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Abstract

Language relies on a division of labor between stored units and structure
building operations which combine the stored units into larger structures. This
division of labor leads to a tradeoff: more structure-building means less need
to store while more storage means less need to compute structure. We develop
a hierarchical Bayesian model called fragment grammar to explore the opti-
mum balance between structure-building and reuse. The model is developed
in the context of stochastic functional programming (SFP), and in particular,
using a probabilistic variant of Lisp known as the Church programming lan-
guage [17]. We show how to formalize several probabilistic models of language
structure using Church, and how fragment grammar generalizes one of them—
adaptor grammars [21]. We conclude with experimental data with adults and
preliminary evaluations of the model on natural language corpus data.
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1 Introduction and Overview

Perhaps the most celebrated feature of human language is its productivity.
Language allows us to express and comprehend an unbounded number of
thoughts using only finite resources. This productivity is made possible by
a fundamental design feature of language: a division of labor between stored
units (such as words) and structure building computations which combine these
stored units into larger representations.

Although all theories of language make some distinction between what is
stored and what is computed, they vary widely in the way in which they actu-
ally implement the interaction. Among the many disagreements are questions
about what kinds of things can be stored, what conditions cause something
to be stored (or not), and how storage might be integrated with computation.
It is beyond the scope of the present report to review the relevant linguistic
and psycholinguistic literatures on storage versus computation (see e.g. [30]),
instead we will offer a new model of this problem known as fragment grammar.

Fragment grammars formalize the intuitive idea that there is a tradeoff
between storage and computation. More computation means less need to store
while more storage means less need to compute. Using tools from hierarchical
Bayesian statistics, we will show how this balance can be optimized.

Fragment grammars are a generalization of the adaptor grammar model
introduced by [21]. Unlike adaptor grammars, however, fragment grammars
are able to store partial as well as complete computations.

This report takes a non-traditional approach to the presentation of the
modeling work. We will use the paradigm of stochastic functional programming
(SFP) and in particular the Church programming language [17] as a notation
to formalize the model. Church is a stochastic version of the lambda calculus
with a Scheme-like syntax built on a sampling semantics. The aim of Church,
and of SFP in general, is to develop rich compositional languages for expressing
probabilistic models and to provide generalized inference for those models.1

Church is aimed at allowing the compact expression of complex hierarchical
Bayesian generative models. We use Church to describe the fragment grammar
model for three reasons. First, Church excels at concisely, but accurately,
expressing models involving recursion. Recursion is at the core of linguistic
models; however, most current frameworks for probabilistic modeling, such as
graphical models, make it difficult or impossible to express.

Second, Church allows us to develop models compositionally, reusing parts
where appropriate. In this report, rather than immediately formalizing frag-

1We do not make use of Church’s generalized inference engine, which is not currently effective
for linguistic representations. This is an area of active research.
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ment grammars, we will start by formalizing probabilistic context-free gram-
mars using Church. From this starting point, we will then generalize the model
to adaptor grammars, two-stage adaptor grammars, and finally to fragment
grammars. By expressing each stage in Church, the exact relationships be-
tween the models will be completely explicit, highlighting the reused parts
and the innovations.

The final reason that we choose to use Church is the language-level support
it provides for reuse of computation in models. Our analysis of the storage
versus computation problem relies crucially on the notion of reuse. Church
provides constructs for this in the language itself. We discuss this in more
detail below.

1.1 Linguistic and Psychological Motivation

A central question of the psychology of language and linguistics is what consti-
tutes the lexicon. Here we are using the term ‘lexicon’ to to refer to the set of
stored units, of whatever form, used to produce or comprehend an utterance.2

Traditional approaches have tended to view the lexicon as consisting of
just word or morpheme-sized units [5]. However, the past twenty years have
seen the emergence of theories which advocate a heterogeneous lexicon (e.g.
[19, 7, 34, 6, 14, 32], amongst many others).

In a heterogeneous approach to the lexicon, the idea of a lexical item—
a stored piece of structure—is divorced from particular linguistic categories
such as word or morpheme. These categories still exist, to be sure, but they
are morphological, phonological, or syntactic constructs, independent of the
question of storage. The divorce of categorical structure from storage means a
much wider variety of items can be stored in the mental lexicon. These include
structures both smaller and larger than words.

It is beyond the scope of this report to discuss the many empirical ar-
guments in favor of the heterogeneous approach to lexical storage. Interested
readers are directed to any of the citations above. The approach does, however,
raise several important questions:

1. Where does the inventory of lexical items come from in the first place?
That is, how is it learned?

2. How is the process of using and creating stored lexical items integrated
with the process of generating linguistic structures?

2In this report we will use the term lexicon to specifically refer to this repository of stored
fragments of structure. We will not be concerned with other senses of the term, such as those
used in theories of what constitutes a morphological or phonological word. These stored units are
sometimes referred to as listemes [8].
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To answer these questions we will first re-formulate the storage/computation
problem. Rather than viewing storage as an end in itself, we will hypothesize
that instead, storage is just the result of attempting to reuse computational
work whenever it makes sense to do so. In other words, we propose that dur-
ing the production and comprehension of language, the language faculty will
try to reuse work done previously. In order to reuse a previous computation,
that computation must be stored in memory. Under this view, the goal is not
storage, but rather the optimal reuse of previously computed structure.

This perspective leads to an immediate question facing the language user:
what is the optimal set of computations to store as lexical items for my lan-
guage? Working in the Bayesian framework, this can be recast as a question of
posterior inference: what is the posterior distribution over lexica given some
input data.

1.2 Computation versus Reuse as a Bayesian trade-
off

As discussed above, our fundamental Bayesian question is this: given some
data, what should the lexicon look like? We will now illustrate the trade-off
inherent in this question.

Imagine that we have some generative process producing syntactic trees.3

A few trees created by this generative process—either during production or
comprehension—are shown in Figure 1. Each row shows the consequences for
reuse and reusability of three different approaches to the storage of previously
computed structure. In each row, the fragments of the trees highlighted in the
same color are the fragments which are reusable in this set of trees.

This figure shows two extreme kinds of lexical item storage, and an inter-
mediate case. The first row shows the consequences of only storing minimal
sized lexical items. In this case, the items all correspond to depth-one trees.
When we store very small, abstract fragments such as these, they have a high
degree of reusability. They can appear in many different syntactic trees. We
can reuse them easily when producing or comprehending an utterance. How-
ever, many independent choices are required to build any single expression. In
a probabilistic setting, independent choices correspond to computational work,
and therefore if we only store these minimal sized fragments, we will have to
do more work each time we build an utterance.

3For example, a probabilistic context-free grammar of the kind we will discuss below. In this
report, we will use examples drawn mostly from syntax. The model, however, is meant to be a
general model of reuse in hierarchical generative processes and can be applied easily to problems
in phonology, morphology, and semantics.
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Minimal

Intermediate

Maximal

Figure 1: This figure shows the consequences for reuse of three possible storage
regimes. Minimal sized fragments allow fine-grained reuse, but force many
choices when generating a sentence. Maximal sized fragments of structure
allow fewer choices to generate a sentence, but limit reusability and therefore
increase the number of fragments. Storage of an intermediate size optimizes
this balance.
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The third row shows the consequences of storing maximal sized lexical
items. Maximal sized fragments correspond to entire syntactic trees. In other
words, they correspond to storing all utterances produced or comprehended in
their entirety every time. In this setting, if we have already seen a particular
structure, we can generate it again by making only a single independent choice
and reusing the whoe stored structure. In general, as lexical items grow bigger
we will require fewer of them to generate any single expression. The amount
of computation done per tree will be minimized. However, any single lexical
item can be used fewer times across expressions. In fact, we will only be able
to use a stored lexical item if we want to reproduce an entire utterance exactly
in the same way in the future. As a result, we will have to store many more
fragments in memory.

Better solutions fall in-between these two extremes. They simultaneously
optimize the number of choices that must be made to generate a set of expres-
sions and the number of lexical items that must be stored. This is illustrated in
the middle row of figure 1, where intermediate sized fragments of structure
are stored. The fragments in this row allow more reuse than the third row
with fewer independent choices per tree than the first row.

The fragment grammar model defines a probability distribution over the
set of different ways of making the reuse/computation tradeoff. We will show
below how Bayesian inference can be used to optimize this tradeoff.

1.3 Lexical Items as Distributions in a Two-stage
Generative Process

We have emphasized reuse as the organizing principle behind our model of the
lexicon. Below we will formalize reuse in generative processes via stochastic
memoization. Memoization is a technique long-known in computer science
whereby the outputs of computations are stored in memory so that they can
be reused by later computations. Stochastic memoization lifts this idea to the
probabilistic case. We will describe both below.

Stochastic memoization as embodied in Church provides a bridge between
ideas from non-parametric Bayesian statistics and ideas from functional pro-
gramming. In this report, we will show how to use stochastic functional pro-
grams with stochastic memoization to elegantly express complex, recursive,
non-parametric Bayesian models of language. In particular, we will show how
stochastic memoization can lead to an elegant presentation of adaptor gram-
mars.

As we mentioned earlier, fragment grammars generalize the adaptor gram-
mar model. This generalization relies on two novel ideas which constitute the
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main technical innovations of the present report: lexical items as distributions,
and a two-stage generative process.

Typically, in generative models of language, lexical items are thought of
as static structures which are assembled into a linguistic expression. We will
adopt another perspective in which lexical items are active entities that them-
selves can construct linguistic expressions—distributions.

If a lexical item is a distribution how do we construct an expression? We
will show how this can be done using a two-stage generative process. First,
choose a (perhaps novel) lexical item; second, sample this lexical item to get
a linguistic expression. Because lexical items are defined recursively, this sec-
ond stage will often involve choosing another lexical item. Thus, our basic
generative process, will alternate between sampling lexical items and sampling
expressions from those lexical items.

In such a two-stage model, there is no distinction between processes which
comprehend and produce language and processes which learn the lexicon. The
same model which provides for language use also provides for language learn-
ing.

1.4 Outline

Our plan for the rest of the report is as follows. First, we introduce some basic
notions from stochastic functional programming and show how a well-known
model of language structure, the probabilistic context-free grammar (PCFG),
can be formulated in these terms. We then introduce stochastic memoization,
discuss its relation to certain tools from non-parametric Bayesian statistics,
and show how the adaptor grammar model can be formulated in these terms.

We then show how the adaptor grammar model can be reformulated as a
two-stage model with lexical-items as procedures. This leads directly to the
definition of fragment grammars. Having defined fragment grammars, we move
on to discuss inference in the model, taking some time to discuss intuitions
about when fragment grammars store lexical items, and when they do not.
Finally, we report some preliminary data to evaluate the fragment grammar
model. In the appendices we discuss several points of mathematical interest.

Throughout this report, we use a mixture of verbal description, Church
code, and mathematical notation to describe the various models. Most math-
ematical notation is included only for precision and can be skipped by the
reader on a first pass.
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2 Generative Processes as Random Proce-
dures

In SFP, generative processes are defined using random procedures. A tradi-
tional deterministic procedure4 always returns the same value when applied
to the same arguments. A random procedure, on the other hand, defines a
distribution over outputs given inputs.

A familiar example of a random procedure is the rand or random function of
most programming languages. rand typically returns a value on the interval
[0, 1] with uniform probability. Another example of a random procedure is
flip. This procedure takes a weight as input and flips a biased coin according
to the weight, returning true or false accordingly.

With an inventory of such basic elementary random procedures (ERPs),
more complex procedures may be constructed. A simple example of such a
procedure is expressed in Church code in Figure 2. This code defines a function
called noisy-or.5 With probability ε, noisy-or simply returns the result of
applying or to its arguments. However, with probability 1− ε, it returns the
opposite of that result (if (or arguments) is true it returns false, and vice
versa).

(define noisy-or
(lambda arguments
(if (flip ε)

(or arguments)
(not (or arguments)))))

Figure 2: Church code defining a noisy-or function.

The probability distribution defined by this and other complex procedures
is the product of all the ERPs which are evaluated in the course of invoking
the procedure. For example, if we applied noisy-or to the arguments 0 and 1:
(noisy-or 0 1), then the probability of the outcome true would be ε and the

4Procedures are often called “functions.” Here we distinguish between functions, which are the
mathematical objects which procedures compute, and procedures, which are instantiated program-
matic recipes for computing them.

5The syntactic form (lambda arguments body) is an operator which constructs a procedure
with arguments arguments and body body—this is the fundamental abstraction operator of the
λ-calculus.
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probability of false would be 1− ε. For a more complex example consider the
following expression: (noisy-or (flip 0.5) (flip 0.5)). Now the proba-
bility of true depends both on the evaluation of the flips determining the
two arguments as well as the flip inside the procedure body.

The set theoretic meaning6 of a procedure in Church is a stochastic func-
tion.7 That is, it is a mapping from the procedure’s inputs to a distribution
over its outputs. If a procedure takes no arguments, then this mapping is
constant, and the procedure defines a probability distribution. In functional
programming, a procedure of no arguments is called a thunk. Therefore, in
the stochastic setting thunks are identified with probability distributions. An-
other interpretation of a Church procedure is as a sampler.8 Application of a
procedure to some arguments causes it to sample a value from the distribution
over outputs that corresponds to those arguments. For example, noisy-or
can be thought of as a sampler which samples from the set {true, false}
conditioned on its inputs.

2.1 Probabilistic Context-free Grammars as Ran-
dom Procedures

In this section, we show how probabilistic context-free grammars can be formu-
lated in a SFP setting. Context-free grammars (CFGs) are a simple, widely-
known, and well-studied formalism for modeling hierarchical structure and
computation [1].9

Formally, a context-free grammar is a 4-tuple, G = 〈V,W,R, S〉 where

• V is a finite set of nonterminal symbols.

• W is the set of terminal symbols, pairwise disjoint from V .

• R ⊆ V × (V ∪W )∗ is the set of productions, or rules.

• S ∈ V is a distinguished start symbol.

By convention nonterminals are written with capital letters and, when used
to model syntactic structure, they represent categories of constituents such

6That is, the denotational semantics.
7Stochastic functions are sometimes called a probabilistic kernels.
8Sampling can be thought of as the operational semantics of a procedure in Church.
9CFGs and PCFGs are widely known in both linguistics and computational linguistics to be

inadequate as models of natural language structure (see for example discussions in [23]). However,
they are in some sense the simplest generative model which captures the idea of arbitrary (recursive)
hierarchical structure. It is also the case that many other more sophisticated linguistic formalisms
have context-free derivation trees even when their derived structures are non-context-free; one class
of such systems are the linear context-free rewrite systems [37].
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as “noun phrase” (NP) or “verb” (V). The unique, distinguished nonterminal
known as the start symbol is written S. This symbol represents the category of
complete derivations, or sentences. Terminals, written with lowercase letters,
typically represent words or morphemes (e.g., “chef”, or “soup”).

The production rules, which are written A −→ γ, where γ is some sequence
of terminals and nonterminals, and A is a nonterminal, define the set of possible
computations for the system. For example the rule S −→ NP VP says that a
constituent of type S can be computed by first computing a noun phrase NP and
a verb phrase VP, and then concatenating the results. The set of computations
defined by a given CFG is hierarchical and can be recursive. The list of symbols
to the right of the arrow is referred to as the right-hand side (RHS) of that
production. The nonterminal to the left of the arrow is the rule’s left-hand side
(LHS). Terminal symbols, such as ‘the’ or ‘works’ are atomic values which cause
an expression-building recursion to stop and return. Starting with the start
symbol S and following the rules until we only have terminals, it is possible
to derive sequences of words such as 〈the chef cooks the omelet〉 or 〈the chef
works diligently〉. A sequence of such computations can be represented by a
parse tree like that on the right-hand side of Figure 3

S −→ NP VP
VP −→ V NP
VP −→ V AP
NP −→ D N
AP −→ A
D −→ the
D −→ a
N −→ chef
N −→ omelet
N −→ soup
V −→ cooks
V −→ works
V −→ makes
A −→ diligently

(S)

(NP)

(D)

the

(N)

chef

(VP)

(V)

cooks

(NP)

(D)

the

(N)

omelet

Figure 3: A simple context-free grammar and corresponding parse tree. As
explained below, the parentheses represent procedure application.

A CFG encodes the possible choices that can be made in computing an ex-
pression, but does not specify how to make the choices. That is, the choices are
non-deterministic. Like other non-deterministic generative systems CFGs also
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have a natural probabilistic formulation known as Probabilistic Context-Free
Grammars (PCFGs). Making a context-free grammar probabilistic consists of
replacing the non-deterministic choice with a random procedure which samples
production RHSs from some distribution. There are various ways to define this
distribution, but the simplest draws the possible RHSs of a production from a
multinomial distribution.

Assume that we have an elementary random procedure called multinomial
which is called like this: (multinomial values probabilities)where values
is a list of objects and probabilities is a list of probabilities for each object.
This procedure will return samples of objects from values according to the
distribution in probabilities. We can define the generative process for a
PCFG with the Church code in figure 4.

(define D (lambda ()
(map sample

(multinomial
(list (terminal "the")

(terminal "a"))
(list θ D

1 θ D
2 )))))

(define N (lambda ()
(map sample

(multinomial
(list (terminal "chef")

(terminal "soup")
(terminal "omelet"))

(list θ N
1 θ N

2 θ N
3 )))))

(define V (lambda ()
(map sample

(multinomial
(list (terminal "cooks")

(terminal "works")
(terminal "makes"))

(list θ V
1 θ V

2 θ V
3 )))))

(define A (lambda ()
(map sample

(multinomial
(list (terminal "diligently"))
(list θ A

1 )))))

(define AP (lambda ()
(map sample

(multinomial
(list (list A))
(list θ AP

1 )))))

(define NP (lambda ()
(map sample

(multinomial
(list (list D N))
(list θ NP

1 )))))

(define VP (lambda ()
(map sample

(multinomial
(list (list V AP)

(list V NP))
(list θ VP

1 θ VP
2 )))))

(define S (lambda ()
(map sample

(multinomial
(list (list NP VP))
(list θ S

1 )))))

Figure 4: Church code defining the generative process for a probabilistic
context-free grammar.

Figure 5 zooms in on just the VP procedure from the above code listing. VP
makes use of the following procedures in its definition.

• map is a procedure that takes a two arguments: another procedure, and
a list. It returns the list that results from applying the other procedure
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to each element of the input list.

• sample is a procedure which takes a thunk and draws a sample from it.

• list is a procedure which takes any number of arguments and returns a
list containing all of those arguments.

Working from the inside out, we see that the VP procedure is built around
a multinomial distribution. This multinomial is over the two possible RHSs of
VP in our grammar, each RHS is represented as a list. This multinomial distri-
bution is given a list containing these two RHSs as well as list of probabilities,
(list θVP1 θVP2 ), specifying the weights for the RHSs. When called, the VP pro-
cedure will first call this multinomial, which will sample and return one of the
two possible RHSs as a list. It will then call the map procedure. map will apply
sample to each element of the list. Since the list consists of names of other
procedures, calling sample on each one will implement the basic recursion of
the PCFG.

(define VP (lambda ()
(map sample

(multinomial
(list (list V AP)

(list V NP))
(list θ VP

1 θ VP
2 )))))

Figure 5: The procedure VP

The other procedure definitions work similarly. The only remaining detail is
that the procedure terminal does not recurse; it simply returns its arguments.

2.1.1 PCFG Distributions

In this section we will consider in more detail the distribution over computa-
tions and expressions defined by a PCFG. As mentioned earlier, a parse tree
is a tree representing the trace of the computation of some expression e from
some nonterminal category A. We will call a parse tree complete if its leaves
are all terminals; that is, if it represents a complete computation of procedure
A. A tree fragment is a tree whose leaves may be a mixture of nonterminals
and terminals. Given a tree, the procedure yield returns the leaves of a tree
(fragment) as a list. The procedure root returns the procedure (name) at the
root of the tree. When it is clear from context we will sometimes abuse the
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meaning of the root function to also return the rule at the top of the tree (that
is, the depth-one tree that corresponds to the root node plus its children).

We will say that a nonterminal A derives some expression, represented as a
list of terminals %w ∈ W ∗, if there is a complete tree t such that (root t) = A
and (yield t) = %w. The language associated with nonterminal A is the set of
expressions which can be computed by that nonterminal.

We define a corpus E of expressions of size NE with respect to a grammar
to be the result of executing the procedure S NE times: (repeat NE S) where
the procedure (repeat num proc) returns the list resulting from applying the
procedure proc num times.

Formally, a (multinomial) PCFG, 〈G,Θ〉, is a CFG G together with a set of
vectors Θ = {%θA}. Each vector %θA represents the parameters of a multinomial
distribution over the set of rules that share A on their left-hand sides. We write
θAr or θr to mean the component of vector %θA associated with rule r (that is
with the specific RHS of rule r). Θ satisfies:

∑
%θA = 1

As discussed above, the probability distribution of a random procedure is
defined by taking the product of the probabilities of (the return values of) each
elementary random procedure evaluated in its body. In the case of a PCFG the
only randomness is in the multinomial distributions associated with choosing
a RHS for each nonterminal. Thus the probability of a particular parse tree t
is given by:

P (t|G) =
∏

r∈t

θr (1)

The probability of a particular expression %w is computed by marginalizing
over all derivation trees which share that expression as their yield.

P (%w|G) =
∑

t | (yield t)="w

P (t|G)

Given an expression %w and a rule r we define the inside probability of %w
given r as:

P (%w|r,G) =
∑

t | (yield t)="w ∧ (root t)=r

P (t|G) (2)

The inside probability of a string given a rule is the probability that that
string is the yield of a complete tree whose topmost subtree corresponds to
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that rule.10

An important feature of PCFGs is that they make two strong conditional in-
dependence assumptions. First, all decisions about expanding a parse tree are
local to the procedure. They cannot make reference to any other information
in the parse tree. Second, sentences themselves are generated independently
of one another; there is no notion of history in a PCFG. These conditional
independence assumptions result in the existence of efficient algorithms for
PCFG parsing and training, but they also make PCFGs inadequate as models
of natural language structure. The models we develop below can be seen as
a collection of ways of relaxing the conditional independence assumptions of
PCFGs.

Let E = {e(i)} be a corpus of expressions, and let P = {p(i)} be a set
of parse trees specifying the exact way each expression was generated. Let
X = {%xA} be the set of count vectors for each nonterminal multinomial in the
grammar. The procedure counts takes a set of parse trees and returns the
corresponding counts: (counts P ) = X. We will occasionally abuse the
meaning of this procedure and also use it to return the counts associated with
some particular parse tree: (counts p(i) ) = xp(i) .

The conditional independence assumptions on PCFGs mean that we can
compute the probability of a corpus of expressions and parse trees by taking
the product of rule choices in the parse trees in any order we like. Moreover,
the counts of rule uses are the sufficient statistics for the multinomials for
each nonterminal. This means that the probability of a set of parses can be
calculated purely from the count information.

Thus the probability of a corpus of expressions E and corresponding parse
trees P can be given in terms of the corresponding count vectors (counts P
) = X:

P (E,P |G) = pcfg(X;G) (3)

=
∏

A∈V

∏

r∈RA

[θAr ]
xA

r

Where xA
r is the number of times that rule r with LHS A was used in the

corpus.

10Note that we have defined inside probabilities with respect to rules. Usually they are defined
with respect to nonterminal categories. The inside probability of a string %w with respect to a
nonterminal A is computed by additionally marginalizing over rules that share A on their LHS:

P (%w|A, G) =
∑

r | (lhs r)=A




∑

t | (yield t)=!w ∧ (root t)=r

P (t|G)



.
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3 Stochastic Memoization

In this section we develop the notion of stochastic memoization which we will
use to formalize our proposal about reuse in language structure. Memoization
refers to the technique of storing the results of computation for later reuse. In
situations where identical sub-computations happen repeatedly in the context
of a larger computation, the technique can significantly reduce the cost of
executing a program.

(define fib (lambda (n)
(case n

(0 0)
(1 1)
(else
(+ (fib (- n 1)) (fib (- n 2)))))))

Figure 6: Procedure to compute the nth Fibonacci number.

This idea can be best illustrated with an example. Figure 6 shows Scheme
code to compute the nth Fibonacci number. This code says: if n is 0 or 1,
then return 0 or 1, respectively; otherwise we can compute the nth Fibonacci
number by first computing the (n−1)th and (n−2)th Fibonacci numbers and
adding them. The tree tracing the computation of (fib 6) is shown in Figure
7.

(fib 6)

(fib 5)

(fib 4)

(fib 3)

(fib 2)

(fib 1)

1

(fib 0)

0

(fib 1)

1

(fib 2)

(fib 1)

1

(fib 0)

0

(fib 3)

(fib 2)

(fib 1)

1

(fib 0)

0

(fib 1)

1

(fib 4)

(fib 3)

(fib 2)

(fib 1)

1

(fib 0)

0

(fib 1)

1

(fib 2)

(fib 1)

1

(fib 0)

0

Figure 7: Computation of (fib 6) without memoization.
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What can be seen from this example is that fib repeats a lot of computa-
tion. For instance, in this tree (fib 2) is evaluated 5 times, and (fib 4) is
evaluated twice. By memoizing the result of each of these evaluations the first
time they are evaluated, and then reusing those results, we can save a lot of
work. This is represented in Figure 8. In the case of the fib procedure in par-
ticular, we can turn a computation that takes an exponential number of steps
into a computation that takes only a linear number of steps by memoizing.

Memoization has been applied widely in the design of algorithms, espe-
cially dynamic programming algorithms, which figure prominently in linguistic
applications such as chart parsing (see, e.g., [23, 27]). It has also played a
prominent role in the implementation of functional programming languages.11

To memoize a deterministic procedure, we need to maintain a table of
input–output pairs, called a memotable When the procedure is applied to an
argument, we intercept the call to the procedure and first consult the mem-
otable to see if the result has already been computed. If it has, we return
the previously computed value. If the procedure has not been applied to
these arguments before, then we compute the value, save it on the memotable,
and return it. In programming languages with first-class procedures, such as
Scheme, memoization can easily be added as a higher-order procedure, that is,
a procedure which takes another procedure as an argument. We will assume
a higher-order procedure mem which takes as an argument a procedure and
returns a memoized version of it.

(fib 6)

(fib 5)

(fib 4)

(fib 3)

(fib 2)

(fib 1)

1

(fib 0)

0

(fib 1)

memoized

(fib 2)

memoized

(fib 3)

memoized

(fib 4)

memoized

Figure 8: Computation of ((mem fib) 6).

In a stochastic setting, a procedure applied to some inputs is not guaranteed
to evaluate to the same value every time. If we wrap such a random procedure

11See [31, 20] for a discussion of the relationship between memoization in functional programming
languages and CFG parsing algorithms.
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in a deterministic memoizer, then it will sample a value the first time it is
applied to some arguments, but forever after, it will return the same value
by virtue of memoization. It is natural to consider making the notion of
memoization itself stochastic, so that sometimes the memoizer returns a value
computed earlier, and sometimes it computes a fresh value.

A stochastic memoizer wraps a stochastic procedure in another distribu-
tion, called the memoization distribution, which tells us when to reuse one
of the previously computed values, and when to compute a fresh value from
the underlying procedure. To accomplish this, we generalize the notion of a
memotable so that it stores a distribution for each procedure–plus–arguments
combination [17]. In the next section we describe these distributions.

3.1 Memoization Distributions

Deterministic memoization is important precisely because much of the work
that we do in any particular computation can be reused. In SFP we work with
random procedures because we want to express uncertainty in computation.
By analogy, a stochastic memoizer should capture uncertainty in the reuse of
computation. A sensible memoization distribution should be sensitive to the
number of times a particular value was computed in the past, favoring those
values which often proved useful. In this section, following [21, 17], we develop
a memoization distribution based on the Chinese restaurant process (CRP).

3.1.1 The Chinese Restaurant Process

The Chinese restaurant process is distribution from non-parametric Bayesian
statistics. The term non-parametric refers to statistical models whose size or
complexity can grow with the data, rather than being specified in advance. The
CRP is usually described as a sequential sampling scheme using the metaphor
of a restaurant.

We imagine a restaurant with an infinite number of tables. The first
customer enters the restaurant and sits at the first unoccupied table. The
(N + 1)th customer enters the restaurant and sits at either an already occu-
pied table or a new, unoccupied table, according to the following distribution.

τ (N+1)|τ (1), ..., τ (N),α ∼
K∑

i=1

yi

N + α
δτi +

α

N + α
δτK+1

N is the total number of customers in the restaurant. K is the total number
of occupied tables, indexed by 1 ≥ i ≥ K. τ (j) refers to the table chosen by
the jth customer. τi refers to ith occupied table in the restaurant. yi is the
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Figure 9: A series of possible distributions generated by the Chinese restaurant
process. Shown is the distribution over the next customer after N customers
have already been seated. The values vi have been drawn from some associated
base distribution µ.
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number of customers seated at table τi; δτ is the δ-distribution which puts all
of its mass on table τ . α ≥ 0 is the concentration parameter of the model.

In other words, customers sit at an already-occupied table with probability
proportional to the number of individuals at that table, or at a new table with
probability controlled by the parameter α. This is illustrated in Figure 9.

Each table has a dish associated with it. Each dish v is a label on the
table which is shared by all the customers at that table. When a customer
sits at a new table, τi, a dish is sampled from another distribution, µ, and
placed on that table. This distribution, µ, is called the base distribution of the
Chinese restaurant process, and is a parameter of the model. From then on,
all customers who are seated at table τi share this dish, vτi .

To use a CRP as a memoization distribution we let our memotable be a set
of restaurants—one for each combination of a procedure with its arguments.
For example, consider the procedure in Figure 2 again. This procedure can
take a variety of different kinds of arguments: (noisy-or 1 1), (noisy-or 0
1), (noisy-or 0 0 1), (noisy-or 0 0 0 1), etc. We associate a restaurant
with each of these combinations of arguments as shown in Figure 10. We
let customers represent particular instances in which a procedure is applied,
and we let the dishes labeling each table represent the values that result from
those procedure applications. The base distribution which generates dishes
corresponds to the underlying procedure which we have memoized.

When we seat a customer at an existing table, it corresponds to retrieving a
value from our memotable. Every customer seated at an existing table always
returns the dish placed at that table when it was created. When we seat a
customer at a new table it corresponds to computing a fresh value from our
memoized random function and storing it as the dish at the new table.

Another way of understanding the CRP is to think of it as defining a
distribution over ways of partitioning N items (customers) into K partitions
(tables), for all possible N and K.

The probability of a particular partition of N customers over K tables
is the product of the probabilities of the N choices made in seating those
customers. It can easily be confirmed that the order in which elements are
added to the partition components does not affect the probability of the final
partition (i.e. the terms of the product can be rearranged in any order). Thus
the distribution defined by a CRP is exchangeable.

A sequence of random variables is exchangeable if it has the same joint
distribution under all permutations. Intuitively, exchangeability says that the
order in which we observed some data will not make a difference to our infer-
ences about it. Exchangeability is an important property in Bayesian statistics,
and our inference algorithms below will rely on it crucially. It is also a desirable
property in cognitive models.
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Figure 10: Stochastic memoization. To stochastically memoize a procedure
like noisy-or, that is to construct (CRPmem α noisy-or), we associate a CRP
with each possible combination of input arguments.
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The probability of a particular CRP partition can also be written down in
closed form as follows.

P (%y) =
αKΓ[α]

∏K
j=0 Γ[yj]

Γ[α +
∑K

j=0 yj]
(4)

Where −→y is the vector of counts of customers at each table and Γ(·) is the
gamma function, a continuous generalization of the factorial function. This
shows that for a CRP the vector of counts is sufficient.

As a distribution, the CRP has a number of useful properties. In particular,
it implements a simplicity bias. It assigns a higher probability to partitions
which: a.) have fewer customers b.) have fewer tables c.) for a fixed number
of customers N , assign them to the smallest number of tables. Thus the CRP
favors simple restaurants and implements a rich-get-richer scheme. Tables with
more customers have higher probability of being chosen by later customers.
These properties mean that, all else being equal, when we use the CRP as a
stochastic memoizer we favor reuse of previously computed values.

3.1.2 Pitman-Yor processes

In the models we discuss below, the memoization distribution used is actually
a generalization of the CRP known as the Pitman-Yor process (PYP). The
Pitman-Yor process is identical to the CRP except for having an extra param-
eter, a, which introduces a dependency between the probability of sitting at a
new table and the number of tables already occupied in the restaurant.

The process is defined as follows. The first customer enters the restaurant
and sits at the first table. The (N + 1)th customer enters the restaurant and
sits at either an already occupied table or a new one, according to the following
distribution.

τ (N+1)|τ (1), ..., τ (N), a, b ∼
K∑

i=1

yi − a

N + b
δτi +

Ka + b

N + b
δτK+1

Here all variables are the same as in the CRP, except for a and b. b ≥ 0
corresponds to the CRP α parameter. 0 ≤ a ≤ 1 is a new discount parameter
which moves a fraction of a unit of probability mass from each occupied table
to the new table. When it is 1, every customer will sit at their own table.
When it is 0 the distribution becomes the single-parameter CRP [33]. The a
parameter can be thought of as controlling the productivity of a restaurant:
how much sitting at a new table depends on how many tables already exist.
On average, a will be the limiting proportion of tables in the restaurant which
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have only a single customer. The b parameter controls the rate of growth of
new tables in relation to the total number of customers N as before [36].

Like the CRP, the sequential sampling scheme outlined above generates a
distribution over partitions for unbounded numbers of objects. Given some
vector of table counts %y, A closed-form expression for this probability can
be given as follows. First, define the following generalization of the factorial
function, which multiples m integers in increments of size a starting at x.

[x]m,s =

{
1 for m = 0
x(x + s)...(x + (m− 1)s) for m > 0

(5)

Note that [1]m,1 = m!.
The probability of the partition given by the count vector, %y, is defined by:

P (%y|a, b) =
[b + a]N−1,a

[b + 1]K−1,1

K∏

i=1

([1− a]i−1,1)yi (6)

It is easy to confirm that in the special case of a = 0 and b > 0, this
reduces to the closed form for CRP by noting that [1]m,1 = m! = Γ[m + 1].
In what follows, we will assume that we have a higher-order function PYmem
which takes three arguments a, b, and proc and returns the PYP-memoized
version of proc.

3.1.3 Multinomial-Dirichlet Distributions

In this section we define what is known as the Polya urn representation of the
multinomial-Dirichlet distribution. This section and the following section on
multinomial-Dirichlet PCFGs are important for understanding the details of
the fragment grammar model, but can be skipped on first reading.

Imagine a multinomial distribution over K elements with parameters spec-
ified by parameter vector %θ. Rather than specifying %θ as a parameter, one
can define a hierarchical model where %θ is itself drawn from a prior distri-
bution. The most common prior on multinomial parameters is the Dirichlet
distribution.12

The combination of a multinomial together with a Dirichlet prior can be
represented by a sequential sampling scheme which is the finite analog of
the Chinese restaurant process. That is, we can think of the combination
multinomial-Dirichlet distribution as a distribution assigning probabilities to

12The Dirichlet is commonly used as the prior for the multinomial because it is conjugate to
the multinomial. This means that the posterior of a multinomial-Dirichlet distribution is another
Dirichlet distribution [12].
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partitions of N objects amongst K bins for fixed K. This representation of
the MDD can be defined via a sequential sampling construction which is very
similar to that of the CRP. For a discussion of this mysterious fact, please see
Appendix A.

Suppose that we have a finite set of K values. We define the following
sequential process. We sample our first observation v(1) according to the fol-
lowing equation.

v(1)|π1, ...,πK ∼ π1∑K
i=1 πi

δv1 + ... +
πK∑K
i=1 πK

δvK

Where the πs are pseudocounts, which can be thought of as imaginary prior
observations of each of the K possible outcomes. After N observations have
been sampled, the N + 1th observation is sampled as follows:

v(N+1)|v(1), ..., v(N),π1, ...,πK ∼ π1 + x1∑K
i=1[πi + xi]

δv1 + ... +
πK + xK∑K
i=1[πi + xi]

δvK

xi is the number of draws of value i, δi is a δ-distribution, in other words a
distribution which puts probability 1 on a single value—in this case partition
i. %π is a vector of length K of pseudocounts for each of the K values. The
pseudocounts can be thought of as “imaginary” counts of each the values we
have “observed” prior to using the distribution. They give us a prior weight
for each value.

Note that unlike the CRP and PYP, we can draw values v directly from
the multinomial-Dirichlet distribution. This is a consequence of the fact that
our set of values is finite. Under the multinomial-Dirichlet distribution, each
time we draw an observation we become more likely to draw it again in the
future. This shows that each draw from a multinomial-Dirichlet distribution
is dependent on the history of prior draws, and implements a rich-get-richer
dynamic much like the CRP and PYP discussed above.

The distribution over the entire partition is once again given by the product
of the probabilities of each choice made in its construction. This distribution
can be easily confirmed to be exchangeable. The probability of the partition
given by the count vector, %x, is given by:

P (%x|%π) =
∏K

i=1 Γ(πi + xi)
Γ(

∑K
i=1 πi + xi)

Γ(
∑K

i=1 πi)∏K
i=1 Γ(πi)

(7)

For further discussion of these distributions please see Appendix A.
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4 Multinomial Dirichlet PCFGs

In this section we define Multinomial Dirichlet PCFGs (MD-PCFGs), which
are PCFGs in which Dirichlet priors have been put on the rule weights. Both
the adaptor grammar model and the fragment grammar model discussed below
use MD-PCFGs as their base distributions. For the sake of clarity, however,
this detail has been suppressed in later discussions. This section includes the
details of MD-PCFGs for completeness, but can be skipped upon first reading.

For simple PCFGs the set of weight vectors Θ is specified in advance as
a parameter of the model. It is possible to define an alternate model, how-
ever, where these vectors are drawn from a Dirichlet prior [22, 26]. We call
the resulting model a multinomial-Dirichlet probabilistic context-free grammar
(MD-PCFG).13 A MD-PCFG G = 〈G,Π〉 is a context-free grammar together
with a set Π = {%πA} of vectors of pseudocounts for Dirichlet distributions
associated with each nonterminal A.

As in the case of the multinomial distribution, the set of counts vectors
X = {%xA} is sufficient for the multinomial-Dirichlet distribution (see section
3.1.3 above). Thus the probability of a corpus E together with parses for each
expression P under an MD-PCFG G can be given in closed form as follows:

P (E,P |G) = mdpcfg(X;G) (8)

=
∏

A∈V

[∏KA

i=1 Γ(πA
i + xA

i )
Γ(

∑KA

i=1 πA
i + xA

i )
Γ(

∑KA

i=1 πA
i )∏KA

i=1 Γ(πA
i )

]

We can represent a hypothetical state of an MD-PCFG as in Figure 11.

5 Adaptor Grammars

A Pitman-Yor adaptor grammar (PYAG), first presented in [21], is a CFG
where each nonterminal procedure has been stochastically memoized. This
means that PYAGs memoize the process of deriving an expression itself. This
is shown in the code listing in Figure 12.

As can be seen from the code, each nonterminal procedure is now stochas-
tically memoized using PYmem. Each time one of these procedures is called, the
call will be intercepted and either a.) a previously computed expression will be

13As discussed in Appendix A, if the draws of each of the {%θA} are unobserved, then we can
equivalently express these distributions with hierarchical de Finetti representations or as a sequential
sampling scheme.
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Figure 11: Representation of a possible state of an multinomial-Dirichlet
PCFG after having computed the five expressions shown at the bottom. The
numbers over the rule arrows represent the counts of each rule in the set of
parses.
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(define D (PYmem a D b D

(lambda ()
(map sample

(multinomial
(list (terminal "the")

(terminal "a"))
(list θ D

1 θ D
2 ))))))

(define N (PYmem a N b N

(lambda ()
(map sample

(multinomial
(list (terminal "chef")

(terminal "soup")
(terminal "omelet"))

(list θ N
1 θ N

2 θ N
3 ))))))

(define V (PYmem a V b V

(lambda ()
(map sample

(multinomial
(list (terminal "cooks")

(terminal "works")
(terminal "makes"))

(list θ V
1 θ V

2 θ V
3 ))))))

(define A (PYmem a A b A

(lambda ()
(map sample

(multinomial
(list (terminal "diligently"))
(list θ A

1 ))))))

(define AP (PYmem a AP b AP

(lambda ()
(map sample

(multinomial
(list (list A))
(list θ AP

1 ))))))

(define NP (PYmem a NP b NP

(lambda ()
(map sample

(multinomial
(list (list D N))
(list θ NP

1 ))))))

(define VP (PYmem a VP b VP

(lambda ()
(map sample

(multinomial
(list (list V AP)

(list V NP))
(list θ VP

1 θ VP
2 ))))))

(define S (PYmem a S b S

(lambda ()
(map sample

(multinomial
(list (list NP VP))
(list θ S

1 ))))))

Figure 12: Church code for a PYAG.

returned, or b.) a new expression will be computed, stored in the memotable,
and then returned. 14

5.1 A Representation for Adaptor Grammar States

The code above precisely describes the adaptor grammar generative model.
However, in order to understand the properties of the model more deeply, it
is useful to discuss the representation of the state of an adaptor grammar at a
given point in time, after having sampled some number of expressions.

Figure 13 shows a possible adaptor grammar state after five calls to the
NP procedure. The parse trees for each call are shown at the bottom of the

14It is not yet clear under what conditions adaptor grammars built on recursive CFGs are well-
defined. This is also true for the models discussed later in the paper. This is a topic of ongoing
research. In this technical report we restrict ourselves to non-recursive grammars which are well-
defined by merit of being instances of hierarchical Dirichlet processes.
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Figure 13: Representation of a possible state of an adaptor grammar after
having computed the five expressions shown at the bottom.
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figure. The figure has been drawn to show the trace of the computations for
each call. This representation of the state actually contains more information
than is really stored in the memotables for each nonterminal procedure. What
is actually stored on each table in a restaurant is just the computed expression
that resulted from the call to the base distribution. However, for clarity we
show (in red) the traces of computation that resulted from that call.

The five calls to NP resulted in the creation of four tables, and the reuse
of one computed expression at the third table. Applications of NP resulted in
the hierarchical application of the D and N procedures. Red arrows show which
particular calls to D and N resulted in the subexpressions associated with the
tables in the NP restaurant.

A few important things to note about Figure 13.

• The expressions stored at the second and third tables are identical: 〈the
soup〉. Draws from the base distribution for a memoized procedure are
independent, therefore it is possible to draw the same table labels multiple
times.

• The number of customers associated with a table only increases when
the table is reused in a computation. In particular, the third table,
corresponding to the expression 〈the soup〉 gets reused at the level of NP.
This does not lead to the tables for 〈the〉 and 〈soup〉 getting incremented.
The subexpression tables were only incremented when the table was first
created. It was only then that the procedures D and N were evaluated.

• The numbers over the arrows in the underlying procedures represent the
counts associated with the right-hand sides of the underlying CFG rules
that have been sampled while generating a table label. Notice that these
counts correspond to the number of tables which were built using that
rule, not to the number of times each table was reused. In other words,
the distribution over underlying rules only gets updated when new tables
are created.
Adaptor grammars inherit this property from CRPs. An important de-
bate within linguistics has been whether the probability of a rule should
be estimated based on its token count—that is, the count of the number
of times the rule occurs in a corpus—or its type count—that is, the count
of the number of different forms it appears with in the corpus [2]. It has
been argued that the ability of CRPs and PYPs to interpolate between
type and token counts in this way is an important advantage for linguistic
applications [15, 36].15

15Moreover, in the limit, CRP/Pitman-Yor distributions show a power-law distribution over
frequencies of table labels [33], consistent with Zipf’s well-known observations about word token
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When an adaptor grammar reuses a table, it is reusing previous compu-
tation. Thus, according to our discussion in the introduction, the labels on
adaptor grammar tables correspond to lexical items.

6 Lexcial Items as Procedures and Two-
stage Generative Models

We mentioned two novel ideas expounded in this report. First is the notion
of lexical items as distributions—or, equivalently in the context of stochastic
functional programming—as procedures of no arguments (thunks). The second
is two-stage interpretation of our basic generative process. First, we build a
lexical item—deciding what parts of the current computation to store for later
reuse—and then we use that lexical item procedure to sample an expression.

We will illustrate these ideas in the following section in terms of adaptor
grammars. In the case of adaptor grammars this generalization does not change
the behavior of the model. In other words, for adaptor grammars these ideas
are meaningless. However, with these changes in place we will be able to define
fragment grammars with just a few small changes to our Church code.

6.1 Adaptor Grammars as Two-stage Models

Consider a PYAG which has generated the single expression 〈 a chef 〉, as in
Figure 14.

The procedure NP in a PYAG or PCFG defines some distribution over noun-
phrase expressions. In the case of the grammar in our running example, the
support of this distribution—the set of items that have positive probability—
is finite. An example of such a distribution is shown on the left hand side of
Figure 15.

When we sample from our PYAG we create a table associated with the
expression 〈 a chef 〉. Up till now, we have thought of using this expression
itself as the label on the table we created. However, we will now pursue the
alternative outlined in the introduction and think of this lexical item as being
a distribution.

What kind of distribution is labeling this table? In this case, it is the δ-
distribution (point distribution) which concentrates all of its mass on a single
expression. This is shown on the right hand side of Figure 15. In Church,
distributions are represented as procedures of no arguments. A δ-distribution

frequencies [38].
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Figure 14: State of a PYAG after having generated the expression 〈 a chef 〉.
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on a single expression is a procedure of no arguments which always returns the
same value, (also known as a deterministic thunk): (lambda () 〈 a chef 〉 ).

Figure 15: Creating a table in a PYAG can be thought of as concentrating a
distribution around a single expression. In this case, creating a table corre-
sponding to the expression 〈 a chef 〉 can be thought of as concentrating the
NP distribution into the δ-distribution: (lambda () 〈 a chef 〉 ).

The next draw from NP is a draw from the mixture distribution over this
δ-distribution and the underlying base distribution. This is shown in Figure
16.

The preceding discussion suggests an alternate, two-stage view of the adap-
tor grammar generative process. To sample from the procedure A 1.) draw a
lexical item from the memoizer associated with A, which in this case is a
Pitman-Yor process, and 2.) draw an expression from that lexical item. .

To define the two-stage generative model for a PYAG we will first need the
helper procedures shown in Figure 17. The procedure sample-delta-distribution
implements the basic recursion that builds lexical items in the PYAG. It sam-
ples an expression, wraps it in a procedure of no arguments, and then returns it.
The procedure expand-lexical-item simply maps sample-delta-distribution
across the right-hand-side of a PCFG rule.

With these two procedures defined, we can now define the entire two-stage
version of the PYAG generative process. This is shown in the code listing in
Figure 18

When defining a procedure A, we first construct a random procedure which
defines a distribution over lexical items. This procedure is encapsulated inside
the A procedure. The A procedure itself first evaluates this closed-over distri-
bution to draw a lexical item, and then samples the lexical item it drew to
produce an expression.
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Figure 16: After having generated the expression 〈 a chef 〉 the next draw from
the procedure NP is a draw from the mixture over the δ-distribution and the
base distribution of NP, µNP.
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(define (sample-delta-distribution proc)
(let ((value (sample proc)))
(lambda () value)))

(define (expand-lexical-item right-hand-side)
(map sample-delta-distribution right-hand-side))

Figure 17: Helper procedures for generating lexical items in an adaptor gram-
mar.

The two-stage perspective on adaptor grammars also clarifies the structure
of an adaptor grammar parse tree, which must contain information not present
in a (MD-)PCFG parse. While the parses for (MD-)PCFGs simply specify the
series of procedure calls which lead to an expression, an adaptor grammar
parse tree must also specify, for each procedure call, which particular lexical
item was returned and used on that call.

Formally, an adaptor grammar, A = 〈G, {%πA}, {〈aA, bA〉}〉, is a distribution
on distributions of expressions. G is a context free grammar. {%πA} is a set of
hyperparameter vectors for multinomial-Dirichlet distributions for each non-
terminal A and {〈aA, bA〉} is a set of hyperparameters for Pitman-Yor processes
for each nonterminal A. Let X = {%xA} be the set of count vectors for underly-
ing CFG rule uses as before, and let Y = {%yA} be the a set of count vectors for
lexical item uses in generating E. We will use the shorthand A = 〈X,Y 〉 for
the representation of an adaptor grammar state in terms of sufficient statis-
tics (counts) after having generated E. The joint probability of the corpus
together with parses P for that corpus is given by:

P (E,P |A) = pyag(A;A) (9)

=
∏

A∈V




∏KA

i=1 Γ(πA
i + xA

i )
Γ(

∑KA

i=1 πA
i + xA

i )
Γ(

∑KA

i=1 πA
i )∏KA

i=1 Γ(πA
i )

[bA + aA]NA−1,aA

[bA + 1]KA−1,1

KA∏

i=1

([1− aA]i−1,1)y
A
i





For a PYAG, the two-stage generative process outlined above is redundant.
The distributions associated with particular lexical items are trivial—they put
all their mass on a single expression. In the next section we will relax this
assumption, to define fragment grammars.
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(define D (let ((sample-lexical-item
(PYmem a D b D

(lambda ()
(expand-lexical-item
(multinomial
(list (terminal "the")

(terminal "a"))
(list θ D

1 θ D
2 )))))))

(lambda () (map sample (sample-lexical-item)))))

(define N (let ((sample-lexical-item
(PYmem a N b N

(lambda ()
(expand-lexical-item
(multinomial
(list (terminal "chef")

(terminal "soup")
(terminal "omelet"))

(list θ N
1 θ N

2 θ N
3 )))))))

(lambda () (map sample (sample-lexical-item)))))

(define V (let ((sample-lexical-item
(PYmem a V b V

(lambda ()
(expand-lexical-item
(multinomial
(list (terminal "cooks")

(terminal "works")
(terminal "makes"))

(list θ V
1 θ V

2 θ V
3 )))))))

(lambda () (map sample (sample-lexical-item)))))

(define A (let ((sample-lexical-item
(PYmem a A b A

(lambda ()
(expand-lexical-item
(multinomial
(list (terminal "diligently"))
(list θ A

1 )))))))
(lambda () (map sample (sample-lexical-item)))))

(define AP (let ((sample-lexical-item
(PYmem a AP b AP

(lambda ()
(expand-lexical-item
(multinomial
(list (list A))
(list θ AP

1 )))))))
(lambda () (map sample (sample-lexical-item)))))

(define NP (let ((sample-lexical-item
(PYmem a NP b NP

(lambda ()
(expand-lexical-item
(multinomial
(list (list D N))
(list θ NP

1 )))))))
(lambda () (map sample (sample-lexical-item)))))

(define VP (let ((sample-lexical-item
(PYmem a VP b VP

(lambda ()
(expand-lexical-item
(multinomial
(list (list V AP)

(list V NP))
(list θ VP

1 θ VP
2 )))))))

(lambda () (map sample (sample-lexical-item)))))

(define S (let ((sample-lexical-item
(PYmem a S b S

(lambda ()
(expand-lexical-item
(multinomial
(list (list NP VP))
(list θ S

1 )))))))
(lambda () (map sample (sample-lexical-item)))))

Figure 18: Two-stage version of a PYAG.

7 Fragment Grammars

Fragment grammars (FGs) are a generalization of PYAGs which allow the
distributions associated with individual lexical items to be non-trivial. There
are many ways in which to do this. FGs adopt an approach which draws on
the linguistic intuition associated with the idea of a heterogeneous lexicon.

If lexical items are distributions over expressions, then (partial) tree frag-
ments with variables at their leaves can be thought of as a special kind of dis-
tribution over expressions: distributions which have been concentrated around
expressions whose parse trees share the same tree prefix. A tree prefix is a
partial tree fragment at the top of a parse tree. The way in which these kinds
of tree fragments concentrate a distribution is shown in figure 19.

Fragment grammars have a two-stage generative model identical to the
two-stage PYAG discussed above. First, we sample a lexical item, which in
this case corresponds to the distribution associated with a tree prefix, and
then from this lexical item we sample an expression. The second part of this
process corresponds to finishing the derivation from that tree prefix. To define
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Figure 19: Creating a table in a FG can be thought of as concentrating a
distribution around a distribution over trees that have the same tree prefix
(starting tree). In this case, creating a table corresponding to the tree fragment
NP −→ 〈 a N 〉 can be thought of as concentrating the NP distribution into
distribution: (lambda () (map sample 〈 〈 a 〉 N 〉 )).

this generative model requires only a small change to the lexical item sampling
procedures from the two-stage PYAG. This is shown in Figure 20.

(define (grow-child-or-not child)
(if (flip)

(let ((value (sample child))) (lambda () value))
child))

(define (expand-lexical-item right-hand-side)
(map grow-child-or-not right-hand-side))

Figure 20: Helper procedures for generating lexical items in a fragment gram-
mar.

Procedure grow-child-or-not is a higher-order procedure which takes
another procedure, child, as an argument. It flips a coin, and if it is comes
up heads it samples from child, wraps the return value up as a procedure and
returns it. Otherwise, it simply returns the procedure itself. In other words, it
either returns a δ-distribution concentrated on some return value of child, or
leaves child as is and returns it. It represents a mixture distribution over the
set of δ-distributions on each possible expression returned by child and the
distribution defined by child itself. The procedure expand-lexical-item
works like before; it takes the RHS of a CFG rule, expressed as a list of
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procedures, and applies grow-child-or-not to each element of that list. Aside
from these changes, the Church code for the fragment grammar and the two-
stage PYAG are identical.

However, substituting grow-child-or-not for sample-delta-distribution
results in a radical change of the behavior of the model. When grow-child-or-not
decides to recurse, then the tree prefix of the corresponding lexical item grows.
However, when it does not recurse, then it leaves a variable in the correspond-
ing right-hand-side position of the lexical item.

The decision to grow the lexical item or not is made independently for
each nonterminal on the RHS of a CFG rule. For simplicity, in the code
above, this was accomplished by flipping a fair coin. In the actual fragment
grammar implementation, we put a beta prior on the probability of this flip
and integrated out the weight for each nonterminal on the right-hand-side of
each rule. Doing inference over this representation allowed us to learn, for
example, that a particular category in a particular position on the RHS of a
rule was likely to expand when creating a new lexical item—or was likely not
to.

Formally, a fragment grammar is a 4-tuple F = 〈G,Π, 〈aA, bA〉,Ψ〉 where G
is a context free grammar, Π are the vectors of multinomial-Dirichlet pseudo-
counts for each nonterminal. 〈aA, bA〉 is the set of Pitman-Yor hyperparameters
for each nonterminal, and Ψ is the set of pseduocounts for the beta-binomial
distributions associated with the nonterminals on the RHSs of the rules. Let
X and Y be sets of count vectors for underlying rules, and lexical items as
before. Let Z be the set of count vectors counting the number of times that
each nonterminal on the RHS of a CFG rule was expanded in producing a lex-
ical item. We will use the shorthand F = 〈X,Y ,Z〉 for the sufficient counts
representing a fragment grammar state. The joint probability of a corpus E
together with parses for those expressions P is:

P (E,P |F) = fg(F ;F)

=
∏
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Figure 21: Representation of a possible state of a fragment grammar after
having computed the five expressions shown at the bottom. Red lines repre-
sent recursions during the sampling of lexical items. They show computations
that were stored inside of a lexical item. Grey dashed lines represent recur-
sions during the sampling of expressions from lexical items. These represent
computations whose result was not stored by the system.
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7.1 Fragment Grammar State

We can represent a fragment grammar state in a similar way to an adaptor
grammar state as shown in Figure 21. Here we show a possible state of a frag-
ment grammar after having generated five expressions. The red lines represent
recursions made by the grow-child-or-not procedure. These recursions re-
sulted in larger lexical items. In particular, the NP restaurant contains four
lexical items 1.) 〈 a chef 〉 2.) 〈 the N 〉 3.) 〈 D soup 〉 4.) 〈 D N 〉 .

The dotted grey lines represent recursions performed to sample expressions
from these lexical items. For example, the third table represents the lexical
item 〈 D soup 〉. It has two customers seated at it. This lexical item was
drawn once, when it was created, and then used twice to produce two different
expressions: 〈 a soup 〉 and 〈 the soup 〉.

Note that, as with adaptor grammars, once a lexical item has been created,
the choices which were made internal to it need never be made again. Because
these choices need not be made again, they can be reused without cost. On
the other hand, if an expression is drawn from a lexical item, then all the
choices that are made “outside” of that lexical item—i.e., by calling a leaf
procedure—must be paid every time that the lexical item is used. In other
words, grey lines lead to the seating of new customers at the tables that they
point to, while red lines represent structure which is free.

8 Inference

The fundamental inference question for fragment grammars is: what set of
lexical items best accounts for some observed data. In other words, given
(hyperparameters for) a fragment grammar F and a corpus of expressions E,
we would like to estimate the posterior distribution over lexical items used
to build E. Since the process of generating lexical items is the same as the
process of generating expressions, the set of lexical items can be represented
by the set of parses for E, P . We are interested in the following posterior
distribution.

P (P |E,F) ∝ P (E|P ,F)P (P |F) (10)

In a following section we will describe a Metropolis-Hastings algorithm for
fragment grammar inference based on those in [21, 22]. First, however, we will
develop some intuitions for what kinds of fragment grammar posterior states
are good and bad hypotheses about different kinds of data.
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8.1 Intuitions

A fragment grammar lexical item grows when grow-child-or-not recurses
during the sampling of a lexical item. Above we discussed the tradeoff between
the number of lexical items to store and the number of choices that must be
made to generate an expression. To sharpen intuitions about the optimal
behavior of a fragment grammar applied to a particular data set, it is useful
to consider a specific case in detail. This will allow us to see where it makes
sense for the system to grow larger lexical items, and where it does not.

Figure 22: When it makes sense to have a more specific lexical item: repeated
substructure in expressions can lead to significant savings by creating larger
lexical items.

Figure 22 shows two possible fragment grammar states after having gen-
erated the expression 〈 a chef 〉 three times. The left hand side of the figure
shows one possible extreme. Here, grow-child-or-not has decided for both
elements of the RHS not to grow the lexical item further. The resulting lexical
item is completely abstract and corresponds in form to the underlying CFG
rule. To account for the data set, the grammar has seated three customers in
the NP restaurant, as well as three customers in both the D and N restaurants.

The right hand side of the figure shows another extreme solution. In this
case grow-child-or-not has decided to recurse the maximal amount, creating
a lexical item that corresponds to the full expression 〈 a chef 〉. Subsequent calls
to NP can produce this entire expression simply by seating another customer
at that same table.
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The Pitman-Yor process assigns higher probability to seating arrangements
that minimize the number of customers and tables in a restaurant. They also
assign higher probability to seating arrangements that make the restaurant
“clumpier” by seating more customers at fewer tables. This example shows
that when expressions repeat themselves, there can be significant savings in
creating larger lexical items by recursing through grow-child-or-not. Cre-
ating a larger lexical item at the NP level in Figure 22 allowed four fewer
customers to be seated at the D and N levels.

Figure 23: When it makes sense to have a lexical item with a variable.

Figure 23 shows a case where increasing the size of lexical items does not
lead to improved posterior probabilities. In this example, there are three
observed expressions: 〈 a chef 〉, 〈 a soup 〉, 〈 a omelet 〉.

On the left-hand-side of the figure we see a solution where maximally large
lexical items have been created for each expression. Because each lexical item is
maximally large, and the three expressions are non-identical, all three require
their own table in the NP restaurant. Likewise, because three tables in the NP
restaurant each use the table in D, that table has three customers seated at it.

On the right-hand side we see another possible posterior state. Here,
grow-child-or-not has grown the D child of NP but not the N child. Be-
cause the lexical item at the table in NP has expression 〈 a N〉, it can be reused
to generate all three expressions. Since the Pitman-Yor process prefers fewer
tables for the same number of customers, the posterior score of this NP restau-
rant will be higher than that on the left. Furthermore, we only needed to seat
a single customer in the D restaurant, the first time we built the NP table.
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This example shows that when there is high type variability in a structure,
it makes sense to have more abstraction in those positions with the variability.
In cases where there is a variety of unshared, or unrepeated structures, it is
better to pay the cost for the differences as few times as possible. Creating
memoized lexical items allows us to pay the cost of repeated structures “higher
up” in our restaurants. However, if we have distinct structures (types), it
makes sense to pay the cost for these as close to the source of the distinctness
as possible. Each distinct structure must be represented distinctly. If we allow
this to happen in higher restaurants we will suffer from the combinatorial
explosion of possibilities. It is better to “quarantine” variability as low as
possible.

8.2 A Metropolis-Hastings sampler

We now describe a Metropolis-Hastings style algorithm for fragment gram-
mar inference. The algorithm is based on those in [22, 21]. Note that this
algorithm relies on several standard techniques in computational linguistics.
Most important of these are the computation of the inside table for a PCFG,
and sampling a parse for a sentence given this inside table. Each of these
techniques has its own complications and we will not describe them in detail
here. Readers seeking more details on these steps are referred to the following
sources [22, 21, 16].

Given a corpus of expressions E, we wish to do inference on the posterior
distribution over the set of (unobserved) lexical items which gave rise to that
corpus: P . In general we would like to sample from P (P |E,F). Pitman-Yor
processes, multinomial-Dirichlet distributions, and beta-Binomial distributions
are all exchangeable, which means that we are free to treat any expression
e(i) ∈ E in as if it were the last expression sampled during the creation of E.
Our sampling algorithm leverages this fact by (re-)sampling each p(i) ∈ P for
each expression in turn.

After initializing P we loop through the set of expressions in E and for
each expression e(i) we remove p(i) from our fragment grammar state F .16 We
will write the new state as F−p(i).

Ideally, we would now like to sample a parse for e(i) conditional on all
of the other parses so far, as if it were the last expression generated by the
model. That is, we would like to implement a Gibbs sampler. Unfortunately,
for reasons discussed below, it seems to be impossible to exactly sample from
this Gibbs distribution efficiently. Instead, we define an approximating PCFG
G′(F−p(i) ,F)), and sample a new analysis from this.

16In particular we remove (counts p(i))
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p(i)′ |e(i),F−p(i) ∼ P (·|e(i),F−p(i) ,F)

≈ P (·|e(i), G′(F−p(i) ,F))

= pcfg(·;G′(F−p(i) ,F)) (11)

This serves as a proposal distribution for our MH algorithm. We then
accept this proposal with probability P(p(i), p(i)′), the MH criterion.

P(p(i), p(i)′) = min

{
1,

[
fg(F−p(i),+p(i)′ ;F)

fg(F ;F)
×

pcfg(p(i);G′(F−p(i) ,F))
pcfg(p(i)′ ;G′(F−p(i) ,F))

]}

(12)

8.2.1 The approximating PCFG: G′(F−p(i),F)

As discussed earlier, PCFGs make strong conditional independence assump-
tions. All choices made within a computation and between computations are
independent. One important consequence of these conditional independence
assumptions is that there are efficient dynamic programming algorithms avail-
able for solving the PCFG parsing problem. These algorithms rely on the fact
that the distribution over parses for an expression e is a simple function of
distributions over parses for subexpressions of e.

This is not the case for MD-PCFGs, PYAGs and FGs. To see this, observe
that any choice made in one of these formalisms immediately changes the prob-
abilities of all the other possible choices for the same nonterminal procedure.
If the same procedure is invoked several times in a parse, then the probabilities
for choices made by each invocation are not independent from one another.17

Chasing down these dependencies for exponentially many parses destroys the
time-bounds of parsing algorithms.

To address this problem we define an approximating PCFG G′(F−p(i) ,F),
which we will use to construct a proposal distribution for our MH sampler. The
idea behind the approximation is that after observing a number of expressions,
the amount by which one more use of a particular lexical item or base rule will
change the overall distribution is minimal. For example, if the same lexical
item is used twice in a parse, then the probability of all the parses in the chart
should be adjusted to account for the fact that these uses are not independent.
However, if this lexical item is one of thousands in a restaurant, then this non-
independence will only have a small effect of the overall distribution. Thus

17They are exchangeable, however.
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we can approximate the correct distribution over parses by pretending that all
lexical item uses are independent. In effect we “freeze” all the restaurants asso-
ciated with nonterminals in our grammar, holding their counts constant while
we parse the next expression. This frozen grammar represents our fragment
grammar at an instantaneous snapshot in time. This snapshot is a PCFG. We
then parse with this PCFG and use the trees it provides as proposals for our
MH algorithm.

In fact, when we sample from the approximating PCFG, the first decision
we make is correct from the point of view of the FG we were approximating.
Because we do not update the corresponding counts as we sample, however,
the approximation becomes progressively worse over the course of the parse.

Intuitively, a lexical item vA can be thought of as a context-free rule A −→ v.
For example, a lexical item in the NP restaurant corresponding to the expression
〈 a N 〉 can be thought of as the CFG rule A −→ 〈 a 〉 N. We can merge lexical
items with the set of rules from the underlying grammar to create the set of
rules for our approximating PCFG. For each possible sequence of terminals and
nonterminals, γ, found at the leaves of a lexical item in our grammar, or on
the RHS of an underlying rule we add a rule to our approximating grammar,
ρAγ = A −→ γ. The probability of this rule is given as follows.

θρAγ =
∑

v∈A|(rhs l)=γ

yAv − aA

NA + bA

+
∑

r∈RA|(rhs r)=γ

[
KAaA + bA

NA + bA
× xA

r + πA
r

KA +
∑

%πA

]

The first term adds in the probability of all lexical items in the A restau-
rant which have γ as their sequence of leaves. The second term adds in the
probability of all underlying CFG rules with A on their LHS which share γ
as their RHS. The second term has two components; the first represents the
probability of sitting at a new table in the A restaurant. The second represents
the probability of choosing the base rule as the label for that new table. Thus
we marginalize over all lexical items and underlying CFG rules which have the
form A −→ γ.

Given this approximating grammar we can efficiently compute the distri-
bution over parses given some expression. To turn this into a proposal distri-
bution P (p(i)′ |e(i), G′(F−p(i) ,F)), we do the following.

1. Compute the inside table over parses of e(i) given G′(F−p(i) ,F)). This
table includes the inside probability of every possible constituent in ev-
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ery possible parse of e(i). We compute this with a version of the CYK
algorithm.

2. Sample a parse using the inside table. Starting at the goal item, we
sample a parse for e(i) by recursively sampling from the distribution over
backpointers resulting from normalizing inside scores. This algorithm is
described in more detail in [22].

3. Sample an FG parse p(i)′ using the approximating parse. The rules used
in the approximating grammar collapse across fragment grammar lexical
items and underlying CFG rules. We recover a FG parse by sampling
conditionally on the collapsed parse, undoing the marginalization we per-
formed when we calculated the probability of rule ρA. We do this bottom-
up along the structure of the approximating grammar parse. We create
a new table each time that an approximating parse node corresponds to
a underlying CFG rule in our fragment grammar.

Once we have sampled a proposal parse, we calculate our MH score and
accept or reject accordingly.

8.3 Implementation

The MH sampler just described has been implemented in the OCAML pro-
gramming language and can be made available upon request to the first author.

9 Preliminary Evaluation on the Switch-
board Corpus

As a preliminary step in evaluating the fragment grammar model, we explored
reuse in a corpus of natural language utterances: the Switchboard corpus
of spoken English [13]. Our Bayesian model’s basic tradeoff is between the
number of fragments which must be stored (and relatedly the amount that
fragments can be reused) and the number of choices that have to be made to
generate any single sentence. If we store only small, abstract fragments, we
will be able to reuse them in many sentences and therefore we will be able
to get by with fewer lexical items. However, generating individual sentences
will require many independent choices. On the other hand, if we store large,
concrete fragments of structure, the number of choices that we need to make
to generate a single sentence will be smaller, but we will need to store many
more fragments in memory and each structure will be reused less often in the
corpus.

47



We examine our corpus using two measures which directly reflect the nature
of this tradeoff. First, we look at the reuse of stored items. The reuse of a
lexical item is the number of times that the item was used in the corpus. We
expect that as items become smaller and more abstract, their reusability will
increase. Below, using the Switchboard corpus, we will compare reuse rates
under the fragment grammar posterior with the rate of reuse under a minimal
storage regime where only minimal tree fragments are stored.

Second, we look at how many independent choices were needed on average
to generate each sentence. This measure is the percent choices per sentence.
Out of all the parse tree nodes in a particular parse tree, how many of them
were made as independent choices as opposed to being internal to some lex-
ical item? Below we will compare the average number of choices needed per
sentence under the fragment grammar posterior with the same measure un-
der a maximal storage regime—where only maximal, complete utterance-sized
fragments have been stored.

9.1 Method

Input Data Switchboard is a corpus of spontaneous telephone conversa-
tions [13], part of which has been annotated for part-of-speech and hierarchical
syntactic structure, amongst other information [28]. Prior to using the corpus,
we transformed the annotation, removing markup relating to dysfluencies and
other speech errors. Furthermore, we imposed binary branching on all syntac-
tic structure and projected a simple X-bar style grammar from part-of-speech
tags and phrasal heads found using the Stanford parser’s headfinder [25].

After transformation, the corpus contained 78,838 sentences of average
length 9.16 words.

Simulation We ran our Metropolis-Hastings algorithm for a total of 75
sweeps18 through the corpus with the following parameter settings: G: A
CFG was read from the trees in the Swtichboard corpus; a = 0 and b = 1;
π = 1; θ = .5 and ψ = 100. Parses were initialized randomly, independent of
one another. Individual sentence samples were conditioned on the parse trees
from the corpus. The results reported in the next section refer to the final,
75th, sample taken.

18Data reported in the left half of Figure 24 is the result of fewer (6) sweeps. This is due to a
bug that forced us to restart the sampler run.
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9.2 Results and Discussion

The goal of our simulation study was to investigate the tradeoff between com-
putation and reuse in a natural language corpus, as reflected in the fragment
grammar analyses found for the corpus.

In Figure 24, left, we have given a histogram showing reuse in the analyses
found by our fragment grammar simulation. For comparison, on the right we
include a similar histogram for a model equivalent to the underlying PCFG—
that is, a model with the minimal storage regime in Figure 1.
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Figure 24: This figure shows the distribution of reuse rates amongst the stored
fragments in the grammar. On the left is the result of fragment grammar
simulation. On the right is the result for a grammar with a minimal storage
regime.

The fragment grammar has significantly lower rates of reuse than the un-
derlying PCFG. This implies that the fragment grammar has learned a variety
of medium-sized fragments from the corpus and is using significantly more
memory resources in storing these fragments than does the PCFG. What is
gained in return for this additional memory use is that fewer independent
choices are required—each choice “frozen” inside a fragment is a choice that
the PCFG would have to make independently.

In Figure 25 we show the independent choice results for our simulation.
On the left is a histogram describing the number of independent choices made,
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across sentences, for our fragment grammar simulation. For comparison, on
the right we provide the independent choice results of a model corresponding
to the maximal storage regime from Figure 1. The maximal storage regime is
strongly peaked at low percentages because there can be only one choice made
per sentence under that model; but it pays the cost of needing to store every
sentence as a fragment in its entirety. Fragment grammar, by contrast, makes
many more choices on average to generate each sentence—another consequence
of storing mid-sized chunks.
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Figure 25: Results for independent choice percent for fragment grammar run.
On the left is the fragment grammar data. On the right are the results for a
grammar with a maximal storage regime.

10 Experimental Data: Artificial Language
Learning

While corpus analyses are a useful tool for exploring the statistical characteris-
tics of samples of natural language, they cannot tell us about the psychological
plausibility of our model for real human learning. To test the model’s psycho-
logical plausibility, we ran an artificial language learning (ALL) experiment
(see e.g. [29, 9]).
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In the ALL paradigm, subjects are first exposed to sequences of nonsense
stimuli constructed according to some pattern. Then they are tested to see if
they were able to learn the pattern. The ALL paradigm allows us to directly
manipulate the stimulus statistics which we hypothesize lead to storage and
reuse of bigger and smaller structures.

We wish to manipulate the fragments of structure stored by participants.
In our present context, this means whether or not participants stored asso-
ciations between artificial language syllables and the positions in which they
appeared. Figure 26 illustrates the basic idea of the design. Stimuli were
short, two-syllable sequences, AB. We manipulated the frequency with which
items appeared in position A or position B while keeping the total number of
exposure stimuli constant. Figure 26 shows three idealized exposures. In the
top row, there is only one item which appears in the A position, while there
are four different items which appear in the B position. Under our model, we
hypothesize that this should lead to storage of a fragment with a1 in the first
position. The symmetric case in the B position is shown in the middle row.

Our test items consisted of sequences in which either the item appearing in
the A position or the item appearing in the B position was completely novel.
This is shown on the right-hand side of Figure 26. When a novel item appears
in a position, the participant has no choice but to generate a structure for it
from scratch. The test item which contains the novel B in the first row can
be generated using the fragment which links a1 to the first position. This is a
highly reused fragment, and thus has high probability in the memoizer. Using
this fragment also means fewer independent choices are required to generate the
test stimulus. On the other hand, the test item which contains the novel A item
can only reuse the smaller, less frequent fragment containing b1. Generating
this sequence also requires more independent choices. We hypothesize that
when asked to choose which test item is more likely to be from the “same”
language as the exposure stimuli, subjects will favor the one that represents
more reuse, and fewer independent choices.

The bottom row of Figure 26 shows the predictions when there is no asym-
metry between A and B position. Under this condition the smaller fragments
containing a1 and b1 are both more frequent and have a higher probability in
the memoizer than they did in the other conditions. Moreover, both test items
require an equal number of independent choices. In this case we hypothesize
subjects will be at chance in choosing between the test stimuli.

10.0.1 Method

Design There were 9 between-subject A:B ratios: (1:36), ..., (4:9), (6:6),
..., (18:2), (36:1). In addition to the critical tests discussed above, we included
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Exposure Test

Figure 26: Experimental setup. The left-hand side shows possible reuse in
three idealized between-subject exposures. The right hand side shows how the
reusable fragments apply to critical test items.
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additional test items of the form [a1 b1] v. [x b1] in order to rule out the
hypothesis that participants were simply forgetting items that appeared during
exposure.

Procedure The experiment was conducted through a web browser using
software described at www.astoundment.com/netlab/. The experiment con-
sisted of 2 blocks where participants first listened to the exposure stimuli for 3
repetitions and then went on to perform 15 forced choice test trials; 5 critical
tests and 10 controls.

Modeling We created simulation data by running the fragment grammar
sampler on the simple positional PCFG described above. For each condition,
we ran 24 simulation runs under a variety of a, b, θ, and ψ parameter settings.
Each simulation ran for a total of 10,000 sweeps through the 300 training se-
quences. After each sweep, we scored the training sequences and test sequences
described above. These scores were averaged across sweeps and across simula-
tions for each condition. Note that by averaging across a range of parameter
settings our results are independent of the parameters of the model.19

To produce an experimental prediction from our simulations, it was neces-
sary to turn our sequence scores into choice predictions. We did this using the
Luce choice rule P (ci) ∝ p(si)β . Where P (ci) is the probability of choosing
sequence si, p(si) is the probability of sequence si and β is a parameter which
controls how much the better option is preferred. We took β = 0.5.

Participants Data was collected both online and in the lab using the web-
based software described above. Participants were excluded if they did not
complete at least 15 overall test trials and 5 critical (half) test trials. 308
participants met the criteria.

10.0.2 Results and Discussion

Figure 27 shows the results of both the participant (black) and simulation
(red) data. Along the x-axis is the ratio of A to B items. Along the y-axis
is the percent of the time that participants chose the stimulus with a novel A
item in the critical tests. Correlation between simulation and test data was
high (r = 0.97).

Participants showed a bias in all conditions to favor new items in the A
position. This may be an artifact of the fact that most of our subjects were

19This also explains the high variance in the simulation means.
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English speakers, and English inflectional morphology tends to be suffixal. No
such prior bias was built into the simulation.

Figure 27: Results of experiment. X-axis shows the ratio of A position items to
B position items. The y-axis shows the proportion of the time that participants
chose the stimulus with a new A position item in the crucial tests.

11 Relation to Other Models in the Liter-
ature.

The modeling work which is most similar to the work reported here is that of
Data Oriented Parsing (DOP) [3, 4, 39]. DOP, in its original form, is built
on the formalism of tree substitution grammar, a generalization of PCFGs
which allows the basic building blocks of the grammar to be arbitrary tree
fragments. DOP provides a framework for estimating the probabilities of these
tree fragments from corpora. DOP has also been extended to tree-adjoining
and lexical-functional grammars (see articles in [3]).

In a certain sense, DOP is very similar to the model presented here. Both
embrace the idea that the set of lexical items can consist of a large number of
heterogeneous tree structures. The main difference between the work presented
here and DOP is that the present system provides a full generative model of
how the lexical items are built. In contrast, DOP takes a two part approach.
First, an algorithm is applied to a dataset to learn a tree substitution grammar.
Then, the resulting grammar is used to generate data.

In fragment grammar, and more generally in any generative system using
stochastic memoization, the generative model itself tells us how reuse and
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storage are to happen in combination. In principle, every choice made during
generation has an immediate effect on the underlying grammar, as new forms
are created and old forms are reused—even during the generation of a single
sentence.20

In a sense, the tree substitution grammar learned by a DOP model can
be seen as an instantaneous snapshot of a fragment grammar state. Fragment
grammar provides a fully Bayesian solution to the problem of learning the set
of fragments used in DOP.

12 Conclusion

We have presented fragment grammars—a model which explores the compu-
tation/reuse tradeoff in natural language. We expressed fragment grammars
using the vehicle of stochastic functional programming, and specifically the
Church language [17]. The most important feature of Church from the frag-
ment grammar perspective is its language-level support for stochastic memo-
ization. We showed how stochastic memoization can be used to formalize the
notion of reuse of computation.

The most important technical contribution of the fragment grammar model
is its conceptualization of lexical items as distributions in a two-stage model.
During the generation of a constituent in a fragment grammar, first a (perhaps
novel) lexical item is chosen and then an expression is generated from this item.
This two-stage model means that the process of learning a lexicon is integrated
fundamentally into the process of using language.

We also reported the results of some preliminary empirical evaluations of
the model. We found that, as predicted, the model finds intermediate sized
fragments of structure in a corpus of natural language dialog. It also makes
accurate predictions in an experimental, artificial language learning setting.
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A Integrating Out Parameters and de Finetti
Representations

In this appendix, we discuss another way of deriving the Chinese restau-
rant, multinomial-Dirichlet and Pitman-Yor distributions. In our presenta-
tion above, each of these distributions was described in terms of assigning
probabilities to partitions of objects. With CRPs and PYPs we were able to
assign objects to partitions with potentially unbounded numbers of compo-
nents. With MDD we assigned objects to partitions with a fixed number of
components. In each case, we defined the partition distributions in terms of
a sequential sampling scheme. In each of the cases, however, there is also an
alternate construction of the distribution in terms of a hierarchical mixture
model. This is known as the de Finetti representation of the distribution.

We illustrate this fact with the multinomial-Dirichlet distribution. Imag-
ine a multinomial distribution over K elements with parameters specified by
parameter vector %θ. It is possible to draw %θ from a prior distribution rather
than specifying it directly. As discussed above, the most common prior on
multinomial parameters is the Dirichlet distribution [12]. Let %π be a vector of
positive real hyperparameters of length K, the Dirichlet distribution is defined
as:

P (%θ|%π) =
Γ(

∑K
i=1 πi)∏K

i=1 Γ(πi)

K∏

i=1

[θi]πi−1

The Dirichlet distribution can be thought of as a defining a distribution over
(biased) K-sided dice. To generate j multinomial observations, v(1), ..., v(j), us-
ing the Dirichlet, we first sample our K-sided die, %θ|%π from a Dirichlet distribu-
tion, and then use this die to sample our j observations. The joint distribution
on the die, %θ, and observations together is given by the following equation.

P (v(1), ..., v(j), %θ|%π) =
Γ(

∑K
i=1 πi)∏K

i=1 Γ(πi)

K∏

i=1

[θi]πi+xi−1 (13)
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Here the xi refer to the counts of observed values which were equal to vi

(i.e. in partition component i). The generative process is shown on the left
side of Figure 28.

Figure 28: Graphical model representation of the generative processes for the
multinomial-Dirichlet distribution and the Dirichlet process. In both cases, we
first draw a die from the prior distribution, and then sample i.i.d. observations
from this die. For the multinomial-Dirichlet distribution, the die is finite; for
the Dirichlet process, the die is infinite.

The combination of a Dirichlet prior and a multinomial likelihood can
be analytically integrated over the space of possible dice; this space is a K-
dimensional simplex, the K-dimensional analogue of a triangle, usually written
as %θ ∈ ∆θ. This leads to the closed form of the MDD which we gave above:21

P (v(1), ..., v(j)|%π) =
∫

∆θ

[
Γ(

∑K
i=1 πi)∏K

i=1 Γ(πi)

K∏

i=1

[θi]πi+xi−1

]
dθ (14)

=

[∏K
i=1 Γ(πi + xi)

Γ(
∑K

i=1 πi + xi)
Γ(

∑K
i=1 πi)∏K

i=1 Γ(πi)

]

(15)

Remember that this was the closed form expression for the probability of
the Polya urn scheme representation of the MDD. In fact, the two representations—
sequential sampling and hierarchical—are equivalent. They generate the same
probability distributions.

21This integrated version of the multinomial-Dirichlet distribution is sometimes referred to as a
multivariate-Polya distribution.
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When we view the MDD as a hierarchical model, the individual observation
draws are conditionally independent given the die %θ. When the value of %θ
is unobserved and must be inferred from data, we refer to this hierarchical
model as the de Finetti representation of the distribution. From a Bayesian
perspective, the uncertainty over %θ can be removed by integrating over possible
%θs, as we did above.

Integrating in this way makes explicit the fact that %θ is an hidden variable of
the model. Intuitively, when we do not know the value of %θ, observations drawn
from it are no longer independent. Each observation changes our posterior
beliefs about the die weights. For example, if our die was two-sided—a coin—
and it came up heads 25 times in a row, we would probably be inclined to
believe that %θ was biased heavily in favor of heads.

The sequential construction of the MDD can be viewed as an explicit ver-
sion of this. As we see more evidence that one particular value of %θ is more
or less likely than the others, we predict that the next draw will favor it more
or less. The distribution over observations given by this scheme is exactly
equivalent to the hierarchical version where %θ is unobserved.

A similar derivation can be given for the CRP. In the case of the CRP, we do
not draw finite dice, but rather we use a construction which allows us to lazily
draw infinite dice. Lazy in this sense means that instead of eagerly computing
all die weights at once, we instead draw individual weighs as we need them.
This construction is called the Dirichlet process (DP) [10]. Integrating over
possible infinite die draws from the DP leads to the CRP in the same way that
integrating over possible finite die draws for the MDD leads to the Polya urn
scheme representation of the MDD. [35].22 This is shown in Figure 29.

A similar derivation can be given for the Pitman-Yor process using the gen-
eralized Dirichlet distribution [18]. The fact that CRPs, PYPs, and MDDs all
have these dual representations follows from de Finetti’s theorem. De Finetti’s
theorem states that a sequence of random variables is exchangeable if and only
if it has a representation as a mixture with unobserved mixture weights [24].
Recently a computable version of the theorem has been proven which shows
that this equivalence is not only guaranteed in principle but can be computed
in practice [11].

Because all of the distributions used in this report are exchangeable, each
of them will have both a de Finetti representation and a representation in
terms of sequential sampling.

22In the version of Church presented in [17], the memoization distribution associated with the
procedure PYmem is in fact built on the Dirichlet Process, and corresponds to lazily drawing an
infinite-sided die.
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Figure 29: Relationship between the sequential sampling and de Finetti rep-
resentations of the multinomial-Dirichlet distribution and Dirichlet/Chinese
restaurant processes. On the left are the de Finetti representations of the two
distributions. By integrating over the hidden parameters—in this case the dice
weights—we derive the sequential sampling constructions.

A.1 de Finetti Representation for MD-PCFGS

In Section 3.1.3 above, we described multinomial-Dirichlet PCFGs. Now,
armed with our understanding of the equivalence between the sequential sam-
pling and de Finetti representations of the MDD, we give the code for an
MD-PCFG in its de Finetti representation in Figure 30.

An important feature of this Church code is that each multinomial param-
eter vector %θA is drawn when each procedure is first defined. Then the value
is closed over inside of the lambda corresponding to the procedure. In other
words, some value of %θA is drawn once, when the procedure first comes into
existence, and then a closure containing that value is returned as the proce-
dure corresponding to A. A closure refers to a procedure that is evaluated in
the context of some bound variables. In this case, the variable %θA.

In Church, the de Finetti representation of a distribution will often have this
flavor: draw an unobserved distribution, and then return a closure containing
(and conditioned on) this distribution.

We discussed in the preceding section the equivalence between de Finetti
and sequential sampling representations. Although they are equivalent in
terms of the distributions they define, in terms of practical inference, it is
often better to use the sequential sampling representation.

Search over posterior states in the de Finetti representation involves search-
ing over the draws of %θ inside the closure for each nonterminal. These values
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(define D (let (("θ D (dirichlet "π D )))
(lambda ()

(map sample
(multinomial
(list (terminal "the")

(terminal "a"))
"θ D)))))

(define N (let (("θ N (dirichlet "π N)))
(lambda ()

(map sample
(multinomial
(list (terminal "chef")

(terminal "soup")
(terminal "omelet"))

"θ N)))))

(define V (let (("θ V (dirichlet "π V)))
(lambda ()

(map sample
(multinomial
(list (terminal "cooks")

(terminal "works")
(terminal "makes"))

"θ V )))))

(define A (let (("θ A (dirichlet "π A)))
(lambda ()

(map sample
(multinomial
(list (terminal "diligently"))
"θ A)))))

(define AP (let (("θ AP (dirichlet "π AP)))
(lambda ()

(map sample
(multinomial
(list (list A))
"θ AP)))))

(define NP (let (("θ NP (dirichlet "π NP)))
(lambda ()

(map sample
(multinomial
(list (list D N))
"θ NP)))))

(define VP (let (("θ VP (dirichlet "π VP)))
(lambda ()

(map sample
(multinomial
(list (list V AP)

(list V NP))
"θ VP)))))

(define S (let (("θ S (dirichlet "π VP)))
(lambda ()

(map sample
(multinomial
(list (list NP VP))
"θ S)))))

Figure 30: The de Finetti representation of a multinomial-Dirichlet probabilis-
tic context-free grammar.

are continuous, and search over them can be a costly process. In the sequen-
tial sampling representation, we can do inference over the number of times
a particular rule was used in a corpus and then update the counts for each
rule, and use the updated counts to re-score. In the de Finetti representation,
inference over the draws of %θ will generally have to be implemented in separate
step from search over rule uses.
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