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ABSTRACT

Several models of language acquisition have emerged in recent years

that rely on computational algorithms for simulation and evaluation.

Computational models are formal and precise, and can thus provide

mathematically well-motivated insights into the process of language

acquisition. Such models are amenable to robust computational evalu-

ation, using technology that was developed for Information Retrieval

and Computational Linguistics. In this article we advocate the use of

such technology for the evaluation of formal models of language

acquisition. We focus on the Traceback Method, proposed in several

recent studies as a model of early language acquisition, explaining

some of the phenomena associated with children’s ability to generalize

previously heard utterances and generate novel ones. We present a

rigorous computational evaluation that reveals some flaws in the

method, and suggest directions for improving it.

INTRODUCTION

Over the past two decades, an increasing number of studies in the domain

of language acquisition have employed computational approaches. These

studies are based on either symbolic models or, most prominently, on

connectionist and probabilistic (Bayesian) models. For a critical review of
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these approaches, see Alishahi (2010), Chater & Redington (1999), and

Chater & Manning (2006).

In the domain of syntactic acquisition, computational studies examine the

acquisition of a specific construction (e.g., simulating the developmental

trajectories of finite and non-finite verb forms; Freudenthal, Pine & Gobet,

2006); they model induction of particular part of speech (PoS) categories

(F. Chang, Lieven & Tomasello, 2008; Parisien, Fazly & Stevenson, 2008;

Reali, Christiansen & Monaghan, 2003; Redington, Crater & Finch, 1998);

or they examine several related constructions, for example, argument

structure constructions (Alishahi & Stevenson, 2008; N. Chang, 2008).

A few studies also attempt to account for the development of processing and

production skills (e.g., Christiansen & MacDonald, 2009; F. Chang & Fitz,

forthcoming).

Computational simulations that specifically implement definitions

provided by cognitive models of language acquisition are rare. Lewis and

Elman (2001) show that a neural network is able to generalize relative

clauses from child-directed speech and correctly predict other complex

syntactic structures (aux-questions) it has not encountered previously.

Borensztajn, Zuidema, and Bod (2009) and Bod (2009b) show that

abstraction in child speech, in the form of utterances that include schemas

and slots, can be based on analogy and increases with age. Bannard, Lieven,

and Tomasello (2009) examine the development of schemas and slots,

comparing multiple possible context-free grammars induced from child

speech. These studies follow on from a considerable body of experimental

psycholinguistic research that has convincingly shown that children’s

early multiword utterances are restricted and non-novel, and constructed

using rote-learned phrases, or LEXICALLY BASED PATTERNS. These patterns

evolve at some point along development into less specific constructions

that contain some level of abstraction (Lieven, Pine & Baldwin,

1997; MacWhinney, 1975; Peters, 1983; Tomasello, 2003). Such studies

emphasize the major role of the child’s ability to generalize structures – and

particularly higher-level, constructional schemas (Da̧browska, 2000) – from

input data.

One of the main advantages of computational models is that they

require formal, precise definitions of the assumptions underlying the

model. Consequently, computational models can be rigorously EVALUATED:

Their predictions can be put to test and their quality can be measured

quantitatively. In this article we advocate such robust evaluation; we

demonstrate it on one example of a psycholinguistically motivated study

that provides explicit definitions based on a theoretical account of language

acquisition.

The model we focus on is the TRACEBACK METHOD (henceforth, TBM)

(Lieven, Behrens, Speares & Tomasello, 2003). The basic assumption of the
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TBM follows the usage-based claim that language emerges as a result of

various competing constraints which are all consistent with general

cognitive abilities, and that language is first acquired in an item-based

fashion (Bates & MacWhinney, 1987; MacWhinney, 1999; Tomasello,

2006). The TBM as a usage-based model follows the experimental studies

noted above in relating children’s constructions to input utterances.

Specifically, the studies following this method aim to characterize what

are termed NOVEL UTTERANCES, that is, productions that cannot be said to

represent exact repetitions of previously heard utterances, and to show that

even these productions can be closely related to specific constructions that

emerge from adult input.

The TBM was introduced in several articles (Lieven et al., 2003;

Da̧browska & Lieven, 2005; Bannard & Lieven, 2009; Lieven, Salomo &

Tomasello, 2009; Vogt & Lieven, 2010), providing different definitions of

the model. In the following section we introduce the model informally,

trying to consolidate some of these differences. The result is a formulation

of the model that can be computationally implemented. It is not clear to us

whether such an implementation was actually carried out by the developers

of the TBM; the various papers report results that may have been produced

computationally or manually. Consequently, we reimplemented the model

ourselves, using computational resources that were available to us (but

which are not as precise as the resources used originally by Da̧browska &

Lieven, 2005, which are not publicly available). We provide a detailed

description of our reimplementation. Then, we evaluate the model using

standard measures of computational linguistics, and show that it vastly

overgenerates.

The main contribution of this article, therefore, is that it highlights the

need of robust evaluation of computational models of language acquisition.

Such evaluation can shed light on suboptimal properties of the model being

evaluated, and help improve it. While we only demonstrate this for a single

model (albeit a very prominent one), we are confident that several works in

the same domain (e.g., the MOSAIC model of Freudenthal, Pine & Gobet,

2007, 2009, 2010, or, more generally, the theory of Goldberg, 2006) can

equally benefit from a better, more rigorous computational definitions and

evaluation. See Bod (2009a) for a similar view.

THE TRACEBACK METHOD

Throughout the various papers making use of the TBM, the method is

presented as a finite set of ordered procedures, making it particularly ap-

pealing for a computational implementation. However, the set of operations

varies from one paper to another, and no precise definitions (let alone an

algorithm) are provided. In this section we describe the method informally,
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trying to track some of the major changes introduced to it throughout the

years. We present a formal, precise algorithm in the next section.

As noted above, the TBM maintains that children heavily rely on input in

order to learn language. Children’s productions are thus not manifestations

of abstract rules, but exemplars of symbolic units, or linguistic construc-

tions. As such, the multiword utterances produced by children contain both

frozen, lexically specific, FRAMES, and generalized, open-ended SLOTS,

into which some category of (typically content) words, the FILLER, can be

integrated (Da̧browska, 2000). Typical frame-and-slot constructions would

be There’s a X, I want a Y, and Z it (Da̧browska & Lieven, 2005). In the

following, we adopt a convention whereby frames are typeset in italics, and

slots are specified by capital letters.

The first point addressed by the TBM is how to identify those parts in

children’s multiword utterances that are frozen and those that are schematic

or constructed. According to Lieven et al. (1997), this procedure depends

on the positional regularity of particular lexical items relative to all

previously appearing utterances that contain the same words. In order to

analyze children’s productions, Lieven et al. (2003) introduce a procedure

for matching children’s utterances with utterances in the preceding corpus.

In this procedure, a given utterance, the TARGET, is compared to all prior

utterances that show lexical matching, on the one hand (based on the

number of morphemes that are similarly sequenced), and variation in a

particular position in the utterance, on the other.

In the simplest case, a target utterance can be matched against a

preceding utterance such that exactly one morpheme distinguishes between

the two. For example, if the target is I got the butter and a preceding

utterance is I got the door, the procedure can yield the frame I got the X,

where the X slot is filled by the fillers butter and door. In practice, though, a

minimum number of preceding matching utterances is required in order for

a frame to be well established; this number is determined to be two by

Da̧browska and Lieven (2005).

A more involved case is when a given target can be used to define two

different, competing frames. Assume that the target is Where’s Annie’s

plate? Preceding utterances include Where’s Annie’s bottle?, Where’s Annie’s

doll?, Where’s Mummy’s plate?, etc. These give rise to two potential frames,

namely Where’s Annie’s X? and Where’s X’s plate? In this case, the frame

with the most CONSECUTIVE morphemes (here, Where’s Annie’s X?) is

preferred. However, the criterion of consecutive morphemes is not always

sufficient to break a tie between two competing frames; in such cases,

frequency is used, and the frame with the most frequent instances is chosen.

This procedure is then used by Da̧browska and Lieven (2005) for iden-

tifying what they term COMPONENT UNITS, or ‘an expression which shares

lexical material with the target and is attested at least twice in the main
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corpus (excluding imitations and self-repeats) ’ (p. 447). Thus, SHARED

MATERIAL can be ‘any word or continuous string of words corresponding to

a chunk of semantic structure _ which occurs at least twice in the main

corpus’, and is thus defined as a FIXED PHRASE, while any ‘string consisting

of one or more fixed phrases and one or more slots of a specified kind _
corresponding to a chunk of semantic structure’ is considered a FRAME WITH

SLOT (p. 447). Da̧browska and Lieven (2005) then posit COMPONENT UNITS

as symbolic constructions, allowing them to capture more abstract details

of the internal organization of the children’s utterances and to define a

grammar that emerges from these data.

Da̧browska and Lieven (2005) relate to particular symbolic units that

represent semantic generalizations assumed to be available to the child (a

THING, PROCESS, PROPERTY, LOCATION, DIRECTION, etc.). The use of symbolic

units allows for tracing the ‘semantic match between the items that create

the slot and those that are inserted into it ’ (p. 444). These semantic units

are then used to define two OPERATIONS that can be used to derive a target

utterance from preceding ones.

The two operations defined by Da̧browska and Lieven (2005) are

JUXTAPOSITION and SUPERIMPOSITION. Juxtaposition is a ‘ linear composition

of two units, one after another _ in either order’ (p. 442). In super-

imposition, one unit, the filler, ‘elaborates a schematically specified subpart

of another unit, the frame’ (p. 443). Furthermore, ‘the filler must match the

properties specified in the frame’; so, if the frame calls for a THING, the filler

must not be a DIRECTION.

For example, consider the target utterance Where can he park now? (after

Da̧browska and Lieven, 2005: 449). Attested frames include Where can

THING park?, established from preceding utterances via the procedure

described above. Since he is a component unit, whose semantic type is

determined to be THING, it can be used as a filler and, via superimposition,

yield the string Where can he park? In addition, now is also a component

unit, which can be juxtaposed to this string, yielding exactly the target

utterance.

These definitions and procedures have been tested, refined, and imple-

mented in analyzing children’s utterances in actual corpora. Da̧browska

and Lieven (2005) use this procedure to show that children’s wh-questions

can be traced back to the input presented to them (in other words, only

child-directed speech (CDS) is used for deriving target utterances). They

use a dense corpus, consisting of four developmental corpora for two

English-speaking children, Annie and Brian, each recorded for six weeks at

the ages of 2;0 and 3;0. Results show that approximately 90% of children’s

wh-questions can be generated by this model and, in line with previous

studies, that 11–36% are direct repeats of utterances that already occurred

in the main corpus (11% for Annie and 36% for Brian at age 2;0).
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Moreover, at the age of 2;0, the majority of both children’s utterances

require only one operation for a successful derivation (55% for Brian and

66% for Annie). At age 3;0, a considerably higher proportion of utterances

requiring two or (especially in the case of Annie) more operations is found,

although many more of the children’s wh-questions can still be derived by

applying a single operation (25% for Annie and 43% for Brian).

More recent papers (Bannard & Lieven, 2009; Lieven et al., 2009;

Vogt & Lieven, 2010) implement the TBM on the full range of multiword

utterances used by children. This version of the TBM was tested on

data collected from a corpus of speech productions of the same two

children analyzed by Da̧browska and Lieven (2005) and of two additional

English-speaking two-year-olds. It proved capable of tracing back between

83.1% and 95% of all child utterances, with around 25–40% of utterances

constituting exact repetitions, and between 36% and 48% of utterances

requiring just one operation for derivation. In Lieven et al. (2009), the

quantitative criterion for schemas and fixed strings was set to one occur-

rence of the utterance in the prior data. This version of the model was

tested on the child speech (CS) of the same four datasets as in Bannard and

Lieven (2009), with highly consistent results, such that around 85% of the

test data were traced back to the utterances said before. Vogt and Lieven

(2010) repeat a similar procedure, this time using both CDS and CS as

input, again with high success rates.

It thus seems that the TBM is consistently able to provide a con-

structivist account for the majority of the children’s utterances on the

basis of a lexically specific grammar that can be manipulated by a small

number of general operations. Below, we reformulate the above informal

description in terms of precise definitions, and spell out the algorithm

which can be derived from these definitions. We then present the results of

our reimplementation.

REIMPLEMENTATION OF THE TBM

The advantage of the TBM is that it provides several definitions of key

concepts in the studies surveyed in the previous section, including the input

data, the units of analysis, and the procedures and operations that they rely

on. The version of the TBM that we chose to implement is the one of

Da̧browska and Lieven (2005) (henceforth DL).

Definitions and materials

First, the input data for the model are clearly and consistently defined as all

multiword utterances (whether in CS, CDS, or both). The expected output

is also defined: a list of utterances that can be shown to be inter-related
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through a process of repetition and reuse. Note that the TBM does not

induce a grammar, but rather proposes a process of increased schematiza-

tion by which grammar emerges from data.

As noted, the TBM attempts to generate children’s novel utterances

using what they heard or said before. Not having access to the original

corpus, we analyzed instead the online corpora of Brown (1973) and Suppes

(1974), both available from the CHILDES website (MacWhinney, 2000).

The Brown corpus contains transcribed longitudinal recordings of three

American children, Adam (from 2;3 to 3;0, with a MLU of 1.55), Eve

(from 1;6 to 2;3, with a MLU of 1.94) and Sarah (from 2;3 to 2;7, with a

MLU of 1.8). From the Suppes corpus, we chose a subset of twenty-six files

pertaining to Nina, an American girl, from age 1;11 to 2;5 (with a MLU of

2.9). These data are comparable to those used by DL, with MLU ranging

across the period when multiword utterances emerge. However, these

corpora are sparse, and as such may not be comparable to those used by

studies of the TBM. Accordingly, we also analyzed two datasets of a British

child, Thomas, recorded by Lieven et al. (2009). One set includes dense

recordings of one hour five times a week, every week, for a period of a year

(between the age of 2;0 and 3;2, MLU of 1.99, henceforth Thomas A) and

the second includes recordings of five hours in one week of each month in

the following year (from age 3;3 to around age 4;0, henceforth Thomas B).

This makes our corpora more comparable to those reported on in the

previous studies.

Similarly to the original method, each corpus was divided into two parts,

TEST and MAIN. For each chronologically ordered file, we considered the last

10% of the child utterances in the file as the test corpus, and all earlier files,

along with the first 90% of the adult and child utterances in the current file,

as training utterances. While in computational linguistics it is sometimes

common to perform (typically, 10-fold) cross-validation evaluations, the

nature of our corpus, and in particular the importance of chronological

order in child language development, dictate that a more random division of

a corpus into train and test portions would be harmful. The size of each

corpus (the number of MULTIWORD utterances and the number of word

tokens) is detailed in Table 1.

The next set of definitions considers the units used in the analysis. The

notions of frozen versus constructed utterances – or FIXED PHRASES versus

FRAMES WITH SLOTS – remain the foundation of the analysis throughout the

different studies reported on above. These, and the operations for deriving

target utterances from prior data, lie at the heart of the analysis provided in

the TBM studies. However, there is extensive variation in the number of

operation types used in each version – from five (Lieven et al., 2003), to two

(Da̧browska & Lieven, 2005), to a different set of two (Vogt & Lieven,

2010), and then to three operations (Bannard & Lieven, 2009). Given this
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variability, we chose to implement the version of the model specified in

Da̧browska and Lieven (2005), as described below.

All data in the corpora used for the original TBM studies were manually

annotated with semantic labels, following the assumption that children store

pairings of phonological forms and semantic representations. Different

examples for this level of annotation are given in the relevant literature, but

only two are defined in detail, whereas an automated system requires a full

set of such labels. In order to approximate the semantic labels of THING,

PROCESS, ATTRIBUTE, LOCATION, DIRECTION, POSSESSOR, and UTTERANCE,

while at the same time allowing for the emergence of other form–function

pairings not explicitly specified in the TBM papers but that presumably

formed part of the analysis, we added a distributional feature-matching

component to the algorithm.

This component relies on Part-of-Speech (PoS) and dependency-relation

tagging that are available as part of the CHILDES system: PoS tags for

all corpora were produced by the MOR program (MacWhinney, 2000),

a morphological analyzer, and dependency relations were derived by the

GRASP program (Sagae, Davis, Lavie, MacWhinney & Wintner, 2010), a

dependency parser for identification of grammatical relations in child-

language transcripts. Each morpheme in the corpus was thus assigned two

values: one specifying its lexico-syntactic category (noun, verb, adjective,

preposition, etc.) and one specifying its relation with other elements in the

utterance (subject, object, modifier, locative, etc.). While the codes are

generated automatically, they are quite reliable. For the Eve corpus, all

codes were manually verified, so they can be assumed to be 100% correct.

Accuracy of the annotation on other corpora is lower, but even so, the

morphological tags are accurate in over 97% of the tokens, whereas Sagae

et al. (2010) report syntactic error rates of only 5.4% (on adult utterances) to

7.2% (on child utterances). The main grammatical relations, such as subject

and object, are accurate in over 94% of the cases.

We utilize these two levels of annotation in a way that complies with the

procedure specified in Lieven et al. (2003: 349). Whenever the procedure

TABLE 1. Size of the corpora

Corpus

Main corpus Test corpus

Utterances Word tokens Utterances Word tokens

Eve 19,536 85,350 224 875
Adam 20,443 75,213 792 3,166
Sarah 6,425 23,330 106 252
Nina 38,736 175,748 458 1,632
Thomas-A 25,776 132,836 357 1,269
Thomas-B 25,110 131,652 326 2,192

COMPUTATIONAL EVALUATION OF THE TRACEBACK METHOD

183



calls for two phrases to have matching semantic labels, our algorithm

approximates the generalizations that underlie the categories assumed by

the manually tagged semantic labels by requiring that the two phrases have

identical PoS and dependency tags. This is in fact a more restrictive

criterion than the one used by DL, since sometimes phrases can have the

same semantic label even if their syntactic function is not identical ; but we

prefer to err on the side of being more restricting when we address issues of

overgeneration.

As an example, consider the three utterances Can we fix it?, Can we dig

it?, and Can we lose it? They all share the same PoS tag sequence, namely

aux pro v pro ; furthermore, they are all associated with the same syntactic

structure: the verb is the root, and its three dependents are the first word

Can (annotated as AUX by GRASP), the second word we (SUBJ) and the

final word it (OBJ). Such utterances reflect the construction Can we

PROCESS it?, where PROCESS is the single slot. Note that our algorithm

does NOT generate the label PROCESS explicitly ; it is only assumed, by the

combination of the PoS tag v and the grammatical relation root. But we

continue to use such labels below for brevity.

More variation in the object position, for example, reflected by the

examples Can we fix it? and Can we help you? (again with the same PoS

and syntactic structure as above) yields the more abstract construction

Can we PROCESS THING? ; and similarly, more variation in the subject

position, demonstrated by Can we fix it?, Can we help you?, and Can I do

it?, yields the even more abstract construction Can THING PROCESS

THING? The labels of the slots that are determined in this way are then

used when potential operations are considered, in line with the specification

of DL.

The TBM algorithm

We define the various stages of the TBM operation as an algorithm. In

the following, meta-variables S, T, u, w, with or without subscripts, range

over non-empty strings of words; meta-variables a, b, c, with or without

subscripts, range over possibly empty strings of words. We write match(w,

u) when w and u are of the same length, and their (PoS and syntactic)

annotations are identical. The input is a target utterance, and the output

is a derivation (‘traceback’) of this utterance using superimposition and

juxtaposition operations, if such a derivation is possible.

Given an annotated training corpus and a target utterance T, viewed as a

string of words, the algorithm operates as follows:

1. Identify in the training material all COMPONENT UNITS with respect to

the given target utterance, T. A non-empty string S is a component unit
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of T if T=aSb for some possibly empty strings a, b, and S occurs at

least twice in the training corpus. For each component unit S, store also

all utterances in the training corpus of which S is a substring.

2. If T is available to the child as a component unit (i.e., it is a FIXED

STRING), exit : the derivation is defined by this unit. Formally, if a

component unit S=T exists, return S with 0 operations.

3. Otherwise, for each component unit S of T, and for each training

corpus utterance u of which S is a substring, find the longest match

between T and u. Formally,
’ If T=aSw and u=ciSwkcr and match(w, wk) then S is a FRAME, w is a

FILLER and the operation is defined as Superimpose(S, w).
’ If T=wSb and u=ciwkScr and match(w, wk) then S is a FRAME, w is a

FILLER and the operation is defined as Superimpose(w, S).
’ If T=aSwSkb and u=ciSwkSkcr and match(w, wk) then (S, Sk)

is a FRAME, w is a FILLER and the operation is defined as

Superimpose(S, w, Sk).
From all utterances in the training corpus, choose the one for which the

frame length |S|+|Sk| is maximal. If more than one exists, pick one

arbitrarily. Call recursively with w as the target.

4. If no such frame is found, let S to be a longest substring of T that is

available to the child as a component unit. Formally, let S be a longest

string such that T=aSb. If no such string exists, fail.

5. If more words exist in T, call the algorithm recursively for the

remaining utterance. Formally, in all the cases of Steps 3 and 4 above,

T=aSb or T=aSwSkb ; call recursively with a if it is non-empty, and

with b if it is non-empty, and define the result as Juxtapose(a, S) (if b is

empty) or Juxtapose(S, b) (if a is empty) or Juxtapose(a, Juxtapose(S, b))
(if both are non-empty).

If T is accounted for in its entirety, report the number and types of the

operations used to derive it.

This algorithm thus implements the ‘rules’ specified by DL (and reiterated

in Bannard and Lieven, 2009), guaranteeing that derivations use the

minimum number of operations. The recursive nature of the algorithm

induces a hierarchical structure on utterances. Component units can

function as fillers, in which case they have to be accounted for (traced back)

themselves.

Example (1), taken from Eve’s last data file (age 2;3) and including the

MOR and GRASP tags, illustrates the process of deriving target utterances

with the implementation of DL’s algorithm.

(1) *EVE: you can help me

%mor: pro aux v pro

%gra: SUBJ AUX ROOT OBJ
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*MOT: you can write one

%mor: pro aux v pro

%gra: SUBJ AUX ROOT OBJ

*MOT: you can write me a lady on this page

%mor: pro aux v pro det n prep pro n

%gra: SUBJ AUX ROOT OBJ DET OBJ2 JCT DET POBJ

*MOT: you can tell him now

%mor: pro aux v pro adv

%gra: SUBJ AUX ROOT OBJ JCT

The first utterance, you can help me, is the target. In order to trace it back,

the algorithm first searches for the longest component units. Since the

target utterance itself is not found in the data, its parts are the next

candidates. Both you can and help me are found at least twice in the training

corpus, and thus qualify as component units. Next, the algorithm searches

for frames and slots. Given the other strings in Example 1, you can yields a

potential frame: you can PROCESS THING, where both PROCESS and

THING are slots of the frame that should be filled by fillers identified as

belonging to the PROCESS and THING categories, respectively. This frame

with slots is based on the shared material stemming from you can make one,

you can write me, you can tell him. However, as in the examples provided by

DL, since help me is available as a component unit, only a single operation is

required to derive the target utterance, by superimposing the fixed phrase

over the slot in you can PROCESS. Note that this is the preferred choice

since it involves a smaller number of operations. No further derivation is

required.

As another illustration of how the algorithm works, example (2)

presents an utterance that is derived by two operations of super-

imposition.

(2) *EVE: she just sitting there

%mor: pro adv:int part adv:loc

%gra: SUBJ JCT ROOT JCT

The target utterance does not occur as a fixed string; the strings she just

sitting and just sitting there are not found as fixed strings either. Of the other

possible combinations, sitting there is found as a fixed-string component

unit (appearing twice in the training corpus). This yields the following

frame with slots: THING just PROCESS, into which the pronoun she and

the phrase sitting there are superimposed.

We now present analyses of the various datasets chosen for this study,

based on the implementation of this algorithm.
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RESULTS

Table 2 presents the results of implementing the procedures described in

the previous section, with information about the number of utterances in

the test corpus and the number of utterances that the algorithm successfully

derives. Of those derived utterances, the table also reports how many

utterances were derived by FIXED PHRASE (i.e., an exact match was found in

the main corpus), how many utterances were derived by superimposition or

juxtaposition, and how many by a single operation or by two operations.

The results of our reimplementation over six different corpora show that

between 60% and 89% of the children’s utterances in the test corpus can be

derived using this algorithm, with most of the derivations based on one

operation only. In other words, the bulk of the target data are generated by

the computer program implementing the TBM. These results also show

that out of the successfully derived utterances, between 24% and 43% were

exact repetitions of previously heard utterances. It is noteworthy that a

significant portion of all test utterances were exact repetitions of utterances

that were previously heard or produced by the child, even in a relatively

sparse sample. These results are compatible with those obtained in all the

TBM studies mentioned above, and especially in Bannard and Lieven

(2009), who use this method to trace back all the utterances in the child test

corpus and report between 25% and 40% of exact repetitions. Our findings

can thus be taken as supporting evidence to the claim that children in fact

learn chunks from what they hear.

Our results are nonetheless significantly lower than those reported in the

original TBM studies. For example, Bannard and Lieven (2009) were able

to generate as many as 95% of all child utterances. One main reason for this

discrepancy could be that our analysis is carried out on a much sparser

TABLE 2. Re-implementation results: for each corpus, the number and ratio of

successfully derived utterances ; of those, the number and ratio of utterances

derived using exact matches (‘Fixed ’), using any of the two operations

(‘Superimpose ’ and ‘Juxtapose ’) ; and of the utterances derived by some

operation, the number and ratio derived using only one or two operations

Corpus Test

Derived Fixed Superimpose Juxtapose 1 OP 2 OP

# % # % # % # % # % # %

Eve 224 155 69 37 24 87 56 32 21 95 81 11 9
Adam 792 675 85 183 27 312 46 185 27 362 74 70 14
Sarah 106 94 89 40 43 45 48 9 10 54 100 0 0
Nina 458 401 88 119 30 217 54 66 17 230 82 27 10
Thomas-A 357 246 69 106 43 136 55 8 3 127 91 13 9
Thomas-B 436 260 60 101 39 150 58 12 5 143 90 15 9
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corpus, which makes the induction task more difficult for the system.

However, the results for the dense Thomas corpus are highly comparable to

those obtained for both the more sparse Thomas corpus and the various

other corpora that were used in reimplementing the TBM. This poses a

question with respect to the view that relying on a dense corpus affects the

variability of the syntactic structures in use (Demuth, 2008).

The source of the difference between the results of the two implementa-

tions may also be attributed to the fact that our ‘semantic’ approximations

of slot types is done automatically rather than manually, by means of a

combination of morphological and syntactic annotation of the data. This in

itself might have introduced another level of noise. Yet, again, our results

do by and large correspond to the original TBM findings. This conclusion

is supported by particular comparisons provided in the next two sections:

types of operations required for derivation, and results when relying only on

child-directed speech or child speech as the input for the algorithm.

Types of operations

As shown by the results presented in Table 2, the rate of superimposition

and juxtaposition operations used in most of our test corpora is considerably

different from the results reported on in the TBM studies: in our analysis,

superimposition accounts for no more than 58% of the utterances (in

the dense Thomas corpus) while juxtapositions are employed in as many as

27% of the utterances (in the Adam corpus). On the other hand, type of

operation seems to be corpus-dependent. Thus, only 10% of the Sarah test

corpus was derived by use of juxtaposition, and, for both of the Thomas

corpora, percentages are as low as in the original studies: 3% and 5%,

respectively (consistently with the TBM reported results of never exceeding

more than 5%; Lieven et al., 2009). As to the number of operations,

similarly to the TBM studies a relatively small number of utterances

required more than one operation. Importantly, very few utterances

required both superimposition and juxtaposition for derivation, such that

most instances of multiple operations were of more than one super-

imposition. This result lends support to the major role played by this type

of operation in analyzing the data.

Implementation based on CDS or CS only

Different conditions were tested by the algorithm in the various TBM

studies. Da̧browska and Lieven (2005) examine only question constructions,

whereas Bannard and Lieven (2009) and Vogt and Lieven (2010) use all

child utterances for their implementation; and while these studies use both

CDS and CS as the training corpus, Lieven et al. (2009) rely only on CS.
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Both types of input yielded successful tracebacks. The results of our current

application comparing derivations based on CDS versus CS are presented

in Table 3.

The data in Table 3 show that the TBM algorithm works just as

well both when the training data is only CDS and when it is only CS.

That is, the percentages of derived utterances and of superimposition and

juxtaposition are highly comparable both with each other and with the

general (all-inclusive) results. This supports the finding of Lieven et al.

(2009), according to which children’s utterances are closely related to what

they themselves said before, but it also suggests that the children’s corpus is

very much related to the adult input, even if less than 90% of the data can

be derived.

It seems, then, that our reimplementation of the TBM algorithm is

successful : even though we observe a somewhat lower percentage of

derivations, tracing back fixed strings and applying superimposition and

juxtaposition operations account for a large amount of the children’s

utterances. But is this evaluation sufficient? The next section addresses this

question.

EVALUATION

The preceding analysis reveals the TBM as a model which is explicitly and

formally stipulated and cognitively well motivated. This makes it possible

to test and corroborate its results. On the other hand, closer examination of

its underlying definitions revealed two issues as insufficiently defined across

the various versions of the model. First, the characterization of the various

slots used in these studies is not extensive, and the list of possible types of

TABLE 3. Results for training data as CDS or CS only

Corpus size

Derived Fixed Superimpose Juxtapose

# % # % # % # %

Eve-CDS 224 155 69.2 37 23.9 87 56.1 32 20.6
Eve-CS 155 65.6 33 22.5 71 48.2 44 29.9
Adam-CDS 792 632 79.8 131 20.7 277 43.8 234 37.1
Adam-CS 649 81.9 160 24.7 294 45.3 202 31.1
Sarah-CDS 106 91 85.9 28 30.8 51 56.1 12 13.2
Sarah-CS 79 74.5 32 40.5 33 41.8 14 17.7
Nina-CDS 458 408 89.1 103 25.2 227 55.6 79 19.4
Nina-CS 395 86.2 119 30.1 196 49.6 84 21.3
Thomas-A-CDS 357 202 56.6 44 21.8 151 74.8 19 9.4
Thomas-A-CS 246 68.9 106 43.1 136 55.3 8 3.3
Thomas-B-CDS 436 233 53.4 78 33.5 143 61.4 14 6.0
Thomas-B-CS 242 55.5 103 42.6 131 54.1 11 4.6
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slots is not comprehensive. Second, the constraints on the two operations,

superimposition and most notably juxtaposition, are not sufficiently well

defined. Although we were able to implement the model, we could only

approximate the suggested slots. This has potentially contributed to the

lower percentages of derivations obtained for the test data. The lack of

explicit constraints on the operations could also mean that the generative

power of our algorithm is greater than that of the manually obtained

analyses, especially in those datasets that showed a much higher percentage

of juxtaposed ordering of component units. Below, we examine the

implications of these conditions on the current TBM application by com-

putationally evaluating its overgeneration capacities.

Several factors make the evaluation of language-learning systems difficult

(Zaanen & Geertzen, 2008), and two of them stand out in the present con-

text. First, the training data provided to the system (i.e., the corpus used for

induction) are usually limited. This is especially true when child data are

concerned, such that even with high-density corpora it is assumed that the

corpus reflects less than 10% of the utterances the child was exposed to

during a very short period (see Rowland, Fletcher & Freudenthal, 2008). It

is thus hard to evaluate the quality of the generalizations performed by the

system. Second, and more crucially, while it is relatively easy to measure

the proportion of the target utterances that the system properly generated,

it is much harder to assess the proportion of the utterances generated by

the model that are indeed grammatical. Especially in the context of child

language, it is always hard to determine what constitutes an ill-formed

utterance. We now elaborate on this difficulty.

In the computational linguistics community, similar tasks are standardly

evaluated using two measures adopted from Information Retrieval : RECALL

and PRECISION. The task is defined as GRAMMAR INDUCTION: given a

sequence of (training) utterances, a model is supposed to generalize them,

typically by representing them in a compact form, as a GRAMMAR. Then, this

grammar can be evaluated by applying it to a set of other utterances, the

TEST set. Informally, RECALL measures the ability of the grammar to account

for new utterances. It is the proportion of the test utterances that the

grammar can properly generate. PRECISION, on the other hand, measures the

extent to which grammar-generated strings are observed in real life ; it is

the proportion of the set of generated utterances that are indeed correct.

The precision thus goes down when the grammar overgenerates.

More formally, assume that a test set consists of both positive (i.e.,

grammatical) and negative (i.e., ungrammatical) examples. The grammar is

required to determine the grammaticality of each of these examples. Let TP

be the number of positive examples the grammar correctly judged as

grammatical ; TN the number of negative examples the grammar correctly

judged as ungrammatical ; FP the number of ungrammatical examples the
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grammar mistakenly judged as grammatical ; and FN the number of positive

examples the grammar mistakenly judged as ungrammatical. Then the

precision is p=TP/(TP+FP), and the recall is r=TP/(TP+FN).

It is important to note that a clear trade-off exists between the two

measures, such that it is always possible to improve one measure at the

expense of the other. In the extreme case, consider a grammar that

generates the empty language: such a grammar will of course have zero

recall, but an impeccable precision (since it never overgenerates). At the

other extreme, a grammar that generates everything, all possible sequences

of words, will have perfect recall but an extremely low precision.

The recall of grammar induction algorithms is easy to compute: one has

to design an appropriate test set and measure the ability of the algorithm to

cover it. It is much harder to evaluate precision, however, because it is

unclear what to use as a test set: the set of utterances that can be generated

by a grammar induction algorithm is typically infinite, and in any case

huge. To know that an algorithm overgenerates, what is needed is a set of

UNGRAMMATICAL utterances, or utterances which the grammar was not

supposed to have learned. Such sets are usually unavailable.

This difficulty is addressed in various ways. One approach uses an

alternative model, which is assumed to be correct (Berant, Gross, Mussel,

Sandbank & Edelman, 2007). Here, strings generated by the evaluated

model are tested on an alternative model, which can determine whether the

generated strings are indeed grammatical. However, it is usually impossible

to obtain alternative models that can learn exactly the same language as

the one induced by the evaluated model. Another approach uses human

judgments (Solan, Horn, Ruppin & Edelman, 2005; Brodsky, Waterfall &

Edelman, 2007): strings generated by the grammar are judged by human

evaluators. Such judgments are often subjective and unreliable, especially

when child-language data are concerned. Bannard et al. (2009) use a

measure of PERPLEXITY for evaluating the quality of the grammars they in-

duce. However, perplexity evaluation requires very long strings (it is an

approximation of an infinitely long sequence of words), and it is not clear

how it can be applied to a situation where most sequences are shorter than

ten words.

Finally, F. Chang et al. (2008) propose a specific measure for evaluating

the quality of syntax learners, SENTENCE PREDICTION ACCURACY (SPA). Given

a test sentence, its words are viewed as a set (bag of words), and the

grammar is requested to determine, incrementally, the most plausible

ordering of the words in the set. The grammar constructs an incrementally

longer sequence of words from the bag by selecting, at every iteration, the

one word from the remaining words in the bag whose likelihood to follow

the currently constructed sequence is highest. The end result must be

identical to the original test sentence. One disadvantage of this method is
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that it is extremely strict, in the sense that a mistake in the placement of a

single word renders the entire utterance unaccounted for. In addition, this

method assumes that the grammar has a way to determine which of several

word sequences is more likely; this makes the method inapplicable in our

present setting, where no probabilities are involved.

In lieu of an accepted method for evaluating the precision of language-

learning algorithms, we suggest a method to assess the level of over-

generation of a grammar learner that is inspired by SPA (F. Chang et al.,

2008) but which does not require probabilities and can be easily applied to

our scenario. The idea is to test the induced grammar on strings that are less

likely to be grammatical than the actual utterances in the corpus. Since it is

generally very hard to determine what constitutes an ungrammatical string,

especially in the context of child language, we capitalize on the observation

that English is a relatively fixed-word-order language, and assume, like F.

Chang et al. (2008), that an actual utterance is typically ‘more grammatical ’

than any other ordering of its words. In other words, we assume that if we

test a grammar on actual utterances, it should succeed in generating more of

them than it would had we tested it on the same utterance, but where each

utterances had its words reordered.

We thus create two corresponding TEST corpora for our existing child

corpus, containing all the original utterances in the test corpus of length 2

or more. In one corpus, REVERSED, each utterance is listed in reverse word

order; in the other corpus, RANDOM, the words of the original test utterance

are ordered randomly. For example, if the original test utterance is you can

do it the other way, then its reverse counterpart is way other the it do can you,

whereas a random instance could be other you can way it do the. We then

re-run the algorithm, training it, as in the previous section, on CDS and CS

together, but testing it on the reversed and random utterances. Crucially,

the algorithm is still trained on the ORIGINAL utterances, so it is expected to

learn the actual language reflected in the corpus; but the learner is now

evaluated on its ability to generate correctly not only actual utterance, but

additionally also reversed and random utterances.

Table 4 compares the original results for each corpus with the derivation

of reverse and randomly ordered utterances. As can be seen in the table,

the results are highly comparable. For example, on the Eve corpus, the

algorithm can derive 69% of the test utterances, but also 68% of the reverse

utterances, and 65% of the randomly ordered ones. The same pattern

recurs for the Adam corpus, where the algorithm derives 85% of the

test utterances, but also 83% of the reversed and random-ordered ones.

The other corpora reveal a very similar pattern. This indicates a serious

overgeneration problem: while our implementation of the TBM is able

to learn a significant portion of all child utterances even for a non-dense

corpus, this very ability may be interpreted as evidence of the system’s
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overgenerative power. Indeed, it can also derive 49–89% of the reversed and

randomly ordered utterances (of length 2 or more), that is, of what are most

likely ungrammatical structures.

As examples of successful derivations of reversed utterances, consider the

(reversed) utterance Boston to go, which is generated by juxtaposing Boston

with the component to go. A single juxtaposition operation also suffices to

generate the reversed utterances Gloria you’re and more no. Superimposition

is used to generate it eat as an instance of the schema it PROCESS, where

eat fills the PROCESS role (the original utterance, of course, is eat it),

and drink want is derived from applying superimposition of THING want.

Also, crying her is derived from PROCESS her, a construction that

also derives see her and put her. And the use of one superimposition and

one juxtaposition generated the reversed utterance more buy to have as an

instance of the schema PROCESS to have.

Such examples abound, and include also longer sequences. Consider the

reversed target utterance one another write now. The presence of oh I see

what you’re doing now and what are you going to do now in the training

material gives rise to the frame PROCESS now. This is then filled by write,

yielding write now with one superimposition operation. Two juxtapositions

then generate the target. Even if one were to limit the number of juxtapo-

sition operations to at most one per derivation, clearly ungrammatical

strings could be derived. Consider the reversed target look me want you do?

The sequence let me help you occurs twice in the training material, and thus

TABLE 4. Evaluation of the TBM

Corpus size

Derived Fixed Superimpose Juxtapose 1 OP

# % # % # % # % # %

Eve 224 155 69 37 24 87 56 32 21 95 74
(reversed) 153 68 5 3 64 42 84 55 93 63
(random) 146 65 29 20 68 47 49 34 78 67
Adam 792 675 85 183 27 312 46 185 27 362 83
(reversed) 659 83 43 7 226 34 403 61 335 54
(random) 657 83 138 21 271 41 260 40 313 60
Sarah 106 94 89 40 43 45 48 9 10 54 100
(reversed) 94 89 8 9 63 67 23 25 82 95
(random) 91 86 8 9 73 80 12 213 80 98
Nina 458 401 88 119 30 217 54 66 17 230 81
(reversed) 389 85 22 6 143 37 227 58 241 63
(random) 400 87 71 18 132 33 198 50 248 75
Thomas-A 357 246 69 106 43 136 55 8 3 127 90
(reversed) 204 57 48 24 150 74 15 7 123 79
(random) 212 59 81 38 131 62 3 1 114 5
Thomas-B 436 260 60 101 39 150 58 12 5 143 90
(reversed) 213 49 31 15 177 83 11 5 136 43
(random) 219 50 88 40 129 59 6 3 106 79
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gives rise to the frame PROCESS me PROCESS you. The two slots of this

frame are filled by look and want, and then a single juxtaposition suffices to

add the final do.

Of course, not ALL strings in the corpus can be derived. Several strings

fail because of lexical omissions: they involve words that occur fewer than

twice in the training material. Examples include yeah I need rifle, with rifle

occurring only once in the training set; or do you want me take rubberband

off?, with rubberband occurring only once. Other strings fail to be derived

on different grounds, most notably type mismatches between a slot and its

candidate filler. For example, the target utterance the rich live could not be

traced back; the training material does include two instances of the rich,

namely the rich people live in that castle? and the rich people?, which give rise

to the frame the rich THING. However, in the target, live is annotated as a

verb, and hence can only fill a PROCESS slot in a frame, not a THING slot.

Similarly, the training material includes both listen about cowboy on a

big train coming toot toot and a nice train?, from which the frame a

ATTRIBUTE train is generated. This frame is a candidate for deriving the

target utterance a monkey train, but since monkey is a noun, its label is a

THING and it fails to fill the slot of the frame.

The results presented in Table 4 clearly indicate that the juxtaposition

operation needs to be more constrained. While superimposition is con-

strained by the type of the slot, juxtaposition is not, and, in particular,

it allows either order of combination. The analysis of reverse utterances

yielded twice as many uses of juxtaposition, accounting for more than half

of all derivations for the Eve, Adam, and Nina corpora. Yet even given the

non-constrained nature of this operation, it still failed to account for the

entire corpus, indicating that what is involved here is more than stringing

one word after the other. But, as it stands, the algorithm does allow more of

this operation than is desirable. As noted above, several attempts were made

to constrain this operation, for example in restricting the application of

juxtaposition (called ADD in that version of the method) by suggesting that it

is ‘only allowed if the component unit could, in principle, go at either end

of the utterance’ (Bannard & Lieven, 2009), and Vogt and Lieven (2010)

suggest that only specific items (such as vocatives) can participate in this

operation. However, it is unclear how these restrictions are determined, or

even how the child could know them.

Another issue that contributes to the overgeneration of the algorithm

is the unlimited number of operations. True, DL postulate a ‘minimal

number of operations’ requirement, but they specify no upper limit.

Our analysis of the reverse corpus requires a larger number of multiple

juxtaposition operations in order to allow derivation, since no fixed strings

were found in the corpus. Conceivably, such a situation could emerge for
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non-reverse corpora. In order to avoid recursion of this operation, some

constraint must be suggested.

Finally, and importantly, the TBM does not consider the frequency with

which utterances are presented to the learner, and so does not take into

account the effect of recurring strings on the entrenchment of linguistic

structures (Bybee, 1995, 2006). A model that is more sensitive to frequency

effects is likely to better fit the data, both in its regular and reverse versions.

CONCLUSION

The purpose of this article was to computationally evaluate a given

psycholinguistic model of the way children acquire language and to con-

tribute to the domain of cognitive linguistics by both corroborating and

criticizing usage-based assumptions via computational and formal analyses.

Goldberg (2009) notes the TBM as an exciting model that can provide

important insights as to how constructions are learned and produced, while

Blevins and Blevins (2009) refer to it as a highly successful model for the

early acquisition of syntax (see also Ambridge & Lieven, 2011). Indeed, the

results of our implementation were positive and supportive of the general

capabilities of the TBM model in providing a plausible account of

the underlying processes of language acquisition, shedding light on more

general questions raised in prior research, such as the impact of corpus

density and the comparison between CDS and CS as input for the model.

However, our results also reveal several drawbacks of the TBM. First, we

found a significant difficulty in integrating the versions of the TBM as these

are presented in the various papers making use of the model. One major

source of variation between the papers is the way slots are defined: instead

of relying on lexical material, Da̧browska and Lieven (2005) introduce

abstract Component Units. Several questions arise regarding how these

units are treated in the TBM studies. Apart from the units defined as THING

(or REFERENT) and PROCESS, which are extensively motivated in Da̧browska

(2000), no consistent and consistently detailed definition is provided for the

other types of unit. Nor is there sufficient detail of the procedure involved

in identifying the various component units. Besides, the number and labels

of the units themselves change from one study to the next, and it is clear

that they do not constitute a comprehensive list of all possible units. The

productive units in this model are thus only partially defined.

Additional significant variation between the papers of the TBM was

found in the number of operations used in each study. This makes it

difficult to decide which configuration is most efficient. Nor is there

any comparison of the different sets of operations or an assessment of

the varying levels of success in deriving novel utterances, although such

differences clearly emerge from considering the percentages retrieved by

COMPUTATIONAL EVALUATION OF THE TRACEBACK METHOD

195



each test (in this, reliance on the same set of data is beneficial). Moreover,

the difference between SUBSTITUTE and SUPERIMPOSITION is not defined

clearly enough to allow for separate treatment (at one point, they are defined

as two instances of the same operation). Finally, the constraints on the

JUXTAPOSITION or ADD operation seem to be problematic : How is a child to

recognize which elements do and do not participate in this operation?

What is the underlying mechanism that constrains them as such? Besides,

only vocatives and adverbials are mentioned as (prototypical) instances of

such an operation, although discourse markers that bear the same form of

conjunctions and that can appear at both ends of an utterance (Mulder,

Thompson & Williams, 2009) can arguably be considered together with

these elements.

This issue reflects on DL’s own criticism of the TBM. Da̧browska and

Lieven (2005) claim that the procedure suggested by Lieven et al. (2003) ‘ is

too unconstrained since the five operations defined by the authors made it

possible, in principle, to derive any utterance from any string’ (p. 439).

Our implementation clearly shows that even the application of only two

operations can still highly overgenerate. We suggest that the source of this

overgeneration is not only the still imprecise definitions on which the model

relies but also additional factors that have to date not been integrated into

the model. Thus, not only the absence of a clear methodology for the

implementation of the various operations but also the seemingly limitless

number and type of operations allowed by the TBM, the lack of consider-

ation of specific frequency effects and of the order of utterances in general,

all contribute to the analysis of ungrammatical utterances.

This article also underscores the lack of an accepted methodology for the

evaluation of models of language acquisition (Zaanen & Geertzen, 2008).

Much work still needs to be done in this area: for example, analyzing the

reverse utterances of a given corpus would be a less suitable procedure in a

free-word-order language, unlike English. Using perplexity as a measure of

fitness of some (language) model to test data is an attractive idea, but,

as noted above, such a measure would have to be adapted for use in

researching child language, where utterances are typically very short.

The analysis presented here underlines the need for more rigorous

formulation of computational models of language acquisition, so as to allow

for limiting their expressive power: psycholinguistic research suggests that

early language is highly constrained, that utterances are short and repetitive

(Brodsky, Waterfall & Edelman, 2007) and that deeply nested structures

emerge later, and even then are very constrained (Bannard et al., 2009).

Highly expressive models such as the ones employed here are likely

to overgenerate, while computational models that induce unrestricted

context-free grammars from the data (Bannard et al., 2009; Solan et al.,

2005) will fall into the same trap.

KOL ET AL.

196



Having said that, this article is not a criticism of the TBM method

per se. Rather, we wish to emphasize the importance of rigorous, robust

computational evaluation of cognitive models and methods. Only with such

an evaluation can design limitations and inconsistencies be found and

addressed. We thus see this as an opportunity to contribute to the

discussion of the type of computational model that is more suitable to the

task of representing language acquisition processes. Much of the research in

computational grammar induction is dedicated to learning expressive

models, typically context-free grammars. We are currently investigating a

much more constrained model, based on a restricted variant of finite-state

automata, that we believe could account for the type of generalizations

exhibited by early language learners without resorting to the over-

generalization we point to in this article.
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