
Productivity and Reuse in Language

Timothy J. O’Donnell (timo@wjh.harvard.edu)

Harvard University Department of Psychology
Jesse Snedeker (snedeker@wjh.harvard.edu)

Harvard University Department of Psychology

Joshua B. Tenenbaum (jbt@mit.edu)

MIT, Brain and Cognitive Science
Noah D. Goodman (ngoodman@stanford.edu)

Stanford University Department of Psychology

Abstract

We present a Bayesian model of the mirror image
problems of linguistic productivity and reuse. The
model, known as Fragment Grammar, is evaluated
against several morphological datasets; its performance
is compared to competing theoretical accounts including
full–parsing, full–listing, and exemplar–based models.
The model is able to learn the correct patterns of
productivity and reuse for two very different systems:
the English past tense which is characterized by a
sharp dichotomy in productivity between regular and
irregular forms and English derivational morphol-
ogy which is characterized by a graded cline from
very productive (-ness) to very unproductive (-th).
Keywords:Productivity;Reuse;Storage;Computation;
Bayesian Model;Past Tense;Derivational Morphology

Introduction

Perhaps the most celebrated aspect of human lan-
guage is its creativity. Language allows us to produce,
comprehend—and perhaps even think—an unbounded
number of thoughts. Creativity in language is made
possible by computation. Novel expressions can be pro-
duced and understood because the linguistic system pro-
vides productive computational processes for generating
linguistic structures. Productive processes such as syn-
tactic and morphological rules operate via the combina-
tion of large numbers of stored, reusable units such as
words, morphemes, and idioms. However, not all gen-
eralizations that are consistent with the input data are
productive, nor is storage and reuse limited to a single
kind of unit such as words, but rather both productivity
and reuse cut across levels of linguistic structure (Di Sci-
ullo & Williams, 1987). Therefore, a fundamental prob-
lem for linguistic and psycholinguistic theory, as well as
for the language learner, is understanding which patterns
in linguistic data should give rise to productive general-
izations and which should give rise to stored, reusable
structures.

We present a model of productivity and reuse which
addresses the problem as an inference in a Bayesian
framework. A productive computation is one which can
give rise to novel forms. In a probabilistic setting, if a
system hypothesizes that some (sub)computation is pro-
ductive, it must reserve probability for hitherto unseen
structures. On the other hand, if a probabilistic sys-
tem hypothesizes that some sequence of computations
will be frequently reused together, it must reserve prob-
ability for that particular sequence as a whole. Since
there is only a finite budget of probability, this necessar-
ily leads to a tradeoff: A probabilistic system hypoth-

esizes reusability at the cost of generalization, and vice
versa. The model advocated in this paper, Fragment
Grammars (FG), can be seen as optimizing this tradeoff
for a given dataset. What patterns in the data signal
that some structure is likely to be reused again in the
future? What patterns suggest that some class of struc-
tures will exhibit novelty and variability and therefore
should be computed on the fly?

We examine two morphological systems: the English
past tense and English derivational morphology. Mor-
phology provides a domain in which questions of com-
putation and storage have been intensely studied for
decades (see, O’Donnell, 2011, for a review). The two
datasets examined here are of special interest because of
their very different patterns of productivity and reuse.
Derivational morphology is characterized by a broad
cline of affixes of differing levels of productivity. This
sort of gradience is exactly the kind of structure we
might expect probabilistic models to excel at capturing
(Hay & Baayen, 2005). In contrast, the English past
tense’s regular +ed rule (e.g., walk/walked) is highly pro-
ductive, while the various irregular form classes (e.g.,
sing/sang, sleep/slept, etc.) generalize only very rarely
(e.g., Prasada & Pinker, 1993). Thus, the English past
tense provides an important counterpoint to the gradient
structure of derivational morphology. A model of pro-
ductivity and reuse must be able to handle both kinds of
linguistic systems: those with widely varying mixtures of
productive computation and reuse, and those with sharp,
nearly deterministic, dichotomies between the two.

Informal Overview of the Models

Over the years researchers have proposed many theories
of productivity and storage (see O’Donnell, 2011, for a
review). In addition to our proposal that productivity
and reuse should be considered a probabilistic inference,
we also consider three other approaches. Each of these
models has been chosen to formalize a specific histori-
cal proposal about productivity and reuse, while keeping
other dimensions maximally similar to one another.

All of the models considered here start from a un-
derlying system which defines the space of possible
computations—here we assume that this starting sys-
tem provides the ability to generate a set of tree–shaped
computations like those shown in Figure 1. Each of
the approaches has been implemented as a probabilis-
tic model which is defined over this same space of trees;

the models differ, however, in the strategies they use
to determine which subcomputations (subtrees) can be
stored and reused, and which parts of the system can
productively generate novel forms.

Full–parsing: In this model, all structures are the re-
sult of computation using minimal–sized units. No larger
items are stored in memory (Figure 1). In such a set-
ting, each primitive is highly reusable. However, any
computation will involve choosing many small, abstract
primitives. Such an approach to reuse will be most ef-
fective when there is large amount of combinatoriality,
variability, and novelty in the data.

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

Figure 1: Full–parsing: In this model, small, reusable
subcomputations can be shared across many forms, as
shown by the highlighting in the same color. However,
generating each form requires many random choices.

Full–listing: In this model, the first time a structure
is built, it is stored in its entirety. Thus, this system can
account for productive generalization, but is nevertheless
very conservative—preferring to reuse previously built
structures whenever possible (Figure 2). Under such a
storage strategy, each stored item is extremely specific,
and, therefore, can only be reused in limited contexts.
Such an approach to reuse will be most effective when
the language consists of a small number of specific, but
frequently reused, forms.

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

Figure 2: Full–listing: This figure shows the conse-
quences of the full–listing model. Stored subcomputa-
tions are very specific. Their substructures cannot be
shared with other forms; however, they can be reused in
their entirety with high probability.

Exemplar–based Inference: This model stores all
structures which are consistent with the data, both small
and abstract, and large and specific (and all in between).
This model differs from Fragment Grammars in that it
does not commit to a single analysis of each data point,
but rather hedges across many different levels of abstrac-
tion.

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

Figure 3: Exemplar–based Inference: This figure
shows exemplar–based inference. Here every possible
subtree consistent with the data is stored. Note that
this leads to many overlapping analyses for each item.

Productivity as an Inference: The model advo-
cated in this paper, Fragment Grammars (FG), treats
as an inference the problem of which subcomputations
are productive and which should be stored for later
reuse.1 Like the full–parsing approach, FG is able to
store abstract structures. Like the full–listing approach,
it can store specific structures, and furthermore, like the
exemplar–based approach, it can store all intermediate
structures. However, unlike the previous approaches, the
particular solutions it finds to productivity and reuse
are determined by the data itself. For each datapoint
to which it is exposed, the model hypothesizes whether
it is optimal to account for the structure using reusable
stored items, productive computation, or some mixture
of both (Figure 4).

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

Figure 4: Productivity and Reuse as an Infer-

ence: This figure shows the consequences of inferring
the set of subcomputations that best account for the
data. In this example, more sharing is allowed on aver-
age than full–parsing with less computation on average
than full–listing.

Formalization of the Models

In this section, we formalize each of the approaches to
productivity and reuse introduced above. More detailed
treatments can be found in O’Donnell et al. (2009) and
O’Donnell (2011).

Full–Parsing: We formalize the full–parsing model
using Multinomial–Dirichlet Probabilistic Context–Free
Grammars (MDPCFG) (Johnson et al., 2007b). An MDPCFG

is a 5-tuple, G = (N,T, P, S,Π), where N is the set of
nonterminal symbols, T is the set of terminal symbols, R
is the set of production rules of the form A −→ γ where
A ∈ N and γ ∈ (N ∪ T)∗, S ∈ N is the distinguished

1Note that because all of these models are probabilistic,
they are all inferential in a certain sense. However, only the
Fragment Grammar model does inference both over the set
of stored subcomputations and points of productivity.

start symbol, and Π is a set of vectors of pseudocounts
for the production rules. Define �(t) to be the function
which returns the label at the root of tree t. By con-
vention we will label the k immediate children of a top
node of t as t̂i, ..., t̂k. The distribution over trees defined
by a MDPCFG can be expressed by the simple recurrence
below.

GA(t) =

�
�

r:A→�(t̂i)...�(t̂k)

θr

k�

i=1

G�(t̂i)
(t̂i)�(t) = A ∈ N

1 �(t) = A ∈ T

�θA ∼ dirichlet(�πA)

These equations state that the probability of a tree t
given by an MDPCFG G is just the product of the proba-
bility of the rules used to build that tree from depth–one
subtrees. Note that this corresponds to Figure 1 where
each form is composed of minimal fragments of structure.
This model puts a Dirichlet prior on the probabilities of
fragments. We set all Dirichlet pseudocounts (π’s) to 1.

Full–Listing: To formalize the full–listing model we
choose Adaptor Grammars (AG) (Johnson et al., 2007a).
Adaptor Grammars add reuse of entire subcomputations
to the MDPCFG formalism. This is achieved via stochas-
tic memoization. Memoization refers to the widely–used
technique of storing and reusing the results of function
application. Stochastic memoization generalizes this
idea by probabilistically mixing the reuse of previously
computed results with new calls to the function.

Following Johnson et al. (2007a), we use a distribu-
tion for stochastic memoization known as the Pitman-
Yor Process (PYP). Let mem{f} be a PYP memoized
version of some function f . The behavior of a PYP mem-
oized function can be described as follows. The first time
we invoke mem{f} a new value will be computed using
f . On subsequent invocations, we choose an old value i
with probability ni−a

N+b , where N is the number of values
sampled so far, ni is the number of times that value i
has been used in the past, and 0 ≥ a ≥ 1 and b > −a
are parameters of the model. Alternatively, we sam-
ple a new value with probability aK+b

N+b , where K is the
number of times a new value was sampled in the past
from the underlying function. Notice that this process
induces a rich-get-richer scheme for sampling from the
memoizer. The more a particular value has been reused,
the more likely it is to be reused in the future. However,
this rich–get–richer dynamic is tempered by a compet-
ing bias which favors new values when many new values
have been sampled in the past.

Application of stochastic memoization to the ba-
sic MDPCFG recurrence leads to the Adaptor Grammars
model—which was the first to use this technique (John-
son et al., 2007a).1 The Adaptor Grammars model can

1While Johnson et al. (2007a) do not use the term

be defined as shown below. Note that since the recursion
GA always returns a full tree down to terminal symbols,
Adaptor Grammars can only store and reuse complete
tree fragments as shown in Figure 2.

GA(t) =

�
�

r:A→�(t̂i)...�(t̂k)

θr

k�

i=1

mem{G�(t̂i)
}(t̂i)�(t) = A ∈ N

1 �(t) = A ∈ T

�θA ∼ dirichlet(�πA)

mem{GA} ∼ pyp(aA, bA, GA)

Productivity as an Inference: Adaptor grammars
allow the reuse of complete tree fragments. However, a
complete tree–fragment cannot be used for further pro-
ductive computation; it does not allow for novelty or
variability. To allow the reuse of productive structures,
Fragment Grammars generalize Adaptor Grammars via
the technique of stochastically lazy evaluation. Stochasti-
cally lazy evaluation allows the system to return delayed
or partially computed items which can remain unspeci-
fied, allowing productivity and novelty. These structures
can then be reused via memoization, allowing the system
to infer which structures will exhibit productivity and
future novelty.

Define the function prefix to enumerate all tree pre-
fixes of a given tree—all fully connected subtrees of the
given tree which include the root node. We will write the
n leaves of a tree t as t

�

i, ..., t
�
n. The probability of a tree

t under a fragment grammar is defined by the following
recursive probability mass functions.

GA(t) =

�
�

s∈prefix(t)

mem{LA}(s)
n�

i=1

G
�(s

�
i)

(s
�
i) �(t) = A ∈ N

1 �(t) = A ∈ T

LA(t) =
�

r:A→�(t̂i)...�(t̂k)

θr

k�

i=1

�
νriG�(t̂i)(t̂i) + (1− νri)1

�

νri ∼ beta(ψcontinue,ψdelay)

�θA ∼ dirichlet(�πA)

mem{LA} ∼ pyp(aA, bA, LA)

The stochastically lazy recurrence, LA, generates par-
tially evaluated tree fragments, stopping the recur-
sion with probability νri at each internal node of a
tree. These partially evaluated tree fragments are then
stochastically memoized. Thus, the system is able to
learn arbitrary mixtures of reuse and productive compu-
tation like those shown in Figure 4.

“stochastic memoization” in describing their model, this no-
tion has its origins in that work, and was first named as such
and developed in N. D. Goodman et al. (2008).

Exemplar–Based Inference: We formalize
exemplar–based models using two different vari-
ants of the Data–Oriented Parsing (DOP) formalism
for tree–substitution grammar estimation (Bod et al.,
2003). All DOP models treat the probability of a tree
as a sum over all possible subtrees.

GA(t) =

�
�

s∈prefix(t)

prob(s)
n�

i=1

G
�(s

�
i)

(s
�
i) �(t) = A ∈ N

1 �(t) = A ∈ T

There are many different techniques which fall under the
DOP umbrella. They differ primarily in how they esti-
mate the expression PROB in the recurrence above—
how they assign probability mass to subtrees. We will
use two variants of DOP. The first, known as DOP1, sets
the probability of a subtree proportional to its token
frequency in the training corpus. Let FC(s) be the fre-
quency of subtree s in corpus C. Then DOP1 uses the
following estimator: probDOP1(s) ∝ FC(s).

A well–known problem with DOP1 is that, because it
counts all subtrees equally, it tends to overweight train-
ing data nodes which appear higher and in larger trees
(e.g., J. Goodman, 2003). For this reason, we also ex-
plore a second DOP estimator. This estimator assigns
equal weight to each training data node (Bod, 2003;
J. Goodman, 2003). We will call this the Equal Node
DOP (ENDOP).

There are many other variants of DOP. However, in
its classical form DOP is committed to the storage of all
subtrees. It is this idea, in particular, which we wished to
explore with our exemplar–based models, and this was
our main motivation in choosing the DOP1 and ENDOP

estimators.

Other Models: There are several models in the liter-
ature which can be seen as explicitly adopting the idea
that productivity and reuse should be treated as an (op-
timal) inference, like the present model. Zuidema (2007)
introduced Parsimonious Data–Oriented Parsing, a ver-
sion of DOP which explicitly eschews the all–subtree ap-
proach in favor of finding a set of subtrees which best
explains the data. Two other models, developed simul-
taneously with the current framework (Cohn et al., 2009;
Post & Gildea, 2009), make use of similar Bayesian non–
parametrics to define generative models over sets of sub-
trees. The models of (Cohn et al., 2009) and Post &
Gildea (2009) differ from Fragment Grammars in that
they do not define the distribution over stored struc-
tures recursively—a new stored item cannot be built out
of other stored items. The three models just discussed
have been evaluated primarily on syntactic datasets, and
primarily in a natural language processing, rather than
psychological setting.

Taatgen & Anderson (2002) present a psychologically–
motivated model of the past tense which also adopts
an optimization perspective (in the ACT–R framework).

This model differs from the present one in that Taat-
gen & Anderson (2002) optimize an objective function
involving processing costs, in addition to prediction ac-
curacy (which is the only quantity optimized by Frag-
ment Grammars). They achieve excellent performance
on the past–tense domain, and we take this as converg-
ing evidence in favor of an optimization perspective in
this domain.

Simulations and Inference: For the full–parsing,
full–listing, and exemplar–based models, it was possi-
ble to directly compute the maximum a posteriori gram-
mar from the training corpus. Fragment Grammar re-
sults were computed via selective model averaging over
a large number of runs of a Markov chain Monte Carlo
inference algorithm similar to that found in Johnson et
al. (2007a).1

The English Past Tense

As discussed in the introduction, the main interest of
the English past tense system for present purposes is
the wide difference in productivity between the regu-
lar rule and the irregular inflectional classes. The En-
glish regular, +ed, past tense rule (e.g., walk/walked) is
rampantly productive. A large number of studies have
shown generalization of the regular rule to novel stems
in both production and rating tasks (e.g., Prasada &
Pinker, 1993). The regular rule can be applied to forms
which are phonotactically odd for English, to stems de-
rived from other morphological processes, and in a num-
ber of other rare and marginal cases (e.g., He out-Bached
Bach. Kim et al., 1991). On the other hand, while a
number of studies have shown that irregular classes can
be generalized (e.g., bring/brang), this generalization is
very rare and much more dependent on the phonological
structure of the stem (e.g., Prasada & Pinker, 1993).

The simulations were performed on data extracted
from the annotated version of the SwitchBoard corpus
included in the Penn TreeBank (Godfrey et al., 1992;
Marcus et al., 1999). All verbs excluding forms of be,
have and do were extracted from the corpus, lemma-
tized and paired with the appropriate inflection for the
stem.2 The model was trained on the full English verbal
paradigm (i.e., all tenses). Figure 5 shows the simple
input representation used for all models. Note that this
representation merely pairs stems with their correct in-
flectional information, it does not explicitly encode any
phonological or semantic selectional restrictions. Thus,

1Details of the inference engine can be found in O’Donnell
(2011); O’Donnell et al. (2009).

2These verbs were excluded to reduce the size of the train-
ing corpus and, therefore, improve inference run time. There
is no theoretical reason that exclusion should have an effect
on results for other verbs, and a large pilot study where they
were present achieved similar results to the present simula-
tions.

any success that any of the models has in learning con-
tingencies between stems and inflections is the result of
distributional information in the input.

V

Stem

GO

Inflection

WENT-SUPPLETION PAST

V

Stem

SING

Inflection

/I/ → /æ/ PAST

Figure 5: Example Trees for Past Tense: Exam-
ples of trees used as inputs to the past tense simulations.
These trees represent the past tense forms went and sang
respectively. Note that past tense inflectional classes are
identified using their phonological structure.

Figure 6 shows the log odds that a past tense or past
participle form sampled at random from the posterior
generative model will be correctly inflected. These scores
are broken down into regular (walk/walked) and irregular
(sing/sang) forms that were in the training sample and
a set of novel (wug/wugged) test cases.1

Although the full–listing model, AG, is able to per-
form well on attested forms, its generalization perfor-
mance is more limited compared to FG. By contrast,
the DOP1 exemplar–based model performs well on the
regular forms and wug–generalization cases but fails to
learn the irregular forms. Fragment Grammars provide
the best simultaneous performance across the three test
sets—performing well on novel items as well as correctly
learning attested regulars and irregulars.

MD Full-Parsing (MDPCFG)

AG Full-Listing (AG)

D1 Exemplar (DOP1)

ED Exemplar (ENDOP)

FG Inference-Based (FG)

−4
−2

0
2

4
6

8

Lo
g

O
dd

s
C

or
re

ct

Irregular � Regular � Novel �

MD MDMDAG AG AGD1D1 D1ED ED ED FGFG FG

Figure 6: Performance of Models on Past Tense

Dataset: The log odds that a form randomly sampled
from each trained model will be inflected correctly for
the three test sets.

English Derivational Morphology

Having established that the inference–based model is
able to account for the sharp differences in productiv-
ity in the English past tense system, we turn to the
richer and more gradient domain of derivational mor-
phology. We focus here on two aspects of the system.
1. Gradient Productivity: Derivational suffixes reside on
a productivity cline from very productive (e.g., -ness) to

1Regular inflection was considered correct for wug–tests.

very unproductive (e.g., -th). 2. Ordering: Only a small
fraction of the suffix combinations which are possible in
principle are attested in actual words. One theory which
accounts for this fact is complexity-based ordering (CBO;
Hay, 2002; Plag & Baayen, 2009). CBO provides a di-
rect link between productivity and ordering by proposing
that on average more productive suffixes should appear
outside of less productive suffixes.

The input data for our derivational morphology sim-
ulations was derived from the CELEX database which
contains a large sample of English words derived from
dictionaries and newswire (Baayen et al., 1993). Be-
cause they undersample low–frequency words, dictionar-
ies tend to underrepresent high–productivity affixes (Ev-
ert & Lüdeling, 2001). For this reason, the basic set
of morphological parses provided by CELEX was sup-
plemented by applying a heuristic parsing algorithm to
the remaining unparsed forms in the database. CELEX
parses do not segment cases where one of the segmented
parts is not a word, as is the case, for example, with
bound stems. To expose this additional structure and
correct errors due to automatic parsing, we selected ap-
proximately 10,000 of the combined set of forms from
CELEX and automatic parsing and corrected them by
hand. The resulting data set contained 338 suffixes, over
25,000 word types, and over 7.2 million word tokens.
The input to the simulation consisted of trees like those
shown in Figure 7.

N

Adj

V

agree

-able

-ity

N

V

V

affirm

-ate

-ion

Figure 7: Example Trees for Derivational Mor-

phology: This figure shows examples of the trees used
as inputs to the derivational morphology simulations.

We first consider the productivity of suffixes as in-
ferred by the various models. There is no gold standard
measure of productivity against which the models can
be evaluated. However, two widely used empirical pro-
ductivity statistics are Baayen’s corpus–based measures:
P and P∗ (e.g., Baayen, 1992). The former can be un-
derstood as an estimate of the probability that a par-
ticular suffix will be used to produce a novel form (i.e.,
P [NOVEL|SUFFIX]). The latter can be understood as
an estimate of the probability that a novel form will use
a particular suffix (i.e., P [SUFFIX|NOVEL]).

Model FG MDPCFG AG DOP1 ENDOP

P 0.907 -0.0003 0.692 0.346 0.143
P∗

0.662 0.480 0.568 0.402 0.500

Table 1: Correlation with Productivity Mea-

sures: The correlation between quantities computed
from the trained models and empirical estimates of
Baayen’s P and P∗ given in Hay & Baayen (2002).

Table 1 shows the Pearson correlation be-
tween the (log) quantities P [NOVEL|SUFFIX] and
P [SUFFIX|NOVEL] computed from the various (poste-
rior) models and (log) empirical estimates of P and P∗

given in Hay & Baayen (2002). Fragment Grammars
provide the best fit to these quantities.

Complexity–based ordering predicts a direct link be-
tween productivity and suffix ordering—more productive
suffixes should tend to appear outside of less produc-
tive suffixes. Plag & Baayen (2009) provide an empiri-
cal measure of suffix ordering, based on graph theoretic
tools, which gives an estimate of the mean rank of a suf-
fix. The mean rank can be understood as a measure
of how easily a particular suffix appears after other suf-
fixes in complex words. To generate predictions from
the model with regard to suffix ordering, we considered
the subset of forms with exactly two suffixes (i.e., stem
-suffix -suffix) and computed the marginal probability
that each suffix occurred first or second in such forms.
Table 2 gives the Spearman rank correlation between the
(log) ratio of the probability of appearing second to the
probability of appearing first with the mean rank statis-
tic reported in Plag & Baayen (2009). As was the case
with measures of productivity, Fragment Grammars are
best able to account for suffix ordering restrictions.

Model FG MDPCFG AG DOP1 ENDOP

Mean Rank 0.568 0.275 0.424 0.452 0.431

Table 2: Correlation of Suffix Ordering Probabil-

ities and Ranks: The rank correlation between the log
odds that a suffix will appear second and the mean rank
statistic for the suffix given in Plag & Baayen (2009).

Conclusion

We have presented a model where productivity and reuse
are viewed as inferences in a Bayesian framework and
have systematically compared this model with four oth-
ers which represent formalizations of theoretical pro-
posals from the literature. The inference–based model,
Fragment Grammars, is best able to capture the pat-
terns of productivity and reuse in two very different
sub–systems of English morphology: the past tense and
derivational morphology.

In the literature, the problem of balancing produc-
tivity and reuse in sometimes discussed in terms of a
tradeoff between the cost of computation (in time) and
the cost of storage (in space; see, e.g., Frauenfelder &
Schreuder, 1992). Here we have provided a very differ-
ent perspective. The tradeoff being optimized here is not
between two kinds of machine–level resources, but rather
between the ability to predict future novelty versus future
reuse. We believe that this perspective follows naturally
from the underlying design of the linguistic system. It
is a system which provides the flexibility to produce and
comprehend new thoughts while maintaining the ability

to specialize for commonly reencountered situations.

Acknowledgments

We would like to thank Marjorie Freedman, Manizeh
Khan, and Joshua Hartshorne for detailed feedback on
this paper.

References
Baayen, R. H. (1992). Quantitative aspects of morphological produc-

tivity. In G. Booij & J. van Marle (Eds.), Yearbook of morphology

1991 (pp. 109–149). Dordrecht, The Netherlands: Kluwer Academic
Publishers.

Baayen, R. H., Piepenbrock, R., & Rijn, H. van. (1993). The CELEX

lexical database. Linguistic Data Consortium, University of Penn-
sylvania.

Bod, R. (2003). An efficient implementation of a new DOP model.
In Proceedings of the 10th conference of the European chapter of

the association for computational linguistics (Vol. 1, pp. 19–26).
Budapest, Hungary.

Bod, R., Scha, R., & Sima’an, K. (Eds.). (2003). Data–oriented pars-

ing. Stanford, CA: CSLI.
Cohn, T., Goldwater, S., & Blunson, P. (2009). Inducing compact but

accurate tree–substitution grammars. In Proceedings of the North

American conference on computational linguistics.

Di Sciullo, A. M., & Williams, E. (1987). On the definition of word.
Cambridge, MA: MIT Press.

Evert, S., & Lüdeling, A. (2001). Measuring morphological produc-
tivity: Is automatic preprocessing sufficient? In Proceedings of the

corpus linguistics 2001 conference.

Frauenfelder, U. H., & Schreuder, R. (1992). Constraining psycholin-
guistic models of morphological processing and representation: The
role of productivity. In Yearbook of morphology 1991 (pp. 165–
183). Dordrecht, The Netherlands: Springer.

Godfrey, J., Holliman, E., & McDaniel, J. (1992). Switchboard: Tele-
phone speech corpus for research and development. IEEE ICASSP ,
517-520.

Goodman, J. (2003). Efficient parsing of DOP with PCFG–reductions.
In Data-oriented parsing. Stanford, CA: CSLI Publications.

Goodman, N. D., Mansinghka, V. K., Roy, D., Bonawitz, K., & Tenen-
baum, J. B. (2008). Church: A language for generative models.
In Uncertainty in artificial intelligence. Helsinki, Finland: AUAI
Press.

Hay, J. (2002, September). From speech perception to morphology:
Affix ordering revisited. Language, 78(3), 527–555.

Hay, J., & Baayen, R. H. (2002). Parsing and productivity. In Year-

book of morphology 2001 (Vol. 35, pp. 203–236). Dordrecht, The
Netherlands: Springer.

Hay, J., & Baayen, R. H. (2005). Shifting paradigms: Gradient struc-
ture in morphology. Trends in Cognitive Sciences, 9(7), 342–348.

Johnson, M., Griffiths, T. L., & Goldwater, S. (2007a). Adaptor
Grammars: A framework for specifying compositional nonparamet-
ric Bayesian models. In Advances in neural information processing

systems 19. Cambridge, MA: MIT Press.
Johnson, M., Griffiths, T. L., & Goldwater, S. (2007b). Bayesian

inference for PCFGs via Markov chain Monte Carlo. In Proceedings

of the North American conference on computational linguistics.

Rochester, New York.
Kim, J. J., Pinker, S., Prince, A., & Prasada, S. (1991). Why no mere

mortal has ever flown out to center field. Cognitive Science, 15 ,
173–218.

Marcus, M. P., Santorini, B., Marcinkiewicz, M. A., & Taylor, A.
(1999). Treebank–3 (Tech. Rep.). Philadelphia: Linguistic Data
Consortium.

O’Donnell, T. J. (2011). Productivity and reuse in language. Unpub-
lished doctoral dissertation, Harvard University.

O’Donnell, T. J., Goodman, N. D., & Tenenbaum, J. B. (2009). Frag-

ment grammars: Exploring computation and reuse in language

(Tech. Rep. No. MIT-CSAIL-TR-2009-013). Cambridge, Ma: MIT
Computer Science and Artificial Intelligence Laboratory Technical
Report Series.

Plag, I., & Baayen, R. H. (2009, March). Suffix ordering and morpho-
logical processing. Language, 85(1), 109–152.

Post, M., & Gildea, D. (2009). Bayesian learning of a tree substitution
grammar. In Proceedings of the joint conference of the 47th annual

meeting of the ACL and the 4th international joint conference on

natural language processing of the AFNLP.

Prasada, S., & Pinker, S. (1993). Generalisation of regular and irreg-
ular morphological patterns. Language and Cognitive Processes,
8(1), 1-56.

Taatgen, N. A., & Anderson, J. R. (2002). Why do children learn to
say “Broke”? A model of learning the past tense without feedback.
Cognition, 86(2), 123–155.

Zuidema, W. (2007). Parsimonious data-oriented parsing. In Proceed-

ings of the 2007 joint conference on empirical methods in natural

language processing and computational natural language learning

(EMNLP–CoNLL 2007).

