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a b s t r a c t

Children acquiring language infer the correct form of syntactic constructions for which
they appear to have little or no direct evidence, avoiding simple but incorrect generaliza-
tions that would be consistent with the data they receive. These generalizations must be
guided by some inductive bias – some abstract knowledge – that leads them to prefer
the correct hypotheses even in the absence of directly supporting evidence. What form
do these inductive constraints take? It is often argued or assumed that they reflect innately
specified knowledge of language. A classic example of such an argument moves from the
phenomenon of auxiliary fronting in English interrogatives to the conclusion that children
must innately know that syntactic rules are defined over hierarchical phrase structures
rather than linear sequences of words (e.g., Chomsky, 1965, 1971, 1980; Crain & Nakayama,
1987). Here we use a Bayesian framework for grammar induction to address a version of
this argument and show that, given typical child-directed speech and certain innate
domain-general capacities, an ideal learner could recognize the hierarchical phrase struc-
ture of language without having this knowledge innately specified as part of the language
faculty. We discuss the implications of this analysis for accounts of human language
acquisition.

! 2010 Elsevier B.V. All rights reserved.

1. Introduction

Nature, or nurture? To what extent is human mental
capacity a result of innate domain-specific predispositions,
and to what extent does it result from domain-general
learning based on data in the environment? One of the
tasks of modern cognitive science is to move past this clas-
sic nature/nurture dichotomy and elucidate just how in-
nate biases and domain-general learning might interact
to guide development in different domains of knowledge.

Scientific inquiry in one domain, language, was influ-
enced by Chomsky’s observation that language learners
make grammatical generalizations that appear to go be-
yond what is immediately justified by the evidence in
the input (Chomsky, 1965, 1980). One such class of gener-

alizations concerns the hierarchical phrase structure of
language: children appear to favor hierarchical rules that
operate on grammatical constructs such as phrases and
clauses over linear rules that operate only on the sequence
of words, even in the apparent absence of direct evidence
supporting this preference. Such a preference, in the ab-
sence of direct supporting evidence, may suggest that hu-
man learners innately know a deep organizing principle
of natural language, that syntax is organized in terms of
hierarchical phrase structures.

In outline form, this is one version of the ‘‘Poverty of the
Stimulus’’ (or PoS) argument for innate knowledge. It is a
classic move in cognitive science, but in some version this
style of reasoning is as old as the Western philosophical
tradition. Plato’s argument for innate principles of geome-
try or morality, Leibniz’ argument for an innate ability to
understand necessary truths, and Kant’s argument for an
innate spatiotemporal ordering of experience are all used
to infer the prior existence of certain mental capacities
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based on an apparent absence of support for acquiring
them through learning.

Our goal in this paper is to reevaluate the modern PoS
argument for innate language-specific knowledge by for-
malizing the problem of language acquisition within a
Bayesian framework for rational inductive inference. We
consider an ideal learner who comes equipped with two
powerful but domain-general capacities. First, the learner
has the capacity to represent structured grammars of var-
ious forms, including hierarchical phrase-structure gram-
mars and various alternatives. Second, the learner has
access to a Bayesian engine for statistical inference that
can operate over these structured grammatical representa-
tions and compute their relative probabilities given ob-
served data. We will argue that a certain core aspect of
linguistic knowledge – that syntactic representations are
organized in terms of hierarchical phrase structure – can
be inferred by a learner with these capabilities but without
a language-specific innate bias favoring this conclusion.

There have been many different framings of stimulus
poverty questions over the years, and ours differs from both
Chomsky’s original framing and recent alternatives in some
subtle ways that we will clarify over the course of this arti-
cle. Berwick and Chomsky (2008, submitted for publication)
have argued that much recent work on the poverty of the
stimulus misses the original intention of the argument in
generative linguistic theory. This may be true; it is certainly
not for us to debate with Chomsky the original intentions of
generative theory. Yet the stimulus poverty debate has ta-
ken on a larger life of its own in cognitive sciencemore gen-
erally, and our goal here is to explore what we see as a basic
issue at the heart of language learning – the origins of hier-
archical phrase structure in syntactic representation – as an
instance of the more general question of what kinds of
structure must be innate in cognitive development. In our
view, the argument about innateness is primarily about
the role of domain-specificity in the learner’s innate endow-
ment. Because language acquisition presents a problem of
induction, it is clear that learners must have some con-
straints limiting the hypotheses they consider. The question
is whether a certain feature of language – such as hierarchi-
cal phrase structure in syntax –must be assumed to be spec-
ified innately as part of a language-specific ‘‘acquisition
device’’, rather than derived from more general-purpose
representational capacities and inductive biases.

Note also that our focus is on the issue of what kind of
knowledge must be assumed as an innate constraint on the
learner’s inductive hypotheses, rather than on what kind of
representational machinery must be available to the lear-
ner. We are not arguing that a learner lacking a potential
to represent hierarchical phrase structures can somehow
acquire this potential; we accept here for the sake of argu-
ment the traditional view that a learning system can only
learn structures that it is capable of representing. The
question is whether a learner who is capable of represent-
ing grammars based on hierarchical phrase structure, as
well as other kinds of structure, can infer that hierarchical
phrase structure is indeed the best way to describe natural
language syntax – without requiring specific innate
knowledge that language is structured in this way. Some
traditional nativist arguments equate these ideas: prior

knowledge concerning the hypotheses that the learner
considers takes the form of limitations on the class of
hypotheses that the learner is capable of representing. This
assumption makes sense if the learning mechanism is very
simple – if learners can only select hypotheses based on
their consistency with the observed data. By positing a
more powerful Bayesian learning engine, we are able to re-
lax this assumption and study how learners can select from
among multiple a priori possible representational frame-
works the one that best describes the data they observe
– for instance, between regular grammars and context-free
grammars, where the latter more naturally captures hier-
archical phrase structure in syntax.

We introduce PoS arguments in the context of a specific
example that has sparked many discussions of innateness,
from Chomsky’s original discussions to present-day de-
bates (Laurence & Margolis, 2001; Legate & Yang, 2002; Le-
wis & Elman, 2001; Pullum & Scholz, 2002; Reali &
Christiansen, 2005): the phenomena of auxiliary fronting
in constructing English interrogative sentences. We begin
by introducing this example and then lay out the abstract
logic of the PoS argument of which this example is a special
case. This logic will motivate the form of our Bayesian
analysis, but our focus is on one of the abstract questions
that emerged based on the original example: the learnabil-
ity of hierarchical phrase structure.

Before moving into the argument itself, we should high-
light and clarify two aspects of our approach that contrast
with other recent analyses of PoS arguments in language,
and analyses of auxiliary-fronting in particular (Laurence
& Margolis, 2001; Legate & Yang, 2002; Lewis & Elman,
2001; Pullum & Scholz, 2002; Reali & Christiansen, 2005).
First, our analysis should not be seen as an attempt to ex-
plain the learnability of auxiliary fronting (or any specific
linguistic rule) per se. Rather the goal is explore how and
whether learners can infer deeper andmore abstract princi-
ples of linguistic structure, such as the hierarchical phrase-
structure basis for syntax. This principle (in conjunction
with many other aspects of linguistic knowledge) supports
an entire class of specific generalizations that include the
auxiliary-fronting rule but alsomany other phenomena sur-
rounding agreement,movement, and extraction.We take as
data a corpus of child-directed speech and evaluate hypoth-
eses about candidate grammars that could account for the
corpus as awhole. Our findings suggest that it is vital to con-
sider the learnability of entire candidate grammars holisti-
cally. While crucial data that would independently
support any one generalization (such as the auxiliary-front-
ing rule)may be very sparse or even nonexistent, theremay
be extensive data supporting other, related generalizations;
this can bias a rational learner towards making the correct
inferences about the cases for which the data is very sparse.
To put this point another way, while it may be sensible to
ask what a rational learner can infer about language as a
whole without any language-specific biases, it is less sensi-
ble to ask what a rational learner can infer about any single
specific linguistic rule (such as auxiliary-fronting). The need
to acquire a whole system of linguistic rules together im-
poses constraints among the rules, so that an a priori unbi-
ased learner may acquire constraints that are based on the
other linguistic rules it must learn at the same time.
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Second, our approach offers a way to tease apart two
fundamental dimensions of linguistic knowledge that are
often conflated in the language acquisition literature. The
question of whether human learners have (innate) lan-
guage-specific knowledge is logically separable from the
question of whether and to what extent human linguistic
knowledge is based on structured symbolic representa-
tions like generative phrase-structure grammars. Different
approaches to language acquisition correspond to different
answers to these questions, which we can visualize along a
two-dimensional space of possibilities (Fig. 1). However,
the best known approaches have explored only two cor-
ners in this space: domain-general learning accounts in
the emergentist tradition, which seeks to explain language
as arising from non-linguistic cognitive bases, have been
studied primarily using simple representations that avoid
explicit symbolic structure, such as n-grams or recurrent
neural networks (e.g., Elman et al., 1996; Reali & Christian-
sen, 2005; Rumelhart & McClelland, 1986). By contrast,
structured symbolic representations have been explored
primarily in the context of accounts based on innate lan-
guage-specific knowledge that largely eschew general-pur-
pose learning mechanisms (e.g., Chomsky, 1965, 1980;
Pinker, 1984). Few cognitive scientists have explored the
possibility that explicitly structured mental representa-
tions might be constructed or learned via domain-general
learning mechanisms. Despite this, there are compelling
reasons to believe that the human mind has available both
powerful general-purpose learning abilities and powerful
representational capacities. Our framework offers a way
to explore this relatively uncharted territory in the context
of language acquisition. We will argue that domain-general
learning of structured symbolic representations provides

a valuable way to think about aspects of language acquisi-
tion (and potentially other areas of cognitive development)
where data are sparse but the learner’s generalizations are
rich.

We hope that the position we lay out here may help to
bridge the two more standard diagonally-opposed views
in Fig. 1. For an emergentist audience, we suggest that
one may retain the core of emergentism – namely the focus
on domain-general bases of language – while considering
explicitly structured representations. Such a broadening
of scope follows naturally from the observation that struc-
tured representations are themselves domain-general –
family trees, organizational hierarchies, and plan hierar-
chies all rely on representations similar in some ways to
those of language, but used for very different purposes.
Moreover, we argue that domain-general learning mecha-
nisms may suffice to determine what form of structured
representation provides the best account of the child’s lin-
guistic input. Thus, our approach is fundamentally consis-
tent in spirit with an emergentist view, even though the
representations we consider are different from those tradi-
tionally adopted by many emergentists. At the same time,
for a nativist audience, we hope that our adoption of struc-
tured representations helps to cast the claims of domain-
generality in terms that are more recognizable and more
obviously relevant to traditional analyses of what cognitive
structuresmust be innate based on the linguistic input chil-
dren receive and the final knowledge state they achieve.

1.1. Auxiliary fronting: a specific PoS argument

At the core of modern linguistics is the insight that sen-
tences, although they might appear to be simply linear se-
quences of words or sounds, are built up in a hierarchical
fashion from phrases nested in tree structures (Chomsky,
1965, 1980). The rules of syntax are defined over linguistic
elements corresponding to phrases that can be represented
hierarchically with respect to one another in a tree struc-
ture: for instance, a noun phrase might itself contain a
prepositional phrase or another noun phrase. Henceforth,
when we say that ‘‘language has hierarchical phrase struc-
ture’’ we mean, more precisely, that the basic representa-
tions over which syntactic rules operate are defined in
terms of abstract phrases which may be nested hierarchi-
cally in arbitrary tree-structured topologies, and do not
simply consist of linear sequences of words or linearly
branching phrases (i.e., purely right-branching or purely
left-branching structures).1 Is the knowledge that language

Fig. 1. A schematic view of the theoretical landscape for language
acquisition in cognitive science. The vertical axis reflects the nature of the
representation. The horizontal axis reflects the source of inductive bias:
‘‘innate’’ and ‘‘learned’’ are in parentheses because they are often
conflated with ‘‘language-specific’’ and ‘‘domain-general’’, which we
suggest is closer to the real issue. The two most prominent approaches
are represented by the two opposite shaded quadrants. We explore a
different part of the landscape, represented by the shaded oval: assuming
that mental representations of language are based on structured symbolic
grammars (the upper half plane of the picture), we attempt to assess
whether their form could be inferred based on domain-general learning
mechanisms (the upper-right quadrant) or instead must be constrained
by language-specific innate knowledge (the upper-left quadrant).

1 We are aware that there may be different concepts of ’hierarchical
structure’ in language, of which ours is just one. Under other notions of
hierarchical structure, some of the grammars that we treat as ’linear’ may
be considered ’hierarchical’, since they involve non-terminals nested within
non-terminals. However, our way of partitioning grammars into hierarchi-
cal and linear classes captures a key intuition: constituents (e.g., noun
phrases) are coherent chunks that can appear in different locations in a
generically tree-structured syntactic parse; only the grammars that we call
’hierarchical’ capture that intuition. Our basic finding that the correct
grammar can be learned from typical child-directed input would be
unaffected if we were to alter the definition of ’hierarchical’ to include
embedding that is restricted to purely right-branching or purely left-
branching structures.
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is organized in this way innate? In other words, is it a part of
the initial state of the language acquisition system and thus
a necessary feature of any possible hypothesis that the lear-
ner will consider?

A similar question has been the target of stimulus pov-
erty arguments in the context of a number of different syn-
tactic phenomena, but perhaps most famously auxiliary-
fronted interrogatives in English (Chomsky, 1965, 1971,
1980; Crain, 1991; Crain & Nakayama, 1987; Laurence &
Margolis, 2001; Legate & Yang, 2002; Lewis & Elman,
2001; Pullum & Scholz, 2002; Reali & Christiansen, 2005).
Different authors have framed this challenge in different
ways, so we first lay out the classic analysis of auxiliary
fronting and then discuss variants, including ours.

There appears to be a strong structural regularity in
English, relating simple declaratives like (1a) and (2a) with
corresponding interrogative forms (1b) and (2b):

(1a) The man was hungry.
(1b) Was the man hungry?
(2a) The boy is smiling.
(2b) Is the boy smiling?

A traditional way to describe this regularity is in terms
of ‘‘movement’’: between corresponding declarative and
interrogative forms, the auxiliary verbs was and is in (1a)
and (2a) appear to move to the front of the sentences in
(2a) and (2b). A language learner who grasps this regular-
ity could extend it to produce and comprehend an infinite
range of new utterances. These new cases may be more
complex than the simple cases above, yet the extension
of this syntactic pattern still appears straightforward:

(3a) The little girl in the red dress is smiling.
(3b) Is the little girl in the red dress smiling?

Consider (4a), however, in which the declarative form
contains two identical auxiliary verbs.

(4a) The boy who is smiling is happy.
!(4b) Is the boy who smiling is happy?
(4c) Is the boy who is smiling happy?

Which is the correct way to form the corresponding
interrogative: (4b), in which the first is from (4a) appears
to move to the front, or (4c), in which the second is appears
to move? Such cases suggest that there is not a unique log-
ical way to characterize the relation between the simple
declarative and interrogative forms in (1) and (2). Any reg-
ularity is an inductive inference, and there will be different
ways of analyzing these sentences as linguistic objects that
make different inductive hypotheses more or less natural.

This ambiguity presents a challenge for the language
learner. A learner who analyzes sentences as linear struc-
tures of words, and who assumes that any linguistic rules
would be consistent with that underlying structure, might
characterize the patterns in (1) and (2) as something like
(5), while one who analyzes sentences in terms of hierar-
chical structures of phrases might characterize these same
patterns more like (6):

(5) Interrogatives can be formed by moving the
leftmost auxiliary in the declarative to the
beginning of the sentence.

(6) Interrogatives can be formed by moving the
auxiliary in the main clause of the declarative to the
beginning of the sentence.

These two ways of describing the observed patterns
suggest different inductive generalizations for complex
utterances with two or more occurrences of the same aux-
iliary: the inference in (5) suggests that (4b) would be cor-
rect, while the inference in (6) suggests that (4c) would be
correct. We know that only (4c) is acceptable in English,
and that the actual grammar of English follows rules that
are more like (6) than (5), but how is a child to knowwhich
inference is correct?

One possibility is that simple observation could show
the child that (5) is wrong and (6) is (more or less) right.
If children learning language hear a sufficient sample of
sentences like (4c) and few or no sentences like (4b), they
might reasonably infer that English follows the pattern in
(6) rather than the (5). The poverty of the stimulus argu-
ment focuses here. It has been argued that complex inter-
rogative sentences such as (4c) do not exist in sufficient
quantity in child-directed speech to make this inference.
For instance, Chomsky (1971) suggests that ‘‘it is quite pos-
sible for a person to go through life without having heard
any of the relevant examples that would choose between
the two principles.’’ In spite of this paucity of evidence,
children three to five years old can form correct complex
interrogative sentences like (4c) but appear not to produce
incorrect forms such as (4b) (Crain & Nakayama, 1987; but
see also Ambridge, Rowland, & Pine, 2008).

Another possibility is that the generalization expressed
by (6) is somehow a priori simpler or better than that in
(5). But it is hard to see how to justify such a preference,
at least if one does not assume a priori that language has
hierarchical phrase structure. If anything, a general-pur-
pose learning agent who knows nothing specifically about
human natural languages might take (5) to be the simpler
induction, because it does not assume the existence of hid-
den objects (e.g., syntactic phrases) structured according to
some unobservable relations (e.g., hierarchical phrase
structures). If the correct generalization is not directly indi-
cated by the data and is also not preferred on the grounds of
a general inductive bias favoring simplicity, a natural con-
clusion is that children come equipped with some innate
constraint or knowledge that biases them to induce the cor-
rect generalization rather than the incorrect one.

What is the nature of that innate bias? In the most fa-
mous framing of this argument, which has led to decades
of intense controversy among a broad range of researchers,
Chomsky (1980) appeared to suggest that it is an innate
restriction on the kinds of representations that the language
faculty can consider. We quote at some length from one of
Chomsky’s most accessible statements of this argument:

The issue is, in this case, do we look at sentences in a lin-
ear or a hierarchical manner in order to carry out the
induction? . . . There are cases in which people deal with
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properties like leftmost (they may regard an array of ele-
ments as linear and consider the physical arrangement
of the elements), whereas there are other cases where
people take into account all kinds of hierarchical struc-
tures in visual space or whatever. What we have to ask
is what is the property in the initial state S0 [of the lan-
guage faculty] that forces us, in this specific linguistic
case, always to go to the hierarchical abstract rule and
always to neglect the more elementary linear physical
rule? Several answers have been proposed to this ques-
tion: the right one, I think, is the one which is implicit in
the theory of transformational grammar, which in effect
asserts that there is a notation available for describing
linguistic rules that does not permit the formulation of
the property leftmost. . . There is a very specific theory
of representations in terms of which follows the first
noun-phrase is a more elementary property than left-
most; but that happens to be a property of this specific
concrete theory and not a consequence of any general
theory of representations and structures. Of course this
property has many consequences elsewhere; it has vast
consequences for grammar, where, applied to other lin-
guistic structures, the use of the category leftmost. . .
should always be less accessible than properties like fol-
lows the first noun-phrase. This hypothesis is one that is
rich in empirical consequences and to my knowledge
true. (Chomsky, 1980, pp. 115–116)

Although this argument for innate language-specific
constraints on syntactic rules is clearly stated, its interpre-
tation is subtle and depends on what sort of rules we take
as the basis for syntax, or the focus of interest for a cognitive
theory of language. Generative linguistic theorists have long
been interested in auxiliary-fronting as an example of syn-
tactic movement. To explain these phenomena, they posit
rules like those expressed informally in (5) and (6) that in-
voke explicit ‘‘fronting’’ or ‘‘raising’’ of words or phrases,
as part of what a speaker knows when they grasp the struc-
ture of complex utterances such as (4a) or (4c). We, along
with many cognitive scientists, are less sure about whether
explicit movement rules provide the right framework for
representing people’s knowledge of language, and specifi-
cally whether they are the best way to account for how a
child comes to understand and produce utterances like
(4c) but not like (4b). We agree with the more general in-
sight from linguistic theory, however, that only by defining
syntactic rules (in whatever form they take) over hierarchi-
cal phrase structure representations is a child likely to be
able understand that (4c) expresses a certain complex
thought while (4b) expresses no well-formed thought.
Hence our focus here is on the more basic question of how
a learner can come to know that language should be repre-
sented in terms of hierarchical phrase structure.

Our goal in this paper is to show that a disposition to
represent syntax in terms of hierarchical phrase structure
rather than linear structures need not be innately specified
as part of the language faculty, but instead could be in-
ferred using domain-general learning and representational
capacities. The basis for this inference is implicitly antici-
pated by Chomsky’s characterization of the phrase-
structure hypothesis, in the lines quoted above, as ‘‘rich

in empirical consequences’’ throughout language, not just
for a single linguistic structure. While a child may not re-
ceive direct evidence about the correctness of a particular
hierarchical phrase structure rule for analyzing some par-
ticular set of sentences such as the aux-fronting examples,
there is vast indirect evidence for the general superiority of
syntax with that structure throughout language. A learner
who adopts a hierarchical phrase structure framework for
describing the syntax of English will arrive at a much sim-
pler, more explanatory account of her observations than a
learner who adopts a linear framework.

We formalize this argument in Bayesian terms, where
the ‘‘simpler, more explanatory’’ account becomes the
more probable hypothesis. Linguists in the generative
grammar tradition came to this inference early on. When
one looks at the structure of natural language and consid-
ers the possibility of a framework with hierarchical phrase
structure as opposed to a linear description, the superiority
of the formal system quickly becomes apparent due to its
‘‘rich empirical consequences.’’ Indeed, Berwick and Chom-
sky (2008, submitted for publication) have suggested re-
cently that hierarchical phrase structure in syntactic
representations was always taken for granted by genera-
tive theorists – but it is nonetheless a significant inductive
leap. As Chomsky observes in the quotation above, many
other domains of human activity besides language unfold
sequentially. In some cases these activities are structured
based on linear order properties, while in others they are
not. A learner or a linguist at some point must decide to
view language in one or the other of these ways, even if
that decision occurs quickly, unconsciously and automati-
cally. Our Bayesian analysis could apply just as well to for-
malizing this inductive leap inside the minds of human
learners or linguists. Where our proposal differs from the
standard view in generative linguistics is in the suggestion
that children may receive sufficient language data to make
this inference to hierarchical phrase structure, and hence
need not have this assumption given as part of the innate
state of a language acquisition device. We are not arguing
that children necessarily do learn about the hierarchical
phrase structure of syntax in this way, but rather that there
exists a plausible learning framework which could allow
them to do so from the data they observe.

1.2. A general formulation of the poverty of the stimulus
argument

The PoS argument is, of course, not merely a point about
auxiliary fronting in interrogative formation. We can for-
mulate the general PoS argument in more precise and ab-
stract terms as follows:

(7.i) Children show a specific pattern of behavior B.
(7.ii) A particular generalization G must be grasped in

order to produce behavior B.
(7.iii) It is impossible to reasonably induce G simply

on the basis of the data D that children receive.
(7.iv) Therefore, some abstract knowledge T is

necessary to constrain which specific generalizations
G are possible, or more or less probable.
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This form of the PoS argument, also shown schemati-
cally in Fig. 2, is applicable to a variety of domains and
datasets. Unlike other standard treatments (Laurence &
Margolis, 2001; Pullum & Scholz, 2002), it makes explicit
the distinction between multiple levels of knowledge (G
and T); this distinction is necessary to see what is really
at stake in arguments about innateness in language and
other cognitive domains. In the case of auxiliary fronting,
the specific generalization G refers to the hierarchical rule
(6) that governs the formation of interrogative sentences.
The learning challenge is to explain how children come
to produce only the correct forms for complex interroga-
tives (B), apparently following a rule like (6), when the data
they observe (D) comprise only simple interrogatives (such
as ‘‘Is the man hungry?’’) that do not discriminate between
the correct generalization and simpler but incorrect alter-
natives such as (5).

But the interesting claim of innateness here is not about
the rule for producing interrogatives (G) per se; rather, it con-
cerns somemore abstract knowledge T. Note that nothing in
the logical structure of the argument requires that T be spe-
cific to the domain of language – constraints due to domain-
general processing, memory, or learning factors could also
limit which generalizations are considered. Nevertheless,
many versions of the PoS argument assume that the T is lan-
guage-specific: in particular, that T is the knowledge that lin-
guistic rules are defined over hierarchical phrase structures.
This knowledge constrains the specific rules of grammar that
childrenmay posit and therefore licenses the inference to G.
Constraints on grammatical generalizations at the level of T
may be seen as one aspect of, or as playing the role of, ‘‘uni-
versal grammar’’ (Chomsky, 1965).

An advantage of this logical schema is to clarify that the
correct conclusion given the premises is not that the higher-
level knowledge T is innate – only that it is necessary. The
following corollary is required to conclude that T is innate:

(8.i) (Conclusion from above) Some abstract
knowledge T is necessary.

(8.ii) T could not itself be learned, or could not be
learned before the specific generalizationG is known.

(8.iii) Therefore, T must be innate

Given this schema, our argument here can be construed
in two different ways. On one view, we are arguing against
premise (8.ii); we suggest that the abstract linguistic
knowledge T – that language has hierarchical phrase struc-
ture – might be learnable using domain-general mecha-
nisms and representational machinery. Given some
observed data D, we evaluate knowledge at both levels (T
and G) together by drawing on the methods of hierarchical
Bayesian models and Bayesian model selection (Gelman,
Carlin, Stern, & Rubin, 2004). Interestingly, our results sug-
gest that less data is required to learn T than to learn the
specific grammar G.

On another view, we are not arguing with the form of
the PoS argument, but merely clarifying what content the
knowledge T must have. We argue that phenomena such
as children’s ability to correctly front the auxiliary in polar
interrogatives are not sufficient to require that the innate
knowledge constraining generalization in language acqui-
sition be language-specific. Rather it could be based on
more general-purpose systems of representation and
inductive biases that favor the construction of simpler rep-
resentations over more complex ones.

Other critiques of the innateness claim dispute the
three premises of the original argument, arguing either:

(9.i) Children do not show the pattern of behavior B.
(9.ii) Behavior B is possible without having made the

generalization G, through some other route from D.
(9.iii) It is possible to learn G on the basis of D alone,

without the need for some more abstract
knowledge T.

In the case of auxiliary fronting, one example of the first
response (9.i) is the claim that children do not in fact al-
ways avoid errors that would be best explained under a
linear rule rather than a hierarchical rule. Although Crain
and Nakayama (1987) demonstrated that children do not
spontaneously form incorrect complex interrogatives such
as (4b), they make other mistakes that are not so easily
interpretable. For instance, one might utter a sentence like
‘‘Is the man who is hungry is ordering dinner?’’, which is
not immediately compatible with the correct hierarchical
phrase-structure grammar but might be consistent with a
linear rule. Additionally, recent research by Ambridge
et al. (2008) suggests that 6–7 year-old children presented
with auxiliaries other than is do indeed occasionally form
incorrect sentences like (4b), such as ‘‘Can the boy who
run fast can jump high?’’

A different response (9.iii) accepts that children have in-
ferred the correct hierarchical rule for auxiliary fronting
(6), but maintains that the input data is sufficient to sup-
port this inference. If children observe sufficiently many
complex interrogative sentences like (4c) while observing
no sentences like (4b), then perhaps they could learn di-
rectly that the hierarchical rule (6) is correct, or at least
better supported than simple linear alternatives. The force
of this response depends on how many sentences like (4c)
children actually hear. While it is an exaggeration to say
that there are no complex interrogatives in typical child-
directed speech, they are certainly rare: Legate and Yang

Fig. 2. Graphical depiction of the standard Poverty of Stimulus argument.
Abstract higher-level knowledge T is necessary to constrain the specific
generalizations G that are learned from the data D, and that govern
behavior B.
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(2002) estimate based on two CHILDES corpora2 that be-
tween 0.045% and 0.068% of all sentences are complex inter-
rogative forms. Is this enough? Unfortunately, in the absence
of a specific learning mechanism, it is difficult to develop an
objective standard about what would constitute ‘‘enough.’’
Legate and Yang attempt to establish one by comparing
how much evidence is needed to learn other generalizations
that are acquired at around the same age; they conclude on
this basis that the evidence is probably insufficient. How-
ever, such a comparison overlooks the role of indirect evi-
dence, which has been suggested to contribute to learning
in a variety of contexts (Foraker, Regier, Khetarpal, Perfors,
& Tenenbaum, 2009; Landauer & Dumais, 1997; Reali &
Christiansen, 2005; Regier & Gahl, 2004).

Indirect evidence also plays a role in the second type of
reply, (9.ii), which is probably the most currently popular
line of response to the PoS argument. The claim is that chil-
dren could still show the correct pattern of linguistic
behavior – acceptance or production of sentences like
(4c) but not (4b) – even without having learned any gram-
matical rules like (5) or (6) at all. Perhaps the data, while
poor with respect to complex interrogative forms, are rich
in distributional and statistical regularities that would dis-
tinguish (4c) from (4b). If children pick up on these regu-
larities, that could be sufficient to explain why they avoid
incorrect complex interrogative sentences like (4b), with-
out any need to posit the kinds of grammatical rules that
others have claimed to be essential (Redington, Chater, &
Finch, 1998; Lewis & Elman, 2001; Reali & Christiansen,
2004, 2005).

For instance, Lewis and Elman (2001) trained a simple
recurrent network to produce sequences generated by an
artificial grammar that contained sentences of the form
AUX NP ADJ? and Ai NP Bi, where Ai and Bi stand for inputs
of random content and length. They found that the trained
network predicted sentences like ‘‘Is the boy who is smok-
ing hungry?’’ with higher probability than similar but
incorrect sequences, despite never having received that
type of sentence as input. In related work, Reali and Chris-
tiansen (2005) showed that the statistics of actual child-di-
rected speech support such predictions (though see Kam,
Stoyneshka, Tornyova, Fodor, and Sakas (2008) for a cri-
tique). They demonstrated that simple bigram and trigram
models applied to a corpus of child-directed speech gave
higher likelihood to correct complex interrogatives than
to incorrect interrogatives, and that the n-gram models
correctly classified the grammaticality of 96% of test sen-
tences like (4b) and (4c). They also argued that simple
recurrent networks could distinguish grammatical from
ungrammatical test sentences because they were able to
pick up on the implicit statistical regularities between lex-
ical classes in the corpus.

Though these statistical-learning responses to the PoS
argument are important and interesting, they have two
significant disadvantages. First of all, the behavior of con-
nectionist models tends to be difficult to understand ana-
lytically. For instance, the networks used by Reali and

Christiansen (2005) and Lewis and Elman (2001) measure
success by whether they predict the next word in a se-
quence or by comparing the prediction error for gram-
matical and ungrammatical sentences. These networks
lack not only a grammar-like representation; they lack
any kind of explicitly articulated representation of the
knowledge they have learned. It is thus difficult to say
what exactly they have learned about linguistic structure
– despite their interesting linguistic behavior once
trained.

Second, by denying that explicit structured representa-
tions play an important role in children’s linguistic knowl-
edge, these statistical-learning models fail to engage with
the motivation at the heart of the PoS arguments and much
of contemporary linguistics. PoS arguments begin with the
assumption – taken by most linguists as self-evident – that
language does have explicit hierarchical phrase structure,
and that linguistic knowledge must at some level be based
on representations of syntactic categories and phrases that
are hierarchically organized within sentences. The PoS
arguments are about whether and to what extent chil-
dren’s knowledge about this structure is learned via do-
main-general mechanisms, or is innate in some language-
specific system. Critiques based on the premise that this
explicit structure is not represented as such in the minds
of language users do not really address this argument –
although they may be valuable in their own right by calling
into question the broader assumption that linguistic
knowledge is structured and symbolic. Our work here is
premised on taking seriously the claim that knowledge of
language is based on structured symbolic representations.
We can then investigate whether the principle that these
linguistic representations are hierarchically organized
might be learned. We do not claim that linguistic represen-
tations must have explicit structure, but assuming such a
representation allows us to engage with PoS arguments
more directly on their own terms.

One place where our analysis does make a significant
simplification (relative to the standard linguistic treatment
of aux-fronting and related phenomena) is that we – like
Reali and Christiansen (2005) and Lewis and Elman
(2001) – do not attempt to explain these phenomena in
terms of movement or transformation rules. Chomsky’s
(1980) formulation of ‘‘linear’’ and ‘‘hierarchical’’ hypothe-
ses for forming complex interrogatives, (5) and (6) respec-
tively, framed these as alternative rules for moving
elements of a base declarative form, and the question
was whether these rules should be defined over a hierar-
chical phrase-structure analysis or the linear sequence of
words in the declarative form. Instead, as we explain
above, we focus on the more basic question of how and
whether a learner could infer that representations with
hierarchical phrase structure provide the best way to char-
acterize the set of syntactic forms found in a language. We
see this question as the simplest way to get at the essence
of the core inductive problem of language acquisition
posed in the generative tradition. It is also relevant to the
original phenomenon we began with: the best hierarchi-
cally phrase structured grammars we find do indeed gener-
ate correct aux-fronted complex interrogative forms like
4(c) and not incorrect forms like 4(b), while the best linear

2 Adam (Brown corpus, 1973) and Nina (Suppes corpus, 1973); for both,
see MacWhinney (2000).
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grammars do not. An important direction for future work
would be to link our learnability analysis more tightly to
standard syntactic analyses, by extending it to grammars
based on explicit movement rules or other means to the
same end. Even without doing so, it seems a reasonable
premise that any such extension would naturally involve
rules defined over the constituents of the grammar, and
thus the identification of those constituents – the problem
we address here – is important and relevant: if the hierar-
chical nature of phrase structure can be inferred, then any
reasonable approach to inducing rules defined over con-
stituent structure should result in appropriate structure-
dependent rules.

1.3. Overview of results

We present two main results. First of all, we demon-
strate that a learner equipped with the capacity to explic-
itly represent both linear and hierarchical phrase-structure
grammars – but without any initial bias to prefer either in
the domain of language – can infer that the hierarchical
phrase-structure grammar is a better fit to typical child-di-
rected input, even on the basis of as little as a few hours of
conversation. Our results suggest that at least in this par-
ticular case, it may be possible to acquire domain-specific
knowledge about the form of structured representations
via domain-general learning mechanisms operating on
data from that domain. Secondly, we show that the hierar-
chical phrase-structure grammar favored by the model –
unlike the other grammars it considers – succeeds in one
important auxiliary fronting task, even when no direct evi-
dence to that effect is available in the input data. This sec-
ond point is simply a byproduct of the main result, but it
provides a valuable connection to the literature and makes
concrete the benefits of learning abstract linguistic
principles.

These results emerge because an ideal learner must
trade off simplicity and goodness-of-fit in evaluating
hypotheses. The notion that inductive learning should be
constrained by a preference for simplicity is widely shared
among scientists, philosophers of science, and linguists.
Chomsky himself concluded that natural language is not fi-

nite-state based on informal simplicity considerations
(1956, 1957), and suggested that human learners rely on
an evaluation procedure that incorporates simplicity con-
straints (1965). The tradeoff between simplicity and good-
ness-of-fit can be understood in domain-general terms.
Consider the hypothetical data set illustrated in Fig. 3.
We imagine that data is generated by processes occupying
different subsets of space. Models correspond to different
theories about which subset of space the data is drawn
from; three are shown in A–C. These models fit the data
increasingly precisely, but they attain this precision at
the cost of additional complexity. Intuitively, the model
in B appears to offer the optimal balance, and this intuition
can be formalized mathematically using techniques some-
times known as the Bayesian Occam’s Razor (e.g., MacKay,
2003). In a similar way, we will argue, a hierarchical
phrase-structure grammar yields a better tradeoff than lin-
ear grammars between simplicity of the grammar and fit to
typical child-directed speech.

Though our findings suggest that the specific feature of
hierarchical phrase structure can be learned without an in-
nate language-specific bias, we do not argue that all inter-
esting aspects of language will have this characteristic.
Because our approach combines structured representation
and statistical inductive inference, it provides a method to
investigate the unexplored regions of Fig. 1 for a wide
range of other linguistic phenomena, as has recently been
studied in other domains (e.g., Griffiths, Baraff, & Tene-
nbuam, 2004; Kemp & Tenenbaum, 2008; Yuille & Kersten,
2006).

One finding of our work is that it may require less data
to learn a higher-order principle T – such as the hierarchi-
cal nature of linguistic rules – than to learn every correct
generalization G at a lower level, e.g., every specific rule
of English. Though our model does not explicitly use infer-
ences about the higher-order knowledge T to constrain
inferences about specific generalizations G, in theory T
could provide effective and early-available constraints on
G, even if T is not itself innately specified. In the discussion,
we will consider what drives this perhaps counterintuitive
result and discuss its implications for language acquisition
and cognitive development more generally.

Fig. 3. Fitting models of different complexity (represented by the circles) to a dataset (the points). The complexity of a model reflects the number of choices
necessary to specify it: the model A can be fully specified by the location and size of only one circle, while model C is more complex because it requires
specification of locations and sizes for thirty distinct circles. Model A achieves high simplicity at the cost of poor fit, while C fits extremely closely at the cost
of high complexity. The best functional description of the data should optimize a tradeoff between complexity and fit, as shown in B.
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2. Method

We cast the problem of grammar induction within a
hierarchical Bayesian framework3 whose structure is
shown in Fig. 4. The goal of the model is to infer from some
data D (a corpus of child-directed language) both the specific
grammar G that generated the data as well as the higher-le-
vel generalization about the type of grammar T that G is an
instance of. This is formalized as an instance of Bayesian
model selection.

Our framework assumes a multi-stage probabilistic
generative model for linguistic utterances, which can then
be inverted by a Bayesian learner to infer aspects of the
generating grammar from the language data observed. A
linguistic corpus is generated by first picking a type of
grammar T from the prior distribution p(T). A specific
grammar G is then chosen as an instance of that type, by
drawing from the conditional probability distribution
p(G|T). Finally, a corpus of data D is generated from the
specific grammar G, drawing from the conditional distribu-
tion p(D|G). The inferences we can make from the observed
data D to the specific grammar G and grammar type T are
captured by the joint posterior probability p(G,T|D), com-
puted via Bayes’ rule:

pðG; TjDÞ/pðDjGÞpðGjTpðTÞ: ð1Þ

We wish to explore learning when there is no innate
bias towards grammars with hierarchical phrase structure.
This is implemented in our model by assigning p(T) to be
equal for each type T. The prior for a specific grammar
p(G|T) is calculated assuming a generative model of gram-
mars that assigns higher prior probability to simpler gram-
mars. The likelihood p(D|G) reflects the probability of the
corpus of child-directed speech D given G and T; it is a
measure of how well the grammar fits the corpus data.
The Bayesian approach to inferring grammatical structure
from data, in the form of the posterior p(G, T|D), thus auto-
matically seeks a grammar that balances the tradeoff be-
tween complexity (prior probability) and fit to the data
(likelihood).

2.1. Relation to previous work

Probabilistic approaches to grammar induction have a
long history in linguistics. One strand of work concentrates
on issues of learnability (e.g., Chater & Vitànyi, 2003, 2007;
Horning, 1969; Li & Vitànyi, 1997; Solomonoff, 1964,
1978). This work is close to ours in intent, because much
of it is framed in response to the negative learnability
claims of Gold (1967), and it demonstrates that learning
a grammar in a probabilistic sense is possible if the learner
makes certain assumptions about the statistical distribu-
tion of the input sentences (Angluin, 1988; Horning,

1969). Part of the power of the Bayesian approach derives
from its incorporation of a simplicity metric: an ideal lear-
ner with such a metric will be able to predict the sentences
of the language with an error that approaches zero as the
size of the corpus goes to infinity (Solomonoff, 1978), sug-
gesting that learning from positive evidence alone may be
possible (Chater & Vitànyi, 2007). Our analysis is comple-
mentary to these previous Bayesian analyses. The main dif-
ference is that instead of addressing learnability issues in
abstract and highly simplified settings, we focus on a spe-
cific question – the learnability of hierarchical phrase
structure in syntax – and evaluate it on realistic data: a fi-
nite corpus of child-directed speech. As with the input data
that any child observes, this corpus contains only a small
fraction of the syntactic forms in the language, and proba-
bly a biased and noisy sample at that.

Another strand of related work is focused on computa-
tional approaches to language learning problems (e.g., Eis-
ner, 2002; Johnson & Riezler, 2002; Light & Greiff, 2002;
Alishahi & Stevenson, 2005; Chater & Manning, 2006; Klein
& Manning, 2004; Liang, Petrov, Jordan, & Klein, 2007; Rose
Finkel, Grenager, & Manning, 2007). Our analysis is distinct
in several ways. First, many approaches focus on the prob-
lem of learning a grammar given built-in constraints T,
rather than on making inferences about the nature of T
as well. For instance, Klein and Manning (2004) have
explored unsupervised learning for a simple class of hierar-
chical phrase-structure grammars (dependency grammars)
from natural corpora. They assume that this class of hierar-
chical grammars is fixed for the learner rather than consid-
ering the possibility that grammars in other classes, such
as linear grammars, could be learned.

A more important difference in our analysis lies in the
nature of our corpora. Other work is based either on small
fragments of (sometimes artificial) corpora (e.g., Alishahi &

Fig. 4. A hierarchical Bayesian model for assessing Poverty of Stimulus
arguments. The model is organized around the same structure as Fig. 2,
but now each level of representation defines a probability distribution for
the level below it. Bayesian inference can be used to make inferences at
higher levels from observations at lower levels. Abstract principles of the
grammar T constrain the specific grammatical generalizations G a learner
will consider by defining a conditional probability distribution p(G|T).
These generalizations in turn define probabilistic expectations about the
data D to be observed, p(D|G). Innate language-specific biases for
particular types of grammars can be encoded in the prior p(T), although
here we consider an unbiased prior, with p(T) equal for all T.

3 Note that the ‘‘hierarchical’’ of ‘‘hierarchical Bayesian framework’’ is not
the same ‘‘hierarchical’’ as in ‘‘hierarchical phrase structure.’’ The latter
refers to the hierarchical embedding of linguistic phrases within one
another in sentences. The former refers to a Bayesian model capable of
performing inference at multiple levels, in which not only the model
parameters but also the hyperparameters (parameters controlling priors
over the parameters) can be inferred from the data.
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Stevenson, 2005; Clark & Eyraud, 2006; Dowman, 2000) or
on corpora of adult-directed speech (e.g., Eisner, 2002;
Klein & Manning, 2004). Neither is ideal for addressing
learnability questions. Corpora of adult-directed speech
are more complex than child-directed speech, and do not
have the sparse-data problem assumed to be faced by chil-
dren (at least not to the same extent). Analyses based on
small fragments of a corpus can be misleading: the sim-
plest explanation for limited subsets of a language may
not be the simplest within the context of the entire system
of linguistic knowledge the child must learn.

2.2. An ideal analysis of learnability

Our analysis views learnability in terms of an ideal
framework in which the learner is assumed to be able to
search effectively over the joint space of G and T for gram-
mars that maximize a Bayesian scoring criterion. We are
not proposing a comprehensive or mechanistic account of
how children actually acquire language. The full problem
of language acquisition poses many challenges that we
do not consider here. In particular we do not consider the
computational tractability of searching for the best-scoring
grammars, which could be seen as another side of learna-
bility. Setting this challenge aside allows us to focus with
more clarity on those aspects of learnability that classic
PoS arguments address: claims about what data might be
sufficient for learning, or what language-specific prior
knowledge must be assumed in order to make learning
possible. We consider the limitations and implications of
this ‘‘ideal learnability’’ approach more fully in the
discussion.

The key component of this analysis is an evaluation
metric – a means for the ideal learner to evaluate one G,
T pair against another. We assume that an ideal learner is
more likely to learn a given G, T pair than an alternative
G0, T0 if the former has a higher posterior probability than
the latter. This analysis leaves out significant algorithmic
questions of how learners search the space of grammars,
but this idealization is valuable in the same spirit as Marr’s
computational-theory level analyses in vision (Marr,
1982). It allows us to examine rigorously the inductive lo-
gic of learning – what constraints are necessary given the
structure of the hypothesis space and the data available
to learners – independent of the specifics of the algorithms
used to search these hypothesis spaces. This formal ap-
proach also follows the spirit of how Chomsky and other
linguists have considered learnability, as a question of
what is learnable in principle: is it in principle possible gi-
ven the data a child observes to learn that language is best
captured by a grammar with hierarchical phrase-structure,
if one is not innately biased to consider only such gram-
mars? If we can show that such learning is in principle pos-
sible, then it becomes meaningful to ask the algorithmic-
level question of how a system might successfully and in
reasonable time search the space of possible grammars to
discover the best-scoring grammar.

Of course, the value of this ideal learnability analysis
depends on whether the specific grammars we consider
are representative of the best hypotheses that can be found
in the full spaces of different grammar types we are inter-

ested in (the spaces of hierarchical phrase-structure gram-
mars, linear grammars, and so on). We therefore examine
grammars generated in a variety of ways:

(1) The best hand-designed grammar of each grammar
type.

(2) The best grammars resulting from local search, using
the grammar from (1) as the starting point.

(3) The best grammars found in a completely auto-
mated fashion.

Because we restrict our analysis to grammars that can
successfully parse our corpora, we will explain the corpora
before moving onto a more detailed description of the pro-
cess of inference and search and finally the grammars.

2.3. The corpora

The corpus consists of the sentences spoken by adults in
the Adam corpus (Brown, 1973) of the CHILDES database
(MacWhinney, 2000). In order to focus on grammar learn-
ing rather than lexical acquisition, each word is replaced
by its syntactic category.4 Although learning a grammar
and learning a lexicon are probably tightly linked, we be-
lieve that this is a sensible starting assumption for several
reasons: first, because grammars are defined over these syn-
tactic categories, and second, because there is some evi-
dence that aspects of syntactic-category knowledge may
be in place even in very young children (Booth & Waxman,
2003; Gerken, Wilson, & Lewis, 2005). In addition, ungram-
matical sentences and the most grammatically complex sen-
tence types are removed from the corpus.5 The complicated
sentence types are removed for reasons of computational
tractability as well as the difficulty involved in designing
grammars for them, but this is if anything a conservative
move since our results suggest that the context-free gram-
mars will be more preferred as the input grows more com-
plex. The final corpus contains 21,671 individual sentence
tokens corresponding to 2336 unique sentence types, out
of 25,755 tokens in the original corpus.6

In order to explore how the preference for a grammar
depends on the amount of data available to the learner,
we create six smaller corpora as subsets of the main cor-
pus. Under the reasoning that the most frequent sentences

4 Parts of speech used included determiners (det), nouns (n), adjectives
(adj), comments like ‘‘mmhm’’ (c), prepositions (prep), pronouns (pro),
proper nouns (prop), infinitives (to), participles (part), infinitive verbs (vi),
conjugated verbs (v), auxiliaries (aux), complementizers (comp), and wh-
question words (wh). Adverbs and negations were removed from all
sentences. Additionally, whenever the word what occurred in place of
another syntactic category (as in a sentence like ‘‘He liked what?’’ the
original syntactic category was used; this was necessary in order to
simplify the analysis of all grammar types, and was only done when the
syntactic category was obvious from the sentence.

5 Removed types included topicalized sentences (66 individual utter-
ances), sentences containing subordinate phrases (845), sentential com-
plements (1636), conjunctions (634), serial verb constructions (460), and
ungrammatical sentences (443).

6 The final corpus contained forms corresponding to 7371 sentence
fragments. In order to ensure that the high number of fragments did not
affect the results, all analyses were replicated for the corpus with those
sentences removed. There was no qualitative change in the findings.
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are most available as evidence and are therefore the most
likely to be understood, different corpus Levels contain
only those sentence forms whose tokens occur with a cer-
tain frequency or higher in the full corpus. The levels are:
Level 1 (contains all forms occurring 500 or more times,
corresponding to 8 unique types); Level 2 (100 times, 37
types); Level 3 (50 times, 67 types); Level 4 (10 times,
268 types); Level 5 (5 times, 465 types); and the complete
corpus, Level 6, with 2336 unique types, including interrog-
atives, wh-questions, relative clauses, prepositional and
adjective phrases, command forms, and auxiliary and
non-auxiliary verbs. The larger corpora include the rarer
and more complex forms, and thus levels roughly corre-
spond to complexity as well as quantity of data.7

An additional variable of interest is what evidence is
available to the child at different ages. We approximate
this by splitting the corpora into five equal sizes by age.
The Adam corpus has 55 files, so we define the earliest
(Epoch 1) corpus as the first 11 files. The Epoch 2 corpus
corresponds to the cumulative input from the first 22 files,
Epoch 3 the first 33, Epoch 4 the first 44, and Epoch 5 the full
corpus. Splitting the corpus in this way is not meant to re-
flect the data that children necessarily use at each age, but
it does reflect the sort of data that is available.

2.4. The hypothesis space of grammars and grammar types

Because this work is motivated by the distinction be-
tween hierarchical and linear rules, we wish to compare
grammar types T that differ from each other structurally
in the same way. Different Bayesian approaches to evaluat-
ing alternative grammar types are possible. In particular,
we could score a grammar type T by integrating the poster-
ior probability over all specific grammars G of that type (RG

p(T, G|D)) or by choosing the best G of that type (maxG
p(T, G|D)). Ultimately it is the specific grammar G that gov-
erns how the learner understands and produces language,
so we should be interested in finding the best pair of T and
G jointly. We therefore compare grammar types by com-
paring the probability of the best specific grammars G of
each type.

There arevarious formal frameworkswecoulduse to rep-
resent hierarchical or linear grammars as probabilistic gen-
erative systems. Each of these grammars consists of a set of
production rules, specifying how one non-terminal symbol
(the left-hand side of the rule) in a string may be rewritten
in terms of other symbols, terminal or non-terminal. These
grammars can all be defined probabilistically: each produc-
tion is associated with a probability, such that the probabil-
ities of all productions with the same left-hand sides add to
one and the probability of a complete parse is the product
of the probabilities of the productions involved in the
derivation.

To represent grammars with hierarchical phrase struc-
turewe choose context-free grammars (CFGs). Context-free
grammars are arguably the simplest approach to capturing
the phrase structure of natural language in a way that deals

naturally with hierarchy and recursion. For decades, they
have often been treated as a first approximation to the
structure of natural language. Probabilistic context-free
grammars (PCFGs) are a probabilistic generalization of CFGs
commonly used in statistical natural language processing
(Manning & Schütze, 1999; Jurafsky & Martin, 2000), and
we incorporate standard tools for statistical learning and
inference with PCFGs in our work here. We recognize that
there are also many aspects of syntax that cannot be cap-
tured naturally in CFGs. In particular, they do not represent
the interrogative form of a sentence as a transformed ver-
sion of a simpler declarative form. We work with CFGs
because they are the simplest andmost tractable formalism
suitable for our purposes here – assessing the learnability
of hierarchical phrase structure in syntax – but in future
work it would be valuable to extend our analyses to richer
syntactic formalisms.

We consider three different approaches for representing
grammars without hierarchical phrase structure. The first
is based on regular grammars, also known as finite-state
grammars. Regular grammars were originally proposed
by Chomsky (1957) as the ‘‘minimal linguistic theory that
merits serious consideration.’’ They are ‘‘the simplest type
of grammar which, with a finite amount of apparatus, can
generate an infinite number of sentences’’, although they
do so in a manner that allows only linear branching struc-
tures (strictly right-branching or strictly left-branching)
and not the more flexible tree-structured embedding of
phrases generally taken to be characteristic of human lan-
guages. A second approach, which we call the FLAT gram-
mar, is simply a memorized list of each of the sentence
types (sequences of syntactic categories) that occur in
the corpus (2336 productions, zero non-terminals aside
from S). This grammar will maximize goodness-of-fit to
the data at the cost of great complexity. Finally, we con-
sider a one-state (1-ST) grammar, which maximizes sim-
plicity by sacrificing goodness-of-fit. It permits any
syntactic category to follow any other and is equivalent
to a finite automaton with one state in which all transi-
tions are possible (and is very similar to a standard uni-
gram model). Though these three approaches may not
capture exactly what was originally envisioned as gram-
mars without hierarchical phrase structure, we work with
them because they are representative of simple syntactic
systems that allow only linearly unfolding structures
rather than hierarchically structured, tree-embedded
phrases, and they are all easily defined in probabilistic
terms.

2.5. Hand-designed grammars

The first method for generating the specific grammars
for each type is to design by hand the best grammar possi-
ble. The flat grammar and the one-state grammar exist on
the extreme opposite ends of the simplicity/goodness-of-
fit spectrum: the flat grammar, as a list of memorized sen-
tences, offers the highest possible fit to the data (exact) and
the lowest possible compression (none), while the
one-state grammar offers the opposite. We design both
context-free and regular grammars that span the range be-
tween these two extremes (much as the models in Fig. 3

7 The mean sentence length of Level 1 forms is 1.6 words; the mean
sentence length at Level 6 is 6.6.
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do); within each type, specific grammars differ systemati-
cally in how they capture the tradeoff between simplicity
and goodness-of-fit. Among the context-free grammars,
CFG-S is smaller but fits less precisely, while CFG-L is larger
and fits the full corpus with more precision. The three reg-
ular grammars also span the range of simplicity and good-
ness-of-fit: REG-B is the smallest, with the least precise fit;
REG-M occupies a middle ground; and REG-N is the largest
and most precise. All of the grammars are described more
precisely in Appendix A, and Table 1 contains sample pro-
ductions from each.8

2.6. Grammars constructed by automated search

There is reason to believe that hand-designed gram-
mars provide a good approximation of the best grammar
of each type. Both context-free grammars are designed
based on linguistic intuition, and the regular grammars
are constructed from the context-free grammars in order
to preserve as much linguistic structure as possible. Fur-
thermore, grammars of all types have been chosen to re-
flect the range of tradeoffs between simplicity and
goodness-of-fit. It would nevertheless be ideal to search
the space of possible grammars and compare the resulting
best grammars found for each type, rather than simply
comparing the best hand-designed grammars. This type
of search for context-free grammars presents a difficult

computational problem, and current unsupervised search
algorithms cannot be relied upon to find the optimal gram-
mar of any given type on large-scale corpora. Fortunately,
our argument requires only a search over regular gram-
mars: if our hand-designed context-free grammars are
not close to optimal but still have higher probability than
the best regular grammars, then the argument is reason-
able, but the converse is not true. We describe the search
over regular grammars in Appendix A.

As another comparison, we also perform a partial search
over both regular and context-free grammars using the
best hand-designed grammar of that type as a starting
point. Our partial search was inspired by the work of Stol-
cke and Omohundro (1994), in which a space of grammars
is searched via successive merging of states. States (pro-
ductions) that are redundant or overly specific are replaced
with productions that are not. For more details, see Appen-
dix A.

2.7. The probabilistic model

Inferences are calculated using Bayes’ rule, which com-
bines the prior probability of G and T with the likelihood
that the corpus D was generated by that G and T.

2.8. Scoring the grammars: prior probability

The prior probability of a grammar reflects its complex-
ity. We formalize it using a probabilistic generative model
under which each grammar is selected from the space of all
grammars of that type. This generative model is itself a
kind of grammar, but at a higher level of abstraction – a
meta-grammar, or grammar for generating grammars for
syntax (c.f., Feldman, Gips, Horning, & Reder, 1969). More
complex grammars are those that result frommaking more
choices (and more specific choices) under this generating
process. This method of assigning priors to models based
on simplicity is quite general, not restricted to grammars
or even language. For instance, the more complex models
in Fig. 3 are those that require more free parameters to
specify – hence requiring more choices to be made. The
only parameters for model A are the location and size of
one circle, and therefore it is necessary to make only two
choices – to set the value of two parameters – in order to
precisely specify it. By contrast, the model in B requires
two sets of those choices, one for each circle, and therefore
twice as many parameters must be set. More choice means
more complexity, so C is more complex still.

The simplicity of a probabilistic grammar G is reflected
in an analogous way in its prior probability under the
meta-grammar. Appendix B contains specific details about
the generative process that defines the simplicity metric
over grammars. It is important to emphasize that this mea-
sure is not in general equivalent to a simple count of the
number of free parameters or independent choices needed
to specify a model. Our prior also takes into account how
free each choice is. The less restrictive any choice is, the
lower the probability of making that choice in any particu-
lar way, and hence the lower the prior probability of the
resulting model.

Table 1
Sample productions from each of the hand-designed grammars. These are
chosen to illustrate the differences between each grammar, and may not be
an exhaustive list of all of the expansions of any given non-terminal.

Context-free grammar CFG-S

NP? NP PP | NP CP | NP C | N | det N | adj N | pro | prop
N? n | adj N

Context-free grammar CFG-L

NP? NP PP | NP CP | NP C | N PP | N CP | N C | pro PP | pro CP | pro C |
prop PP | prop CP | prop C | N | det N | adj N | pro | prop

N? n | adj N

Flat grammar

S? pro aux part S? det n v n
S? adj n aux n prep det n S? pro aux adj n comp pro v

Regular grammar REG-N

NP? pro | prop | n | det N | adj N | pro PP | prop PP | n PP | det NPP | adj NPP |
pro CP | prop CP | n CP | det NCP | adj NCP | pro C | prop C | n C | det
NC | adj NC

N? n | adj N NPP ? n PP | adj NPP

NCP ? n CP | adj NCP NC ? n C | adj NC

Regular grammar REG-M

NP? pro | prop | n | det N | adj N | pro PP | prop PP | n PP |
pro CP | prop CP | n CP | pro C | prop C | n C

N? n | adj N | n PP | n CP | n C

Regular grammar REG-B

HP? pro | prop | n | det N | adj N | pro HP | prop HP | n HP | pro CP | prop CP | n CP |
pro C | prop C | n C | prep HP | prep | adj | adj HP | to Vinf

N? n | adj N | n HP | n CP | n C

8 All full grammars, corpora, maximum-likelihood parses, and perplexity
values (corresponding to all likelihood calculations) may be found at http://
www.psychology.adelaide.edu.au/personalpages/staff/amyperfors/
research/cognitionpos/.
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The subsets of grammars that can be generated by the
several grammar types we consider are not mutually
exclusive. A particular grammar – that is, a particular
vocabulary and set of productions – might be generated
under more than grammar type and would receive differ-
ent prior probabilities under different grammar types. In
general, a grammar with a certain number of productions,
each of a certain size, has the highest prior probability if it
can be generated as a one-state or flat grammar, next as a
regular grammar, and the lowest as a context-free gram-
mar. This follows from the Bayesian Occam’s razor that
we illustrated with the example in Fig. 3. One-state and flat
grammars are a subset of regular grammars, which are a
subset of context-free grammars (see Fig. 5). All other
things being equal, one has to make fewer ‘‘choices’’ in or-
der to generate a specific regular grammar from the class
containing only regular grammars than from the class of
context-free grammars. However, because regular and flat
grammars are less expressive, relatively more complex
grammars of those types may be required in order to parse
all sentences in larger corpora.

This preference for the simplest grammar type is related
to the Bayesian Occam’s razor (MacKay, 2003). Other ways
to measure simplicity could be based on notions such as
minimum description length or Kolmogorov complexity
(Chater & Vitànyi, 2003, 2007; Li & Vitànyi, 1997). These
have been useful for the induction of specific context-free
grammars G (e.g., Dowman, 1998), and reflect a similar
intuition of simplicity.

2.9. Scoring the grammars: likelihood

The likelihood p(D|G) can be defined straightforwardly
for any probabilistic context-free grammar or regular
grammar by assuming that each sentence in the corpus is
generated independently from the grammar. The likeli-
hood assigned to a grammar based on a corpus of sen-
tences can be interpreted as a measure of how well the
grammar fits or predicts the data. Like simplicity, this no-
tion of ‘‘fit’’ may be understood in intuitive terms that have
nothing specifically to do with grammars or language. Con-
sider again Fig. 3: intuitively it seems as if model B is more

likely to be the source of the data than model A – but why?
If A were the correct model, it would be quite a coincidence
that all of the data points fall only in the regions covered by
B. Likelihood is dependent on the quantity of data ob-
served: it would not be much of a coincidence to see just
one or a few data points inside B’s region if they were in
fact generated by A, but seeing 1000 data points all clus-
tered there – and none anywhere else – would be very sur-
prising if A were correct.

In the context of evaluating the fit of a grammar to a
language corpus, an ideal learner must also solve the prob-
lem of parsing each sentence in the corpus as an ‘‘inner
loop’’ in computing likelihood. Each possible parse of a
sentence under a grammar can be assigned a probability
that is the product of the probabilities of the production
rules used to generate that parse. A grammar fits a sen-
tence tightly if it the sentence results from one or more
high-probability parses generated by the grammar, that
is, if the sentence can be parsed using relatively few pro-
ductions and relatively high probability productions.

We defer most technical details about how likelihood is
calculated to Appendix B, but it is worth noting here two
general features of how likelihood functions in our frame-
work. First, the probabilistic preference for the most spe-
cific or tightest fitting grammar consistent with the
observed data is related to the size principle in Bayesian
models of concept learning and word learning (Regier &
Gahl, 2004; Tenenbaum & Griffiths, 2001; Xu & Tenen-
baum, 2007). It can also be seen as a probabilistic version
of the subset principle (Berwick, 1986; Wexler & Culicover,
1980), a classic heuristic for avoiding the subset problem in
language acquisition. Many natural hypothesis spaces for
grammar induction contain hypotheses which are strictly
less general than other hypothesis: that is, they generate
languages that are strict subsets of those generated by
other hypotheses. If we consider a learner who sees only
positive examples of the target grammar, who posits a sin-
gle hypothesis at any one time and who learns only from
errors (sentences which the current hypothesis fails to
parse), then if the learner ever posits a hypothesis which
generates a superset of the true language, that mistake will
never be rectified and the learner will not acquire the cor-
rect grammar. The subset principle avoids this problem by
mandating that the learner posit only the most restrictive
of all possible hypotheses. The Bayesian version becomes
equivalent to the subset principle as the size of the dataset
approaches infinity because the weight of the likelihood
grows with the data while the weight of the prior remains
fixed. With limited amounts of data, the Bayesian approach
can make different and more subtle predictions, as the
graded size-based likelihood trades off against the prefer-
ence for simplicity in the prior. The likelihood in Bayesian
learning can thus be seen as a principled quantitative mea-
sure of the weight of implicit negative evidence.

Second, while the classical approach in probabilistic
grammar induction (e.g., Feldman et al., 1969; Manning
& Schütze, 1999; Stolcke & Omohundro, 1994) treats each
individual sentence token in the corpus as a distinct sam-
ple from the grammar, we view it as an open question
whether sentence tokens should be viewed in this way or
not. One reason to evaluate the appropriateness of the

Fig. 5. Venn diagram depicting the relation of the grammar types T to
each other. The set of context-free grammars contains regular, flat, and
one-state grammar types as special cases. Flat and one-state grammars
are themselves special cases of regular grammars.
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classical approach is that context-free grammars with pro-
duction probabilities based on sentence token frequency
generate statistical distributions of sentences that differ
systematically from the well-attested power-law distribu-
tions characteristic of language at multiple scales (e.g.,
Zipf, 1932; see Briscoe, 2006, for a more recent overview9).
Another reason is that it seems plausible that many common
sentences – such as ‘‘How’s it going?’’ or ‘‘See you around’’ –
are not generated directly from the grammar on each utter-
ance. Instead, it is possible that once generated and uttered a
few times, such sentences are cached away in memory as
full-sentence exemplars, and may be produced again as
unanalyzed wholes when context is appropriate. Thus, a
model that presumes that each sentence token is emitted
independently based only on production probabilities in a
PCFG may be inappropriate.

We address this issue by making use of a version of the
adaptor grammar framework of Goldwater, Griffiths, and
Johnson (2006) and Johnson, Griffiths, and Goldwater
(2007). This framework captures the intuition that a sen-
tence may be produced either by generating the sentence
directly from the grammar, or by calling up a sentence
exemplar that had earlier been generated from the gram-
mar and stored in memory. Accordingly, the framework as-
sumes a language model that is divided into two
components. The first component, the generator, assigns
a probability distribution over the potentially infinite set
of syntactic forms that are accepted in the language. The
generator can naturally take the form of a traditional prob-
abilistic generative grammar, such as a PCFG. For simplic-
ity we sometimes refer to this component as the
‘‘grammar’’. The second component, the adaptor, produces
a finite observed corpus through a nonparametric stochas-
tic process that combines draws from the generating gram-
mar with draws from a stored memory of previously
produced sentence forms – thus interpolating between
types and tokens. The adaptor component is primarily
responsible for capturing the precise statistics of observed
utterance tokens, and unlike simpler traditional probabilis-
tic grammars, it can account naturally for the characteristic
power-law distributions found in language.

We begin by evaluating performance in the one-compo-
nent model (i.e. the grammar without the adaptor) based
on sentence types rather than tokens, and find that a hier-
archical grammar is preferred. We then evaluate perfor-
mance in the one-component model (again without the
adaptor) based on sentence tokens, and find that a non-
hierarchical grammar is preferred. Finally, we adjudicate
between these two conflicting results by evaluating perfor-
mance within the full two-component model, which in-
cludes the adaptor as well as the grammatical generator.
Results show (1) that the posterior probability is higher
for a type-based than for a token-based analysis and (2)
that a hierarchical phrase-structure grammar scores higher
than any other grammar under the full two-part model.
This provides statistical validation for both an analysis that

tends toward being type-based, and for the overall finding
that grammars with hierarchical phrase structure provide
the best overall account of the corpus. We consider impli-
cations of this result in the discussion.

3. Results

The posterior probability of a grammar G is the product
of the likelihood and the prior. All scores are presented as
log probabilities and thus are negative; smaller absolute
values correspond to higher probabilities.

3.1. Posterior probability on different grammar types

3.1.1. Hand-designed grammars
Table 2 shows the prior, likelihood, and posterior prob-

ability of each handpicked grammar on each type-based
corpus. When there is the least evidence in the input (cor-
pus Level 1), the flat grammar is preferred. As the evidence
accumulates, the one-state grammar scores higher. How-
ever, for the larger corpora (Level 4 and higher), a grammar
with hierarchical phrase structure always scores the high-
est, more highly than any linear grammar.

If linear grammars are a priori simpler than context-free
grammars, why does the prior probability favor context-
free grammars on more complex corpora? Recall that we
considered only grammars that could parse all of the data.
Though regular and flat grammars are indeed simpler than
equivalently large context-free grammars, linear gram-
mars also have less expressivity: they have to use more
productions to parse the same corpus with the same fit.
With a large enough dataset, the amount of compression
offered by the context-free grammar is sufficient to over-
whelm the initial simplicity preference towards the others.
This is evident by comparing the size of each grammar for
the smallest and largest corpora. On the Level 1 corpus, the
context-free grammars require more productions than do
the linear grammars (17 productions for CFG-S; 20 for
CFG-L; 17 for REG-N; 15 for REG-M; 14 for REG-B; 10 for
1-ST; 8 for FLAT). Thus, the context-free grammars have
the lowest initial prior probability. However, their general-
ization ability is sufficiently great that additions to the cor-
pus require relatively few additional productions: the
context-free grammars that can parse the Level 6 corpus
have 69 and 120 productions, in comparison to 117
(REG-B), 169 (REG-M), 389 (REG-N), 25 (1-ST), and 2336
(FLAT).

The flat grammar has the highest likelihood on all cor-
pora because, as a perfectly memorized list of each of the
sentence types, it does not generalize beyond the data at
all. The regular grammar REG-N has a relatively high like-
lihood because its many productions capture the details of
the corpus quite closely. The other regular grammars and
the context-free grammars have lower likelihoods because
they generalize more beyond the data; these grammars
predict sentence types which have not (yet) been observed,
and thus they have less probability mass available to pre-
dict the sentences that have in fact been observed. Gram-
mars with recursive productions are especially penalized
in likelihood scores based on finite input. A recursive

9 Although the classic work exploring power-law distributions in
language did not look at the distribution of sentence tokens of the form
we evaluate here, we did observe a power-law distribution of such tokens
in our own corpus.
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grammar will generate an infinite set of sentences that do
not exist in any finite corpus, and some of the probability
mass is allocated to those sentences (although longer sen-
tences with greater depth of recursion are given exponen-
tially lower probabilities). The one-state grammar has the
lowest possible likelihood because it accepts any sequence
of symbols as grammatical.

As the amount of data accumulates, the posterior
increasingly favors the context-free grammars: the linear
grammars are either too complex or fit the data too poorly
by comparison. Our ideal learning analysis thus infers that
the syntax of English, at least as represented by this corpus,
is best explained using the hierarchical phrase structures
of context-free grammars rather than the linear structures
of regular grammars. In essence, our analysis reproduces
one of the founding insights of generative grammar
(Chomsky, 1956, 1957): hierarchical phrase-structure
grammars are better than regular grammars as models of
the range of syntactic forms found in natural language.
Child learners could in principle make the same inference,
if they can draw on the same rational inductive principles.

It is interesting that the smallest corpora are best ac-
counted for by the flat and one-state grammars. The small-
est corpus contains only eight sentence types, with an
average 1.6 words per sentence; thus, it is not surprising
that it is optimal to simply memorize the corpus. Why is
the one-state grammar preferred on the Level 2 and Level
3 corpora? Its simplicity gives it a substantial advantage
in the prior, but we might expect it to suffer greatly in
the likelihood because it can predict literally any sequence
of syntactic categories as a possible sentence. The low like-
lihood does wind up ruling out the one-state grammar on
larger but not smaller corpora: this is because the likeli-
hood is not completely uninformative since it can encode
the relative probability of each of the syntactic categories.
Though this minimal model never fits the data well, it does

not fit the smaller corpora so poorly as fail to overcome the
advantage due to the prior. This suggests that simply
encoding the statistical distribution of syntactic categories
may be helpful at the earliest stages of language learning,
even though it is ultimately a poor predictor of natural
language.

What kind of input is responsible for the transition from
linear grammars to grammars with hierarchical phrase
structure? The smallest three corpora contain very few ele-
ments generated from recursive productions (e.g., nested
prepositional phrases or relative clauses) or sentences
using the same kind of phrase in different positions (e.g.,
a prepositional phrase modifying an NP subject, an NP ob-
ject, a verb, or an adjective phrase). While a regular gram-
mar must often add an entire new subset of productions to
account for these elements, a context-free grammar need
add fewer (especially CFG-S). As a consequence, the flat
and regular grammars have poorer generalization ability
and must add proportionally more productions in order
to parse a novel sentence.

The larger context-free grammar CFG-L outperforms
CFG-S on the full corpus, probably because it includes
non-recursive counterparts to some of its recursive pro-
ductions. This results in a significantly higher likelihood
since less of the probability mass is invested in recursive
productions that are used much less frequently than the
non-recursive ones. Thus, although both grammars have
similar expressive power, the CFG-L is favored on larger
corpora because the likelihood advantage overwhelms
the disadvantage in the prior.

3.1.2. Local search from hand-designed grammars
To what extent are these results dependent on our par-

ticular hand-designed grammars? We address this ques-
tion by analyzing the posterior scores of those grammars
identified via local search. Many linear grammars found

Table 2
Log prior, likelihood, and posterior probabilities of each hand-designed grammar for each level of evidence. Because numbers are negative, smaller absolute
values correspond to higher probability. If two grammars have log probabilities that differ by n, their actual probabilities differ by en; thus, the best hierarchical
phrase-structure grammar CFG-L is e101 ($1043) times more probable than the best linear grammar REG-M. Bold values indicate the highest posterior score at
each level.

Corpus Probability FLAT REG-N REG-M REG-B 1-ST CFG-S CFG-L

Level 1 Prior %99 %148 %124 %117 %94 %155 %192
Likelihood %17 %20 %19 %21 %36 %27 %27
Posterior %116 %168 %143 %138 %130 %182 %219

Level 2 Prior %630 %456 %442 %411 %201 %357 %440
Likelihood %134 %147 %157 %162 %275 %194 %177
Posterior %764 %603 %599 %573 %476 %551 %617

Level 3 Prior %1198 %663 %614 %529 %211 %454 %593
Likelihood %282 %323 %333 %346 %553 %402 %377
Posterior %1480 %986 %947 %875 %764 %856 %970

Level 4 Prior %5839 %1550 %1134 %850 %234 %652 %1011
Likelihood %1498 %1761 %1918 %2042 %3104 %2078 %1956
Posterior %7337 %3311 %3052 %2892 %3338 %2730 %2967

Level 5 Prior %10,610 %1962 %1321 %956 %244 %732 %1228
Likelihood %2856 %3376 %3584 %3816 %5790 %3917 %3703
Posterior %13,466 %5338 %4905 %4772 %6034 %4649 %4931

Level 6 Prior %67,612 %5231 %2083 %1390 %257 %827 %1567
Likelihood %18,118 %24,454 %25,696 %27,123 %40,108 %27,312 %26,111
Posterior %85,730 %29,685 %27,779 %28,513 %40,365 %28,139 %27,678
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by the local search procedures have scores similar to the
best hand-designed linear grammars, but none have pos-
terior probabilities close to that of the best context-free
grammars.

The results of the local search, shown in Table 3, are
qualitatively similar to those obtained with hand-designed
grammars: the posterior still favors a context-free gram-
mar once the corpus is large enough, but for smaller cor-
pora the best grammars are linear.

3.1.3. Identifying a regular grammar by automated search
In addition to identifying the best grammars resulting

from a local search, we can also examine the best regular
grammar (REG-AUTO) found in a purely automated fashion
using the unsupervised learning model developed by Gold-
water and Griffiths (2007). The grammars with the highest
posterior probability on each corpus are shown in Table 4.
All of the REG-AUTO grammars have posterior probabilities
similar to those of the other regular grammars, but on the
larger corpora none have higher probability than the best
context-free grammars. Because the REG-AUTO grammars
do not consistently have higher probability than the other
regular grammars, we cannot conclude that they represent
the ‘‘true best’’ from the space of all possible grammars of
that type. However, the fact that the best regular gram-
mars found by every method have a similar order-of-

magnitudeprobability – and that nonehave been found that
approach the best-performing context-free grammar –
suggests that if better regular grammars do exist, they are
not easy to discover.

Summing up these results, we find that a context-free
grammar always has the highest posterior probability on
the largest type-based corpus, compared to a variety of
plausible linear grammars. Though the ability of the hierar-
chical phrase-structure grammars to generate a higher
variety of sentences from fewer productions typically re-
sults in a lower likelihood, this compression helps dramat-
ically in the prior. This type of grammar thus consistently
maximizes the tradeoff between data fit and complexity.
Drawing the analogy to the models in Fig. 3, the best con-
text-free grammar is most analogous to B. The one-state
grammar, like A, is very simple but offers a very poor fit
to the data, and the flat grammars may be more like C: a
closer fit to the data, but too complex to be ideal. The reg-
ular grammars span the range between A and C, but none
provides as good of a tradeoff as in B.

3.2. Sentence tokens vs. sentence types

So far we have evaluated the grammars only on type-
based corpora, but we conceived of the likelihood as
emerging from a language model with separate generative

Table 3
Log prior, likelihood, and posterior probabilities of grammars resulting from local search. Because numbers are negative, smaller absolute values correspond to
higher probability. Bold values indicate the highest posterior score at each level.

Corpus Probability FLAT REG-N REG-M REG-B 1-ST CFG-S CFG-L

Level 1 Prior %99 %99 %99 %99 %94 %133 %148
Likelihood %17 %19 %20 %19 %36 %26 %25
Posterior %116 %118 %119 %118 %130 %159 %173

Level 2 Prior %630 %385 %423 %384 %201 %355 %404
Likelihood %134 %151 %158 %155 %275 %189 %188
Posterior %764 %536 %581 %539 %476 %544 %592

Level 3 Prior %1198 %653 %569 %529 %211 %433 %521
Likelihood %282 %320 %339 %346 %553 %402 %380
Posterior %1480 %973 %908 %875 %764 %835 %901

Level 4 Prior %5839 %1514 %1099 %837 %234 %566 %798
Likelihood %1498 %1770 %1868 %2008 %3104 %2088 %1991
Posterior %7337 %3284 %2967 %2845 %3338 %2654 %2789

Level 5 Prior %10,610 %1771 %1279 %956 %244 %615 %817
Likelihood %2856 %3514 %3618 %3816 %5790 %3931 %3781
Posterior %13,466 %5285 %4897 %4772 %6034 %4546 %4598

Level 6 Prior %67,612 %5169 %2283 %1943 %257 %876 %1111
Likelihood %18,118 %24,299 %25,303 %25,368 %40,108 %27,032 %25,889
Posterior %85,730 %29,468 %27,586 %27,311 %40,365 %27,908 %27,000

Table 4
Log probabilities of the regular grammar constructed from scratch. As a comparison, the probabilities for the best other grammars are shown. Bold values
indicate the highest posterior score at each level.

REG-AUTO Other best grammars (posterior).

Corpus Prior Likelihood Posterior FLAT REG-N REG-M REG-B 1-ST CFG-S CFG-L

Level 1 %105 %18 %123 %116 %118 %119 %118 %130 %159 %173
Level 2 %302 %193 %495 %764 %536 %581 %539 %476 %544 %592
Level 3 %356 %505 %841 %1480 %973 %908 %875 %764 %835 %901
Level 4 %762 %2204 %2966 %7337 %3284 %2967 %2845 %3338 %2654 %2789
Level 5 %1165 %3886 %5051 %13,466 %5285 %4897 %4772 %6034 %4546 %4598
Level 6 %3162 %25,252 %28,414 %85,730 %29,468 %27,586 %27,311 %40,365 %27,908 %27,000
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processes: one for the allowable types of syntactic forms in
a language, another for the frequency of specific sentence
tokens. Defining the likelihood in this way is not standard
in computational linguistics, but it is a principled choice
motivated by the recent computational work of Goldwater
et al. (2006) and the standard practice in theoretical lin-
guistics, where grammars are evaluated based on how well
they account for which sentences occur, rather than their
frequency distribution. It is nevertheless useful to explore
precisely what the effect of making this choice is. We
therefore evaluated the best grammars of each class found
so far on a corpus of sentence tokens rather than types.

Interestingly, the linear grammars were overwhelm-
ingly preferred relative to the context-free grammars (Le-
vel 6 posterior: REG-N: %135,704; REG-M: %136,965;
REG-B: %136,389; CFG-L: %145,729; CFG-S: %148,792;
FLAT: %188,403; 1-ST: %212,551). As before, the context-
free grammars had higher prior probability – but unlike
before, the linear grammars’ goodness-of-fit outweighed
the preference for simplicity. Why? The corpus of sentence
tokens contains almost ten times as much data, but no con-
comitant increase in the variety of sentences (as would oc-
cur if there were simply more types, corresponding to a
larger dataset of tokens). Thus the likelihood is weighted
relatively more strongly relative to the prior (which does
not change); this works against the context-free grammars,
which overgeneralize more.

This result suggests that if the hierarchical phrase struc-
ture of syntax is to be inferred from observed data based
on Bayesian inference with probabilistic grammars, the
learner may need to have some sort of disposition to eval-
uate grammars with respect to type-based rather than to-
ken-based data. It is unlikely that such a disposition would
emerge from a general insensitivity to token frequencies:
there is extensive psycholinguistic and developmental evi-
dence demonstrating that people are sensitive to quantita-
tive frequency variations in a wide variety of contexts. A
more plausible interpretation – on both behavioral and
computational grounds – is that grammar induction is
based on more sophisticated grammar models (such as
the adaptor framework) which do not treat each sentence
as an independent statistical sample from the grammar.
In such a framework, quantitative variation in token fre-
quencies is not ignored, but is separated from the princi-
ples of the grammar that generate acceptable forms.

We can evaluate the reasonableness of this interpreta-
tion in more detail by explicitly calculating the probability
of the corpus under the full two-component adaptor mod-
el, rather than the one-component model considered thus
far. The two-component adaptor model requires summing
over all possible interpolations between type-based and
token-based input, and calculating the probability of the
corpus given the grammar for each specific interpolation.

What does it mean to interpolate between type-based
and token-based input? The central metaphor underlying
the adaptor model conceives of the input as consisting of
‘‘tables’’ in a restaurant, and ‘‘customers’’ of the restaurant
as corresponding to specific sentence tokens. In a fully
type-based analysis, all of the sentence tokens of a given
type are seated at the same table, resulting in 2336 tables
total. For instance, all six sentences of the form det n v n

would be on one table, meaning that the input to the
model would consist only of one det n v n rather than six.
By contrast, in a fully token-based analysis, each customer
would be seated at their own table, resulting in six tables
each corresponding to a sentence of the form det n v n,
and 21,671 tables in total. Interpolating between these
analyses would correspond to different ways of assigning
the six sentence tokens of the same type to more than
one table but less than six. In our example of the form
det n v n, this might correspond to having two tables, each
with three customers; three tables, one with four custom-
ers and two with one; or any other possible distribution of
tokens to tables.

The essential idea is that when language is produced,
sometimes a sentence is generated directly from a gram-
mar, and sometimes it is generated from the memory
cache of previous sentences that have been spoken. If a
sentence is generated directly from a grammar, it corre-
sponds to a table; it is relevant for a learner seeking to
identify the particular grammar that did the generating.
If it is generated from the memory cache, this corresponds
to one of the customers (tokens) sitting at an existing ta-
ble; since it was not generated from the grammar directly
it would be sensible for a learner to disregard this sentence
token when seeking to identify the grammar. Of course,
sentences do not come clearly labeled as being generated
from either the grammar or the memory cache, so the
job for the learner is to figure out how to optimally distrib-
ute tokens among tables in such a way as to maximize the
probability of the observed sentences given a grammar.
We assume that the learner has a prior that favors an inter-
mediate analysis in which there are more tables than a
fully type-based analysis would imply, but fewer tables
than a fully token-based analysis would.

It is clear that for a corpus with 21,671 tokens and 2336
types, there are millions of ways of distributing tokens to
tables; thus, interpolating between types and tokens by
evaluating the probability of each possible assignment is
computationally intractable, for much the same reason
that it is computationally intractable to effectively search
the space of all context-free grammars: the space is very
large, and has many local maxima. However, as in our pre-
vious analysis, we can address this question by searching
for an approximate best interpolation. As before, this
may be accomplished by searching the space of possibili-
ties from multiple starting points, with several questions
in mind. First, is the single best interpolation closer to a
type-based or a token-based corpus? Second, does the
search – which tends to move in the direction of increasing
overall probability – always tend to move toward more
type-based analyses, regardless of its starting point? The
logic is as follows: if, in maximizing the joint probability
of the grammar, corpus, and level of interpolation between
types and tokens, the overall highest-probability outcome
is one that favors grammars with hierarchical phrase struc-
ture, this is evidence that a rational learner might be able
to realize that these grammars offer a better explanation
of the data than grammars without.

As detailed more fully in Appendix B, we performed
multiple partial searches of the space of possibilities, inter-
polating between a fully type-based corpus and a fully
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token-based corpus. The results remain consistent with the
one-component type-based results reported previously:
the context-free grammars still had the highest posterior
probability (Level 6 posterior: CFG-L: %133,659; REG-B:
%133,958; REG-M: %134,242; CFG-S: %134,566). More-
over, search steps that made the analysis more type-based
were more likely to improve the overall probability than
search steps that made it more token-based. Although
these searches are not fully comprehensive, these results
are coherent and suggestive. The best-performing gram-
mars are still the ones with hierarchical phrase structure,
and there is reason to believe that evaluating grammars
on the basis of types rather than tokens is more appropri-
ate. We therefore focus on type-based analyses for the
remainder of the results.

3.3. Ungrammatical sentences

One decision made in constructing the corpus was to re-
move the ungrammatical sentences. This decision was pri-
marily a pragmatic one, but we believe it is justified for
several reasons. A child learning a language might be able
to identify at least some of the ungrammatical sentences as
such, based on pragmatic signals or on portions of the
grammar learned so far. Also, if learners disregard sentence
forms that occur very rarely, this would minimize the
problem posed by ungrammatical sentences: they would
be able to ignore the majority of ungrammatical sentences,
but relatively few grammatical ones. Finally, since the con-
text-free grammars are preferred on corpora as small as Le-
vel 4 and no ungrammatical sentences occurred 10 times or
more, it seemed unlikely that including ungrammatical
sentences would alter our main findings.

Nevertheless, it is still useful to compare each of the
grammars on the corpus that includes ungrammatical sen-
tences in order to be certain that the decision to exclude
them is not critical to the outcome.10 To the best grammars
of each type, we added the minimum number of additional
productions required to parse the ungrammatical corpus.
The context-free grammars still have the highest posterior
probability (Level 6 posterior: CFG-L: %29,963; REG-B:
%30,458; REG-M: %30,725; CFG-S: %31,008; REG-N:
%33,466; 1-ST: %43,098; FLAT: %92,737). Thus, considering
the ungrammatical sentences along with the grammatical
sentences does not qualitatively alter our findings.

3.4. Age-based stratification

Our results may have developmental implications, but
these must be interpreted with caution. Our findings do
not necessarily imply that children should go through a
period of using a simpler flat or one-state grammar, just be-
cause those grammar types were found to do best on the
smaller type-based corpora. The Levels corpora are based
on divisions by sentence frequency rather than by age.
Though it is plausible that children can parse the simpler
and more common sentences before the longer, rarer ones,

it is certainly not the case that they acquire an understand-
ing of language sentence by sentence, fully understanding
some sentences and not at all understanding everything
else. Thus, the different Levels corpora probably do not di-
rectly correspond to the amount of input available to the
children at various ages. Instead, the division into Levels al-
lows for an exploration of the tradeoff between complexity
and data fit as the quantity of evidence increases.

It is nevertheless worthwhile to estimate, at least
approximately, how soon that evidence is available to chil-
dren. We therefore compare the posterior probabilities of
the grammars on the Epoch corpora, which were con-
structed creating age-based divisions in the full corpus. Ta-
ble 5 shows the probabilities of the best hand-designed
linear and context-free grammars on these corpora. Strik-
ingly, a context-free grammar is preferred at every age. This
is even true for grammars that correspond to just the first
file (Epoch 0), which consists of one hour of conversation
at age 2;3. It is also interesting that the prior probabilities
of the CFG-S and CFG-L grammars beginning at Epoch 3 do
not change.Why is this? Recall that at each epoch and level,
we evaluate only the subset of each grammar necessary to
parse the sentences observed in the corresponding corpus
(removing any unnecessary productions). The fact that
the CFGs stabilize by Epoch 3 suggests that only 60% of
the corpus is necessary to support the same grammars that
are also preferred for the entire corpus. This is a conse-
quence of the powerful generalization capacity that comes
from using a CFG. In contrast, regular grammars generalize
less appropriately: the best regular grammar must be sup-
plemented with additional productions at every additional
epoch, resulting in a prior probability that continues to
change as the corpus grows.

Do these results indicate that English-speaking chil-
dren, if they are rational learners, can conclude after only
a few hours of conversation that language has hierarchical
phrase structure? Definitely not. In order to draw such a
conclusion the child would minimally need to assign each
word to its correct syntactic category and also be able to
remember and parse somewhat complex utterances –
capacities which are taken for granted in our model. How-
ever, this analysis does show that the data supporting a
hierarchical phrase structure for English are so ubiquitous
that once a learner has some ability to assign syntactic cat-
egories to words and to parse sentences of sufficient com-
plexity, it should be possible to infer that hierarchical
phrase-structure grammars provide the best description
of the language’s syntax, given only minimal exposure to
child-directed speech.

It is interesting and theoretically important that the
amount of data required to infer the existence of hierarchi-
cal phrase structure is much less than is required to infer
all the rules of the correct hierarchical phrase-structure
grammar. In terms of Figs. 2 and 4, an ideal learner can in-
fer the correct hypothesis at the higher level of abstraction
T from less data than is required for inferring the correct
hypothesis at a lower level, G. Although we have not dem-
onstrated this here, it is theoretically possible that during
the course of acquisition, higher-level knowledge, once
learned, may usefully constrain predictions about unseen
data. It might also effectively act in ways that are hard to

10 The ungrammatical corpus is the full corpus plus the 191 ungrammat-
ical sentence types that correspond to the 443 ungrammatical sentence
tokens.
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distinguish from innate knowledge or innate constraints,
given that it can be learned from such little data. We will
return to this point in the discussion below.

3.5. Generalizability

Though posterior probability penalizes overgeneraliza-
tion via the likelihood, it is important for a natural lan-
guage learner to be able to generalize beyond the input
observed, to be able to parse and comprehend novel sen-
tences. Howwell do the different grammars predict unseen
sentences? One measure of this is the percentage of the full
(Level 6) corpus that can be parsed by the best grammars
learned for subsets (Level 1–5) of the full corpus. If a gram-
mar learned from a smaller corpus can parse sentence
types in the full corpus that do not exist in its subset, it
has generalized beyond the input it received and general-
ized in a correct fashion. Table 6 shows the percentage of
sentence types and tokens in the full Level 6 corpus that
can be parsed by each of the best grammars for the smaller
Levels. The context-free grammars usually generalize the

most, followed by the regular grammars. The flat grammar
does not generalize at all: at each level it can only parse the
sentences it has direct experience of. The one-state gram-
mar can generalize to 100% of sentence types and tokens
at every level because it can generalize to 100% of all sen-
tences, grammatical or not.

A more stringent test of generalization is to evaluate
performance with respect to completely novel corpora.
To that end, we selected the final file of the Sarah corpus
(Brown, 1973) of the CHILDES database (MacWhinney,
2000); we chose this because, since Sarah was 5;1 at the
time, this presented a more stringent test of generalization
than if she were younger. Processing the corpus in the
same way as the Adam corpus (i.e., replacing lexical items
with syntactic categories and removing the more complex
sentence types) results in a dataset with 156 sentence
types corresponding to 230 sentence tokens. The Level 6
CFG-L parses the highest percentage of sentence types in
that corpus (94.2%), followed closely by CFG-S (93.6%),
with REG-M (91.7%), REG-B (91.0%), and REG-N (87.2%)
trailing. Although the magnitude of these differences is

Table 5
Log prior, likelihood, and posterior probabilities of each grammar type on the Epoch corpora, which reflect an age split. A hierarchical phrase-structure
grammar is favored for all epochs, even on the first corpus (Epoch 0), corresponding to 1 h of conversation at age 2;3.

Corpus Probability FLAT REG-N REG-M REG-B 1-ST CFG-S CFG-L

Epoch 0 (2;3) Prior %3968 %1915 %1349 %1166 %244 %698 %864
Likelihood %881 %1265 %1321 %1322 %2199 %1489 %1448
Posterior %4849 %3180 %2670 %2488 %2433 %2187 %2312

Epoch 1 (2;3–2;8) Prior %22,832 %3791 %1974 %1728 %257 %838 %1055
Likelihood %5945 %7811 %8223 %8164 %13,123 %8834 %8467
Posterior %28,777 %11,602 %10,197 %9892 %13,380 %9672 %9522

Epoch 2 (2;3–3;1) Prior %34,908 %4193 %2162 %1836 %257 %865 %1096
Likelihood %9250 %12,164 %12,815 %12,724 %20,334 %13,675 %13,099
Posterior %44,158 %16,357 %14,977 %14,560 %20,591 %14,540 %14,195

Epoch 3 (2;3–3;5) Prior %48,459 %4621 %2202 %1862 %257 %876 %1111
Likelihood %12,909 %17,153 %17,975 %17,918 %28,487 %19,232 %18,417
Posterior %61,368 %21,774 %20,177 %19,780 %28,744 %20,108 %19,528

Epoch 4 (2;3–4;2) Prior %59,625 %4881 %2242 %1903 %257 %876 %1111
Likelihood %15,945 %21,317 %22,273 %22,293 %35,284 %23,830 %22,793
Posterior %75,570 %26,198 %24,515 %24,196 %35,541 %24,706 %23,904

Epoch 5 (2;3–5;2) Prior %67,612 %5169 %2283 %1943 %257 %876 %1111
Likelihood %18,118 %24,299 %25,303 %25,368 %40,108 %27,032 %25,889
Posterior %85,730 %29,468 %27,586 %27,311 %40,365 %27,908 %27,000

Table 6
Proportion of sentences in the full corpus that are parsed by smaller grammars. The Level 1 grammar is the smallest grammar of that type that can parse the
Level 1 corpus. All Level 6 grammars can parse the full (Level 6) corpus.

Grammar FLAT (%) REG-N (%) REG-M (%) REG-B (%) 1-ST (%) CFG-S (%) CFG-L (%)

% types
Level 1 0.3 0.7 0.7 0.7 100 2.4 2.4
Level 2 1.4 3.7 5.1 5.5 100 31.5 16.4
Level 3 2.6 9.1 9.1 32.2 100 53.1 46.8
Level 4 10.9 50.7 61.2 75.2 100 87.6 82.7
Level 5 18.7 68.8 80.3 88.0 100 91.8 88.7

% tokens
Level 1 9.9 32.6 32.6 32.6 100 40.2 40.2
Level 2 21.4 58.8 61.7 60.7 100 76.4 69.7
Level 3 25.4 72.5 70.9 79.6 100 87.8 85.8
Level 4 34.2 92.5 94.3 96.4 100 98.3 97.5
Level 5 36.9 95.9 97.6 98.5 100 99.0 98.6
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not large, they follow the same pattern that we found on
the Adam corpus.

Do the context-free grammars simply generalize more
than the regular grammars, or do they generalize in the
right way? In other words, would the context-free gram-
mars also recognize and parse more ungrammatical Eng-
lish sentences than the regular grammars? Of the 191
ungrammatical sentence types excluded from the full
Adam corpus, the REG-B parses the most (107), followed
by CFG-L (84), CFG-S (73), REG-M (72), and REG-N (57).
Aside from the flat grammar, all of the grammars make
some incorrect overgeneralizations. This should not be sur-
prising given that our grammars lack the expressivity
needed to encode important syntactic constraints. How-
ever, it is interesting that the REG-M grammar, which gen-
eralizes less than either context-free grammar to the full
corpus in Table 6, generalizes to the ungrammatical sen-
tences similarly to CFG-S: to the extent that REG-M gram-
mar generalizes, it does so more often in the wrong way by
making more incorrect overgeneralizations. This is even
more striking in the case of the REG-B grammar, which
parses somewhat fewer ‘‘correct’’ sentences (in the full cor-
pus) than either context-free grammar, but parses many
more ‘‘incorrect’’ (ungrammatical) sentences than the
others.

The hierarchical phrase-structure grammars also gener-
alize more appropriately than the linear grammars in the
specific case of auxiliary-fronting for interrogative sen-
tences. As Table 7 shows, both context-free grammars
can parse aux-fronted interrogatives containing subject
NPs that have relative clauses with auxiliaries – Chomsky’s
critical forms – despite never having seen an example of
these forms in the input. They can do so because the input
does contain simple declaratives and interrogatives, which
license interrogative productions that do not contain an
auxiliary in the main clause. The input also contains rela-
tive clauses. Both context-free grammars can therefore
parse an interrogative with a subject NP containing a rela-
tive clause, despite never having seen that form in the
input.

Unlike the context-free grammars, neither regular
grammar can correctly parse complex aux-fronted inter-
rogatives. The larger regular grammar REG-N cannot be-
cause, although its NPCP productions can parse a relative
clause in an NP, it does not have productions that can parse
input in which a verb phrase without a main clause auxil-
iary follows an NPCP production. This is because there was
no input in which such a verb phrase did occur, so the only
NPCP productions occur either at the end of a sentence in

the object NP, or followed by a normal verb phrase. Com-
plex interrogative sentences – exactly the input that
Chomsky argued are necessary – would be required to
drive this grammar to the correct generalization.

The other regular grammars, REG-M and REG-B, cannot
parse complex interrogatives for a different reason. Be-
cause they do not create a separate non-terminal like NPCP
for NPs containing relative clauses, they do have produc-
tions that can parse input in which such a subject NP is fol-
lowed by a verb phrase without a main clause auxiliary.
However, since they do not represent phrases as phrases,
successful parsing of the complex interrogative ‘‘Can eagles
that are alive fly?’’ (aux n comp aux adj vi) would require
that the sentence have an expansion in which the non-ter-
minal adj is followed by a vi.11 Because no sentences in the
input follow this pattern, the grammars cannot parse it, and
therefore cannot parse the complex interrogative sentence
in which it occurs.12

The superior generalization ability of the context-free
grammars, though it hurts their likelihood scores, is of crit-
ical importance. Chomsky’s original suggestion that struc-
ture-independent (linear) rules might be taken as more
natural accounts of the data may have rested on the intu-
ition that a grammar that sticks as closely as possible to
the observed data is simpler without any a priori biases
to the contrary. Such grammars do indeed predict the data

Table 7
Ability of each grammar to parse specific sentences. The complex declarative sentence ‘‘Eagles that are alive can fly’’ occurs in the Adam corpus. Only the
context-free grammars can parse the corresponding complex interrogative sentence.

Type In input? Example Can parse?

FLAT REG-N REG-M REG-B 1-ST CFG-S CFG-L

Decl Simple Y Eagles can fly. (n aux vi) Y Y Y Y Y Y Y
Int Simple Y Can eagles fly? (aux n vi) Y Y Y Y Y Y Y
Decl Complex Y Eagles that are alive can fly. (n comp aux adj aux vi) Y Y Y Y Y Y Y
Int Complex N Can eagles that are alive fly? (aux n comp aux adj vi) N N N N Y Y Y
Int Complex N !Are eagles that alive can fly? (aux n comp adj aux vi) N N N N Y N N

11 Note that because our regular grammars are derived from our best
CFGs, they have nonterminals that play some of the same roles as abstract
phrases like NPs in context free grammars, and we even label them
accordingly. But these closest analogs of NPs in our regular grammars do
not in fact play exactly the same roles as NPs in our context-free grammars:
because of the restricted branching of regular grammars, these approxi-
mations to NPs in regular grammars contain additional material not
typically found in a true NP. This prevents the regular grammars from
capturing the correct.linguistic chunks and generalizing appropriately,
while the context-free capture these chunks naturally.
12 It is interesting that none of the best grammars found – either regular
or context-free – can parse the incorrect complex interrogative forms (such
as ‘‘Are eagles that alive can fly?’’, or (4b) in the introduction) that
traditional PoS arguments imagine would be the first hypotheses of an
unbiased learner. To understand why not, it is useful to compare the
performance of the best grammars found to the same grammars supple-
mented with the minimal number of additional productions necessary to
parse these incorrect forms. When we add these productions to the
grammars (whether regular or context-free), they are not used to parse any
of the sentences in the full training corpus, and the inside-outside
algorithm consequently prunes them away (by setting their probabilities
to zero). If these productions are forced to be present with nonzero
probabilities, the resulting grammars have lower prior probability (due to
the additional productions) as well as lower likelihood (due to predicting
sentences not found in the corpus), and thus will be dispreferred relative to
similar grammars that lack those productions.
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better; they receive higher likelihood than the context-free
grammars, which overgeneralize and thus waste some
probability mass on sentence types that are never ob-
served. However, a grammar that overgeneralizes – not
too far, and just in the right ways – is necessary in order
to parse the potentially infinite number of novel sentences
faced by a learner of natural language. Of all the grammars
explored, only the hierarchical phrase-structure grammars
generalize in the same way humans do. While in a sense
this should not be a surprise, it is noteworthy that a ra-
tional learner given child-directed language input prefers
these grammars over those that do not generalize appro-
priately, without direct evidence pointing either way.

Although our best context-free grammars perform cor-
rectly on sentences like those in Table 7, as Berwick and
Chomsky (submitted for publication) point out, they do
not capture the entire auxiliary system in English. This is
largely because of two main simplifications in our model-
ing: (1) our selection of grammars based on fit to a small
corpus of child-directed speech, which does not contain
all of the many types of sentences necessary to support
the entire auxiliary system and (2) our choice of part-of-
speech encoding, which collapses certain distinctions (for
instance, modal auxiliaries, do, and be forms are all coded
as aux) that would be needed to account for the full auxil-
iary system. These simplifications enabled a tractable
exploration of the question we are most concerned with
– the learnability of hierarchical phrase structure in lan-
guage. Full mastery of the auxiliary system or any other
specific aspect of syntax is not the goal. It would be of
interest to conduct a similar study using more sophisti-
cated grammars capable of better approximating the full
syntax of English, but this is beyond the scope of our cur-
rent techniques and so we leave it for future work.

3.6. Linguistic adequacy

Although we have shown that the grammars favored by
the model also generalize more appropriately according to
a variety of measures, it remains possible that the gram-
mars with the highest posterior probability might assign
linguistically implausible structures. We therefore com-
pare the accuracy of each of our grammars on a ‘‘gold stan-
dard’’ parsed corpus, where accuracy is measured by F-
score (which reflects the harmonic mean of precision and
recall of the grammars; see Manning & Schütze, 1999).

As our gold standard corpus we selected the child-directed
speech from the final file of the Eve corpus (Brown, 1973)
of the CHILDES database (MacWhinney, 2000), which con-
tains one hour of speech directed to Eve at age 2;3. Pro-
cessing the corpus in the same way as the Adam and
Sarah corpora were processed results in a corpus of 224
sentence types corresponding to 415 sentence tokens.

We chose this corpus because it has previously been
augmented with syntactic dependency annotations (Sagae,
Davis, Lavie, MacWhinney, & Wintner, 2007) which were
then converted to constituency annotations (Borensztajn,
Zuidema, & Bod, 2008), and thus provides an objective
standard of comparison for our grammars. Upon inspection
of the parses, however, many of them seemed incorrect;
we therefore also had an independent rater with a PhD in
linguistics, blind to the nature of any of our grammars, pro-
vide hand-annotated parses. We report the accuracy of the
maximum-likelihood parse yielded by each of our Level 6
grammars according to both of these standards.

The results, shown in Table 8, demonstrate that the
most accurate grammars according to both standards are
the two context-free grammars, and the one favored by
the model (CFG-L) is the most accurate of all. All of the reg-
ular grammars yield the same parses as the right-branch-
ing baseline, but have lower accuracy because they fail to
parse the entire corpus. As with the Sarah corpus, the
CFG-L parses the highest percentage of sentence types
(96.5%), followed closely by CFG-S (95.5%), with REG-M
(95.1%), REG-B (95.1%), and REG-N (92.4%) trailing. The
improvement in accuracy on CFG-L and CFG-S is not solely
due to the fact that they successfully parse more sentences,
however; when accuracy is calculated only including those
sentences that each grammar can parse, the relative per-
formance of each grammar remains the same (F-scores
on hand-parsed corpus: CFG-L = 91.8; CFG-S = 90.9; REG-
B = 89.0; REG-M = 89.0; REG-N = 89.2; on automatically-
parsed corpus: CFG-L = 68.1; CFG-S = 67.2; REG-B = 67.4;
REG-M = 67.4; REG-N = 67.4).13

Table 8
Accuracy of each grammar (in terms of precision, recall, and F-score) on the final file from the Eve corpus. The table on the left compares the grammars to the
automatic parses yielded by Sagae et al. (2007) and Borensztajn et al. (2008); the table on the right compares them to hand-annotated parses. All grammars are
also compared to right-branching (RB) and left-branching (LB) baselines. In all cases, the grammars favored by our model also have the highest accuracy (F-
score).

Automatically parsed Hand-parsed

Grammar Precision Recall F-score Grammar Precision Recall F-score

CFG-L 51.8 94.1 66.8 CFG-L 89.6 90.4 90.0
CFG-S 50.8 92.3 65.6 CFG-S 88.3 89.1 88.7
REG-B 50.1 90.8 64.6 REG-B 85.1 85.6 85.3
REG-M 50.1 90.8 64.6 REG-M 85.1 85.6 85.3
REG-N 49.4 89.6 63.7 REG-N 84.1 84.5 84.3
RB 50.7 92.4 65.5 RB 86.9 87.3 87.1
LB 32.0 62.9 42.4 LB 33.1 33.6 33.4

13 The reason the F-scores for the regular grammars are not identical to
the F-scores for the right-branching baseline, despite the fact that all of the
regular grammars impose parses equivalent to that of the right-branching
baseline, is because some of the sentences that the regular grammars failed
to parse had a lower-than-average precision/recall for the right-branching
baseline. They therefore brought the average accuracy for the baseline
down relative to that of the regular grammars.
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These results suggest that our grammars are not
implausible, and that the grammars which score best
under our Bayesian scoring criterion also perform best in
precision and recall. However, because our corpora are
child-directed speech, the sentence structure is fairly sim-
ple and precision/recall may not be the most diagnostic
analysis: all of the grammars have fairly high accuracy
scores, and all of them are fairly similar. This includes
the right-branching baseline grammar, since many of the
sentences in the corpus are in fact right-branching. For
the cases where the correct analysis is not, the context-free
grammars perform better; this suggests that our analysis
converges with more traditional measures of successful
learning. That said, because of their overall simplicity, we
do not propose any of our grammars as a serious model
of English; the purpose of this analysis was simply to dem-
onstrate that the grammars which were favored by the
Bayesian scoring criterion are also more linguistically ade-
quate by other measures as well.

4. Discussion

Our model of language learning suggests that there may
be sufficient evidence in the input for an ideal rational lear-
ner to conclude that language has hierarchical phrase
structure without having an innate language-specific bias
to do so. The best-performing grammars form grammati-
cally correct English interrogatives, even though the input
contains none of the crucial data Chomsky identified. In
this discussion, we consider the implications of these re-
sults for more general questions of innateness, and for
the nature of language acquisition in human children.

4.1. The question of innateness

In debates about innateness, there are often tradeoffs
between the power of the learning mechanism, the expres-
sive potential of the representation, and the amount of
built-in domain-specific knowledge. Our modeling frame-
work enables us to make assumptions about each of these
factors explicit, and thereby analyze whether these
assumptions are fair, as well as to what extent the conclu-
sions depend upon them. The issue is also more compli-
cated than is captured by making the distinction between
representational structure and the nature of the cognitive
biases necessary (as in Fig. 1). There is the additional ques-
tion of which of the many capacities underlying successful
language use are innate, as well as to what extent each
capacity is domain-general or domain-specific. The PoS
argument we consider here is concerned with whether a
particular feature of linguistic syntax – hierarchical phrase
structure – must be innately specified as part of a lan-
guage-specific learning module in children’s minds. Our
analysis incorporates several assumptions about the cogni-
tive resources available to children, but these resources are
plausibly domain-general.

Probably the strongest assumption in the analysis is a
powerful learning mechanism. We assume both that the
learner can effectively search over the space of all possible
grammars to arrive at optimal or near-optimal hypotheses,

and that the grammars we have analyzed are sufficiently
close to the optimal ones. Advances in computational lin-
guistics and the development of more powerful models
of unsupervised grammar induction will do much to ad-
dress the latter assumption, and until then, our conclusions
are of necessity preliminary. In the meantime, we can have
some confidence based on the fact that every linear gram-
mar we were able to construct through various and exten-
sive means performed less well than the hierarchical
phrase-structure grammars we examined. Moreover, the
poor performance of linear grammars appears to occur
for a principled reason: they require more productions in
order to match the degree of fit attained by context-free
grammars, and therefore fail to maximize the complex-
ity-fit tradeoff.

Even if our approach succeeds in identifying (near-)
optimal grammars, the assumption that child learners
can effectively search the space of all possible grammars
is a strong one. Especially for context-free grammars,
where the space is much larger than for regular grammars,
it may be that learners will need some built-in biases in or-
der to search effectively (e.g., Kearns & Valiant, 1989).14 In
general, one must assume either a powerful domain-general
learning mechanism with only a few general innate biases
that guide the search, or a weaker learning mechanism with
stronger innate biases, or some compromise position. Our
results do not suggest that any of these possibilities is more
likely than the others. Our core argument concerns only the
specific need for a bias to a priori prefer analyses of syntax
that incorporate hierarchical phrase structure. We are argu-
ing that a rational learner may not require such a bias, not
that other biases are also unnecessary.

In addition to assumptions about the learning mecha-
nism, our model incorporates some assumptions about
the representational abilities of the child. First of all, we as-
sume that children have the capacity to represent multiple
types of grammars. We are not claiming that the specific
grammars we analyze are exactly the ones children repre-
sent; clearly all of the grammars we have worked with are
oversimplified in many ways. But an assumption that chil-
dren in some sense have the capacity to represent both lin-
ear and hierarchical patterns in sequential structures –
linguistic or non-linguistic – is necessary to even ask the
questions we consider here. Our analysis also assumes that
the learner represents the different grammar classes as dif-
ferent grammar classes, choosing between context-free,
regular, flat, and one-state grammars. This stratification
is not critical to the results, however. If anything, it is a
conservative assumption, because it favors the linear
grammars more heavily than they would be favored if we
treated all grammars as instances of a single general type
(see Appendix B for details).

Perhaps the most basic representational assumption is
that learners are evaluating grammars with explicit sym-
bolic structure. Although this assumption is not particu-
larly controversial in linguistics, it has been expressly

14 Of course, because linear grammars are a subset of context-free
grammars, biases for searching the space of context-free grammars could
work for linear grammars as well. Furthermore, such biases need not be
domain-specific.
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denied in other recent analyses of PoS arguments by cogni-
tive modelers (e.g., Lewis & Elman, 2001; Reali & Christian-
sen, 2005). We are not arguing that the assumption of
explicit structure is the only viable route to understanding
language acquisition as a kind of inductive learning. It is
important and useful to explore the alternative possibility
that generalizations about grammatical structure are not
innate because such structure either does not exist at all
or is present only implicitly in some kind of sub-symbolic
representation. But it is also important to consider the pos-
sibility that these generalizations about grammatical
structure exist explicitly and can still be learned. One moti-
vation is simply thoroughness: any possibility that cannot
be ruled out on a priori grounds should be investigated. In
other words, we should not artificially restrict ourselves
from exploring the upper-right quadrant of Fig. 1. Another
reason is the centrality of explicit symbolic structure in
formal linguistics and computational linguistics. There
are many linguistic phenomena whose only satisfying
explanations (to date, not in principle) have been framed
in structured symbolic terms. Explicitly structured repre-
sentations also provide the basis of most state-of-the-art
approaches to grammar induction and parsing in computa-
tional linguistics (e.g., Charniak, 1993; Collins, 1999; Eis-
ner, 2002; Klein & Manning, 2004; Manning & Schütze,
1999). Given how useful structured grammatical represen-
tations have been both for explaining linguistic phenom-
ena and behavior and for building effective computer
systems for natural language processing, it seems worth-
while to take seriously the possibility that they might be
the substrate over which children represent and learn
language.

A final set of assumptions concerns the way we repre-
sent the input to learning. We have given our model a cor-
pus consisting of sequences of syntactic categories rather
than sequences of lexical items.15 Working with syntactic
categories rather than individual lexical items allows us to
focus on learning grammars from the syntactic-category
data they immediately generate rather than having to infer
this intermediate layer of representation from raw se-
quences of individual words. We make no claims about
how children might initially acquire these syntactic catego-
ries, There is some evidence that aspects of this knowledge
may be in place even in children below the age of two (Booth
& Waxman, 2003), and that syntactic categories may be
learnable from simple distributional information without
reference to the underlying grammar (Schütze, 1995; Red-
ington et al., 1998; Mintz, Newport, & Bever, 2002; Gerken
et al., 2005; Griffiths, Steyvers, Blei, & Tenenbaum, 2005).
Thus we think it is plausible to assume that children have
access to something like the input we have used here as they
approach problems of grammar acquisition. However, it
would still be desirable for future work to move beyond

the assumption of given syntactic categories. It is possible
that the best linear grammars might use entirely different
syntactic categories than those we assumed here. It would
be valuable to explore whether hierarchical phrase-struc-
ture grammars continue to score better than linear gram-
mars if the input to learning consists of automatically
labeled part-of-speech tags rather than hand-labeled syntac-
tic categories.

Is there a reasonable psychological interpretation for
the two-component adaptor grammar framework? The
framework corresponds to assuming that language users
can generate the syntactic forms of sentence tokens either
by drawing on a memory store of familiar sentence types,
or by consulting a deeper level of grammatical knowledge
about how to generate the infinite variety of acceptable
syntactic forms in the language. Any sentence type gener-
ated by the former system would originally have been gen-
erated by the latter, but this framework suggests that
speakers may not need to consult their rule-based gram-
matical knowledge for every sentence they utter or com-
prehend. For example, a common greeting such as
‘‘How’s it going?’’ might be cached away as a unit such that
it need not be generated afresh from first grammatical
principles on every utterance. One might imagine other
factors that might affect the frequency of what sentences
are spoken that have nothing to do with the grammar it-
self, including the conversational context, the nature of
the interlocutor, or salience in memory. A sensible learner
might want to separate the factors that affect the fre-
quency of observed sentence tokens from the factors that
guide which sentences are grammatical in the first place.
The adaptor grammar framework provides one way to do
that. Our work suggests that if human learners, like our
model, are capable of evaluating whether type-based or to-
ken-based analyses are themselves more appropriate for a
given problem, they might rationally decide to favor a
more type-based analysis when deciding among grammars
(not necessarily for other aspects of language acquisition).
Token frequencies might still be quite useful for driving as-
pects of the acquisition problem that we have not consid-
ered here, such as the formation of syntactic categories
(e.g., Borovsky & Elman, 2006).

Would a disposition to evaluate grammars within a
two-component adaptor-grammar-like framework, or
based on type data only, constitute a language-specific or
domain-general disposition? It is difficult to say, but the
conceptual underpinnings of the adaptor grammar frame-
work are consistent with a domain-general interpretation,
emerging due to memory constraints or other cognitive
factors. Indeed, one novel prediction of this work, which
may be empirically evaluated in artificial grammar learn-
ing experiments, suggests that people should evaluate arti-
ficial grammars with respect to sentence types rather than
tokens. Determining whether a disposition to do so exists –
and, if so, whether it is language-specific or not – is a ques-
tion for future work.

While the preference for linear grammars given token-
based input does not change our overall positive conclu-
sion about the learnability of hierarchical structure, it does
highlight one set of assumptions that would lead to a
different conclusion. Our adaptor grammar simulations

15 Tomasello (2000) and others suggest that children initially restrict their
syntactic frames to be used with particular verbs (the so-called ‘‘verb
island’’ hypothesis). Our model treats all members of a given syntactic
category the same, and therefore does not capture this hypothesis.
However, this aspect of the model reflects a merely pragmatic decision
based on ease of computation. An extension of the model that took lexical
items rather than syntactic categories as input could incorporate interest-
ing item-specific dependencies.
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decide in favor of the results that were closer to type-based
rather than token-based – and thus in favor of learnability
rather than unlearnability of hierarchical phrase structure
– but since they were based on approximations rather than
an exhaustive search of the entire space, they should be
revisited as technology improves. Further probing of the
assumptions implicit in the modeling framework about
the roles of grammar and memory in production are also
questions for future work.

In any case, all of the assumptions made in our analysis
involve either abilities that are plausibly domain-general,
or language-specific representations that are distinct from
the knowledge of hierarchical phrase structure. We
showed that this knowledge can be acquired by an ideal
learner equipped with sophisticated domain-general sta-
tistical inference mechanisms and a domain-general ability
to represent hierarchical phrase structure in sequences – a
type of structure found in many domains outside of natural
language. The model contains no a priori bias to prefer
hierarchical phrase-structure grammars in. The learned
preference for grammars with hierarchical phrase struc-
ture is data-driven, and different data could have resulted
in a different outcome. Indeed, we find different outcomes
when we restrict attention to only part of the data avail-
able to the child.

4.2. Relevance to human language acquisition

What conclusions, if any, may we draw from this work
about the nature of grammatical acquisition in human
learners? Our analysis focuses on an ideal learner, in the
spirit of Marr’s level of computational theory. Just as
Chomsky’s original argument focused on what was in prin-
ciple impossible for humans to learn without some innate
knowledge, our response looks at what is in principle pos-
sible. While this ideal learning analysis helps recalibrate
the bounds of what is possible, it may not necessarily de-
scribe the actual learning processes of human children.

One concern is that it is unclear to what extent humans
actually approximate rational learners. On the positive
side, rational models of learning and inference based on
Bayesian statistical principles have recently developed into
a useful framework for understanding many aspects of hu-
man cognition (Anderson, 1991; Chater & Oaksford, 1999;
Chater, Tenenbaum, & Yuille, 2006). Chomsky himself ap-
pealed to the notion of an objective neutral scientist study-
ing the structure of natural language, who rationally
should first consider the linear rule for auxiliary-fronting
because it is a priori less complex (Chomsky, 1971).
Although there is some debate about how best to formalize
rational scientific inference, Bayesian approaches offer
what is arguably the most promising general approach
(Howson & Urbach, 1993; Jaynes, 2003). A more deductive
or falsificationist approach (Popper, 1959) to scientific
inference might underlie Chomsky’s view: an objective
neutral scientist should maintain belief in the simplest rule
– e.g., the linear rule for auxiliary-fronting – until counter-
evidence is observed, and because such counterevidence is
never observed in the auxiliary-fronting case, that scientist
would incorrectly stay with the linear rule. But under the
view that scientific discovery is a kind of inference to the

best explanation – which is naturally captured in a Bayes-
ian framework such as ours – the hierarchical rule could be
preferred even without direct counterevidence eliminating
the linear rule. This is particularly true when we consider
the discovery problem as learning the grammar of a lan-
guage as a whole, where the rules for parsing a particular
kind of sentence (such as complex auxiliary-fronted inter-
rogatives) may emerge as a byproduct of learning how to
parse many other kinds of sentences. The rational Bayesian
learning framework we have adopted here certainly bears
more resemblance to the practice of actual linguists –
who after all are mostly convinced that language does
indeed have hierarchical phrase structure! – than does a
falsificationist neutral scientist.

Defining the prior probability unavoidably requires
making particular assumptions. A simplicity metric de-
fined over a very different representation would probably
yield different results, but this does not pose a problem
for our analysis. The classic PoS argument asserts that it
is implausible to expect a reasonable learner to arrive at
the correct forms for very rare sentence types such as com-
plex aux-fronted interrogatives, given realistic language
input but no language-specific innate bias towards hierar-
chical syntactic structure. All that is required to respond to
such a claim is to demonstrate that some reasonable lear-
ner could in fact do this. Indeed, our prior is reasonable:
consistent with intuition, it assigns higher probability to
shorter and simpler grammars, and it is defined over a sen-
sible space of grammars that is capable of representing lin-
guistically realistic abstractions like noun and verb
phrases. Even if a radically different simplicity metric were
to yield different results, this would not change our conclu-
sion that some reasonable learner could learn that linguis-
tic rules are defined over hierarchical phrase structures.

Another issue for cognitive plausibility is the question
of scalability: the largest corpus presented to our model
contains only 2336 sentence types, many less than the
average human learner is exposed to in a lifetime. Since
our results are driven by the simplicity advantage of the
context-free grammars (as reflected in their prior probabil-
ities), it might be possible that increasing quantities of data
would eventually drown out this advantage in favor of
advantages in the likelihood. We think this is unlikely for
two reasons. First, the number of sentence types grows
far less rapidly than the number of distinct sentence to-
kens, and the likelihoods in the best analysis are defined
over the former rather than the latter. Secondly, as we have
shown, additional (grammatical) sentence types are more
likely to be already parseable by a context-free grammar
than by a regular grammar. This means that the appear-
ance of those types will actually improve the likelihood of
the context-free grammar relative to the others (because
they will no longer constitute an overgeneralization) while
not changing the prior probability at all; by contrast, the
regular grammar may more often need to add productions
in order to account for an additional sentence type, result-
ing in a lower prior probability and thus a lower relative
posterior score.

If the knowledge that language has hierarchical phrase
structure is not in fact innate, why do all known human
languages appear to have hierarchical phrase structure?
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This is a good question, and we can only offer speculation
here. One answer is that nothing in our analysis precludes
the possibility that children have a specifically linguistic
bias towards syntactic systems organized around hierar-
chical phrase structures: our point is that the classic PoS
argument is not a good reason to believe that they do. An-
other answer is that children may have an innate cognitive
bias towards hierarchical phrase structure: for instance, if
human thoughts are fundamentally structured in a hierar-
chical fashion, and if children have an initial bias to treat
syntax as a system of rules for mapping between thoughts
and sequences of sounds, then this could effectively
amount to an implicit bias for hierarchical phrase structure
in syntax. In fact, our finding that hierarchical phrase
structure is only preferred for corpora of sentence types
(rather than tokens) may suggest that a bias to attend to
types, or to view grammar generation as a two-stage pro-
cess as in the adaptor grammar framework, is necessary
to explain children’s acquisition patterns. Finally, it is also
still possible that there are no biases in this direction at all
– cognitive or linguistic – in which case one might expect
to see languages without hierarchical phrase structure.
There have recently been claims to that effect (e.g., Everett,
2005), although much work remains to verify them.

Recent characterizations of an innate language faculty
have concentrated on recursion in particular (Hauser,
Chomsky, & Fitch, 2002; Pinker & Jackendoff, 2005). An
interesting aspect of our results is that although all of the
best context-free grammars we found contained recursive
productions, the model prefers grammars (CFG-L) that also
contain non-recursive counterparts for complex NPs (noun
phrases with embedded relative clauses).16 It is difficult to
know how to interpret these results, but one possibility is
that perhaps syntax, while fundamentally recursive, could
also usefully employ non-recursive rules to parse simpler
sentences that recursive productions could parse in princi-
ple. These non-recursive productions do not alter the range
of sentence types the grammar can parse, but they are useful
in more precisely matching the linguistic input. In general,
our paradigm provides a method for the quantitative treat-
ment of recursion and other contemporary questions about
the innate core of language. Using it, we can address ques-
tions about how much recursion an optimal grammar for a
language should have, and where it should have it.

4.3. More general implications

Our analysis makes a general point that has sometimes
been overlooked in considering stimulus poverty argu-
ments, namely that children learn grammatical rules as a
part of a system of knowledge. Many PoS arguments con-
sider some isolated linguistic phenomenon that children
appear to master and conclude that because there is not
enough evidence for that phenomenon in isolation, it must
be innate. We have suggested here that even when the
data does not appear to explain an isolated inference, there
may be enough evidence to learn a larger system of

linguistic knowledge – a whole grammar – of which the
isolated inference is a part. A similar intuition underlies
other arguments about the important role that indirect evi-
dence might play in language acquisition (Foraker et al.,
2009; Landauer & Dumais, 1997; Reali & Christiansen,
2005; Regier & Gahl, 2004). This point is also broadly con-
sistent with the generative tradition in linguistics (Chom-
sky, 1957), one of whose original goals was to unify
apparently disparate aspects of syntax (such as phenom-
ena surrounding wh-fronting, auxiliary-fronting, and
extraction) as resulting from the same underlying linguis-
tic system. However, this insight has been missing from
some of the more recent discussions of PoS arguments
(e.g., Chomsky, 1980; Laurence & Margolis, 2001; Pullum
& Scholz, 2002), which have set the agenda for ongoing de-
bates about language-specific innate knowledge primarily
by arguing about the learnability of individual syntactic
phenomena.

In general, our work suggests a paradigm for investigat-
ing some of the unexplored regions of Fig. 1: the possibility
that structured representations of specific domains may be
learnable by largely domain-general mechanisms. Bayes-
ian modeling is appropriate and useful in contexts like this
for several reasons. It offers a normative framework for ra-
tional inference and for quantitatively exploring the do-
main-general tradeoff between simplicity and fit to data.
The computations can be defined over structured represen-
tations, not just simple kinds of input statistics or correla-
tions as in other paradigms for statistical learning. In
addition to domain-general inferential principles, the
framework can incorporate domain-specific information,
either by specifying unique details of the representation,
incorporating biases into priors, or calculating likelihoods
in some domain-specific way. Thus, the framework lets
us investigate the role of both domain-general and do-
main-specific factors in learning, as well as the role of dif-
ferent kinds of representational structure.

In virtue of how it integrates statistical learning with
structured representations, the Bayesian approach can ap-
ply to questions of learnability for many different aspects
of linguistic knowledge, not just the specific question of
hierarchical phrase structure addressed here. It can also
be extended to the more general version of the poverty
of the stimulus argument explicated by Laurence and Mar-
golis (2001), in which the hypothesis space of possible
grammars is infinite in size. Even under such conditions,
Bayesian model selection can identify the best grammar.
Laurence and Margolis (2001) argue that strong innate
knowledge would be needed to rule out many logically
possible but unnatural grammars, such as those that incor-
porate disjunctive hypotheses, which face no direct coun-
terevidence in the observed data. But many of these
‘‘unnatural’’ alternatives – in particular, needlessly disjunc-
tive hypotheses – would naturally be disfavored by a
Bayesian learner, due to the automatic Bayesian Occam’s
razor, without the need for language-specific innate biases
against them. Grammars that posit unnecessary complex-
ity that does not result in improved fit to the data, includ-
ing some of the ‘‘unnatural’’ cases that they worry about,
would receive lower posterior scores than simpler gram-
mars which fit the data just as well. There may still be

16 See Perfors, Tenenbaum, Gibson, and Regier (2010) for a more detailed
exploration of this issue.
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unnatural alternative grammars that cannot be ruled out in
this way: we are not trying to claim that all PoS arguments
will lose their force. Rather, we now have tools to more
clearly identify which PoS arguments for innate domain-
specific knowledge are compelling, if any, and to sharpen
their points by showing exactly when and why powerful
domain-general learning principles might fail to account
for them.

One implication of our work is that it may be possible to
learn a higher-order abstraction T even before identifying
all of the correct lower-level generalizations G that T sup-
ports. Therefore, it may be possible for T to operate to con-
strain G even if T itself is learned. Though our model here
did not explicitly use inferences about T to constrain infer-
ences about G, it could have done so, since Twas learned at
lower levels of evidence than were necessary to acquire the
full specific grammar or to parse complex interrogative
sentences.

In a sense, this finding reconstructs the key intuition be-
hind linguistic nativism, preserving what is almost cer-
tainly right about it while eliminating some of its less
justifiable aspects. The basic motivation for positing innate
knowledge of grammar, or more generally innate con-
straints on cognitive development, is that without these
constraints, children would be unable to infer the specific
knowledge that they seem to come to from the limited
data available to them. What is critical to the argument
is that some constraints are present prior to learning spe-
cific grammatical rules, not that those constraints must
be innate. Approaches to cognitive development that
emphasize learning from data typically view the course
of development as a progressive layering of increasingly
abstract knowledge on top of more concrete representa-
tions; under such a view, learned abstract knowledge
would tend to come in after more specific concrete knowl-
edge is learned, so the former could not usefully constrain
the latter. This view is sensible in the absence of learning
mechanisms that can explain how abstract constraints
could be learned together with (or before) the more spe-
cific knowledge they are needed to constrain. However,
our work suggests an alternative, by providing just such
a learning mechanism in the form of hierarchical Bayesian
models. If an abstract generalization can be acquired very
early and can function as a constraint on later development
of specific rules of grammar, it may function effectively as
if it were an innate domain-specific constraint, even if it is
in fact not innate and instead is acquired by domain-gen-
eral induction from data.

How is it possible to learn a higher-order generalization
before a lower-order one? Although it may seem counterin-
tuitive, there are conditions under which higher-order gen-
eralizations should be easier to acquire for a Bayesian
learner, and these conditions apply to the case we study
here.While there are infinitelymanypossible specific gram-
mars G, there are only a small number of possible grammar
types T. Itmay thus require less evidence to identify the cor-
rect T than to identify the correct G. More deeply, because
the higher level of T affects the grammar of the language
as a whole while any component of G affects only a small
subset of the language produced, there is in a sense much
more data available about T than there is about any

particular component of G. For instance, the sentence adj
adj n aux part contributes evidence about certain aspects
of the specific grammar G – that it is necessary to have pro-
ductions that can generate such a sequence of words – but
the evidence is irrelevant to other aspects ofG – for instance,
productions involving non-auxiliary verbs. In general any
sentence is going to be irrelevant (except for indirectly,
insofar as it constitutes negative evidence) to inferences
about most parts of the grammar: in particular, to all of
the productions that are not needed to parse that sentence.
By contrast, every sentence offers at least some evidence
about the grammar type T – about whether language has
hierarchical or linear phrase structure – based on whether
rules generated from a hierarchical or linear grammar tend
to provide a better account of that sentence. Higher-order
generalizations may thus be learned faster simply because
there is much more evidence relevant to them.

5. Conclusion

We have demonstrated that an ideal learner equipped
with the resources to represent a range of symbolic gram-
mars that differ qualitatively in structure, as well as the
ability to find the best fitting grammars of various types
according to a Bayesian score, can in principle infer the
appropriateness of hierarchical phrase-structure gram-
mars without the need for innate language-specific biases
to that effect. If an ideal learner can make this inference
from actual child-directed speech, it is possible that human
children could make this inference as well. Two important
open questions remain: how well an ideal learnability
analysis corresponds to the actual learning behavior of
children, and how well our computational model approxi-
mates this ideal. Our specific conclusions are therefore pre-
liminary and may need to be revised as we learn more
about these two fundamental issues. There are also good
reasons to believe that the acquisition of hierarchical
phrase structure in syntax ultimately depends on broader
cognitive capacities we have not considered here, such as
the hierarchical structure of thought. Still, we have offered
a positive and plausible ‘‘in principle’’ alternative to the
classic negative ‘‘in principle’’ poverty-of-stimulus argu-
ments for innate knowledge of hierarchical phrase struc-
ture in syntax.

More generally, we see this work as an example of a
new and productive approach to old questions of innate-
ness in cognitive science. By working with sophisticated
statistical inference mechanisms that can operate over
structured representations of knowledge such as genera-
tive grammars, and by evaluating these models on real
data representative of children’s experience in the world,
we can more rigorously explore a relatively uncharted re-
gion of the theoretical landscape: the possibility that gen-
uinely structured knowledge can be genuinely learned, as
opposed to the classic positions of nativism (structured
but unlearned knowledge) or empiricism (learned but
unstructured knowledge, where apparent structure is
merely implicit or emergent). Some general lessons can
be drawn. It does not make sense to ask whether a specific
generalization is based on innate knowledge when that
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generalization is part of a much larger system of knowl-
edge that is acquired as a whole. Abstract organizational
principles can be induced based on evidence from one part
of the system and effectively transferred to constrain
learning of other parts of the system, as we saw for the
auxiliary-fronting rule. These principles may also be
learned prior to more concrete generalizations, or may be
learnable from much less data than is required to identify
most of the specific rules in a complex system of knowl-
edge. We expect that these ideas could be usefully applied
to explore learnability issues in other aspects of language,
as well as for other areas of cognitive development, such as
the development of children’s intuitive theories of physi-
cal, biological, psychological or social domains.
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Appendix A

A.1. Generating the grammars

Generating grammars for each specific grammar type is
accomplished in three ways: first, by designing the best
grammars possible by hand; second, by using those gram-
mars as the starting point of a local search through the
space of all possible grammars; and, finally, by generating
regular grammars in a completely automated fashion. Here
we describe each of these processes in more detail.

A.2. Hand-designed grammars

We consider two specific probabilistic context-free
grammars in this analysis. The smaller grammar, CFG-S,
can parse all of the forms in the full corpus and is based
on standard syntactic categories (e.g., noun, verb, and
prepositional phrases). The full CFG-S, used for the Level
6 corpus, contains 14 non-terminal categories and 69 pro-
ductions. All grammars for other corpus levels and epochs
include only the subset of productions and items necessary
to parse that corpus.

CFG-L is a larger grammar (14 non-terminals, 120 pro-
ductions) that fits the data more precisely but at the cost
of increased complexity. It is identical to CFG-S except that
it contains additional productions corresponding to differ-
ent expansions of the same non-terminal. For instance, be-
cause a sentence-initial Vinf may have a different statistical

distribution over its arguments than the same Vinf occurring
after an auxiliary, CFG-L contains both [Vinf ? Vinf PP] and
[Vinf ? vi PP] whereas CFG-S includes the former only. Be-
cause of its additional expansions, CFG-L places less proba-
bilitymass on the recursive productions, which fits the data
more precisely. Both grammars have approximately the
same expressive power, but balance the tradeoff between
simplicity and goodness-of-fit in different ways.

We consider three regular grammars spanning the
range of the simplicity/goodness-of-fit tradeoff just as the
context-free grammars do. All three fall successively be-
tween the extremes represented by the flat and one-state
grammars, and are created from CFG-S by converting all
productions not already of the form [A? a] or [A? a B]
to one of these forms. (It turns out that there is no differ-
ence between converting from CFG-S or CFG-L; the same
regular grammar is created in any case. This is because
the process of converting a production like [A? B C] is
equivalent to replacing B by all of its expansions, and
CFG-L corresponds to CFG-S with some B items replaced.)
When possible without loss of generalizability, the result-
ing productions are simplified and any productions not
used to parse the corpus are eliminated.

The ‘‘narrowest’’ regular grammar, REG-N, offers the
tightest fit to the data of the three we consider. It has 85
non-terminals and 389 productions, some examples of
which are shown in Table 1. The number of productions
is greater than in either context-free grammar because it
is created by expanding each context-free production con-
taining two non-terminals in a row into a series of distinct
productions (e.g. [NP? NP PP] expands to [NP? pro PP],
[NP? n PP], etc.). REG-N is thus more complex than either
context-free grammar, but it provides a much closer fit to
the data – more like the flat grammar than the one-state.

Just as CFG-S might result from collapsing different
expansions in CFG-L into a single production, simpler reg-
ular grammars can be created by merging multiple produc-
tions in REG-N together. For instance, merging NPCP and
NPPP into a single non-terminal such as NP results in a
grammar with fewer productions and non-terminals than
REG-N. Performing multiple merges of this sort results in
a ‘‘moderately complex’’ regular grammar (REG-M) with
169 productions and 13 non-terminals. Because regular
grammars are less expressive than context-free grammars,
REG-M still requires more productions than either context-
free grammar, but it is much simpler than REG-N. In the-
ory, we can continue merging non-terminals to create suc-
cessively simpler grammars that fit the corpus increasingly
poorly until we reach the one-state grammar, which has no
non-terminals aside from S. A third, ‘‘broader’’ regular
grammar, REG-B, is the best performing of several gram-
mars created in this way from REG-M. It has 10 non-termi-
nals and 117 productions and is identical to REG-M except
that non-terminals NP, AP, PP, and T – which occur in sim-
ilar contexts as arguments of verbs – are merged to form a
new non-terminal HP.

A.3. Grammars constructed by automated search

There are two search problems, corresponding to the
two ways of building or improving upon our initial
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hand-designed grammars. The first is to perform a fully-
automated search over the space of regular grammars.
We perform a fully-automated search of the space of regu-
lar grammars by applying an unsupervised algorithm for
learning a trigram Hidden Markov Model (HMM) to our
corpora (Goldwater & Griffiths, 2007). Though the algo-
rithm was originally developed for learning parts of speech
from a corpus of words, it applies to the acquisition of a
regular grammar from a corpus of syntactic categories be-
cause the formal description of both problems is similar. In
both cases, one must identify the hidden variables (parts of
speech vs. non-terminals) that best explain the observed
data (a corpus of words vs. a corpus of syntactic catego-
ries), assuming that the variables depend only on the pre-
vious sequence of variables and not on any additional
structure. The output of the algorithm is the assignment
of each syntactic category in each sentence to the non-ter-
minal that immediately dominates it; this corresponds
straightforwardly to a regular grammar containing those
non-terminals and no others.17

The second search problem focuses on performing local
search using the best hand-designed grammar as a starting
point. Our search was inspired by work by Stolcke and
Omohundro (1994), in which a space of grammars is
searched via successive merging of productions; some
sample merges are shown in Table A1. Merge rules are dif-
ferent for context-free and regular grammars; this pre-
vents a search of regular grammars from resulting in a
grammar with context-free productions.

At each stage in the search, all grammars one merge
step away from the previous grammar are created. If the
new grammar has a higher posterior probability than the
current grammar, it is retained, and search continues until
no grammars with higher posterior probability can be
found within one merge step away.

Appendix B

B.1. The probabilistic model

B.1.1. Prior probability
Prior probability is a measure of the simplicity of a

grammar, which can be captured by evaluating the number
of choices required to generate it using a meta-grammar or
‘‘grammar grammar’’ (c.f., Feldman et al., 1969). If one
were generating a grammar from scratch, one would have
to make the series of choices depicted in Fig. B1, beginning
with choosing the grammar type: one-state, flat, regular, or
context-free. (Since the model is unbiased, the prior prob-
ability of each of these is identical). One would then need
to choose the number of non-terminals n, and for each
non-terminal k to generate Pk productions. These Pk pro-
ductions, which share a left-hand side, are assigned a vec-
tor of positive, real-valued production-probability
parameters hk. Because the productions Pk represent an
exhaustive and mutually exclusive set of alternative ways
to expand non-terminal k, their parameters hk must sum
to one. Each production i has Ni right-hand side items,
and each of those items must be drawn from the gram-
mar’s vocabulary V (set of non-terminals and terminals).
If we assume that each right-hand side item of each pro-
duction is chosen uniformly at random from V, the prior
probability is given by:

Fig. B1. Flowchart depicting the series of choices required to generate a
grammar. More subtle differences between grammar types are discussed
in the text.

Table A1
Sample merges for context-free and regular grammars. Identical merges for
right-hand side items were also used.

CFG merge example REG merge example

Old New Old New

A? B C A? B F A? b C A? b F
A? B D F? C A? b D F? d
A? B E F? D A? b E F? g E

F? E C? g E F? e D
D? d
E? e D

17 It is not assumed that each syntactic category has one corresponding
non-terminal, or vice versa; both may be ambiguous. Though the algorithm
incorporates a prior that favors fewer hidden variables (non-terminals), it
requires the modeler to specify the maximum number of non-terminals
considered. We therefore tested all possibilities between 1 and 25. This
range was chosen because it includes the number of non-terminals of the
best grammars (CFG-L: 21, CFG-S: 21, REG-B: 16, REG-M: 16, REG-N: 86).
Since the model is stochastic, we also repeated each run three times, with
N = 10,000 iterations each time. The grammars with the highest posterior
probability at each level are reported; they have between one and 20 non-
terminals.
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pðGjTÞ ¼ pðnÞ
Yn

k¼1

pðPkÞpðhkÞ
YPk

i¼1

pðNiÞ
YNi

j¼1

1
V
: ð2Þ

Wemodel the probabilities of the number of non-termi-
nals p(n), productions p(Pk), and items p(Ni) as selections
from a geometric distribution. One can motivate this distribu-
tion by imagining that non-terminals are generated by a
simple automaton with two states (on or off).18 Beginning
in the ‘‘on’’ state, the automaton generates a series of non-
terminals; for each non-terminal generated, there is some
probability p that the automaton will move to the ‘‘off’’ state
and stop generating non-terminals. This process creates a
distribution over non-terminals described by the following
equation:

pð1% pÞn%1 ð3Þ

No matter the value of the parameter p, this distribution
favors smaller sets: larger values – i.e., those correspond-
ing to more productions, non-terminals, or items – are less
probable. All reported results use p = 0.5, but the qualita-
tive outcome is identical for a wide variety of values.

B.2. Production-probability parameters

Because each hk corresponds to the production-proba-
bility parameters for non-terminal k, the individual param-
eters h1, . . . , hm in each vector hk should sum to one. As is
standard in such cases, we sample each hk from the Dirich-
let distribution. Intuitively, this distribution returns the
probability that the mk production-probability parameters
for non-terminal k are h1, . . . , hm, given that each produc-
tion has been used a % 1 times. We set a = 1, which is
equivalent to having never observed any sentences and
not assuming a priori that any one sentence or derivation
is more likely than another. This therefore puts a uniform
distribution on production-probability parameters and
captures the assumption that any set of parameters is as
likely as any other set. In general, drawing samples from
a Dirichlet distribution with a = 1 is equivalent to drawing
samples uniformly at random from the mk % 1 unit sim-
plex; the simplex (distribution) for mk = 3 is shown in
Fig. B2.

The Dirichlet distribution is continuous, which means
that the probability of any specific hk is zero; this may
seem paradoxical, but no more so than the fact that a line
of length one inch contains an infinite number of zero-
length points. Even though the distribution is continuous,
one can still compare the relative probability of choosing
the points from the line. For instance, consider the line in
the upper part of Fig. B3. If the probability of choosing
any particular point is normally distributed about the cen-
ter of the line, point A is more likely than point B. In much
the same way, it is possible to calculate the relative prob-
ability of specific h1, . . . , hm, even though the Dirichlet dis-
tribution is continuous.

However, one cannot validly compare the relative prob-
ability of choosing points from sets with different dimen-
sions, as in A and C in Fig. B3. Because they are
continuous, the probability of each is zero, but – unlike
the previous instance – they are not normalized by the same
factor. In an analogous way, it is also invalid to compare the
probability of two specific hk of different dimensionalities.

This poses a difficulty for our analysis, because our
grammars have different numbers of productions with
the same left-hand sides, and therefore the hk are defined
over different dimensionalities. We resolve this difficulty
by using a discrete approximation of the continuous
Dirichlet distribution. This is conceptually equivalent to
comparing the probability of selecting point A and point
C by dividing each dimension into g discrete segments. If
we split each dimension into g = 2 equally-sized discrete
segments or grids, as in the lower half of Fig. B3, it becomes
clear that the grid corresponding to point A contains half of
the mass of the line, while the grid corresponding to C con-
tains approximately one quarter the mass of the square.
Thus, the probability of drawing C is 25%, while A is 50%.
As g approaches infinity, the relative probabilities ap-
proach the true (continuous) value.

Since drawing samples h1, . . . , hm from a Dirichlet distri-
bution is equivalent to drawing samples from the mk % 1
unit simplex, we calculate their probability by dividing
the simplex into identically-sized pieces. Any m % 1 sim-
plex can be subdivided into gm%1 simplices of the same vol-
ume, where g is the number of subdivisions (grids) along

Fig. B3. Top: one cannot compare the probability of continuous points A
and C with different dimensionality. Bottom: when A and C correspond to
discrete points, comparison is possible.

Fig. B2. The unit simplex for mk = 3 (a triangle), corresponding to the
Dirichlet distribution with a = 1 on a hk vector of production-probability
parameters with three productions.

18 Productions and items can be generated in the same way, but for clarity
of exposition we restrict ourselves to explaining the process in terms of
non-terminals.
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each dimension (Edelsbrunner & Grayson, 2000). If a = 1,
all grids are a priori equally probable; thus, p(hk) is given
by the volume of one grid divided by the volume of the en-
tire simplex, that is, 1/gm%1. Production-probability param-
eters are then set to the center-of-mass point of the
corresponding grid.

As in the main analysis, there is a simplicity/goodness-
of-fit tradeoff with size of grid g. If g = 1, then vectors with
many production-probability parameters have high prior
probability (each is 1.0). However, they fit the data poorly:
the parameters are automatically set to the center-of-mass
point of the entire simplex, which corresponds to the case
in which each production is equally likely. As g increases,
the likelihood approaches the maximum likelihood value,
but the prior probability goes down. We can capture this
tradeoff by scoring g as we do other choices. We assign a
possible distribution of grid sizes over g by assuming that
ln(g) is distributed geometrically with parameter p = 0.5.
Thus, smaller g has higher prior probability, and we can se-
lect the grid size that best maximizes the tradeoff between
simplicity and goodness-of-fit. We evaluated each gram-
mar with g = 1, 10, 100, 1000, and 10,000. The results
reported use g = 1000 because that is the value that
maximizes the posterior probability for all grammars;
the context-free grammar type was preferred for all values
of g.

B.3. Additional complexities involved in scoring prior
probability

Depending on the type of the grammar, some specific
probabilities vary. The flat grammar has no non-terminals
(aside from S) and thus its p(n) is always equal to 1.0. Both
the regular and context-free grammars, written in Chom-
sky Normal Form to conform to standard linguistic usage,
are constrained to either have one or two items on the
right-hand side. The regular grammars have further type-
specific restrictions on what kind of item (terminal or
non-terminal) may appear where, which effectively in-
crease their prior probability relative to context-free gram-
mars. These restrictions affect p(Ni) as well as the effective
vocabulary size V for specific items. For example, the first
item on the right-hand side of productions in a (right-)reg-
ular grammar is constrained to be a terminal item; the
effective V at that location is therefore smaller. A con-
text-free grammar has no such restrictions.

B.4. Likelihood

The likelihood, or goodness-of-fit, of a grammar is cal-
culated by comparing the effective set of sentences that
the grammar can produce with the actual sentences in
the corpus. The effective set of sentences that our probabi-
listic grammars can produce depends on several factors. All
other things being equal, a grammar with more produc-
tions will produce more distinct sentence types. But the
set of distinct sentences generated also depends on how
those productions relate to each other: how many have
the same left-hand side (and thus how much flexibility
there is in expanding any one non-terminal), whether the
productions can be combined recursively, and other subtle

factors. The penalty for overly general or flexible grammars
is computed in the parsing process, where we consider all
possible ways of generating a sentence under a given
grammar and assign probabilities to each derivation. The
total probability that a grammar assigns over all possible
sentences (really, all possible parses of all possible sen-
tences) must sum to one, and so the more flexible the
grammar, the lower probability it will tend to assign to
any one sentence.

More formally, the likelihood p(D|G) measures the prob-
ability that the corpus data D would be generated by the
grammar G. This is given by the product of the likelihoods
of each sentence Sl in the corpus, assuming that each sen-
tence is generated independently from the grammar. If
there are M unique sentence types in the corpus, the cor-
pus likelihood is given by:

pðDjGÞ ¼
YM

l¼1

pðSljGÞ: ð4Þ

The probability of any sentence type Sl given the gram-
mar (p(Sl|G)) is the product of the probabilities of the pro-
ductions used to derive Sl. Thus, calculating likelihood
involves solving a joint parsing and parameter estimation
problem: identifying the possible parse for each sentence
in the corpus, as well as calculating the parameters for
the production probabilities in the grammar. We use the
inside–outside algorithm to sum over all possible parses
and find the set of production-probability parameters that
maximize the likelihood of the grammar on the observed
data (Johnson, 2006; Manning & Schütze, 1999). We eval-
uate Eq. (4) in the same way, using the maximum-likeli-
hood parameter values but integrating over all possible
parses of the corpus.19 Sentences with longer derivations
will tend to be less probable, because each production used
contributes a factor less than one to the product in Eq. (4).
This notion of simplicity in derivation captures an inductive
bias favoring grammars that assign the observed sentences
more economical derivations – a bias that is distinct and
complementary to that illustrated in Fig. 3, which favors
grammars generating smaller languages that more tightly
cover the observed sentences.

B.5. Two-component adaptor grammar analysis

This analysis instantiates the ‘‘restaurant’’ metaphor de-
scribed in the main paper, in which input corresponds to
tables in a restaurant, and customers at each table are indi-
vidual sentence tokens. Interpolating between types and
tokens corresponds to assigning the n exemplars of a given
sentence token to more than 1 but fewer than n tables. The
adaptor component calculates the log probability of any gi-
ven ‘‘seating assignment’’ of sentences to tokens, given by
Eq. (5) below (corresponding to Eq. (4) in Goldwater et al.,
2006). The probability of the entire two-component adap-
tor model is calculated by adding this to the log posterior

19 One might calculate likelihood under other assumptions, including (for
instance) the assumption that all productions with the same left-hand side
have the same probability (g = 1). Doing so results in lower likelihoods but
qualitatively identical outcomes in all cases.
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probability of the grammars under one-component model
(i.e., the results reported at the beginning of the results
section).

PðwjhÞ ¼
X

z;‘

YKðzÞ

k¼1

h‘k

 !

' CðKðzÞÞ
CðNÞ

' aKðzÞ%1

'
YKðzÞ

k¼1

CðnðzÞ
k % aÞ

Cð1% aÞ

 !
ð5Þ

Here, w corresponds to the data, h captures the parameters
of the multinomial distribution used as generator (i.e., the
base measure in a Dirichlet Process mixture model), N cor-
responds to the number of tokens in the dataset, and z is
the ‘‘seating assignment’’ in the Pitman–Yor process
assigning tokens to tables (Ishwaran & James, 2003; Pit-
man & Yor, 1997). When a? 1, K(z) = N, meaning that each
table corresponds to one sentence token: this corresponds
to a prior favoring a completely token-based analysis. As
a? 0, the sum over z is dominated by the arrangement
that minimizes the total number of tables, corresponding
to a prior favoring a completely type-based analysis. Inter-
mediate values of a correspond to priors favoring an inter-
mediate analysis.

The full two-component adaptor model requires sum-
ming over all possible assignments of sentences to tables
for a reasonable intermediate20 value of a and calculating
the probability of each grammar and corpus for that table
assignment. As explained in the main text, this sum is com-
putationally intractable; we therefore search for an approx-
imate best assignment given a corpus and grammar, with
two questions in mind. First, is the single best assignment
of sentences to tables closer to a type-based or a token-
based analysis? Second, does the search, as it tends to move
toward assignments with greater overall probability, always
tend toward more type-based analyses, regardless of its
starting point?

We performed such a search of table assignments using
a simple Metropolis–Hastings algorithm with two types of
proposal steps, one of which (the condense step) would
move the search algorithm toward a more type-based
analysis, and one of which (the separate step) would move
it toward a more token-based analysis. At each step in the
search, we calculated the probability of each grammar on
the corpus given the current table assignment, as the
sum of the log prior (Eq. (2)), the log likelihood (Eq. (4)),
and the log probability of the adaptor component (Eq.
(5)). We performed eight searches of 1000 steps each,
and each with a different starting point (one starting from
the fully type-based corpus, with 2336 sentences; one
starting from the fully token-based corpus, with 21,671;
six starting at random intermediate corpora).

Results of this analysis indicate that the best-perform-
ing grammar out of all of these searches is hierarchical (Le-
vel 6 posterior: CFG-L: %133,659; REG-B: %133,958; REG-
M: %134,242; CFG-S: %134,566; other grammars were

not analyzed because of the time required for the analysis,
and because they did so much more poorly previously,
making them unlikely to be serious contenders). Moreover,
the search algorithm – which tends to accept proposal
steps if they improve the overall probability, and not if
they do not – accepted far more condense proposals
(34.9%) than separate proposals (8.9%). In other words, pro-
posals that made the corpus more type-based were more
likely to improve the overall probability than proposals
that made it more token-based. As another indication of
the general preference for a more type-based analysis,
every one of our searches except for the one that started
on the fully type-based corpus21 ended on a corpus that
was smaller (i.e., more type-based) than where it started;
that is, the gradient of search was always in the type-based
direction. Although this search is by no means fully compre-
hensive – the computational problem is, as yet, too difficult
for that – these results are coherent and suggestive. The re-
sults remain consistent with the one-component analysis re-
ported previously: the best-performing grammars are still
hierarchical, and there is good reason to believe that evalu-
ating grammars on the basis of types rather than tokens is
more appropriate.
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