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Abstract We consider the task of learning three verb classes: raising (e.g., seem),
control (e.g., try) and ambiguous verbs that can be used either way (e.g., begin). These
verbs occur in sentences with similar surface forms, but have distinct syntactic and
semantic properties. They present a conundrum because it would seem that their mean-
ing must be known to infer their syntax, and that their syntax must be known to infer
their meaning. Previous research with human speakers pointed to the usefulness of
two cues found in sentences containing these verbs: animacy of the sentence subject
and eventivity of the predicate embedded under the main verb. We apply a variety of
algorithms to this classification problem to determine whether the primary linguistic
data is sufficiently rich in this kind of information to enable children to resolve the
conundrum, and whether this information can be extracted in a way that reflects dis-
tinctive features of child language acquisition. The input consists of counts of how
often various verbs occur with animate subjects and eventive predicates in two cor-
pora of naturalistic speech, one adult-directed and the other child-directed. Proportions
of the semantic frames are insufficient. A Bayesian attachment model designed for a
related language learning task does not work well at all. A hierarchical Bayesian model
(HBM) gives significantly better results. We also develop and test a saturating accu-
mulator that can successfully distinguish the three classes of verbs. Since the HBM
and saturating accumulator are successful at the classification task using biologically
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realistic calculations, we conclude that there is sufficient information given subject
animacy and predicate eventivity to bootstrap the process of learning the syntax and
semantics of these verbs.

Keywords Bayesian inference · Child language acquisition · Clustering · Control ·
Raising · Syntax · Unsupervised learning

1 Introduction

One of the fundamental problems in language learning is that of determining the hier-
archical structure that underlies a given sentence string. Closely related is the problem
of deducing meanings of verbs, especially abstract verbs, as verbs’ lexical meanings
are entangled with syntax (Gleitman 1990; Fisher et al. 1991; Lidz et al. 2004; Levin
and Rappaport Hovav 2005, among many others). That is, the meaning of a verb is
intimately related to the type of argument structure the verb participates in, and so
being able to categorize verbs according to their semantic argument-taking properties
should go hand-in-hand with understanding the syntax of the sentence strings.

In this paper, we discuss the case of distinguishing raising verbs (e.g. seem) from
control verbs (e.g. try). Raising and control verbs overlap in one of the sentential envi-
ronments they occur in (John seemed/tried to be nice). Although the verb classes are
partially distinguishable by occurrence in certain other environments, the presence of
a class of ambiguous verbs (verbs that can be either raising or control) significantly
complicates the learning problem because the “distinguishing” environments do not
actually give unambiguous information about category membership (Becker 2005b,
2006). Rather, based on psycholinguistic evidence we argue that learners can exploit
semantic information within the overlapping environment to categorize a novel verb
as raising or control (Becker and Estigarribia 2010). Here we focus on the problem of
discriminating the verb classes, with the assumption that knowing which class a verb
belongs to will allow the learner to determine the structure of the otherwise ambiguous
string.1

To give a brief preview, we investigate learning models that attempt to classify a
verb as raising, control, or ambiguous, from sample sentences of the surface form

(1) John likes to run
Subject Main- verb to Predicate

If the main verb is a control verb, the subject of such a sentence is the semantic subject
of both the main verb and the predicate (John is the “liker” and the “runner”). If the
main verb is a raising verb, the subject is semantically related only to the predicate, and
is raised to the subject position of the sentence to satisfy the requirement that English

1 We frame the learning problem in terms of the construction of verb types, and the categorization is done
on the basis of encountering tokens of verbs. We could have framed it, instead, in terms of assigning a binary
category to each token encountered. However, since ultimately learners must have a categorical representa-
tion of types, we chose to frame the problem in the former way. Framing the process in this way underscores
the parallel between this specific learning process and other categorization processes that children must
undertake in learning language (types of grammatical categories, subcategories of verbs, etc.).
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sentences must have a syntactic subject. If the argument structure of a verb is known
(that is, it is known whether the verb requires, allows, or forbids a semantic subject),
then the underlying syntax of the sentence is easily deduced. However, raising and
control verbs have rather abstract meanings in that they add information to another
predicate, and one wonders how children could infer their argument structure without
some knowledge of the underlying syntax. Thus, the acquisition of the syntax and
semantics of these verbs poses something of a chicken-and-egg problem.

Although surface word order-type information in such sentences is insufficient to
determine which class the main verb belongs to, basic semantic information about the
subject (whether it is animate or inanimate) and predicate (whether it is eventive or
stative) is available. Control verbs as a class prefer animate subjects and eventive pred-
icates because many of their uses have to do with intentions or preferences concerning
an action. Raising verbs have less of a preference because many of their meanings are
tense-like or convey uncertainty, and can apply to a wider set of predicates. In this
article, we investigate the possibility that such basic semantic information suffices to
bootstrap the acquisition process. We will focus on how a learner could determine
whether an unknown verb is of the raising, ambiguous, or control class; specifically,
whether it forbids, allows, or requires a semantic subject.

After providing additional linguistic background, we discuss data sets drawn from
the CHILDES and Switchboard corpora, in which sentences using various raising,
control, and ambiguous verbs have been collected and marked for subject animacy
and predicate eventivity. In the following sections we develop learning models that
use probabilistic tendencies in the input to approximate the way in which actual lan-
guage learners might acquire the raising, control, and ambiguous verb classes over
time.

We apply several learning algorithms to this data and the problem of classifying or
clustering the verbs into the appropriate classes. A huge variety of potentially useful
algorithms exist, including classifiers, Bayesian inference, ranking, and clustering.
Each requires input in a different format and yields its own particular kind of output.
The intent of the project is not to determine which of these algorithms works best.
There is no shootout to be won or lost, and we will not attempt to resolve all the issues
of how to fairly compare them. Rather, we are interested in resolving the conundrum
of how children begin to acquire raising and control syntax and semantics: Does the
primary linguistic data contain information that is accessible to children who do not yet
have a complete grasp of their native language, and is sufficient for beginning to infer
which verbs fall into which class? Do any of these algorithms indicate that subject
animacy and predicate eventivity provide sufficient information accessible through
a computation that the human brain could likely be performing? Are any of them
consistent with the pattern of acquisition and use of these verbs observed in children?

Many of the algorithms do work fairly well, indicating that despite all the com-
plications, enough basic semantic information is present in the data to bootstrap the
process of learning the syntax and semantics of raising, control, and ambiguous verbs.
The hierarchical Bayesian model described in Sect. 4.1.3 is especially successful at
classifying these verbs, but it is unclear whether its behavior is consistent with child
language. The new accumulator algorithm described in Sect. 4.2 classifies most of
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the verbs by analyzing sentences sequentially, and it reproduces certain properties of
child language.

2 Linguistic and Psycholinguistic Background

Both raising and control verbs can occur in the string in (2).

(2) Scott to paint with oils.
a. Scotti tends [ti to paint with oils] (raising)
b. Scotti likes [PROi to paint with oils] (control)

The primary difference between the two constructions is that in the control sentence
there is a thematic (semantic, selectional) relationship between the main verb and the
subject, while in the raising sentence there is no such relation: the subject of the sen-
tence is thematically related only to the lower predicate (paint with oils). Thus, the
string in (2) represents a case where, until the learner has acquired the syntactic and
semantic properties of the main verb, the learner cannot simply take a string of input
and immediately deduce the correct underlying structure. Since what distinguishes the
two structures is the main verb’s category, we see the verb categorization task as the
first step in solving the parsing problem.

There are other types of sentence frames that partially distinguish these classes of
verbs. For instance, control verbs cannot occur with an expletive (semantically empty)
subject (e.g. it, there), while raising verbs can. This is because control verbs assign a
θ -role to their subject, and expletives cannot bear a θ -role (Chomsky 1981).

(3) There tend to be arguments at poker games.
(4) *There like to be arguments at poker games.

Some control verbs, but no raising verbs, can occur in transitive or intransitive
frames.2,3

(5) John likes bananas.
(6) *John tends bananas.
(7) *John hopes bananas.

Note that not all control verbs can be transitive, as in (7). Some raising verbs can occur
with a subordinate clause, but this is not possible with every raising verb, and not with
any control verbs:

(8) It seems that John is late.
(9) *It tends that John is late.

(10) *It hates that John is late.

2 The raising verbs tend and happen have homophonous forms that are (in)transitive, e.g. John tends sheep,
or Interesting things happened yesterday. The general problem of homophony is significant for learning
but is beyond the scope of this paper.
3 Verbs in this frame could also be non-control transitive or intransitive verbs, like eat; of interest here are
verbs that could occur in both a transitive/intransitive frame and a frame with an infinitive complement.
We ignore here the further problem that transitive or intransitive verbs can occur with an adjunct infinitive
clause, as in John runs to stay in shape.
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Taking a naïve view of the learning procedure one might hypothesize that, since
only control verbs are banned from sentences like (3), a learner should assume, given
a novel verb in a sentence like (2), that the novel verb is a control verb. This is a “sub-
set” type of approach, since the assumption is that the set of constructions that control
verbs occur in form a subset of the set of constructions that raising verbs occur in. If
the learner has guessed incorrectly, she will eventually encounter an input sentence
like (3), and this datum would provide the triggering evidence to change her grammar.
Furthermore, if the learner has guessed correctly, she might have data such as (5) to
confirm her categorization of the verb. However, we contend that such a strategy is
insufficient for three reasons explained below.

The first argument is based on the existence of verbs that are ambiguous between
having a raising or a control interpretation, including begin, start, continue and need.
As discussed by Perlmutter (1970) these verbs can occur in raising contexts (e.g., with
an expletive subject), but they can also have a control interpretation when they occur
with an animate subject.

(11) It began to rain. (raising)
(12) There began to be more and more ants. (raising)
(13) Rodney began to talk to Zoe. (control)

Moreover, ambiguous verbs also occur in single clause frames as transitive or intran-
sitive verbs.

(14) The game began at 3 o’clock.
(15) The referee started the match.

Since ambiguous verbs can occur in all of the environments that both raising and
control verbs can, their existence raises a challenge for language learners. Begin will
be heard with an expletive subject, as in (11), where it will be analyzed as a raising
verb, and it will be heard with an animate subject as in (13), where it should be ana-
lyzed as a control verb. But tend, which is unambiguously raising, will also be heard
with expletive subjects (3) and animate subjects (Scott tends to paint with oils). In
the absence of explicit negative evidence (Chomsky 1959; Marcus 1993) how will a
learner determine that tend is not ambiguous and therefore does not function as a con-
trol verb when it occurs with an animate subject? The learner will not encounter *Scott
tends oil paint. Furthermore, if the learner needed to hear a verb used transitively in
order to classify it as control, certain control verbs would be categorized incorrectly
since they do not occur in a transitive frame (e.g. hope).

The second argument against the subset strategy is that in speech to children, raising
verbs occur disproportionately more frequently in the ambiguous surface frame (2)
than in disambiguating environments, such as with an expletive subject (Hirsch and
Wexler 2007). Therefore, presumably learners will need to at least make a guess about
the category of a verb encountered in this sentence frame prior to encountering the
verb in other frames.

The third argument is that previous experimental research has shown that adult
speakers make use of two types of cues from within the ambiguous surface frame (2)
to make a guess about whether a given ambiguous string is likely to be a raising or a
control sentence. These cues come from whether the subject is animate or inanimate
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(see (16a–b)) and whether the predicate inside the infinitive clause is stative or eventive
(see (17a–b)).

(16) a. Samantha likes to be tall. (animate)
b. The tower seems to be tall. (inanimate)

(17) a. Samantha hates to mow the lawn. (eventive)
b. Samantha seems to be happy. (stative)

The evidence comes from a psycholinguistic experiment in which adults were asked
to fill in the main verb in an incomplete sentence (Becker 2005a). The properties of
subject animacy and predicate eventivity were systematically manipulated. Partici-
pants gave significantly more control verbs when the sentence had an animate subject
or an eventive lower predicate, and they gave significantly more raising verbs when
the sentence had an inanimate subject or a stative lower predicate. While these cues
indicate tendencies for these verb classes (not definitive restrictions; cf. Samantha
hates to be tall), the psycholinguistic data show that they are very strong tendencies.

A further psycholinguistic study with adults (Becker and Estigarribia 2010) showed
that speakers are highly sensitive to the cue of subject animacy in making a guess about
whether a novel verb is of the raising or the control class. In a word learning study,
adult participants were presented with novel verbs with only animate subjects or with
at least one inanimate subject. When verbs were presented with only animate sub-
jects, adults were strongly biased to categorize novel verbs as control verbs. However,
presentation of a novel verb with at least one inanimate subject significantly overrode
their bias and led adults to categorize the novel verb as a raising verb. Thus, speakers
do appear to draw inferences about a verb’s category when encountered in the ambig-
uous frame (2), and we believe child learners are likely to make use of this information
as well.

In fact, there is empirical evidence that this is so. For example, when the subject
of the sentence is inanimate, 3- and 4-year-olds interpret a verb in the frame in (2)
as if it were a raising verb, even if it is actually a control verb in the adult grammar
(Becker 2006). In brief, there is information in the ambiguous sentence frame that can
aid a learner in distinguishing the classes of raising and control verbs, and there is
psycholinguistic evidence that speakers make use of this information. In Sect. 4.2, we
describe a new on-line classification algorithm that was designed to start in a neutral
state and be able to assign a verb to a more restrictive or a less restrictive class after
sufficient data has been collected, in contrast to subset learning algorithms which can
only move to less restrictive hypotheses. That children permit verbs of one class to
behave like verbs from the other class early on will become relevant in evaluating our
proposed algorithm, as it mimics this early neutral stance on categorization. Future
work should include an extension into the use of cross-sentential cues in verb learning.

3 Description of Data

We have searched two sources of naturalistic spoken language. The Switchboard
corpus (Taylor et al. 2003) contains naturalistic adult-to-adult speech recorded in
phone conversations. The CHILDES database (MacWhinney 2000) contains dozens of
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Table 1 Mothers’ distribution of raising verbs

Verb Animate+eventive Animate+ stative Inanimate+eventive Inanimate+ stative

Seem 0 4 1 5

Used 32 13 2 3

Going 1065 132 31 27

Total 1097 149 34 35

88% eventive 49% eventive

corpora of speech to children, much of it recorded in spontaneous conversations
between parents or researchers and young children.

3.1 CHILDES

Due to the need for handcoding of the CHILDES data, our dataset of child-directed
speech is somewhat limited in size. We analyzed the mothers’ speech (the *MOT tier)
in all of the Adam, Eve and Sarah files within the Brown (1973) corpus. The total
number of *MOT utterances in the Brown corpus is over 59,500.

We began by searching for all occurrences of specific raising, control and ambig-
uous verbs followed by the word to, using the CLAN program.4 Each utterance in
the output was then coded by hand by Becker for whether the subject was animate
or inanimate, and whether the predicate inside the infinitive phrase was eventive or
stative. Cases in which the subject was null were counted if it was clear from the
context what the referent of the subject was. For example, Adam’s mother’s question
“Want to give this to Ursula?” was clearly directed at Adam (“(Do you) want to …”)
and so it was counted as having an (implied) animate subject. Utterances in which the
lower predicate was elided or unclear were not counted. The total number of utterances
excluded because the predicate was unclear or elided was: 7 control (e.g. I don’t want
to), 9 raising (e.g. It doesn’t seem to), and 1 ambiguous (Now she’s starting to …);
hence, a relatively small proportion of the overall counts.

Subject animacy was judged according to whether the referent was living or non-
living (also whether it would be replaced with a he/she pronoun or it pronoun, with
the exception that insects would likely be referred to with it but are alive). Predicate
eventivity was judged according to whether the predicate typically occurs in the pres-
ent progressive with an on-going meaning (these are eventive: e.g., John is walking)
or whether it occurs in the simple present tense with an on-going (i.e. non-habitual)
meaning (these are stative: e.g., John knows French). The results, summing across the
three children’s mothers, are given in Tables 1, 2 and 3. All verb occurrences here are
those with an infinitival complement.

All of the verb classes are heavily skewed towards having an animate subject and
an eventive predicate. For the raising verbs, this asymmetry is largely due to a single

4 The exact search string syntax used was combo + t*mot + s“(seem + seems + seemed)ˆ*ˆto”
adam*.cha.
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Table 2 Mothers’ distribution of control verbs

Verb Animate+eventive Animate+ stative Inanimate+eventive Inanimate+ stative

Want 352 53 2 0

Like 156 54 0 0

Try 86 0 0 0

Love 7 3 0 0

Hate 1 0 0 0

Total 602 110 2 0

85% eventive

Table 3 Mothers’ distribution of ambiguous verbs

Verb Animate+eventive Animate+ stative Inanimate+eventive Inanimate+ stative

Start 4 0 0 0

Begin 1 0 0 0

Need 34 4 0 4

Total 39 4 0 4

91% eventive

verb, going, whose frequency is vastly higher than the other verbs in this class (but
removing going still yields a majority of Animate+Eventive frames). The main dif-
ference between the classes is that the raising verbs also have non-zero occurrences
with inanimate subjects and stative predicates. With the exception of the verb need,
an ambiguous verb, and possibly want (which is traditionally categorized as purely
control, but according to some dialects it can occur with an expletive subject and there-
fore may also be ambiguous) the other verbs do not occur with inanimate subjects and
rarely with stative predicates.

3.2 Switchboard

The Switchboard corpus (Taylor et al. 2003) contains over 100,000 utterances of
adult-to-adult spontaneous speech recorded in telephone conversations. The corpus
is parsed, and a portion of it has been annotated to indicate the animacy of each NP
(Bresnan et al. 2002). We searched through the annotated corpus using the program
Tgrep2 (Rohde 2005), which searches for hierarchical structures, for all occurrences
of specific raising, control and ambiguous verbs followed by an infinitive complement.
The numbers of occurrences with animate versus inanimate subjects were then tal-
lied. Animate subjects were those annotated as being human, animal or organizations.
Inanimate subjects were those tagged as a place, time, machine, vehicle, concrete or
non-concrete.

Subsequent to this first search, all output utterances were then coded by hand for
whether the infinitive predicate was eventive or stative. This was carried out by entering
all of the output of the first search into spreadsheets and having three different research
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Table 4 Distribution of raising verbs in (annotated) switchboard

Verb Animate+eventive Animate+ stative Inanimate+eventive Inanimate+ stative

Seem 24 57 23 71

Used 156 96 2 35

Going 44 11 3 6

Tend 36 37 10 9

Happen 13 20 2 6

Total 273 241 40 127

55% eventive 24% eventive

Table 5 Distribution of control verbs in (annotated) switchboard

Verb Animate+eventive Animate+ stative Inanimate+eventive Inanimate+ stative

Want 342 123 3 0

Try 149 12 1 0

Like 181 33 0 0

Love 18 0 0 0

Hate 20 7 0 0

Choose 6 0 0 0

Total 716 175 4 0

80% eventive

assistants code the predicates according to the same criteria used for the CHILDES
data. The degree of coder agreement varied among the verb classes, with the least
agreement with raising verbs (78% agreement, based on seem) to the most agreement
with ambiguous verbs (93% agreement, based on need; they had 88% agreement with
control verbs, based on want). Disagreements were resolved by going with the major-
ity result (2 out of 3 coders’ judgments) except in cases where there was a 3-way split
(1 coder judged stative, 1 judged eventive and 1 judged unclear) or in the very few
cases where 2 coders appeared to have made errors (e.g., judging understand to be
eventive) in which case Becker made the judgment call. Such cases amounted to 0.6%
of the data. The results are given in Tables 4, 5 and 6.

The numbers from the Switchboard search are larger than those from CHILDES
with the exception of going-to/gonna, which is much less common in the Switchboard
data. The asymmetry in the overall numbers may be due to the much larger amount
of data searched in Switchboard, and perhaps in part to differences in child-directed
versus adult-directed speech. The main trend in the Switchboard data is that while the
raising verbs are evenly split between having an eventive or a stative predicate when
the subject is animate, and there are many occurrences of these verbs with inanimate
subjects, control verbs are overwhelmingly biased towards having an eventive pred-
icate and almost never occur with inanimate subjects. Ambiguous verbs, as a group,
are in between the raising and control classes on both counts: like the raising verbs
they have nonzero numbers of occurrences with both inanimate subjects and stative
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Table 6 Distribution of ambiguous verbs in (annotated) switchboard

Verb Animate+eventive Animate+ stative Inanimate+eventive Inanimate+ stative

Need 208 62 3 23

Have 442 105 5 6

Start 14 1 7 2

Begin 0 4 2 1

Continue 9 1 1 0

Total 673 173 18 32

80% eventive 36% eventive

predicates, but like control verbs they show a bias for eventive predicates when the
subject is animate.

4 A Menagerie of Learning Algorithms

Research over the past several years has shown that children, even prelinguistic infants,
are very good at noticing statistical patterns in the world around them, and it has been
suggested that children make use of these regularities and patterns in acquiring lan-
guage. Various models of input-based language learning have been proposed over the
years for learning different aspects of language: past tense morphology (Rumelhart
and McClelland 1986), constituent order (Saffran et al. 1996), grammatical structure
(Gomez and Gerken 1997; Hudson-Kam and Newport 2005), and verb argument struc-
ture (Alishahi and Stevenson 2005a,b; Perfors et al. 2010). Some approaches make
hybrid use of both input patterns and UG principles, as in Yang’s account of parameter
setting using the Variational Learning paradigm (Yang 2002), while others rely more
or less wholly on input for learning. All of these proposals incorporate the fact that
many patterns in language are of a probabilistic nature. For example, a given verb can
occur in various syntactic frames, but it may be more likely to occur in some than in
others (Lederer et al. 1995).

Our work builds on the large literature on automated learning of verb frames and
verb classes (Schulte im Walde 2009). While previous work on identifying verb frames
and classes has used some of the cues we propose (e.g. animacy; Merlo and Stevenson
2001), none have examined the particular classes of raising and control verbs.

Our approach is to develop several models of how children might make use of
distributional patterns in the input to distinguish raising verbs and control verbs, and
additionally to distinguish the ambiguous verbs from either nonambiguous set. We
focus on only a small subset of the verbs to be acquired, representative of all three
classes. Since children do not have access to a labeled training set of verbs of each
class, we will focus on unsupervised learning algorithms.

Formally, the learning problem at hand is: Determine whether a particular verb
may be used in raising or control syntax (or both) given a set of sentences using
that main verb, along with information about whether the subject is animate or inan-
imate, and whether the predicate in the embedded clause is eventive or stative. This
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yields four possible semantic frames: animate+eventive, animate+ stative, inani-
mate+eventive, inanimate+ stative. These will be abbreviated as AE, AS, IE, and IS.

This verb classification problem is unexpectedly difficult: the class of ambigu-
ous verbs immediately rules out any algorithm based on holding the most restricted
hypothesis until a new sentence requires expanding it. Thus, we are limited to sta-
tistical and geometric algorithms that are robust in the presence of noisy data. The
following features of the data made it difficult to formulate and test potential learning
models.

First, the relevant information is not contained entirely in absolute counts of seman-
tic frames or in their usage rates. Several uses of a verb with an expletive subject should
be a sure indication that the verb is raising, but it is unclear how many is enough. Idio-
matic uses, for example, where an inanimate subject is anthropomorphized, are present
in the CHILDES data, as in “This one just doesn’t want to go right,” (Sarah, file 135).
A few occurrences of a control verb with an inanimate subject should not cause it
to be classified as raising or ambiguous. Thus, absolute counts may not be the most
appropriate way to present the data. Some raising verbs such as seem show a relatively
even distribution across the frames, while others such as going occur disproportion-
ately often with animate subjects, so feeding usage rates to the algorithm may not be
appropriate either. A further complication is that the data is unbalanced, with some
verbs occurring abundantly and others occurring in just a few sentences. Thus, it is
unclear whether a successful learning algorithm can be built taking as input a stream
of frames, a vector of counts of occurrences in the four frames, a vector of usage rates
among the four frames, or some combination.

Second, the data is very limited. There are thousands of sentences available, but only
a dozen or so different relevant verbs. Statistical learning and clustering algorithms
are typically trained and tested on data sets containing at least hundreds of points. The
small number of raising, control, and ambiguous verbs is a permanent barrier to that
kind of testing. So is the fact that some of them are infrequent in natural conversation.
In the CHILDES data, both hate and begin occur once, with an animate subject and
an eventive predicate. With that tiny bit of data, they are indistinguishable. A larger
corpus or some combination of corpora might contain more instances of the verbs
of interest. However, the Switchboard data is from a different environment from the
CHILDES data, and clear statistical differences between the corpora make it hazard-
ous to attempt to combine them. The same obstacle is likely to occur when gathering
data from additional sources.

Third, many verbs of interest have confounding quirks that affect their usage rates,
such as that going and used have tense-like meanings that might cause them to be used
disproportionately with animate subjects, in contrast to non-tense-like raising verbs
such as seem. The verb have has so many uses that it poses a learnability problem all
by itself.5 Occurrence in a transitive frame distinguishes the verbs in Tables 5 and 6
from those in Table 4, but in light of the existence of other control verbs such as hope,
intend, and pretend that cannot take a direct object, the present study will not attempt

5 Have occurs in various types of possessive constructions (alienable, inalienable, part-whole) as well as
other transitive frames that are not clearly possessive (having lunch), it is an auxiliary verb (have gone) and
takes an infinitive complement (have-to).
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to make use of transitive frames for distinguishing the verb classes, and this choice
further limits the data.

With such limited and complicated data, it is difficult to perform traditional valida-
tions of an algorithm, such as training it on one set of verbs and testing it on another.
Thus, there will inevitably be some doubt about the validity of a seemingly successful
learning algorithm. To address this difficulty, we adopt a few heuristics for evaluating
algorithms:

• The ambiguous verbs apart from need and have are relatively uncommon in Switch-
board, occurring in less than 30 sentences each. Similarly, love, hate, start, and
begin are rare in the CHILDES data. To be successful, an algorithm should at least
correctly classify need or place it between the raising and control verbs. Ideally,
it should do the same for have, but there are so many different uses of have that
failure to correctly place or classify have is a less serious mistake than misplacing
need. We will not attach much significance to the other ambiguous verbs.

• We are particularly interested in algorithms that correctly and robustly classify
going. As a sensitivity test, we add a synthetic data point going-st to the Switch-
board data by adding five animate+eventive sentences to the counts from going,
which could easily come from one additional conversation. An algorithm should
classify going and going-st the same way.

• Since seem is in many ways the prototypical raising verb but is uncommon in the
CHILDES data, we add a synthetic data point to that corpus: seem-eq with 10 of
each frame. An algorithm should classify seem-eq as raising.

We would like to determine not only whether the data contains sufficient infor-
mation to correctly classify the verbs, but also whether that information is accessible
to a biologically realistic algorithm. Some comments are in order about the concept
of “biologically realistic.” Little is known about how the brain represents linguistic
knowledge and modifies itself during learning, so declaring any computation to be
either definitely present in the brain or neurologically impossible is hazardous. How-
ever, it is known that neural networks make use of synchrony, perform signal filtering,
contain many copies of modules, work in parallel, and blend discrete and continuous
dynamics. We therefore prefer algorithms that

• work on-line, that is, process data sequentially without memorizing it, as opposed
to batch algorithms that must work on the entire data set all at once

• potentially make use of parallel processing
• handle fuzzy classification problems, where points may be more or less in one

class or another

Algorithms with these features are biologically realistic in that they appear to be har-
monious with known features of neural computation.

In the rest of this section, we examine several classification strategies with at least
some of these biologically realistic features. We begin with three Bayesian approaches:
simple proportions of semantic frames, a variation of the Bayesian algorithm in
Alishahi and Stevenson (2008, 2005a,b) (henceforth A&S), and a hierarchical Bayes-
ian model (HBM) based on Perfors et al. (2010), Kemp et al. (2007). While the method
of proportions is the simplest possible approach, it has some deficiencies. The A&S
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Fig. 1 Key to the diagrams used for displaying the results of the algorithms

method was designed to learn semantics and syntax, but it turns out not to work well
on this problem. The HBM works very well; however, it is an active area of research
to determine whether such calculations are actually being carried out in the brain. We
conclude with a new on-line saturating accumulator developed by the authors, based
loosely on the well-known linear reward-penalty algorithm (Yang 2002), and intended
to be biologically plausible.

Although we are not attempting to measure which algorithm is “best” in any sense,
we do need some way to evaluate whether any of them are “successful.” In the inter-
est of consistency, we will display the output of each one using the chart format
demonstrated in Fig. 1, with variations appropriate for each algorithm. Each verb is
represented by a triangle whose apex is positioned horizontally according to a score
indicating its predicted class. Except for some algorithms in the appendix, the score
obeys the convention that verbs predicted to be raising should go on the left, verbs
predicted to be control go on the right, and verbs predicted to be ambiguous go in
the middle. Verbs are evenly spaced vertically using that same inferred order. The
filling of each triangle indicates the verb’s known class: shading on the right is raising,
no shading is ambiguous, and shading on the left is control. Gray coloring indicates
that there are less than 30 occurrences of the verb in the corpus, while black indi-
cates at least 30 occurrences. When appropriate, bars under the triangles indicate
how much uncertainty the algorithm has in the placement of the verb, using stan-
dard deviation, for example. In all cases, a wider uncertainty bar indicates greater
uncertainty.

Since some of the algorithms we discuss score the verbs on a continuous interval
without predicting discrete labels, decision boundaries for the three classes must be
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imposed. We adopt the following convention for displaying verbs as being correctly
or incorrectly classified: A gray bar is displayed spanning the central third of the gap
between used (a raising verb) and the left-most of like and want (control verbs). These
verbs were selected because there is plenty of data for them in both the CHILDES and
Switchboard corpora. The choice of 1/3 for the width fraction is arbitrary. Ideally,
ambiguous verbs lie inside the gray band, raising verbs lie to its left, and control verbs
lie to its right. Verbs that lie on the wrong side of one of these decision boundaries are
italicized, even if they are in the correct order with respect to the other verbs.

Some remarks are in order about what these diagrams are not meant to imply.
The output of interest is the predicted classification of each verb as raising, control,
or ambiguous. The exact horizontal placements and ordering of the verbs are not of
primary interest, rather, such placement yields a representation of how confident each
algorithm is in its predictions. Ideally, an algorithm would place all the raising verbs
on the extreme left, all the control verbs on the extreme right, and all ambiguous verbs
in the middle, with a big gap between each cluster. None of the algorithms achieves
this ideal, and the extent to which one of them displaces a raising verb from the left,
for example, visually represents its uncertainty about that verb’s classification. Since
the algorithms we consider are based on different principles, not all of the horizontal
scales are linear, easily comparable, or even in straightforward units. Not all of the
algorithms compute error bars, and not every instance of one verb appearing to the
left of another is intended to be statistically significant.

We considered several additional algorithms that were found to be unsuitable: A
perceptron can learn the verb classes accurately, but it requires labeled training data
that is not available to children, and it is sensitive to the size of the data set. The field of
text mining makes extensive use of matrix-based unsupervised clustering algorithms,
but after testing several of these, none was found to work particularly well. In the
interest of balancing brevity against the expert reader’s curiosity, we discuss these in
the appendix.

4.1 Bayesian Approaches

The Bayesian approach to statistics is to use random variables to stand for unknown
quantities and for data, then use properties of conditional probability to determine the
distribution of the unknowns conditioned on the collected data (Gelman et al. 2004).
We specify what are called prior distributions for all of the unknowns when setting
up the model. The distributions of the unknowns conditioned on the data are called
posterior distributions. Bayes’s formula states that

posterior
︷ ︸︸ ︷
P(model|data) ∝ P(data|model)

prior
︷ ︸︸ ︷
P(model) .

Bayesian inference is often more successful at analyzing small data sets than tradi-
tional frequentist methods. If there is sufficient data, the posterior distribution of an
unknown will be concentrated near its underlying value with a small standard devia-
tion. If there is not much data, the posterior will be similar to the prior. It is standard
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practice to assume uniform or widely distributed priors to minimize the amount of
extra information fed to the model.

4.1.1 Bayesian Coin-Flip Model

Given the data as in Sect. 3, a reasonable place to start is to compute for each verb
the fraction of sentences of each type in which it occurs. To place this on a more solid
statistical foundation, we adapt a classic probability problem: Given an unfair coin
and a sequence of flip results, estimate the probability that the coin comes up heads.
The Bayesian solution is to model the coin by the random variable Q = probability
of heads, and assume it has a beta distribution. There is an exact symbolic form for
the posterior: Starting with a uniform prior distribution Q ∼ Beta(1, 1) and given
m heads and n tails, the posterior distribution is Q|m, n ∼ Beta(1 + m, 1 + n). For
large sample size, the posterior is a very narrow peak around the intuitive solution
m/(m + n). The mean µ and standard deviation σ of the posterior distribution are

µ = 1 + m
2 + m + n

, σ =
√

1 + m
√

1 + n

(2 + m + n)
√

3 + m + n
.

Thus, the posterior mean is almost the proportion of heads, with a small modifica-
tion to allow for the fact that the prior distribution must be valid even with no data.
This probabilistic interpretation has the advantage of also generating a measure of
uncertainty, the standard deviation, which tends to zero as the amount of data grows.

The obvious algorithm is to pick one semantic frame and order verbs by the mean
posterior probability that they occur in that frame. The best results are obtained from
the animate+eventive frame. Thus, for the j th verb v j , m j is the number of uses of
that verb in an animate+eventive frame, and n j is the number of other uses. Then
Q j |m j , n j ∼ Beta(1 + m j , 1 + n j ) is the posterior distribution of the fraction of
uses of v j in animate+eventive sentences. The verbs are treated independently. This
calculation yields the ordering of the verbs by posterior mean shown in Fig. 2.

Using the Switchboard data, all of the verbs with at least 30 sentences occur in
the correct order except for going and the troublesome have. In the Switchboard data,
going is correctly placed to left of need, however, this ordering is not robust: the small
change made to the going counts to produce going-st is just enough to move it out
of order with respect to need. In the CHILDES data, going occurs out of order with
respect to need, as does like.

There is a standard frequentist-style statistical test which, given two samples of
counts of items with and without a particular characteristic, and a confidence level,
states whether there is sufficient data to assert that the two samples are from populations
with different proportions of items with the characteristic, and can yield a confidence
interval for the difference between those proportions (Devore 1991, Sect. 9.4). Such a
test could be applied here to sentence counts for each pair of verbs, but since so many
of the verbs occur in very few sentences, the Bayesian approach to confidence is more
appropriate here: One can use integrals to calculate the posterior probability that Q
for one verb is less than Q for another. A value close to 1 means high certainty and a
value close to 1/2 means low certainty. These calculations are shown for some verbs in
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Fig. 2 Verbs ordered by the mean posterior probability of occurring in an animate+eventive frame using
the coin-flip model; Switchboard on the left, CHILDES on the right. Uncertainty bars extend one standard
deviation left and right of the mean

Fig. 3 Verb comparisons using
the coin-flip model: v1 < v2
indicates that the posterior mean
of Q for v1 is less than that for
v2. The ! means the ordering is
correct, and × means incorrect.
The number indicates the
posterior probability
P(Q1 < Q2|data). The left
table is from the Switchboard
data, and the right table is from
the CHILDES data

Fig. 3. Most of the correct comparisons come with high confidence, but in the Switch-
board data, want and have are very robustly misplaced, and the placement going-st
with respect to need and want is uncertain. In the CHILDES data, the incorrect order-
ing of like and need is quite robust. Thus, ordering by proportions works reasonably
well, but fails to correctly and robustly place going and makes other mistakes.

In search of better results, we discuss two more sophisticated Bayesian models.
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4.1.2 Bayesian Approach Based on A&S

Alishahi and Stevenson (2005a,b, 2008), which we will abbreviate A&S, likewise
focus on the learning of verb-argument structure, although they have a somewhat
different goal from our work. They adopt a Bayesian framework to model the phe-
nomenon of children’s overgeneralization errors using intransitive verbs in a transitive
frame with a causative meaning (causative meaning is compatible with a transitive
syntactic frame but not typically with an intransitive syntactic frame). For example,
children sometimes say “Adam fall toy” to mean Adam makes the toy fall (Bowerman
1982). In A&S’s model, similar syntactic frames (e.g., transitive, intransitive, ditran-
sitive, etc.) are grouped together according to their shared semantic properties, where
semantic properties are understood as (combinations of) primitive features such as
cause or move. Syntactic frames, which include the verb, are associated with seman-
tic properties with a certain probability. The more frequently a given semantic feature
appears in general, the higher its probability of being associated with a given indi-
vidual syntactic frame. A&S show that after running their learning simulation on 800
input utterance-meaning pairs using the most common verbs found in the mothers’
speech in the Brown (1973) corpus, their learner managed to learn these verbs with the
expected U-shaped learning curve. Moreover, the learner made some of the same over-
generalizations in sentence frame use in the production portion of the test that actual
children make (e.g. inserting an intransitive verb in a transitive frame with causative
meaning).

Crucially, A&S assume that the learner is able to deduce both the syntactic frame
of the sentence they are perceiving, and also the meaning of the utterance based upon
perception of the nonlinguistic scene that is co-occurring with the utterance. The prob-
lem we are interested in is significantly more difficult than the one tackled by A&S
(and, therefore, these assumptions do not hold), for two reasons. One is that syntactic
ambiguity is involved in parsing the string, such that we do not assume that the learner
can immediately deduce the structure upon hearing the string. Secondly, given the
abstractness of the verb meanings we are interested in, we do not assume that the child
can immediately determine the meanings of these verbs based on observation of the
environment.6 In fact, as A&S correctly point out, the syntactic frame of a verb and
its lexical meaning are closely tied together, such that if children could immediately
determine the meaning of want or seem upon hearing it in a sentence and observing a
scene, knowledge of the syntactic properties of the sentence would follow. But for the
reasons just cited neither the full structure of the sentence nor the meanings of abstract
verbs are available a priori to learners for the types of sentences we are interested in.

Although the algorithm described in A&S is not immediately applicable to our
problem, it can be adapted as follows. Identifiers in CodeStyle text refer to specific
components of the computer program that implements the calculation. The algorithm
iteratively adds sentences from an input sequence to a complex data structure built of
Sentences, Frames, Constructions, and LexicalEntries.

6 The idea that children could deduce the meaning of any verb, even concrete ones, based on observation
of the world is challenged in the syntactic bootstrapping literature; see Gleitman (1990).
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Each Sentence consists of a String naming its main verb and a Frame rep-
resenting its basic semantic content. Each Frame has two Features, a subject
animacy that is either True or False, and a predicate eventivity that is either True
or False. In contrast to A&S, no other syntactic information is associated with a
sentence because all the sentences of interest have the same surface form (subject,
verb, infinitival predicate), and we are interested in deducing the appropriate hidden
syntax. If the learner already knew for example whether the verb requires, allows,
or forbids a semantic subject, then this acquisition problem would have already been
solved.

A Construction is a mapping from Frames to counts of how many times
each Frame has been added to the Construction. A LexicalEntry contains
a String naming its verb and a mapping from Constructions to counts of how
many times each Construction has been linked to that LexicalEntry. For
each Sentence in the list of input, the algorithm adds it to one Construction,
within which the count for that Sentence’s Frame is incremented.

The choice of which Construction the new Sentence should be attached to
is as follows. We hypothesize that the prior probability of choosing Construction
k is

P(k) = nk

N + 1
(18)

where nk is the number of Sentences attached to k, and N is the total number of
Sentences seen so far. A bit of mass is reserved in this prior for the case that a new
Construction, denoted ∅, is needed,

P(∅) = 1
N + 1

(19)

The probability of Feature i of a random frame f given Construction k is

P( fi |k) = (count of Frames in k with Feature i = fi ) + λ

nk + λαi
(20)

where i is Subject or Predicate. The intuition of this formula is that to sam-
ple a Feature given a Construction, one picks a Frame from it uniformly at
random, and reads Feature i from that Frame. However, some accommodation
must be made for new Constructions, which have no Frames yet (nk = 0). So
we add small numbers to the numerator and denominator, which avoids division by
0 when nk = 0 and leaves room to specify that the distribution of Feature i of a
random Frame f given an empty Construction is

P( fi |∅) = 1
αi

(21)

The value of αi is the number of possible values that Feature i can take. In other
words, if no other information is available, assume each Feature value is equally
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likely. The constant λ should satisfy 0 < λ <
∏

i 1/αi for reasons explained in
Alishahi and Stevenson (2008). Since both the subject and predicate can take on two
values in this problem, αSubject and αPredicate are both 2, and λ is no more than 1

4 .
The probability of a Frame f given Construction k is the product of the

probability of its Features given k,

P( f |k) = P( fSubject|k)P( fPredicate|k). (22)

This formula holds assuming that the Features are independent, as in A&S.
The probability of a Construction k given a Frame f may now be computed

with Bayes’s formula,

P(k| f ) ∝ P(k)P( f |k). (23)

When a new Sentence arrives consisting of a verb v and a Frame f , it is added
to the Construction k such that P(k| f ) is maximum, including the possibility of
a new, empty Construction. The count on the link from the LexicalEntry for
v to k is then incremented.

The expectation is that the algorithm will discover Constructions represent-
ing raising verbs and control verbs, and counts on the links will indicate which verbs
belong to which class.

The algorithm was fed a sequence of random sentences distributed according to the
proportions found in the Switchboard corpus. The outcome is very consistent: It cre-
ates four Constructions, each of which contains exactly one of the four possible
Frames, and the counts for how many times each verb is linked to one of these four
Constructions is just number of times it appears in that one Frame. So despite
the probabilistic framework, the algorithm ends up essentially reproducing Tables 4,
5, and 6.

If the parameters αSubject, αPredicate, and λ are made larger than what is spec-
ified in A&S, it is possible to get the algorithm to make Constructions that
contain all animate or all inanimate Frames discarding predicate eventivity, but even
less information about the verbs can be derived from this output.

In summary, even though the algorithm in A&S seems to be designed for exactly
this kind of problem, it turns out not to work at all.

4.1.3 Hierarchical Bayesian Inference

The method of Perfors et al. (2010), Kemp et al. (2007), which makes use of a hierar-
chical Bayesian model (HBM), can be adapted to the problem of distinguishing raising
and control verbs. Perfors et al. (2010) apply it to the problem of learning which verbs
taking two objects can be used in double object dative constructions (as in John gave
Fred a book) and which ones require a preposition on the second object (as in John
donated a book to the library). Using data from corpora similar to ours, they infer the
usage rates of several verbs in each of these constructions, and simultaneously infer
the learner’s underlying assumptions. The raising-control distinction is different in
that the surface strings for both underlying syntactic trees are the same, so we will
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instead infer how strongly a verb prefers an animate syntactic subject, assuming that
verbs with a very strong preference use control syntax.

For the raising and control problem, the setup is as follows, based on Model L3 of
Perfors et al. (2010). For each verb v, the unknown proportion of sentences in general
speech in which it is used with an animate subject is Av . The number of animate sub-
jects in a sample of nv sentences with that verb is therefore a random number with the
binomial distribution with parameters Av and nv . We assume that Av lies somewhere
on a scale between very selective (Av = 1) and flexible (Av ≈ 0.5). We represent that
selectivity with a number λv between 0, meaning completely flexible, and 1, meaning
highly selective. Since each λv is an unknown number between 0 and 1, we give them
a beta distribution with parameters γ1 and γ2 as priors. We hypothesize that flexible
verbs occur with animate subjects at unknown rate β. For each verb

Av = λv + (1 − λv)β.

Since β is an unknown number between 0 and 1, we assume that it has a beta distri-
bution, with parameters φ1 and φ2. The hyperparameters γ1, γ2, φ1, and φ2 are also
unknown but are probably not large, so for their prior, we model them as coming from
an exponential distribution with parameter 1. Given such a probability model, Bayes’s
formula can estimate the distribution of the unknowns conditioned on data.

For each corpus, the complete set of data counts for all verbs is analyzed together.
The posteriors of the various unknowns have no exact symbolic solution. Instead, deter-
mining the posterior distribution requires using a Markov Chain Monte Carlo (MCMC)
method to approximately integrate over the unknown parameters. Mitchener used a
program called JAGS, available from http://mcmc-jags.sourceforge.net, to perform
the calculation.

The JAGS computation yields an approximate posterior density for each λv , indicat-
ing the probability that λv takes on each possible value between 0 and 1, conditioned
on the data. Sorting verbs by λv should group them into the three classes. Figure 4
displays the verbs in order of the means of these posterior densities. As in Sect. 4.1.1,
one can estimate the posterior probability that λv1 < λv2 by counting how many
times a sample of λv1 is less than a sample of λv2 , and computing the fraction of such
comparisons out of the total number of comparisons. These estimates are shown in
Fig. 5.

For the Switchboard data, the model is very confident that the control verbs are
highly selective. Except for begin and start, for which there is less data, all the verbs
are ordered correctly. Even the troublesome have is correctly placed. However, there
is much more uncertainty with most of the raising verbs. The margin between have
and try is very slim. For the CHILDES data, the order of going, need, and used is
scrambled and uncertain. The verbs love and begin are also distinctly out of place, but
this is a less serious problem because there is little data for those verbs.

The advantage of having a hierarchy of unknowns is that the inference process can
estimate assumptions that lie several layers under the data [called overhypotheses in
Perfors et al. (2010), Kemp et al. (2007) and hyperparameters in Gelman et al. (2004)].
For both corpora, the values of γ1 and γ2 are determined with high confidence (stan-
dard deviation on the order of 10−17). These determine the distribution of a typical
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Fig. 4 Results of running hierarchical Bayesian inference for verb selectivity for animate subjects; Switch-
board on the left, CHILDES on the right. Each verb v is centered at the posterior mean of λv . Uncertainty
bars extend one standard deviation left and right of the mean

Fig. 5 Verb comparisons:
v1 < v2 indicates that the
posterior mean of λv1 is less
than that of λv2 . The ! means
the ordering is correct,
and × means incorrect. The
number indicates the posterior
probability P(λv1 < λv2 |data).
The left table is from the
Switchboard data, and the right
table is from the CHILDES data

λv when the verb is unknown (see Fig. 6). The peaks at the endpoints are consistent
with the intuition that verbs are typically either selective or flexible. The posterior
distribution of β, shown in Fig. 7, is determined by φ1 and φ2, which are much more
uncertain (standard deviations of 0.9). Since β’s distribution is so spread out, the data
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Fig. 6 Posterior density for λv :
a beta distribution using the
parameters γ1 = 0.521858 and
γ2 = 0.14353, means of the
posteriors inferred from the
Switchboard data
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Fig. 7 Posterior density for β: a
beta distribution using the
parameters φ1 = 0.956321 and
φ2 = 1.30087, means of the
posteriors inferred from the
Switchboard data
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suggests that there is no typical value of β for a random flexible verb, that is, flexible
verbs occur with animate subjects at a wide variety of rates.

It is possible to perform the same calculation on each verb’s selectivity for even-
tive predicates, but the results are not as good. The Switchboard data yields a mostly
correct ordering of the verbs, but with a very narrow range of λ. The CHILDES data
yields a rather scrambled ordering of the verbs.

Overall, this model gives very good results on the Switchboard data, but not as
good results on the CHILDES data. Furthermore, even on the Switchboard data, the
margin between control verbs and ambiguous verbs is very slim.

The MCMC calculation performed here by JAGS is appropriate for a digital com-
puter, but it is unlikely that neural networks use this algorithm. However, there are
other ways of implementing the same Bayesian calculation. For example, one could
represent posterior densities directly, perhaps as polynomial splines or spike rates,
and update them as each new data point arrives. Recent studies have found evidence
that neurons can encode probabilities in their spike patterns, and that their natural
integration ability might be performing Bayesian calculations (Deneve 2008a,b). So
it appears that HBMs such as this one might indeed be implemented more or less
directly by the brain, but this is an area of active research.
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4.2 Saturating Accumulator

4.2.1 Motivation

In a final attempt to demonstrate that this verb classification problem can be solved
using simple calculations that are neurologically plausible, we now formulate a new on-
line accumulator algorithm based on reformulating and improving the linear reward-
penalty learning model.

Consider a learning device receiving a sequence of sample sentences using a partic-
ular verb in one of the four semantic frames. It needs to have a state that can settle into
equilibria representing the extremes of purely raising and purely control, but also into
intermediate equilibria for ambiguous verbs. The state should change with a balance
of skepticism and the ability to saturate. Skepticism means that if an isolated sample
sentence comes along that contradicts the current state of the register, then it might
be noise and should be ignored. Saturation means that when a sample sentence comes
along that reinforces the current state of the register, then the state should remain nearly
the same. However, if several sample sentences are given that contradict the current
state, then it should change. Such a device might be implemented by a small neural
network in which the state is represented by how many of a handful of excitatory
neurons are connected to an output neuron.

The widely-studied linear-reward-penalty (LRP) algorithm (Yang 2002) has several
of these properties. The algorithm maintains a value x between 0 and 1, and changes
x in response to a sequence of signals that it should move left or right. For a move to
the left, the new value is ax , and for a move to the right, the new value is ax + (1−a),
where a is a positive constant that controls the step size. Given a substantial amount
of data in one of the directions, LRP approaches saturation: When x is close to 0 or 1,
further steps in that direction do not change its state significantly; that is, LRP ignores
surplus data that merely reinforces its current knowledge. Unfortunately, it takes the
biggest step to the left when its state is close to 1 and it takes the biggest step to the
right when its state is close to 0. Thus, it fluctuates strongly in the presence of noise.
Although it can converge to 0 or 1, it has no intermediate stable equilibrium. This
property makes it unsuitable for representing ambiguous verbs, which neither require
nor forbid a semantic subject and lie in a gray area.

One variant, LRPB (linear-reward-penalty-batch), adds a batch counter so that the
algorithm takes a step only when several items indicating one direction have been pro-
cessed (Yang 2002). LRPB is skeptical about taking steps in directions inconsistent
with the information it has seen so far. We sought but were not able to find parameters
for LRP or LRPB that could accept a sequence of frames and reliably indicate that the
verb preferred, accepted, or dispreferred that frame. We developed a new saturating
accumulator algorithm as a way to adapt LRP so as to have the skepticism of LRPB
and have intermediate equilibrium states suitable for representing ambiguous verbs.

The saturating accumulator algorithm is also designed to mimic the gradual learn-
ing process observed by Becker (2006). When learning a verb, the initial state of
the particles is neutral, allowing all types of sentences, and only with a significant
amount of data do some types become strongly preferred or dispreferred. This paral-
lels the tendency of young children to accept control verbs in syntactic contexts that are
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appropriate only for raising syntax, and gradually learn the proper usage as they acquire
the adult grammar.

4.2.2 Mathematical Details

Each verb is represented by a system of four particles, one for each semantic frame.
Each particle is located between −1 and 1, and the overall system is represented by a
position vector x(t) = (xAE(t), xAS(t), xIE(t), xIS(t)). A positive value of one of the
x variables indicates a preference for the corresponding frame, and a negative number
indicates an aversion. A particle at location x experiences a force due to an ambient
field with potential v(x) = − cos(5πx). The overall potential on the particle system
is

V (x) = v(xAE) + v(xAS) + v(xIE) + v(xIS). (24)

The force on the particle system due to the force field at time t is the vector

Ffield = − grad V (x(t))

For each particle, the potential has 5 wells between −1 and 1. To encourage the
particles to settle down at the bottom of one of these wells, we add friction terms. Each
particle experiences a damping force proportional to its velocity. In vector notation,
these forces are of the form

Ffriction = −β
dx
dt

where the constant β is a parameter to be determined.
Each sample sentence exerts a force as follows. Each semantic frame is associated

with a particular pattern vector:

pAE =
(

1,−1
4
,−1

4
,−1

2

)

pAS =
(

−1
4
, 1,−1

2
,−1

4

)
(25)

pIE =
(

−1
4
,−1

2
, 1,−1

4

)

pIS =
(

−1
2
,−1

4
,−1

4
, 1

)

The pattern pAE for animate eventive sentences comes from setting the AE entry (first
entry) to 1, setting the entries for frames that differ in one aspect (IE and AS) to −1/4,
and setting the entry for the frame that differs in both aspects (IS) to −1/2. The total
of the pattern is 0. The AE particle is given a push toward 1, and the other particles
are given a push toward −1. The other three pattern vectors are constructed similarly.
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When a sentence with frame f arrives at time t0, it creates a force on the particles with
potential

L(x, t, f, t0) =
{

0 if t < t0,
1
2 e−(t−t0)/σ

∥∥x − p f
∥∥2 if t ≥ t0.

(26)

This sentence’s contribution to the potential pushes the particle system toward the
pattern p f . The exponential part causes the force to weaken over time as controlled
by a decay parameter σ . The force at time t generated by sentence i with frame fi
arriving at time ti is given by

Finput = −γ grad L(x(t), t, fi , ti )

where the gradient is taken with respect to the entries of x and the constant γ is a
parameter to be determined.

The overall behavior of the particles is governed by the differential equation

d2x(t)
dt2 = Ffield +

∑

inputs

Finput + Ffriction

= − grad V (x(t)) − γ

(
∑

i

grad L(x(t), t, fi , ti )

)

− β
dx(t)

dt
(27)

The constants γ and β control the relative magnitudes of the forces from input sen-
tences and friction. The sum is over all inputs, where the i th input is a sentence with
frame fi that arrives at time ti .

4.2.3 Results and Interpretation

The accumulator includes three parameters, σ , γ , and β. In addition, the rate of arrival
of input sentences is unknown. However, some trial and error shows that if sample
sentence ti arrives at t = i (a rate of one input per time unit), then the following
parameter values give reasonable results:

σ = 10, γ = 8, β = 8 (28)

With these values, the differential equation (27) may be solved by standard numerical
methods.

As a first test of the algorithm, we pick a verb and feed 100 randomly created
sentences to the algorithm. The semantic frames are generated in proportions match-
ing that verb’s occurrence with animate/inanimate subjects and with eventive/stative
predicates in the CHILDES data. The particle dynamics run out to time t = 110 to
give the system 10 time units to settle after the last input arrives. See Figs. 8, 9 and 10
for time traces of the particle positions for each verb. For each of these pictures, the
particle positions xAE(t), xAS(t), xIE(t), and xIS(t) are plotted as functions of time t .
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Fig. 8 Particle dynamics tests for used using proportions matching the CHILDES corpus

AE

AS

IE

IS

Fig. 9 Particle dynamics tests for need using proportions matching the CHILDES corpus

AE

AS

IE

IS

Fig. 10 Particle dynamics tests for want using proportions matching the CHILDES corpus

The horizontal scale for each trace represents time flowing from 0 to 110. The vertical
scale for each trace is −1 to 1. Next to each trace, the final location of each particle
is shown superimposed on the ambient potential v(x), with x running from −1 on the
left to 1 on the right. The potential diagrams correspond to the right-most points of
the time traces rotated a quarter turn. At the end of the learning process, each particle
settles into one of five wells in the ambient potential. We discretize each particle’s final
state to a row of five squares, one for each well, where the square corresponding to its
rest position is colored black. The four rows are stacked to give the pattern displayed
to the right of each verb’s time traces.

The control verb want shows a very strong preference for animate+eventive in that
xAE remains very high, along with an aversion to inanimate subjects in that xIE and xIS
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Fig. 11 The three most frequently occurring patterns (labeled A, B, and C) and the percentage of trial runs
in which they occur

remain low. The ambiguous verb need shows an intermediate pattern with some pref-
erence for animate+eventive, but less aversion to inanimate+eventive. The raising
verb used shows an even weaker preference for animate+eventive.

The extent to which the accumulator can distinguish the classes is made clearest
by running the algorithm many times on different sets of randomly generated sen-
tences for each verb, and building a histogram of its final states. There are three final
states (labeled A, B, and C) that occur many times when learning the verbs try, want,
need, and going, as shown in Fig. 11. For each combination of corpus and verb, these
patterns occur at characteristic frequencies. The strongly raising verbs seem and tend
do not exhibit these patterns. This observation suggests that the fraction of runs of
the algorithm that end in one of these three patterns might make a suitable index for
classifying verbs.

A vector counting occurrences of these patterns could conceivably be used in place
of the scaling procedure used in clustering algorithms, as it accomplishes essentially
the same thing (see Appendix): It compensates for the fact that some of the verbs
are very common, and certain uses of certain verbs obscure the fact that they can be
used in other ways. It turns out that there is no need to invoke a complex clustering
algorithm on the pattern counts. We define the following index,

H = A + B + max{A, B, C} (29)

where A is the percentage of times the verb causes the algorithm to end up in pattern
A, and likewise for B and C . The A+ B term is included because it is large for control
verbs. The maximum of A, B, and C is included because it is rather low for going and
other control verbs: They can be used in a greater variety of patterns which leads to a
greater variety of final states. The result of ordering most of the verbs listed in Sect. 3
by H is shown in Fig. 12.

For the Switchboard data, most of the verbs occur in the correct order. The excep-
tions are have, and three verbs that are rare in the corpus, continue, start, and begin.
For the CHILDES data, going and like occur out of order, but the other common verbs
are ordered correctly.

5 Discussion and Conclusion

We began with the broad question of how language learners determine the underlying
structure of a string, given that even with knowledge of basic word order of a language,
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Fig. 12 Verbs sorted by the index H ; Switchboard on the left, CHILDES on the right

many sentence strings are potentially compatible with multiple underlying structures.
Our approach relies on the tight coupling of verb category (as categorized in terms of
verbs’ argument-taking properties) and the syntactic structures a verb participates in,
so that categorizing a verb correctly will lead to understanding the syntactic structure
of otherwise ambiguous strings. Focusing on the case of a string that could host either
a raising or a control verb in the matrix verb position (and the category of the matrix
verb determines the structure of the sentence), we argued that the learner cannot sim-
ply resolve the ambiguity of this string with a subset-type strategy. That is, the learner
cannot assume that a novel verb in this string is a control verb, on the supposition that
an incorrect assumption will be defeated by hearing the verb with an expletive subject.

The key reason is that the class of ambiguous verbs (begin, start, need, etc.) occur
in all of the sentential environments that both raising and control verbs do. Thus, there
is no proper subset relation between the constructions raising and control verbs occur
in. Although evidence of a verb’s occurrence with expletive subjects provides useful
information to learners (and learners are certainly expected to use this information),
we have argued that learners additionally rely on semantic cues within the ambiguous
string in a probabilistic manner, in order to distinguish the classes of raising, con-
trol and ambiguous verbs. Based on experimental evidence from adult speakers, we
identified two relevant basic semantic features: animate vs. inanimate subjects, and
eventive vs. stative embedded predicates.

The simple classification strategy of looking at the proportions of a verb’s use in
the four semantic frames fails. Usage rates give an elementary means of classifying
verbs, however, there are no thresholds on the proportions that correctly and robustly
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classify all the data from the corpora. Some verbs are used overwhelmingly with
animate subjects and eventive predicates, and these drown out the fact that the verb
can be used in distinctly raising contexts.

A&S’s Bayesian approach was developed specifically for learning how semantics
maps to syntax, and it can be adapted for classifying raising and control verbs. How-
ever, it turns out not to work at all, and reproduces the counts of frames present in the
data.

A hierarchical Bayesian model, based on Perfors et al. (2010), Kemp et al. (2007)
yielded good though possibly fragile results on the Switchboard data, but had trouble
with the CHILDES data. Overall, this algorithm produced the most promising results
from potentially biologically realistic calculations.

We also developed an on-line saturating accumulator algorithm, based on LRP and
intended to be biologically realistic. Tests of this algorithm reveal that it is capable
of distinguishing different classes of verbs from the frequencies of their use in basic
semantic frames. An index based on the fraction of runs of the algorithm that end in
each of three states sorts verbs from control to raising that correctly orders the most
common such verbs (except for have) in the CHILDES and Switchboard corpora.
However, the thresholds between verb classes are clearly different between the two
corpora. Other disadvantages of this algorithm are that it is complex, and the selec-
tion of parameters is somewhat ad-hoc. Furthermore, it is quite different from the
well-studied algorithms of statistical learning theory, and further study is required.

The overall results are summarized in Table 7. Again, the purpose of this project is
not to choose a “best” algorithm, but to determine if certain information is present in
the primary linguistic data. These algorithms all produce some ordering of the verbs,
and marks in this table indicate whether each one correctly orders a test verb with
respect to several reference verbs when given data from just one corpus. These criteria
were selected for display based on the discussion at the beginning of Sect. 4. The sum-
mary table shows that several of the algorithms tested were able to mostly classify,
cluster, or sort those verbs that are well-represented in the CHILDES and Switchboard
data. This supports the possibility that the primary linguistic data contains statistical
patterns that provide implicit negative evidence, thereby enabling children to deduce
over time that certain verbs cannot be used in certain semantic and syntactic con-
structions. Each of the algorithms had at least some difficulty with the task, which
suggests that subject animacy and predicate eventivity alone provide insufficient data
for correctly learning all aspects of these verbs. However, such information suffices
to give young learners a good start toward deducing the full meanings of these verbs,
which is known to take up to age five or later (Becker 2006).

Importantly, we assume that the learner makes certain assumptions about language
structure prior to experience. For instance, the learner must assume that similar strings
can be associated with divergent underlying structures, and that semantic relationships
need not be local (i.e., the subject of the sentence might be semantically related only
to a predicate in a lower clause, not the immediately string-adjacent verb). In addition,
to derive the semantic properties of these verbs, learners must be biased to assume
that inanimate or expletive subjects are unlikely to be agents (along the lines of Dowty
(1991) or Keenan (1976)), and therefore that verbs that occur with these subjects are
unlikely to assign them a thematic role. These assumptions are necessitated by the
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particular learning problem at hand: the classes of raising, control and ambiguous
verbs could not be distinguished without these assumptions (for instance, on a purely
input-based learning model). However, if these assumptions are in place for learning
this particular set of verb classes, they should in principle be available for learning
other classes of verbs. We hold the view, then, that learners bring these assumptions
about language to bear on the language learning task in general.

All of the algorithms discussed here exhibit divergence between the Switchboard
and CHILDES data: The thresholds between the different classes of verbs are unequal.7

There is therefore evidence that either these particular corpora are unrepresentative
of actual speech, or more likely, that child-directed speech uses generally different
proportions of animate and eventive predicates than adult-directed speech. Such sen-
tence strings could be associated with either raising or control syntax and in that sense
offer less information than the other three semantic frames. If children are discarding
such sentences as uninformative, then the bias in child-directed speech in favor of
them might contribute to the tendency of young children to accept control verbs in
raising constructions: Initially, the child-directed speech they hear contains insuffi-
cient information and they misclassify many verbs. As they age, they hear more adult
conversation, which contains more informative sentence types and should eventually
lead them to learn the proper class for each verb. In future work, the statistical differ-
ences between adult and child directed speech should be studied, including the extent
to which patterns observed in child language acquisition may be attributed to these
differences versus features of the underlying learning algorithm.
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A Some Additional Algorithms

In this appendix, we discuss some additional algorithms that were either clearly less
successful than the ones in the main text, or had a theoretical flaw. We present them
here as further evidence that the basic semantic information we consider is sufficient
to at least begin separating the verbs of interest into the three classes, and that this
classification problem is non-trivial.

A. 1 Perceptron

The perceptron is a simple learning algorithm that is a reasonable starting point for
small classification tasks. It is trained on examples consisting of vectors of numbers,
each labeled to indicate its class. Once trained, it predicts the label for an input vector
by the sign of a linear combination of the vector’s elements. We do not consider it in

7 Also, a perceptron trained on one corpus does not work well on the other; see the Appendix.
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the main body of the paper because the labeled training data it requires is not available
to children. However, it turns out to be successful at the learning task, so we include
it here.

A basic perceptron can only distinguish between two classes, so we use a double
perceptron to deal with the three verb classes of interest. Each verb will be classi-
fied as either +raising or −raising and either +control or −control. A control verb
should be labeled −raising and +control. A raising verb should be labeled +raising
and −control. An ambiguous verb should be labeled +raising and +control. None of
the verbs in this study should be labeled −raising and −control.

The input consists of vectors of counts of how many times each verb appears in
each semantic frame {AE, AS, IE, IS} in each corpus. For each verb v, let nv be its
count vector, nv = (nv,AE, nv,AS, nv,IE, nv,IS), let yv,R be 1 if the verb is raising or
ambiguous and −1 if not, and let yv,C be 1 if the verb is control or ambiguous and −1
if not.

The training process finds weightsλt, f for each semantic frame f ∈{AE, AS, IE, IS}
and each feature t ∈ {R, C}, and biases βt for each feature. The perceptron consists
of the resulting classifier functions

PR(n) = n · λR + βR

PC(n) = n · λC + βC

which predict whether the verb with counts n can be used with each kind of syntax.
The sign of PR(n) should be the correct label ±raising for the verb, and the sign of
PC(n) should be the correct label ±control. The magnitudes of PR and PC indicate
confidence of the label. Specifically, they are proportional to the geometric distance
from the count vector to a hyperplane separating the + and − classes for each feature.
The weights and biases are chosen to minimize

S =
∑

v∈T

exp
(
−yv,R PR(nv)

)
+ exp

(
−yv,C PC(nv)

)
(30)

subject to the constraint that
∑

f λR, f = ∑
f λC, f = 1, where T is a training set of

verbs.
The perceptron was first trained on the Switchboard data, and it correctly labels all

the training data. Results are shown in Figs. 13 and 14. The horizontal position of each
verb in the left-hand pictures is PR(n), which indicates how certain the perceptron is
that each verb is +raising, and similarly for +control in the right-hand pictures. Most
of the verbs are placed relatively close to the decision boundary, so a second picture
with a stretched horizontal scale shows those verbs more clearly.

Although this perceptron correctly labels the training data, it mislabels most of the
CHILDES data, specifically used, need, going, start, and begin. The problem seems
to be variation in the overall sample size of each verb. For the verb going, the sample
size is much larger in CHILDES than in Switchboard. In contrast, the sample size for
other verbs is smaller in CHILDES than in Switchboard. It is therefore not surprising

123



Computational Models of Learning the Raising-Control Distinction

like

hate

love

choose

want

try

continue

used

happen

begin

needneed

havehave

going stst

goinggoing

start

tend

seem

00 50 100 150

want

have

like

try

hate

love

continue

choose

begin

need

start

going st

tend

going

happen

used

seem

10 000 5000 0 5000

like

hate

love

choose

want

try

continue

usedused

happen

begin

need

have

going st

going

20 10 00 10 20

hate

love

continue

choosechoose

beginbegin

need

start

going st

tend

going

happen

600 400 200 00 200 400

Fig. 13 Results of training and running the perceptron on the Switchboard data to classify verbs as ±raising
on the left, ±control on the right. Horizontal placement of verb v is by PR(nv) on the left and PC(nv) on
the right. The lower pictures show the same data with zoomed horizontal axes. The vertical reference line
is at 0. In each picture, verbs to the right of 0 are labeled +feature

that this classifier has trouble with the CHILDES data. The linear perceptron has the
property that nonzero bias terms βR and βC introduce dependence on the sample size.
For example, when this perceptron is tested on data formed by tripling all the counts
from the same Switchboard data it was trained on, it mislabels try, need, start, and
begin.

Training the perceptron on the CHILDES data yields similarly mixed results, as
shown in Fig. 14. The resulting perceptron correctly classifies all the CHILDES verbs
on which it was trained except for mislabeling start and begin as −raising. Importantly,
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Fig. 14 Results of training and running the perceptron on the CHILDES data: ±raising on the left, and
±control on the right. Horizontal placement of verb v is by PR(nv) on the left and PC(nv) on the right.
The vertical reference line is at 0. In each picture, verbs to the right of 0 are labeled +feature

it correctly labels the troublesome going. However, when tested on the Switchboard
data, it mislabels going and used as +control, and need, begin, and start as −raising.

A. 2 Spectral Clustering

Spectral clustering is a family of techniques that use singular value decomposition
(SVD), also known as principal component analysis (PCA), to split the columns of a
matrix into sets of similar items. The singular values of a matrix are related to the spec-
trum of a linear operator, hence the name. Spectral clustering and related algorithms
are well known in the data mining and computational linguistics communities.

In Boley (1998), columns are interpreted as documents, rows are interpreted as
terms, entries of the matrix are counts of how often each term appears in each docu-
ment, and the goal is to cluster the documents. Adapting Boley (1998) to the problem
of clustering verbs, consider a matrix K with one column for each verb and one row
for each semantic frame, where the (i, j)th entry is the number of times verb j occurs
in frame i . A scaling procedure is applied to each column of K so that its Euclidean
norm is 1, yielding a matrix M. The centroid w is defined as the average of columns
of M, and the matrix A is defined by subtracting w from each column of M.

The intuition behind these transformations is that K represents verbs directly as
points in four dimensional space, M is their projection onto a unit sphere, and A is
the result of re-centering the cloud of points to the origin. The scaling procedure is
a way of compensating for the fact that some verbs are more common in the corpus
than others, but is geometrically different from using usage frequencies derived by
dividing each column by its sum.

The next step is to apply the SVD to the matrix A, which determines matrices U, V,
and W such that A = UWVT , U and V are orthogonal matrices, and W is a diagonal
matrix (whose diagonal entries are in decreasing order) with additional columns of
zeros. This decomposition constructs rotated coordinate axes (the columns of U) that
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match the ovoid structure of the point cloud A. The first column of U picks out the
principal direction, in which the point cloud is widest. The matrix V gives new coordi-
nates for each point with respect to these rotated axes. The meaning of a unit length in
these coordinates depends on the magnitudes of entries of K and the scaling function.
Clusters are formed by looking at the first column of V, and using 0 or some other
threshold to divide the point cloud into left and right sub-clouds. Those can then be
further subdivided by recursively applying the algorithm, or by using other columns
of V.

Clustering algorithms generally require some tweaking to get the best results. In
this case, given all the Switchboard data, spectral clustering partially separates the
verbs with fewer sentences, apparently ignoring their preferences for the different
semantic frames. This disturbs the separation of the other verbs. Better results are
obtained when the data contains only verbs with at least 30 occurrences. Furthermore,
seem is widely separated from the other verbs, so it makes sense to place it in a cluster
by itself and recursively cluster the remaining verbs.

Applying this calculation yields Fig. 15. The raising and control verbs are distrib-
uted along the principal direction with control verbs preferring one end and raising
verbs preferring the other. Neither corpus yields a completely correct ordering, and no
threshold perfectly separates the three classes. The CHILDES data yields an essen-
tially scrambled order. Oddly, when seem is included with the Switchboard data, the
raising verb tend is placed at the far right, which is completely wrong.

There are a variety of other spectral clustering methods. The main differences are
in the scaling procedure and in the process for further subdividing the clusters. The
different scaling procedures are attempts to compensate for the fact that some doc-
uments are longer than others, or in the language of the current problem, that some
verbs are more common than others. Finding the best scaling for a particular problem
is largely a matter of trial and error. To give an example of another scaling procedure,
Boley (1998) mentions a more complex one called TFIDF, however, this scaling gives
equally disappointing results on this problem.

Thus, although spectral clustering partially separates the verbs, it is not able to
identify the three classes particularly well.

A. 3 Non-negative Matrix Factorization and Clustering

Non-negative matrix factorization (NMF) is a family of techniques developed to
decompose collections of vectors representing objects into linear combinations of
features in such a way that the features have all entries zero or positive, and coordi-
nates of the original vectors with respect to the features are all zero or positive (Lee
and Seung 1999; Berry et al. 2007; Paatero and Tapper 1994). NMF also allows for
soft clustering, in which the new coordinates of an item from a collection can be
interpreted as the confidence with which that item can be assigned to each cluster.

Unlike SVD, there is no unique or canonical NMF. Some NMF algorithms are based
on random numbers and may therefore yield different results on every run. Many that
work well in practice are not well understood theoretically.
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Fig. 15 Results of spectral clustering with unit scaling, excluding seem and verbs with fewer than 30
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Fig. 16 Results of NMF clustering, excluding seem and verbs with fewer than 30 occurrences; Switchboard
on the left, CHILDES on the right. Verbs are placed based on their scaled attachment strength ŵi, j to the
most correct cluster j

Of the many NMF algorithms under active research in the data mining community,
we will focus on one called alternating least squares (ALS), which takes an m × n
matrix A and a rank k, and attempts to find an m × k matrix W and a k × n matrix
H, both with all entries non-negative, such that the Frobenius norm of A − WH is
minimized. The Frobenius norm of a matrix is the square root of the sum of squares
of its entries. The algorithm proceeds from random initial W and H as follows:

H1 =
(

WT W
)−1 (

WT A
)

H2 = H1 with negative entries replaced by 0

W1
T =

(
H2H2

T
)−1 (

H2AT
)

(31)

W2 = W1 with negative entries replaced by 0

replace W by W2 and H by H2 and repeat
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The iteration continues until W and H converge.
If the ALS algorithm is run on a matrix whose (i, j)th entry is the number of times

verb i occurs in frame j (which is the transpose of K from Sect. 5) then row i of W
gives non-negative numbers reflecting the confidence with which verb i is included in
each of the k clusters.

As with spectral clustering, the best results are obtained by restricting the data to
verbs with at least 30 occurrences, and removing seem since it clearly stands apart. The
computation uses rank k = 3, considers 50 random samples from the ALS algorithm,
and picks from among those the factorization whose error has the least Frobenius
norm. Each row wi = (wi,1, wi,2, wi,3) of W is interpreted as listing the strengths
with which verb i is attached to each of the three clusters. These strengths are scaled
so as to add up to 1, yielding

ŵi = wi

wi,1 + wi,2 + wi,3

The most informative cluster j was selected for display: Each verb is placed hori-
zontally according to the scaled strength ŵi, j of its attachment to this cluster, and
its uncertainty bar is drawn with length inversely proportional to its total unscaled
strength wi,1 +wi,2 +wi,3. The uncertainty bars are drawn in a different style to clar-
ify that they are not standard deviations, and are not necessarily comparable between
corpora. The results are displayed in Fig. 16.

The verbs from Switchboard are correctly ordered, although need is placed danger-
ously close to going. The CHILDES data yields a distinctly scrambled order. Restoring
the uncommon verbs and seem degrades the order substantially for both corpora.

Applying the unit or TFIDF scaling procedure of Sect. A.2 before running the ALS
loop also does not produce better results.

We therefore conclude that soft clustering via ALS does not produce a completely
satisfactory means of separating the three classes of verbs.
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