodor, 1966, p.113)

. . . in the case of Universal Grammar. . . we want the primitives to be con-
cepts that can plausibly be assumed to provide a preliminary, prelinguistic
analysis of a reasonable selection of presented data. it would be unreason-
able to incorporate, for example, such notions as subject of a sentence or
other grammatical notions, since it is unreasonable to suppose that these
notions can be directly applied to linguistically unanalyzed data. (Chom-
sky, 1981, p.10)

The problem with almost every nonsemantic property that I have heard
proposed as inductive biases is that the property is itself defined over
abstract symbols that are part of the child’s input, that themselves have
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to be learned. For example, some informal proposals I have heard start
from the assumption that the child knows the geometry of the phrase
structure tree of a sentence, or, even worse, the syntactic categories and
grammatical relations of phrases. (Pinker, 1984, p.51)

3One promising approach to formalizing the similarity among the derivations
of different formalisms uses tree transducers: similar derivations may be related
by relatively weak kinds of transducers. Cf., e.g. Shieber (2005); Engelfriet and
Vogler (1985).

4Among the most important results on earlier extremely expressive formalisms
are the Peters and Ritchie (1973) result on a certain ‘standard theory’ transfor-
mational grammar, and the series of results on ’unification grammar’ formalisms
(Berwick, 1981; Johnson, 1988; Trautwein, 1995; Torenvliet and Trautwein, 1995).

5This same machine is represented by the following rewrite grammar:

0→dp 1 2→ ε

1→vp 2 3→ ε

2→pp 3

6The seminal work of Wexler and Culicover (1980) defines a learnable class
and proposes a number of interesting structural properties for human syntax, but
it is based on an early grammatical framework; a penetrating analysis of this work
is provided by Osherson, Weinstein, and Stob (1986), showing that it allows only
a finite range of grammars. There are many other less interesting ways to restrict
the range human grammars to a finite set (Chomsky, 1981; Osherson, Weinstein,
and Stob, 1984; Pinker, 1982); one can simply stipulate that only a finite set of
(unspecified) properties are really relevant ‘core’ properties; and of course many
non-linguistic factors (lifespan, attention span) conspire to make our concerns
finite. After one such proposal it is appropriately remarked “As with many learn-
ability presentations, the account just given has an air of science fiction about
it” (Pinker, 1982, p.675). Compare also the remarks in note 1. The interesting
question is whether there really are principled, empirically motivated, syntactic
properties of language that guarantee learnability, properties which would explain
the sorts of properties traditionally noticed by linguists (Greenberg, 1966, for ex-
ample). As suggested at the outset, what we really want to know is how human
learners generalize from the finite data they are given, such that we end up with
languages like the ones we have.

7 This proposal and important variants are now introduced in several good
texts. See for example, Kearns and Vazirani (1994), Alpaydin (2004), Anthony
and Biggs (1992).

8Alon et al. (1997), Mendelson (2003), Mukherjee et al. (2004), Poggio et al.
(2004).

9This result is from Blumer et al. (1989), building on Vapnik and Chervonenkis
(1971). ‘VC dimension’ is introduced and carefully discussed in the texts listed in
note 7, and in the Blumer et al. (1989) paper. The definition is very simple. Given
an arbitrary subset S of the domain, if {L ∩ S| L ∈ L} is the set of all subsets of
S, then we say S is ‘shattered’ by the class L. The VC dimension of L is the size
of the largest set Y that is shattered by L.

10It is obvious that the space Lrev of reversible languages has infinite VC di-
mension, but I have not seen this in the literature before, so I sketch a proof. We
need to show that there is no finite bound on the size of the sets that are shattered
by Lrev. For any finite k ≥ 0, let the language Lk = {biabi| 0 ≤ i ≤ k}. It is clear
that every such Lk is reversible:
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Furthermore, it’s clear that every subset of this language is reversible, since it will
be defined by the result of deleting any number of the a-arcs (and then removing
any states and arcs that are not on a path from the start state to the final state).
Clearly the size of Lk grows with k, and every such set can be shattered by Lrev

since every subset of Lk is also reversible.
11Cf. Pitt (1989), Freund et al. (1997), Head, Kobayashi, and Yokomori (1998),

Yokomori (2003).
12Jakobson dismisses attempts to separate syntactic and semantic components

of language at the 1961 Conference on Universals with the amusing remark, “For-
tunately, in his quest for universals of grammar Greenberg does not share the
whimsical prejudice against ‘semantics oriented definitions,’ which, strange as
it seems, may have filtered even into our Conference on Language Universals”
(Jakobson, 1963, p.271).

13These notions are defined precisely in Keenan and Stabler (2003). What we
here call ‘semantic constancy’ is sometimes called ‘isomorphism invariance’ or
‘permutation invariance’. This is a familiar notion in semantics (van Benthem,
1986, §1.7, for example), closely following the classical notions of invariance from
Klein (1893) and Tarski (1986).

14Cf., e.g., Westerst̊ahl (2004), Hodges (2001), McGinnis (2002), Nunberg, Wa-
sow, and Sag (1994), Keenan and Stabler (2003), Kracht (1998). Contrasting views
can be found in earlier work like Jackendoff (1997), Di Sciullo and Williams (1987).

15In particular, some studies indicate that children do, in fact, look for compo-
sitional analyses of new phrases (Gibbs, 1991; Gibbs, 1994).
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