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GRAMMARS LEAK: MODELING HOW PHONOTACTIC GENERALIZATIONS
INTERACT WITHIN THE GRAMMAR

ANDREW MARTIN

RIKEN Brain Science Institute
I present evidence from Navajo and English that weaker, gradient versions of morpheme-

internal phonotactic constraints, such as the ban on geminate consonants in English, hold even
across prosodic word boundaries. I argue that these lexical biases are the result of a MAXIMUM EN-
TROPY phonotactic learning algorithm that maximizes the probability of the learning data, but that
also contains a smoothing term that penalizes complex grammars. When this learner attempts to
construct a grammar in which some constraints are blind to morphological structure, it underpre-
dicts the frequency of compounds that violate a morpheme-internal phonotactic. I further show how,
over time, this learning bias could plausibly lead to the lexical biases seen in Navajo and English.*
Keywords: phonotactic learning, maximum entropy, morphology, language change, Navajo,
English

1. INTRODUCTION. A popular explanation for language change attributes linguistic dif-
ferences across generations to MISLEARNING, that is, failure on the part of one generation
to learn exactly the same grammar as that used by the previous generation (e.g.
Kiparsky 1968, Lightfoot 1979, 1991, 1999, Clark & Roberts 1993, Hale 1998, Blevins
2004, Hudson Kam & Newport 2005, 2009). In this article I apply this idea to explain,
not diachronic change per se, but statistical biases present in the lexicons of Navajo and
English. In these languages, compounds license violations of phonotactic constraints
that hold within morphemes—for example, in Navajo, multiple sibilants within a root
must agree in anteriority, but compounds that combine two roots with disagreeing sibi-
lants are permitted. Likewise, in English, compounds may contain geminate conso-
nants, which are illegal within morphemes. I show that in both languages, compounds
that create violations of morpheme-internal generalizations, although legal, are statisti-
cally underrepresented.

I argue that these lexical biases are the result of a bias in the phonotactic learning
mechanism. Learners of Navajo and English construct a probabilistic grammar on the
basis of the input they are exposed to, but the absence of monomorphemes that violate
a given phonotactic constraint causes them to acquire grammars that underpredict the
frequency of compounds that violate the same constraint, in what might be described as
a ‘leakage’1 of a phonotactic generalization from the tautomorphemic domain to the
heteromorphemic. Such compounds effectively sound worse to learners than they
should, given their frequency. When these same learners go on to form compounds that
may in turn become part of the language, this bias will cause them to prefer compounds
that obey the constraint, resulting eventually in a lexicon in which compounds that vio-
late the constraint are underrepresented.
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My model of this mislearning process consists of two main components. The first is
a distinction between two types of phonotactic constraint: STRUCTURE-SENSITIVE con-
straints, which take into account morphological structure, and STRUCTURE-BLIND con-
straints, which ignore morphological structure. Structure-sensitive constraints, which
encode generalizations such as ‘geminates are not permitted within morphemes’, are
necessary in order to correctly model the phonotactic differences between monomor-
phemes and compounds. Structure-blind constraints, by contrast, encode generaliza-
tions such as ‘geminates are not permitted’. If such a constraint were included in a
probabilistic grammar, it could model the relative rarity of geminates in English words
overall. Such a grammar would, however, fail to capture the reason that geminates are
rare, namely their restriction to a specific context. If in addition to structure-sensitive
constraints, learners are also equipped with structure-blind constraints (possibly repre-
senting a holdover from very early phonotactic learning), the resulting grammar may be
biased against compounds that violate stem-internal generalizations, even when there is
no bias in the input data.

The conditions under which this leakage can occur are formally described by the sec-
ond component of the model, a MAXIMUM ENTROPY (MaxEnt) learning algorithm that as-
signs probabilities to the space of possible words by constructing a grammar of
weighted phonotactic constraints. The algorithm incorporates the idea, prevalent in the
machine learning literature, that learning probabilistic generalizations involves a trade-
off between accuracy and generality. One consequence of this trade-off is that under
certain conditions learners sacrifice accuracy for generality, choosing a grammar that
does not model the training data perfectly, but is more general than grammars that are
more consistent with the data. Combined with the structure-blind constraints described
above, this learning algorithm can account for the mislearning in Navajo and English.

In addition to the learning model, I also propose a model of how newly formed words
compete with existing words to be used by speakers, and thereby become part of the
language. Assuming that the phonotactic grammar constructed by the learning algo-
rithm influences the creation or adoption of novel words, the model predicts that over
several generations, the lexicon used by a speech community will acquire a bias against
compounds violating a stem-internal phonotactic constraint, even if the initial lexicon
exhibits no such bias. I also show that, assuming that compound formation is influenced
by both semantic and phonological factors, the lexical underrepresentation will remain
stable across generations—despite certain compound types being dispreferred by
speakers, they never completely die out.

The remainder of the article can be broadly divided into three parts. First, I describe
the Navajo and English data respectively. I then explicate the maximum entropy learn-
ing algorithm and show that, when given certain constraints, the algorithm consistently
underpredicts the frequency of compounds that violate a tautomorphemic constraint.
Finally, I use a simulation of multigenerational learning to demonstrate that the bias in-
troduced by the learning model can result in a stable lexical pattern in which the dispre-
ferred compounds are underrepresented.

2. NAVAJO.
2.1. NAVAJO SIBILANT HARMONY. All sibilants in a Navajo root must agree in their

specification for the [anterior] feature; thus, a single root can only contain sibilants that
are either all anterior or all posterior (Sapir & Hoijer 1967, Kari 1976, McDonough
1991, 2003, Fountain 1998). The two sets of consonants are summarized in Table 1.
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Thus, for example, roots like /tʃ’oʒ/ ‘worm’ or /ts’ózí/ ‘slender’ are attested, but */soʃ/
is not a possible Navajo root.

This is not just a cooccurrence restriction on roots—sibilants in affixes must also
agree in anteriority with sibilants in the root, resulting in alternations in sibilant-bearing
affixes (Sapir & Hoijer 1967). The examples in 1 demonstrate the alternations in pre-
fixed forms (sibilants are in bold).

(1) Examples of sibilant harmony (Fountain 1998)2

a. /ji-s-lééʒ/ → [ji-ʃ-tɬééʒ] ‘it was painted’
b. /ji-s-tiz/ → [ji-s-tiz] ‘it was spun’

Typically, assimilation proceeds from the root to the prefixes.
In compounds, however, which contain multiple roots, sibilant harmony does not

necessarily apply, meaning that such words can contain disagreeing sibilants.3

(2) Exceptions to sibilant harmony in compounds (Young & Morgan 1987)
a. tʃéí- ts’iin ‘rib cage’

heart bone
b. tshé- tʃééʔ ‘amber’

stone resin
In the next section, I show that compounds in Navajo, although they may violate sibi-
lant harmony, tend to combine roots whose sibilants already agree.

2.2. NAVAJO COMPOUNDS. The data described here is taken from the Young and Mor-
gan (1987) dictionary of Navajo. From this dictionary a list of all compounds contain-
ing exactly two sibilants, each sibilant in a different root, was compiled, a total of 140
words—this represents all of the words that could potentially violate sibilant harmony.
Because sibilant cooccurrence in compounds is sensitive to distance (Sapir & Hoijer
1967, Martin 2004), the data discussed here is limited to the subset of these words in
which the sibilants are in adjacent syllables (there were no cases in which sibilants were
in the same syllable, but different roots), a total of ninety-seven words. Representative
examples are given in 3.
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2 Navajo examples are given in IPA, with acute accents marking high tones (low tones are unmarked).
3 A handful of compounds do undergo sibilant harmony, such as tsaa-nééz ‘mule’, from /tʃaa/ ‘ear’ + /nééz/

‘long’ (Sapir & Hoijer 1967). I suspect that these words undergo harmony because they have been stored as
single units by speakers due to their semantic opacity, but I have included them in the analysis in their under-
lying (i.e. disagreeing) form, on the assumption that the sibilants disagreed when the compound was origi-
nally formed. This is the most conservative approach, since including these words in their harmonized forms
would increase the sibilant harmony rate, strengthening the bias I describe in the remainder of the section.

[+anterior] [–anterior]
s ʃ
z ʒ
tsh tʃh
ts tʃ
ts’ tʃ’

TABLE 1. Navajo sibilant classes.



(3) Examples of compounds with two sibilants in adjacent syllables (one per
root)
a. tshee- ts’iin ‘tailbone’

tail bone
b. k’iiʃ- ʒin- ii ‘blue beech’

alder black one
c. tshé- zéí ‘gravel’

rock crumbs
Of these ninety-seven words, twenty-nine (29.9%) contain disagreeing sibilants, vio-

lating the stem-internal phonotactic. In order to determine whether this agreement rate
significantly differs from chance, I used a Monte Carlo procedure (Kessler 2001) to ap-
proximate the distribution of the expected rate. The procedure is described in detail in
the following section.

2.3. THE MONTE CARLO TEST FOR SIGNIFICANCE. The Monte Carlo test is performed by
randomly recombining the roots that make up the set of compounds in question. The
initial root in each compound is combined with another root, pseudo-randomly selected
from the same list of compounds (position in the compound is fixed, so that initial roots
always remain initial, and final roots remain final). After each such shuffling, the num-
ber of disagreeing sibilant pairs under the new permutation is calculated, and the entire
process may be repeated as many times as necessary. If the process is repeated suffi-
ciently many times, the result will be a reliable estimate not only of the average ex-
pected number of disagreeing sibilants that would occur by chance, but also of the
entire distribution of this expected value. With this information, we can determine how
likely the actual, attested value is.

The histogram in Figure 1 presents the results of the Monte Carlo procedure on the
entire list of Navajo compounds that contain exactly two sibilants in different roots. The
x-axis represents the number of sibilant pairs (out of a total of ninety-seven) in which
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FIGURE 1. Results of Monte Carlo procedure on Navajo compounds.
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the sibilants disagreed in anteriority, and the y-axis represents the number of iterations
(out of 10,000 total)4 in which a given disagreement rate occurred.

The histogram shows that the values generated in the Monte Carlo test are approxi-
mately normally distributed around the mean value of 46.0. The actual number of dis-
agreeing sibilants in the Young and Morgan data, twenty-nine pairs, is extremely
unlikely to have arisen by chance—a value this low occurred only three times out of the
10,000 iterations of the Monte Carlo test. From this we can conclude that the actual dis-
agreement rate is significantly (p < 0.001) below chance.

In the remainder of this article, Monte Carlo results are summarized by omitting the
histogram and simply reporting the 95% confidence interval and the actual value, as in
the chart in Figure 2 (which represents the same test reported in Fig. 1). In this and suc-
ceeding charts, the triangle indicates the actual value found in the data (in this case, the
actual number of Navajo compounds with disagreeing sibilants), while the horizontal
bar represents the 95% confidence interval derived from the Monte Carlo test.
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FIGURE 2. Comparing attested Navajo sibilant pairs to Monte Carlo results.

The results of this test show that Navajo compounds tend to obey the sibilant har-
mony constraint, even though violations of the constraint are permitted, and that this
tendency is unlikely to be due to chance. In the next section I present a parallel case
from English.

3. ENGLISH. Geminate consonants in English are permitted only across morpheme
boundaries (Hammond 1999, Ladefoged 2001, Kaye 2005). Words like unknown,
solely, and bookcase are typically pronounced with geminates that have been created by
combining morphemes that end and begin with the same consonant. These morpholog-
ically created geminates are often called ‘fake geminates’ (Hayes 1986) to differentiate
them from morpheme-internal long consonants—the two types of geminate frequently
exhibit different phonological behavior (Payne 2005, Ridouane 2007, Oh & Redford
2009, Pycha 2010). Minimal pairs differing only in consonant length, as in the com-
pounds carpool and carp pool, may be found in multimorphemic words; in monomor-
phemic words, however, no such minimal pairs exist—the hypothetical word [hæppi],
which would form a minimal pair with existing happy [hæpi], is not a possible mono-
morpheme of English. In the following sections, I show that geminate consonants cre-
ated by compounding are statistically underrepresented in the lexicon of English.

In order to determine the number of compounds in English that contain geminates, I
extracted all of the words marked as noun-noun compounds from the lemmatized version
of the CELEX database (Baayen et al. 1993), a total of 4,758 words. Of these, 141 words
(3.0%) contain fake geminates—for example, bus stop, hat trick, penknife, bookkeeper.
The results of a Monte Carlo test on the CELEX compounds are shown in Figure 3.



As the chart makes clear, the number of geminates found in the actual compounds, 141
(3.0%), is significantly lower than expected (p < 0.001).

Before accepting that this result tells us something about the compound-formation be-
havior of English speakers, however, a potential confound must be dealt with. The com-
pounds listed in CELEX were collected by applying an automatic parser to a large text
corpus. This raises the possibility that some compounds spelled as separate words (e.g.
sand dune), might have been misidentified by the parser as separate words. This could
bias the results of the Monte Carlo test because of the fact that compounds with gemi-
nates are more likely to be spelled with a hyphen or space between the members than as
a single word (Sepp 2006). The underrepresentation of geminates could thus be an arti-
fact of the parsing process, combined with people’s tendency to spell compounds ac-
cording to their junctural phonotactics. The effects of the spelling bias are shown in
Figure 4, which makes it clear that the underrepresentation is limited to those compounds
that are spelled as a single word (this chart depicts the same set of words from CELEX
described in Fig. 3, divided according to how they are spelled in the CELEX entry).5
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5 Although the same compound can be spelled different ways by different writers, each compound is listed
with a single spelling in CELEX. It is unclear how this spelling was determined. My intuition is that nearly all
of the words spelled with hyphens in CELEX would be most often spelled with a space by native speakers
(e.g. space-vehicle, rabbit-hutch, slot-machine), a suspicion that is strengthened by the nearly indistinguish-
able behavior of hyphenated and spaced compounds in Fig. 4. This accords with Sepp’s findings that fewer
than 5% of the noun-noun compounds in her corpus are spelled with a hyphen more often than either with a
space or as one word (many of those are either dvandva compounds (Clinton-Gore, hip-hop), or involve ab-
breviations (op-ed)).
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FIGURE 3. Geminates are underrepresented in English compounds.
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FIGURE 4. Compound spelling is biased by presence of geminate.

To show that the geminate underrepresentation in English is not solely an artifact of
the spelling bias, I ran the same Monte Carlo test on the list of compounds compiled by
Sepp (2006) from a fourteen-million-word corpus of written American English (see
Sepp 2006 for details of the construction of this corpus). Sepp used a part-of-speech
tagger and computational parser to extract all potential noun-noun compounds (includ-
ing any sequence of nouns separated by a space), and then further filtered the list by
hand, removing all noncompounds. Because every compound was checked by hand, the
likelihood of undercounting compounds spelled with a space is lower than it would be
if all parsing were done by algorithm.

Of the 3,222 noun-noun compounds that occur in Sepp’s corpus (including both
those spelled as single and as separate words), 118 (3.6%) contain false geminates. The



results of a Monte Carlo test on these compounds, shown in Figure 5, demonstrate that,
just as with the CELEX compounds, the actual number of geminates is significantly
lower (p < 0.01) than the mean expected number of 152.1 (4.7%).
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FIGURE 5. Geminates are underrepresented in compounds in Sepp corpus.

Thus, even when the risk of a counting bias is minimized by careful hand-checking,
geminates are still underrepresented in compounds overall. This suggests that any or-
thographic bias that may exist is in addition to a general bias against forming com-
pounds that create geminates.

4. ANALYSIS. The phonotactics in English and Navajo discussed above obey the same
generalization: some phonotactic constraint holds within morphemes, and a weaker
version of the same constraint holds across morpheme boundaries. Morpheme bound-
aries, in other words, license violations of phonotactic constraints, but only up to a
point. Tautomorphemic and heteromorphemic phonotactic generalizations are thus in
some sense entangled rather than computed independently. This property of the phono-
tactic grammar could simply be stipulated to be part of universal grammar; I argue,
however, that this entanglement follows from more general constraints on the human
phonotactic learning mechanism. More specifically, I describe a learning algorithm
that, when trained on data that exhibits a tautomorphemic phonotactic restriction, can-
not help but learn a grammar that encodes a weaker version of the same restriction
across morpheme boundaries.

The account that I present of the facts in Navajo and English is thus a theory of lin-
guistic competence. Another possible account of the same facts might appeal instead to
universal performance factors. On this view, the tautomorphemic and heteromorphemic
phonotactics could both result from the same phonetic pressure. Imagine, for example,
that sequences of agreeing sibilants are easier to articulate (or process) than disagreeing
sequences. This fact of human physiology could have become phonologized within
Navajo roots, resulting in a categorical sibilant harmony constraint, and could also exert
a pressure on compound formation, resulting in the underrepresentation of disagreeing
compounds. Under this hypothesis, the tautomorphemic constraint does not cause the
heteromorphemic constraint; rather, they are both caused by the same underlying factor.
A learning bias would thus not need to be invoked to explain the Navajo facts.

Such a performance-only theory, however, runs into empirical problems regarding
the universality of these performance factors. If it is true that disagreeing sibilant se-
quences are universally more difficult than agreeing sequences, and this difficulty ex-
erts a pressure on the contents of the lexicon, then it would be surprising to find many
languages in which disagreeing sibilants are overrepresented. English, however, is such
a language: /s..ʃ/ sequences are overattested compared to /s..s/ sequences (Berkley
1994, 2000). Gradient similarity AVOIDANCE in consonants, in fact, appears to be a ro-
bust crosslinguistic phenomenon and has been shown in a number of languages: Arabic
(Frisch et al. 2004), Maltese (Frisch et al. 2004), Italian (Frisch et al. 2004), Muna
(Coetzee & Pater 2008), Japanese (Kawahara et al. 2005), and Russian (Padgett 1995).
In the most complete study of the phenomenon to date, Pozdniakov and Segerer (2007:
308) find evidence for gradient similarity avoidance in thirty-one different languages,



from which they conclude that it ‘is a likely universal property of human language’. If
anything, the evidence for universal performance factors appears to point in the oppo-
site direction of the Navajo pattern.

Likewise, the preference for consonant clusters over geminates seen in English is not
universal. In Japanese, for example, geminate consonants are permitted within mor-
phemes, while nongeminate clusters (with the exception of homorganic nasal + stop
clusters) are not (e.g. /happa/ ‘leaf’, but */hapta/). Furthermore, nongeminate clusters
are repaired when created by the morphology (e.g. /kak/ ‘write’ + /ta/ ‘PAST’ → [kaita]
‘wrote’; cf. /kat/ ‘win’ + /ta/ ‘PAST’ → [katta] ‘won’). Luganda is similar to Japanese in
that it allows geminates but prohibits other cluster types (Wiltshire 1999). In some lan-
guages, like English, geminates are the worst type of cluster; in others, like Japanese,
they are the best.

This is not to say that functional, performance-based factors play no role in these
phonotactic generalizations. Rather, it is likely that there are multiple functional factors,
some of which are at odds with others. Agreeing sibilant pairs and disagreeing pairs
may each be considered ‘better’ along different dimensions, and each language repre-
sents a separate compromise among these competing forces. My claim is simply that
the correlations between tautomorphemic and heteromorphemic phonotactics in Navajo
and English are unlikely to be the result of performance ALONE—the speakers of these
languages must learn the language-particular phonotactic generalizations present in
morphemes, which they then extend to the formation of complex words. In the remain-
der of this section I propose a mechanism by which this overgeneralization can occur.

4.1. THE PHONOTACTIC LEARNER. In order to model the gradient constraints observed
in the compound data presented above, I assume that speakers make use of a grammar
that assigns probabilities to possible words (Hayes & Wilson 2008). On this view, the
actual lexicon can be thought of as a finite sample drawn from this probability distribu-
tion—the learner’s task is to reconstruct the grammar, and therefore the distribution,
based on that sample. In the case of English, which I use throughout the rest of the arti-
cle to illustrate how the learner works, the final grammar should assign very low prob-
abilities to words containing stem-internal geminates, high probabilities to words
containing only legal clusters, and intermediate probabilities to words containing gem-
inates across morpheme boundaries.

It would be trivial to construct a probabilistic learner that, fed the lexicon of English,
could learn that compounds with geminates are underrepresented. Any algorithm that is
capable of simply counting the number of compounds with and without geminates
could succeed at this task. My goal, however, is not to produce a learner that correctly
learns the patterns in Navajo and English, but to explain why Navajo and English are
the way they are. My strategy is therefore to describe a learner that systematically mis-
learns generalizations across morpheme boundaries—when given input in which the
two compound types are equally frequent, it will nonetheless construct a grammar that
assigns a lower well-formedness value to compounds that violate the stem-internal
phonotactic.

4.2. MAXIMUM ENTROPY GRAMMARS. The maximum entropy formalism has long been
a staple of the machine learning literature (Jaynes 1957, Berger et al. 1996, Abney
1997, Della Pietra et al. 1997) and has recently been successfully applied to problems of
phonological learning (Goldwater & Johnson 2003, Fischer 2005, Wilson 2006, Jäger
2007, Hayes & Wilson 2008, Hayes et al. 2009). A MaxEnt learning algorithm learns a
probability distribution over the members of some set given a sample drawn from that
distribution.
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A MaxEnt grammar consists of a set of numerically weighted constraints. The con-
straints that are used in this article ban structures in the output (e.g. ‘no geminates
within a morpheme’) and are equivalent to the markedness constraints used in optimal-
ity theory (Prince & Smolensky 2004). Unlike classical optimality theory, in which
constraints are strictly ranked, each constraint in a MaxEnt grammar has a weight, rep-
resented by a real number, which represents the ‘strength’ of that constraint. The set of
constraints and their weights (which together constitute the grammar) determine a prob-
ability for every possible surface form, which is a function of the set of constraints vio-
lated by the form and their weights. Specifically, a word’s probability is a function
of what Hayes and Wilson (2008) call its SCORE, h(x), which is calculated by simply
summing the (weight × number of violations) for every constraint in the grammar, as
shown in 4.

(4) Definition of score
h(x) =

M
∑
i=1

wiCi(x)

(M = number of constraints; w1, w2,…, wM = constraint weights; x = represen-
tation of candidate; Ci(x) = number of violations assigned to x by constraint Ci)

For a grammar with three constraints, for example, C1 (weight 1.0), C2 (weight 2.0),
and C3 (weight 3.0), an output form x violating C1 twice and C3 once would be assigned
a score of h(x) = (1.0 × 2) + (2.0 × 0) + (3.0 × 1) = 2.0 + 0 + 3.0 = 5.0.

A word’s score is identical to its HARMONY in the HARMONIC GRAMMAR framework
(Legendre et al. 1990, Smolensky & Legendre 2006); in a MaxEnt grammar a word’s
probability is directly related to its score. The equation in 5 describes how scores are
mapped to probabilities (Ω represents the set of all possible words).6

(5) Determining candidate probability
e–h(x)

P(x) = ∑
y!Ω

e–h(y)

The goal of the learning algorithm is to reproduce the probability distribution over
constraint violations in the learning data. It does this by adjusting the constraint weights
so as to maximize the probability of the data—the algorithm thus represents an example
of MAXIMUM LIKELIHOOD learning. The probability of the data is calculated by simply
multiplying the probabilities of all of the words in the data to arrive at their joint proba-
bility, equivalently stated as the sum of the log probabilities of each word, or

N
∑
i=1

logP(xi),
where N is the number of words encountered during learning.

An algorithm that simply maximizes the probability of the data, however, is prone to
OVERFITTING. Because the learner is only given a finite sample of data, a pure maximum
likelihood learner will tend to overestimate the probability of items that are in the sam-
ple, and underestimate the probability of items that did not happen to occur in the sam-
ple. In other words, a probability distribution learned from a finite sample will tend to
be skewed in the direction of the observed data.

The standard way to avoid overfitting is to introduce a SMOOTHING TERM into the
learning function (Martin et al. 1999). The smoothing term penalizes skewed distribu-
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guages, calculating the probability of any word requires summing the probabilities of an infinite set. The sto-
chastic gradient ascent algorithm used in the simulations in this article avoids this problem by estimating the
infinite sum using sample words drawn from the probability distribution defined by the current set of con-
straint weights (Jäger 2007).



tions and causes the learner to favor more uniform distributions, which ameliorates the
tendency to overfit. I use a Gaussian prior over the constraint weights, which prefers
that the constraint weights be as uniform as possible. The prior term is subtracted from
the likelihood term, resulting in the learning function in 6.

(6) MaxEnt learning function
(wj – µj)2N

∑
i=1

logP(xi) –
M
∑
j=1 2σ2

j

The Gaussian prior assesses a penalty for constraint weights that deviate from their
ideal weights, represented by µj. In the implementation of the algorithm I use, µ is set to
zero for all constraints, so that the prior penalizes any nonzero weight, with the size of
the penalty increasing with the square of the weight. This pressure toward low con-
straint weights translates into a bias against highly skewed distributions—because the
prior term increases with the square of each constraint weight, it prefers grammars with
many low-weighted constraints over grammars with a few high-weighted constraints.
This means that if multiple constraints are each capable of explaining a given property
of the data, the learner will assign all of the constraints low weights rather than choose
one and assign it a high weight. This property of the prior will prove crucial in model-
ing the English and Navajo data.

The learning function thus embodies a trade-off between a pressure to model the data
as accurately as possible and a pressure to have as general (i.e. uniform) a grammar as
possible. The value of the free parameter σ determines the relative importance of each
of these factors. Modeling the connection between tautomorphemic and heteromor-
phemic phonotactics will rely crucially on this trade-off.

The learning simulations reported in this article utilize the stochastic gradient ascent
(SGA) algorithm to assign weights to these constraints.7 Specifically, I use Jäger’s
(2007) implementation of the SGA for constraint-based grammars, which estimates (to
an arbitrary degree of precision) the maximum of the MaxEnt learning function given
in 6. The SGA works as follows: first, the constraints are assigned arbitrary weights (in
my simulations, each constraint starts with a weight of zero). Then, input is fed to the
algorithm one word at a time. It compares each input word x to a sample word y ran-
domly chosen using the probability distribution determined by the current set of con-
straint weights. On the basis of this comparison, the current weight for each constraint
wi in the grammar is changed according to the update rule in 7, where β represents the
PLASTICITY, a parameter that determines the degree to which constraint weights are per-
turbed with each incoming learning datum.

(7) SGA update rule
wi = wi + β · (wiCi(x) – wiCi( y))

The update rule serves to change the predicted probabilities in the direction of more
closely matching the probabilities observed in the input. The Gaussian prior is imple-
mented in the SGA by decreasing every constraint weight w by an amount 2αw after
every learning datum (Johnson 2007).8
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7 Note that the learning bias I discuss in this article is a property of the learning function itself, and is inde-
pendent of which algorithm learners actually use to calculate the maximum of that function; the same results
can be obtained with the conjugate gradient algorithm used by Hayes and Wilson (2008), for example.

8 In all of the learning simulations presented here, the data was presented to the learner three times. The
plasticity was set to 0.1 for the first presentation, 0.01 for the second, and 0.001 for the third. The Gaussian
prior parameter α was set to 0.01 for the first presentation, 0.001 for the second, and 0.0001 for the third. The
results reported are averaged over 100 consecutive runs of the algorithm.



4.3. TESTING THE MAXENT LEARNER ON SIMPLIFIED ENGLISH. Let us consider how the
learner described in the previous section would handle a schematic representation of the
English facts. Imagine a simplified version of English with two salient features: every
word is either a monomorpheme or compound, and every word contains exactly one
consonant cluster. Each cluster may be nongeminate, which I represent as [tp], or gem-
inate, represented as [pp]. A morpheme boundary intervening between the consonants
of a cluster is indicated by ‘+’. This gives us a set of four codes, listed in 8, with which
we can label all of the logically possible words in this simplified English.

(8) Logically possible word types in simplified English
[tp] [pp]
[t+p] [p+p]

Because geminates are illegal within morphemes in English, only three of these word
types are attested: [tp], [t+p], and [p+p]. The training data I use for all of the demon-
strations of the learner is composed as in Table 2. The ratios of each word type were
chosen so that there would be an equal number of monomorphemes and compounds,
and an equal number of compounds with geminates and compounds without geminates.
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I propose that human learners incorporate both types of constraints, and that the inter-
action between them is responsible for the lexical biases in English and Navajo. To un-
derstand how this works, it is helpful to first briefly consider how a learner would fare
when equipped with only one of the constraint types.

A learner given only structure-sensitive constraints, for example, would be able to
capture two generalizations present in the training data—first, that geminates are only
legal across compound boundaries, and second, that geminates and nongeminate clus-
ters are equally frequent in compounds. Table 4 lists the weights given to the structure-
sensitive constraint set by a learner that is fed the data in Table 2, and the consequent
predicted probabilities of the four logically possible words types.

WORD TYPE RATIO OF WORDS
[tp] 50%

[t+p] 25%
[p+p] 25%

TABLE 2. Training data.

The generalizations formed by a MaxEnt learner given this data will of course de-
pend on the constraints it is given. Let us first consider two possible types of constraint,
one structure-blind and the other structure-sensitive, described in Table 3. Note that a
plus sign in parentheses indicates an optional morpheme boundary, while the absence of
a plus sign (as in *PP) indicates that no morpheme boundary intervenes between the
consonants.

STRUCTURE-BLIND CONSTRAINTS
*P(+)P: no geminates
*T(+)P: no nongeminate consonant clusters

STRUCTURE-SENSITIVE CONSTRAINTS
*PP: no geminates within a morpheme
*TP: no nongeminate consonant clusters within a morpheme
*P+P: no geminates across a morpheme boundary
*T+P: no nongeminate clusters across a morpheme boundary

TABLE 3. Constraint types.



The weight given to *PP in this grammar, 4.440, is much higher than the weights given to
other constraints, reflecting the absence of [pp] in the training data. The constraints *P+P
and *T+P are given nearly identical weights, meaning that geminates and nongeminates
across morpheme boundaries are equally well-formed. Such a grammar accurately mod-
els the fact that English speakers find morpheme-internal geminates to be ill-formed, but
offers no explanation of the gradient bias against geminates in compounds.

A learner equipped only with structure-blind constraints, however, has the reverse
problem, as shown in Table 5.
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9 Remember that higher scores are associated with lower probabilities, by the equation in 5.

CONSTRAINT WEIGHT WORD SCORE9 PREDICTED PROBABILITY IN
TYPE PROBABILITY TRAINING DATA

*PP –4.440 [pp] –4.440 0.004 0.000
*TP –0.403 [tp] –0.403 0.480 0.500
*P+P –0.220 [p+p] –0.220 0.258 0.250
*T+P –0.219 [t+p] –0.219 0.258 0.250

TABLE 4. Learning results, structure-sensitive constraints only.

CONSTRAINT WEIGHT WORD SCORE PREDICTED PROBABILITY IN
TYPE PROBABILITY TRAINING DATA

*P(+)P –0.496 [pp] –0.496 0.135 0.000
*T(+)P –0.496 [tp] –0.496 0.365 0.500

[p+p] –0.496 0.135 0.250
[t+p] –0.496 0.365 0.250

TABLE 5. Learning results, structure-blind constraints only.

This grammar predicts that, in general, words with geminates are less well-formed than
words without, but because it is blind to morphological structure, it cannot encode the
generalization that geminates are prohibited within morphemes and allowed across
morpheme boundaries. Essentially, all this learner knows is that 25% of the clusters oc-
curring in the data are geminates, and 75% are nongeminates.

The structure-blind learner is thus too myopic to serve as a model of actual human
language learners. The structure-sensitive learner, by contrast, is in a sense too accurate,
in that it does not display a bias that would explain the lexical data in Navajo and En-
glish. This bias appears only when the learner uses both types of constraints. The gram-
mar in Table 6 is the result of giving the SGA learning algorithm structure-blind and
structure-sensitive constraints, and exposing it to the same data as the previous two
learners.

CONSTRAINT WEIGHT WORD SCORE PREDICTED PROBABILITY IN
TYPE PROBABILITY TRAINING DATA

*P(+)P –0.146 [pp] –4.357 0.004 0.000
*T(+)P –0.146 [tp] –0.469 0.483 0.500
*PP –4.211 [p+p] –0.184 0.251 0.250
*TP –0.323 [t+p] –0.146 0.261 0.250
*P+P –0.038
*T+P –0.292

TABLE 6. Learning results, all constraints.

The algorithm assigns a high weight to *PP (4.211), although not as high as the weight
assigned to the same constraint by the learner using only structure-sensitive constraints



(4.440). Furthermore, despite their equal frequencies in the training data, [p+p] com-
pounds are penalized by the grammar more than [t+p] compounds, as can be seen by
comparing the scores of the two word types. This is the effect of the Gaussian prior,
which is optimized by making the distribution of weights as uniform as possible. In-
creasing the weight on *P(+)P lowers the probability of [pp] sequences, which allows
the weight on *PP to be lower. The price of this more uniform distribution is accuracy in
modeling the data; the weight on *P(+)P also slightly lowers the predicted probability of
[p+p] sequences, making them appear to the learner to be slightly less frequent than
[t+p] sequences.

This shows that a constraint’s weight is dependent not just on the properties of the
data, but also on the other constraints that are present in the grammar. In this case, *PP
gets a higher weight when there is no other constraint that could also explain the ab-
sence of [pp] in the data. When the structure-blind constraints are included in the gram-
mar, this generalization is split between two constraints—*PP and *P(+)P—which
allows the weight on *PP to be slightly lower. The result is a grammar that evaluates
compounds with geminates as more probable than those without geminates, despite the
equal probability of the two types of word in the input. The Gaussian prior, in effect, al-
lows probability mass to ‘leak’ from one type of generalization to another. Although
this prior is well motivated on mathematical grounds—without it, the learner will as-
sign infinite weights to constraints that are never violated in the data—it can cause
weights to be assigned to constraints that are not strictly necessary to explain the data.

4.4. DISCUSSION. Speakers of English know that geminates are legal across mor-
pheme boundaries but not within morphemes, but they have also encoded in their gram-
mars the fact that geminates are not as frequent as nongeminate clusters. When all of
these generalizations are combined in a single grammar, the result is a strong preference
for nongeminate clusters within morphemes, and a mild preference for nongeminate
clusters across morpheme boundaries.

I have shown that the above scenario can be modeled with a maximum entropy learn-
ing algorithm equipped with a Gaussian prior and both structure-sensitive and struc-
ture-blind constraints. I have yet to answer a crucial question, however. Why would
learners use structure-blind constraints at all, given that structure-sensitive constraints
by themselves permit more accurate modeling of the input?

One possibility is that structure-blind constraints represent a holdover from an early
stage of phonotactic learning. There is substantial evidence that infants learn a great
deal about the phonotactic patterns in their language before they are able to parse the
speech stream into morphemes or even words (Peters 1983, Jusczyk 1997). Generaliza-
tions formed at this stage are by necessity structure-blind. Of course, once they master
morphology, children are presumably able to make use of structure-sensitive con-
straints. It is possible, though, that the structure-blind constraints they used at the earlier
stage remain in the grammar into adulthood (one could imagine, for example, that there
is some cost to removing constraints once they are part of the grammar).

Another possibility is that the mechanism responsible for positing constraints is bi-
ased toward more general constraints (see Hayes & Wilson 2008 for a proposal in this
vein). A constraint that simply bans geminates is more general than a constraint that
bans geminates only across morpheme boundaries, and so might be included in the
grammar on that basis. Of course, answering this question more definitively would re-
quire a more thorough understanding of how language-learning infants go about con-
structing phonological constraints, a topic on which little research has yet been done.
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5. THE EVOLUTION OF THE LEXICON. I have argued that learners consistently underpre-
dict the frequency of compounds that violate a stem-internal phonotactic in their lan-
guage, resulting in a grammar that assigns such compounds a lower well-formedness
value than other compounds. In order to explain why such compounds are underrepre-
sented in Navajo and English, we must further assume that speakers are biased by their
phonotactic grammar when they create new compounds (or decide to use novel com-
pounds coined by others). Even if earlier versions of these languages had been unbi-
ased, over time generations of learners would have altered the lexicon of each language,
making words that violate stem-internal phonotactics less frequent. However, this
model raises another problem: if each generation ends up making the language more bi-
ased than the previous generation, given enough time we would expect the underrepre-
sented words to die out completely. Why does English allow geminate consonants in
compounds at all, given the rapid turnover in vocabulary typically observed in lan-
guages over time?10

In order to answer this question, I present the results of a simulation of multigenera-
tional lexical change that incorporates the learning algorithm described in §4. I assume,
following Boersma 2007, that lexical change is driven largely by competitions between
synonymous lexical items. New words are created or borrowed by speakers, and must
compete with existing words that have the same meaning. The tendency of speakers
within a speech community to converge on a single way to express a given concept
(Lass 1997, Croft 2000, Baronchelli et al. 2006) creates a selection pressure—words
that are better at winning these competitions will come to dominate the lexicon (Martin
2007).

The simulation is structured as follows. The speech community is represented by a
single agent, who possesses a lexicon and a grammar. Each ‘generation’ of the simula-
tion is divided into two phases: in the first phase, the agent copies the lexicon of the pre-
vious generation’s agent, except for the first agent, who begins with an unbiased
lexicon containing 2,000 words of type [tp], and 1,000 words each of types [p+p] and
[t+p]. Each agent then uses a MaxEnt learning algorithm equipped with the structure-
blind and structure-sensitive constraints in Table 3 to learn a grammar using the lexicon
as input. In the second phase, the agent is given the option of replacing some of its lex-
ical items with newly generated compounds, with each novel word competing with an
existing word. Once these competitions are resolved, the agent’s updated lexicon is
used as the input for the next generation’s agent.

The lexicon-updating phase takes place in two stages. First, a number of potential
compounds are generated by the morphology. Throughout the simulation, compounds
with and without geminates are equally likely, representing the combining of existing
stems based on the semantic needs of speakers. Next, each potential compound is ran-
domly paired with an existing compound in the lexicon, representing a word synony-
mous with the novel word, and the two words compete (note that the simulation does
not model competitions between monomorphemes and other words). The probability
that a word will win this competition (pwin(x)) is proportional to its phonotactic proba-
bility (p(x)), as shown in 8.
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10 As an example, roughly 85% of the Old English vocabulary is no longer in use (Baugh & Cable 1993),
and more than 80% of the Modern English vocabulary consists of words borrowed from other languages
(Stockwell & Minkova 2001).



(8) Probability of x winning competition with y
p(x)

Pwin(x) = p(x) + p( y)

If a novel word wins a competition, it replaces the existing word; otherwise, the novel
word is discarded.

I ran two versions of this simulation for 1,000 generations each. As noted above, the
initial agent begins with a lexicon containing 4,000 words. During each generation, 200
new compounds are generated and allowed to compete with 200 randomly chosen ex-
isting compounds. In one version of the simulation, the learner is given structure-
sensitive and structure-blind constraints, and in the other version the learner is given
only structure-sensitive constraints. The resulting frequencies of compounds with gem-
inates for both versions are shown in Figure 6.11
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11 The values depicted in Fig. 6 are averaged over ten consecutive runs of each simulation. In order to check
that the lexical bias remains stable beyond 1,000 generations, I also performed one run of the simulation for
10,000 generations. With both structure-sensitive and structure-blind constraints, the percentage of com-
pounds with geminates never dropped to zero—between generations 1,000 and 10,000, the mean was 38.5%,
the highest occurring percentage was 49.3%, and the lowest 26.8%.
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FIGURE 6. Multigenerational learning simulation results.

The graph in Fig. 6 shows that without the structure-blind constraints, the frequency of
geminate compounds randomly varies around 50%, the expected value (shown on the
graph with a dashed line) given the initial lexicon and the distribution from which re-
placement words are drawn. When the structure-blind constraints are added, the relative
frequency of geminate compounds drops below 50%, but then levels off. With the struc-



ture-blind constraints, compounds with geminates are consistently underrepresented,
but are never completely eliminated from the lexicon.

Intuitively, the stabilization in the lexicon can be understood as resulting from the in-
teraction of three factors, which together determine how the lexical statistics change
from generation to generation: the phonotactic well-formedness of each word type, the
current frequency of each word type, and the probability distribution from which novel
words are drawn. The first of these, the well-formedness of each word type, determines
the chances of that type winning a competition with another type. As the [p+p] com-
pounds become rarer, their well-formedness drops, making it harder for them to win
subsequent competitions, in a ‘poor-get-poorer’ feedback loop. Although this would
seem to doom these compounds to eventual extinction, low frequency also carries an
advantage—less frequent types are correspondingly less likely to be faced with a com-
peting word. In short, as the frequency of any word type decreases, its probability of
winning competitions drops, but so does its probability of being forced to compete in
the first place.12 This is why, when structure-blind constraints are added in Fig. 6, [p+p]
compounds initially drop rapidly in frequency, and then gradually level off, before
eventually reaching an equilibrium.

The other crucial parameter that influences the survival of marked compound types is
the probability distribution from which new words are drawn. In the simulations re-
ported above, this is a fixed distribution in which each compound type is equally likely.
No matter how rare geminates become in the actual lexicon, new compounds contain
geminates half of the time. If this assumption is altered, and novel words are chosen
from a distribution reflecting the current lexical frequencies, then stability collapses,
and compounds with geminates will eventually be completely eliminated. In other
words, if compounding is driven EXCLUSIVELY by phonological factors, then it is indeed
a mystery how marked structures survive. But surely this is not the case—morphologi-
cal operations are at least partly motivated by the semantic needs of speakers, which are
presumably blind to phonological considerations.

Thus, the current state of the lexicons of Navajo and English can be seen as a balance
between two forces: semantic preferences for certain combinations of morphemes, and
phonotactic preferences for certain combinations of sounds. The first drives the English
lexicon toward the expected number of geminates, while the second drives the lexicon
toward a state with no geminates. The result is a compromise, in which geminates are al-
lowed, but occur at less than the expected rate. Although different languages (or the same
language at different times) may enact this compromise to differing degrees, the model
predicts that a language in which compounds that violate a categorical stem-internal
phonotactic constraint are consistently OVERrepresented would be historically unstable.

6. CONCLUSION.
6.1. SUMMARY. I have argued that a bias in the human phonotactic learner is respon-

sible for a correlation between tautomorphemic and heteromorphemic phonotactics in
Navajo and English. In my model this bias results from two factors: a set of structure-
blind phonotactic constraints that ignore morphological structure, and a maximum en-
tropy learning algorithm equipped with a smoothing term that penalizes high constraint
weights. I have also shown how this learning bias interacts with the creation and selec-
tion of new words, resulting in a persistent lexical bias. The biased lexicons in Navajo
and English represent a compromise between the needs of the morphology and the
needs of the phonology.
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Of course, this is not the only possible analysis of these facts. Hay and Baayen (2005),
for example, argue that the distinction between monomorphemes and compounds in the
lexicon is itself gradient, a function of the frequencies with which the compound and its
component members are used independently. They point out that morphological status
along this continuum is influenced by a word’s junctural phonotactics, such that a com-
pound containing a geminate is less likely to be lexicalized as a single unit (evidenced by,
among other things, the compound acquiring noncompositional semantics). Indeed, the
fact that phonotactics bias how English compounds are spelled suggests that something
like this is true. This could explain the biases in Navajo and English, as lexicalized com-
pounds would be more likely to appear in a corpus or dictionary.

Unfortunately, the lexical count data presented in this article cannot distinguish be-
tween such an account and the phonotactic learning account I have argued for. The two
theories could be distinguished, however, in principle. For example, a theory that
claims that lexical biases are solely due to lexicalization predicts that a bias against
phonotactic violations in compounds emerges only gradually over time, as the lexical-
ization process applies differentially to words with and without such violations. Thus,
evidence that speakers are biased against illegal structures even at the moment of creat-
ing a new compound would be evidence against the lexicalization hypothesis. Testing
this prediction experimentally is a promising avenue for future research.

6.2. FUTURE DIRECTIONS. The model of lexical change I present here is general in
character and could potentially be applied to a wide range of cases in order to determine
how these forces interact in a wider range of languages and phenomena. This research
would contribute to our understanding of how phonotactic knowledge participates in
the shaping of the lexicon, which in turn forms the basis of the next generation’s phono-
tactic knowledge.

Although the cases discussed here involve an interaction between generalizations at
different levels of morphological complexity, the learning model also predicts other
types of interaction. In a maximum entropy grammar, generalizations stated over con-
straints that refer to overlapping categories will be interconnected—put simply, when a
given structure is underrepresented, similar structures are more likely to also be under-
represented. The model thus makes a very rich set of predictions about not just the gen-
eralizations that should be attested in natural languages, but also relations among the
generalizations within a single language. Testing these predictions promises to lead to a
deeper understanding of the nature of phonotactic learning.
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