
Language Acquisition as Statistical Inference

Mark Johnson
Macquarie University

Preprint version of June, 2013

1 Introduction

Probabilistic grammars define a set of well-formed or grammatical linguistic structures, just as
all grammars do. But in addition probabilistic grammars also define probability distributions over
these structures, which a statistical inference procedure can exploit. This paper describes two simple
statistical inference procedures for probabilistic grammars and discusses some of the challenges
involved in generalising them to more realistic settings.

The first three sections of this paper review important ideas from statistical estimation, namely
the Maximum Likelihood Principle and Bayesian estimation, and show how they can be applied
to learn the parameters of a Probabilistic Context-Free Grammar from surface strings alone in
an idealized “toy” scenario. We show that they succeed in learning both the phrase structure and
lexical entries without explicit negative evidence in a situation that seems highly challenging for any
“staged” learner, i.e., a learner that learns either lexical entries or phrase structure rules first. Then
we discuss attempts to generalize these kinds of methods to more realistic scenarios, and point out
some of the challenges that are involved in doing this.

One of the main themes of this paper is how little we know about the the linguistic implications
of the various approximations made by current statistical inference algorithms. In part because of
this, much of the work in this field takes an experimental, “try it and see” approach. The presen-
tation in this paper is deliberately informal: for a more mathematical presentation of much of this
material see e.g., Geman and Johnson (2004). The software used to produce the results below is
available from http://web.science.mq.edu.au/˜mjohnson.

2 Probabilistic Context-Free Grammars

Context-Free Grammars (CFGs) are extremely simple models of constituent structure. It’s well-
known that simple CFGs are poor descriptions of syntactic structure (Chomsky, 1957), but their
simplicity makes them useful for discussing basic ideas of probabilistic models and statistical in-
ference. As explained below, many of these ideas generalize to the more general class of Maxium
Entropy or log-linear models, which can be used to define probability distributions over virtually
any kind of syntactic structure (Abney, 1997).

Informally, a Context-Free Grammar (CFG) is specified in terms of a set of productions or rules of
the form A → B1 . . . Bn. If the grammar contains a rule A → B1 . . . Bn then a node labeled A
is permitted to immediately dominate a sequence of nodes labeled B1, . . . , Bn in phrase-structure
trees generated by that grammar. CFGs are “context-free” in the sense that the choice of rule
is only constrained by the category A, which means that CFGs can only capture longer-range

1

θ Rule θ Rule
0.8 S → NP VP 0.2 S → VP
0.1 VP → NP V 0.9 VP → V NP
0.5 NP → cats 0.5 NP → dogs
0.4 VP → chase 0.6 VP → race

..
S

.

NP

.

cats

.

VP

.

V

.

chase

.

NP

.

dogs

Figure 1: An example of a PCFG and a tree that it generates. This PCFG generates the tree with
probability 0.8× 0.5× 0.9× 0.4× 0.5 = 0.072.

dependencies if they decompose into a sequence of local dependencies that are encoded in the
nonterminal categories somehow. Gazdar et al. (1985) showed how to do this for a range of English
constructions, but CFGs are not capable of describing all natural languages (Shieber, 1985).

A probabilistic context-free grammar (PCFG) consists of a CFG together with a rule probability θA→β

for each rule A → β in the grammar. These rule probabilities must satisfy the standard constraints
of any probability distribution: (i) they must be non-negative, and (ii) the probabilities of all rules
expanding each nonterminal must sum to 1.

Figure 1 presents a simple PCFG and a tree that it generates. Linguistically speaking, these
PCFG rules encode both the allowable phrase structure configurations (e.g., head-complement
orderings) and the syntactic categories of the lexical items.

A PCFG defines a probability distribution over the trees that the CFG generates: the probability
of a tree is the product of the probabilities of the rules used to generate it. PCFGs strengthen the
“context-freeness” assumption of CFGs: in a PCFG the probability of choosing a rule to expand
a node only depends on the category labelling that node, and is independent of the expansions of
the other nodes in the tree. Thus just as in CFGs, non-local statistical dependencies can only be
captured in a PCFG if they are broken down into a sequence of local dependencies encoded in the
nonterminal labels.

Because a PCFG assigns probabilities to trees, it also indirectly assigns probabilities to strings
of terminal symbols: the probability of a string of terminals is the sum of the probabilities of all
trees that have that string as their yield.

The probabilities θA→β are parameters of the PCFG, and they determine the probabilities of the
trees that the grammar generates. The fact that θVP→V NP is larger than θVP→NP V means that trees
in which a V precedes an NP in a VP will be more probable than trees in which an NP precedes a
V in a VP (all else being the same).

PCFG rule probabilities differ from the parameters of the Principles and Parameters approach
(Chomsky, 1986) in that rule probabilities are continuously variable (i.e., they range from zero to
one) rather than discrete. It’s reasonable to be skeptical whether rule probabilities play a causal
role in human language: while we can estimate the probability that dogs is a noun in a particular
corpus, it’s not clear it is meaningful to speak of the probability that dogs is a noun in English,
independent of context, genre, register, etc. Of course it’s possible that humans use a statistical
learning procedure to identify the rules and lexical items in their language, and simply ignore the
associated probabilities once learning is complete (e.g., all rules with an estimated probability less
than, say, 10−10 might be assumed not to be in the language).

Another problem with PCFGs is that it’s not linguistically realistic to associate parameters with
specific phrase-structure rules. For example, a head-direction parameter, which specifies whether
heads are phrase-initial or phrase-final, would seem to be linguistically more reasonable rather than
a separate parameter associated with each phrase-structure rule (although Fodor and Crain (1987)

2

argue that parameters should be associated with finer-grained details of grammar). In fact, it’s
relatively easy to modify PCFGs so they associate parameters with sets of rules rather than individual
rules (Headden III et al., 2009), so we could easily define a single head-direction parameter that
encompasses several phrase-structure rules. However, for simplicity we’ll continue to associate
parameters with individual phrase-structure rules here.

A very important advantage of continuously-variable parameters is that they permit at least
part of language acquisition to be recast as a continuous optimization problem. As Nocedal and
Wright (2006) point out, continuous optimization problems are typically easier to solve than discrete
optimization problems because continuity provides information about the function’s behavior in a
neighborhood, and the absence of this information in discrete optimization can be viewed as an
extreme case of non-convexity. Associating probabilities with rules enables us to apply statistical
procedures for estimating or learning these rule probabilities from data (e.g., a corpus of phrase
structure trees or strings) that take advantage of continuity.

3 The Maximum Likelihood Principle

It’s natural to ask whether it’s possible to estimate the values of the rule probabilities from data
in some way. That is, we imagine that we are given a CFG and some data, and our task is to
estimate the probabilities associated with the rules in that grammar. Note that this parameter
estimation problem can be viewed as a simplified language acquisition problem. For example, in a
strongly head-initial language we’d expect estimates of θVP→NP V to be close to zero, and in a strongly
head-final language we’d expect estimates of θVP→V NP to be close to zero. Thus learning the rule
probabilities of a general PCFG can effectively involve learning important typological properties
of a language.

Perhaps unsurprisingly, the complexity of estimating PCFG rule probabilities depends on the
kind of data available to the learner. In the simplest version of the problem the learner is provided
with a sequence of labeled phrase-structure trees generated according to the unknown rule proba-
bilities, and has to estimate the rule probabilities from this sample of trees. This is called supervised
learning from visible data because the full derivational structure of the sentences is provided (i.e., is
visible) to the learner, and is relatively trivial for PCFGs. For example, given phrase-structure trees
it is simple to identify the head-complement ordering; simply “read off ” the ordering from the
trees.

The problem becomes more interesting, and much harder, when the learner is only provided
with the yield (i.e., the words labeling the terminal nodes) of the trees, rather than the trees them-
selves. This is called unsupervised learning from hidden data because the derivational structure is not
provided to (i.e., is hidden from) the learner.1 The hidden data learning problem for PCFGs is
arguably a cognitively more realistic problem, and hence more interesting.

There are many statistical methods one can use to learn PCFG rule probabilities. Here we
focus on a very general and powerful method based on the Principle of Maximum Likelihood (ML).
The ML principle says that to learn or estimate the values for parameters Θ from data, one should
select values for Θ that make the data as likely as possible. This principle is reasonably intuitive:
given a class of models that could possibly explain some data, the Maximum Likelihood Principle
instructs us to select the model that makes the data as likely as possible. A learner which follows
the ML principle is called a Maximum Likelihood Estimator (MLE).

1There are intermediate cases — known as semi-supervised learning from partially hidden data — where the learner is
provided with some information about the derivational structure, but not enough to completely determine the phrase-
structure tree. For example, Pereira and Schabes (1992) study the interesting situation where the learner observes some
but not all of the phrase boundaries and show that the techniques described below generalize to this case.

3

The ML principle is applicable to a very wide range of estimation problems (i.e., it is not
language-specific), and it has a number of attractive theoretical properties. Important among these,
it’s possible to prove that in a wide range of cases ML estimates are consistent, i.e., given data gener-
ated by a PCFG, a ML estimator converges on the distribution over trees generated by that PCFG.
ML estimates are also asymptotically optimal in the sense that there is no other estimator that converges
faster for all possible PCFGs.

Perhaps as importantly, ML estimators behave reasonably when their input data does not in fact
come from the class of models that the parameters can express, e.g., when the learner is exposed
to a language that no parameter setting generates. In this case it’s obviously not possible for a
parameter-setting learner to learn the target language, but an ML estimator will converge on a
model in its model class which generates a language that is as close as possible to the input data
(in the sense of Kullback-Leibler divergence, which measures the “distance” between probability
distributions). Thus an ML learner using a model class that is much simpler than the one that
generated its input data might none the less succeed in learning a useful approximation to the true
model. For example, a ML PCFG estimator might be able to learn something useful about the
phrase structure of a language even if that language is not generated by a PCFG.

Thus a ML estimator can be viewed as an “ideal observer” kind of learner, in that it most
effectively exploits the information available to it. If a ML estimator fails to learn in some situation,
then we can be fairly confident that either the model class (e.g., the CFG) being used does not
capture the relevant generalizations or the input does not contain sufficient information.

Now PCFGs and the ML principle are what Marr (1982) called “computational level” models;
they specify what should be computed, but they do not specify how that computation should be
performed. Of course algorithms are important: if human learners actually follow the ML principle
they will need an algorithm to estimate the rule probabilities, and we theorists need algorithms for
computing ML estimates to find out just what rule probabilities the ML principle predicts.

It turns out that computing the ML estimate for PCFG rule probabilities is trivial in the visible
data case (i.e., when the input data consists of phrase-structure trees): it only requires the ability to
count and divide, and this can be done incrementally (i.e., as each each tree is observed).

ML estimation is computationally more challenging in the hidden data case, and the algorithms
required are much more involved. Unfortunately there are unlikely to be any efficient exact al-
gorithms for ML estimation of PCFGs from strings alone (Cohen and Smith, 2012), so we use
methods that approximate the ML estimate. However we don’t know how accurate these approxi-
mations are, and more importantly, whether these approximations influence the kinds of linguistic
generalisations that the estimators can learn.

Because ML estimation is a kind of optimization, standard numerical optimization algorithms
can be used here. Alternatively, Expectation Maximization (EM) is a general framework for gener-
alizing visible-data learners to hidden-data problems. EM algorithms function by using a current
estimate of the parameters to estimate the hidden structures associated with the input data — in this
case, this means parsing the input strings using the current estimate of the PCFG rule probabilities
— and then inferring the unknown parameters from the estimates of the hidden structures. Com-
putationally the most onerous aspect of the EM algorithm for PCFGs is parsing the input data
(updating the PCFG rule probabilities is usually trivial in comparison), suggesting the attractive
possibility that at least some aspects of language acquisition may be an almost cost-free by-product
of parsing. That is, the child’s efforts at language comprehension may supply the information they
need for language acquisition.

The rest of this section contains an example of the EM algorithm for computing rule proba-
bilities in PCFGs. EM algorithms are typically batch algorithms that make multiple passes over the
input data in order to extract all the information it contains, but recently incremental versions of

4

S → NP VP NP → Det N NP → N Det
VP → V NP VP → NP V VP → V NP NP
VP → NP NP V
Det → the N → the V → the
Det → a N → a V → a
Det → cat N → cat V → cat
Det → dog N → bone V → bone
Det → bites N → bites V → bites
Det → gives N → gives V → gives

the dog bites a cat the cat bites a dog a cat gives the dog a bone
the dog gives a cat the bone a dog bites a bone

Figure 2: The PCFG rules and input strings used with the Expectation-Maximization and Varia-
tional Bayes algorithms, as described in the text. Notice that the grammar is written so that heads
can both precede or follow their complements, and the rules introducing terminals (i.e., the lexicon)
are completely ambiguous in terms of word to category association. Learning the rule probabilities
identifies a subset of these rules that suffice to generate these input strings.

the EM algorithm have been developed (Neal and Hinton, 2001). We use the iterative batch ver-
sion of the EM algorithm described in Lari and Young (1990) here because it is simple and has few
adjustable parameters. On-line learning algorithms typically have additional adjustable parameters
(such as learning rates) that affect their estimates in ways that are difficult to understand theoreti-
cally. While it’s unlikely that human learners use a batch algorithm such as EM,2 if we’re interested
in studying ML estimation of PCFGs (e.g., to determine which aspects of language can be learned
using ML) what matters are the models which maximize the likelihood, and not the algorithms used
to find them.3

Figure 2 shows the rules of the PCFG and the input strings used to produce the results be-
low. This grammar massively over-generates: it contains rules for both head-initial and head-final
phrase structures, and rules that associate every word with every syntactic category, i.e., all possible
lexical entries for the words in this corpus. Linguistically, learning this PCFG’s rule probabilities
corresponds to learning the head-complement ordering in the language, and to learning the syn-
tactic categories of each lexical item. After learning, the probabilities of the rules corresponding
to the unused head-complement ordering and the unused lexical items will be very close to zero,
so this approach to learning can be viewed as starting with a wide range of possible structures and
lexical entries (specified by Universal Grammar) and “unlearning” the ones that are not used in the
language.

Now learning the PCFG rule probabilities would be easy if the learner were given visible input
data, i.e., the true phrase-structure trees for sentences in the input data. Moreover, if the learner
were told the lexicon (i.e., which syntactic categories are associated with each word) learning the
PCFG rules that encode the phrase structure would also be straight-forward; e.g., if the last word in

2The EM algorithm uses repeated passes through the input data to calculate the expected value of the PCFG rule
statistics. In principle these statistics can be calculated from any sufficiently large sample from the input language, so in
a data-rich environment a learner might simply calculate these expectations from fresh samples, rather than repeatedly
reparsing the same input data.

3However, note that the EM algorithm only approximately maximizes likelihood: in general EM can “get stuck”
at a local optimum of the likelihood which may not be a global optimum, in much the same way that non-statistical
learners can (Gibson and Wexler, 1994).

5

the sentences are verbs, then the language is verb-final. However, without any advance knowledge
of the syntactic categories of lexical items or the phrase structure, it seems that a learner would
face a “chicken and egg” problem with this grammar and input data. As we will see, ML estimators
like EM avoid this problem because they automatically perform joint inference for both the phrase
structure rules and lexical entries together.

The EM algorithm is an iterative algorithm, so it must be given an “initial guess” for the prob-
abilities of the PCFG rules. Here we initialize the rule probabilities uniformly, e.g., because there
are 4 rules expanding VP, each is initially assigned probability 0.25. (We also added a small amount
of randomly-varying jitter to the initial rule probabilities for reasons explained below).

The EM algorithm repeatedly parses the sentences in its input data, and uses information gath-
ered from those parses to re-estimate the probabilities of the PCFG rules. Figure 3 displays the
values of some of the rule probabilities at each EM iteration. The differences in the probabilities
of the high probability rules are not that important (they differ by less than a factor of 10). Rather,
the important result is that the high probability rules are more probable than the low probability
rules by many orders of magnitude. After six iterations the algorithm has assigned extremely low
probabilities to rules that are inconsistent with the input data, such as VP→ NP V and N→gives,
i.e., a small set of rules capable of generating the strings in the input data have been learned. Thus
in this example the EM algorithm is capable of learning both the head-complement ordering inside
VP as well as the categories of the corresponding lexical items. (If the input strings are changed so
that the verbs follow, rather than precede, their complements, then the EM algorithm assigns low
probabilities to the head-initial VP rules instead).

Note that these rule probabilities have been learned without any direct negative evidence. Maximum
Likelihood estimators can be viewed as indirectly exploiting implicit negative evidence because in
general they select grammars which assigns as little probability as possible to strings not in the input
data, as this enables the model to increase the probability of the strings that do occur in the input
data. None of this is specific to PCFGs: see Clark (2004) for a more detailed discussion of the role
of negative evidence in statistical learning.

Because probabilities are required to sum to one, it’s possible to assign much higher probabilities
— and hence maximize likelihood — if the grammar generates a small set of strings than if the
grammar generates a larger set of strings. For example, if probabilities are assigned equally to 10
strings then each will have probability 0.1, while if the grammar generates 100 strings and assigns
probability uniformly, then each will have probability 0.01. Now consider the grammar rules in
Figure 2. If only the V-initial VP rules have high probability, then bites and gives are analyzed as Vs,
and the grammar generates a relatively small set of strings such as a dog gives a cat besides the strings
in the input data. However, if the V-final VP rules have high probability then bites and gives must be
analyzed as either Det or Ns and cat, dog and bone must be analyzed as both V and either Det or N.
Such a grammar would generate a much larger set of strings (including examples such as the gives a
bites cat), and hence would necessarily assign them a lower probability.4

The learned grammar generates strings beyond those contained in the input data: it generates
strings such as a bone bites a dog with high probability, even though this string does not appear in
the input data. It does this because the grammar’s parameters are the rule probabilities, and the
values that make the input data most likely also make such unseen strings more likely as well. Thus
the PCFG rules and the PCFG “context-free” independence assumptions determine how a ML
estimator generalises from the input data. If we were to relax the PCFG independence assumptions
by associating a probability parameter with each tree that the grammar generates then a ML estimate

4To keep things simple I am assuming here that the grammar only generates a finite set of strings and assigns equal
probability to the strings it generates. Using Information Theory this argument can be generalized to cases where the
grammar generates infinitely many strings and assigns non-uniform probabilities to them (Cover and Thomas, 2006).

6

 0

 1

 0 1 2 3 4 5 6 7 8 9

R
ul

e
pr

ob
ab

ili
ty

 θ

Iteration

VP → V NP
VP → NP V

VP → V NP NP
VP → NP NP V

N → gives
V → gives

Figure 3: The probabilities of the PCFG rules at each iteration of the Expectation-Maximization
algorithm. Notice that after six iterations the algorithm assigns extremely low probabilities to rules
that are inconsistent with the input data, such as VP→ NP V and N→ gives.

would put positive probability only on the sentences of the input data, and would not generalise to
strings not seen in the input data at all. Thus the structure of the model, in particular the details
of its independence assumptions, are central to statistical learning, since they are what force the
learner to generalize beyond the examples in its input data.

It’s interesting to inspect the rule probabilities at early iterations of the EM algorithm. Although
the algorithm starts with a uniform assignment of rule probabilities, the probabilities of both the
phrasal rules (e.g., VP → V NP) and lexical rules (e.g., V → gives) vary simultaneously during the
learning process. The EM algorithm avoids the “chicken and egg” problem mentioned earlier
because it performs joint inference for both the phrasal and lexical rules, rather than inferring
them separately. Learning the lexicon and syntactic structure jointly (i.e., together) seems to be
essential here: it’s hard to see how any “staged” learner (which attempted to learn lexical entries
before learning syntax, or vice versa) could succeed on this data.

It’s also easy to see that there are cases where the ML estimators will fail to learn anything
meaningful. The PCFG in Figure 2 has rules generating N and Det in either order, and the rules
generating lexical items are completely ambiguous. For reasons just explained the ML estimate
assigns high probability to only one of the rules NP → Det N and NP → N Det, but which rule
“wins” is determined by which has even minutely higher probability in the initial grammar (i.e., the
jitter in the initial grammar determines which rules have high probability). Thus the MLE fails to
learn a single grammar in this case because the data simply does not contain sufficient information
to unambiguously identify the ordering of constituents within NP.

7

4 Bayesian inference and universal markedness preferences

Bayesian inference extends frequentist methods like Maximum Likelihood estimation by including
prior information. Bayesians use Bayes Rule to factorise the posterior distribution over parameter
values Θ (here the PCFG rule probabilities) given the data as proportional to the product of the
likelihood of the parameters and a prior distribution over the parameters:

P(Θ | Data)︸ ︷︷ ︸
Posterior

∝ P(Data | Θ)︸ ︷︷ ︸
Likelihood

P(Θ)︸ ︷︷ ︸
Prior

The likelihood here is the same as used in Maximum Likelihood estimation, so Bayesian estimators
tend to learn parameter values that concentrate mass on a small set of strings that includes the input
data, just like a ML estimator. Bayesian estimation differs from Maximum Likelihood estimation
primarily in that the likelihood is multiplied by another term called the prior. The prior constitutes
information known to the learner in the absence of data, in the same way that Universal Grammar
encodes information available to the learner in the absence of any data. However, a Bayesian prior
is probabilistic, so as well as hard constraints it can encode soft markedness preferences towards
or away from particular parameter settings.

Because the posterior is a product of a likelihood and a prior, in general a parameter vector Θ
will have a low posterior probability if either it has low prior probability, i.e., it is inconsistent with
the expectations of Universal Grammar, or if it has low likelihood, i.e., it is inconsistent with the
data. Thus Bayesian inference can be regarded as search for parameter values that satisfy the prior
(i.e., Universal Grammar) and are also consistent with the available input data.

Bayesian estimation is also intimately related to the Minimum Description Length (MDL) approach
to learning (Rissanen, 1989), where the goal is to find as compact a description of the input data
as possible. Specifically, it’s possible to show that the log likelihood is the length of the shortest
description of the input data under an encoding specified by the prior (MacKay, 2003), so the
most compact description in an MDL approach is the model with highest posterior probability in
a Bayesian approach.

In the rest of this section we will demonstrate how a Bayesian prior can be used to resolve the
learning ambiguity in Maximum Likelihood estimation described at the end of the previous section.

Mathematically speaking, a Bayesian prior can contain arbitrary information about the values
of the parameters Θ to be estimated, so one could resolve the learning ambiguity by using the prior
to prefer a specific parameter setting, e.g., where the rule NP → Det N has a higher probability
than the rule NP → N Det. Such a prior can be regarded as encoding into Universal Grammar a
preference for a Det N ordering within NP.

While it may or may not be linguistically reasonable to assume Universal Grammar contains
preferences for particular constituent orders, Bayesian priors can be far more subtle than this. For
example, there are Bayesian priors (called “sparse Dirichlet priors”) that prefer parameter vectors
where most the probabilities of the rules expanding specific categories are close to zero. Such priors
can be used to encode a markedness preference that the number of lexical entries for functional
categories such as determiners is smaller than the number of lexical entries for lexical categories
such as nouns. Note that the prior doesn’t specify which words are more likely to be determiners
(although there are priors that can do this too); it just says that grammars in which there are fewer
determiners are to be preferred by the learner.

Bayesian inference is often computationally more complex than Maximum Likelihood estima-
tion, in part because Bayesian inference estimates a posterior distribution over parameters, rather
than the point estimates of parameters that ML estimation produces. In the case of inference for
PCFG rule probabilities from strings, however, there is an algorithm for approximate Bayesian

8

 0

 1

 0 1 2 3 4 5 6 7 8 9

R
ul

e
pr

ob
ab

ili
ty

 θ

Iteration

NP → Det N
NP → N Det

Det → the
N → the

Det → dog
N → dog

Figure 4: The probabilities of the PCFG rules at each iteration of the Variational Bayes algorithm.
Notice that after six iterations the algorithm has identified the NP → Det N is the appropriate
rule for expanding NP given this data. The probabilities of the other rules in the grammar follow
approximately the trajectories depicted in Figure 3.

inference called Variational Bayes (VB) that is a straight-forward generalization of the Expectation
Maximization used above (Kurihara and Sato, 2006).

Figure 4 shows the result of Bayesian inference using the VB algorithm when such a sparsity-
preferring prior is imposed on the rule probabilities in the Det category and a uniform or “flat” prior
is imposed on all other categories. The VB estimator with this prior always prefers the NP → Det N
analysis because this enables it to assign a smaller set of words (i.e., the and a) to the Det category.
Thus in this case a Bayesian prior about the relative sparsity of the Det and N categories supplies
sufficient information to enable a learner to break the symmetries in the NP category mentioned
above.

The reader will note that the VB algorithm assigns non-neglible probabilities to many of the
“incorrect” rules (e.g., NP → N Det and N → the) in Figure 4, in contrast to the miniscule proba-
bilities assigned to such rules by the ML estimator in Figure 3. This is arguably “a feature, not a bug”
of Bayesian inference. Because Bayesian approaches model the entire posterior distribution they
more accurately capture uncertainty in the learned models. The input data in the example above
only contains 5 sentences, so it’s reasonable that a learner might not want to make extremely strong
inferences just on the basis of this data. The Bayesian estimates here can be viewed as the learner
“keeping its options open” about e.g., whether determiners can be final inside NP. (The inferred
probability of the Det → dog rule is very low precisely because we imposed a sparsity-preferring
prior on the rules expanding Det).

9

5 More realistic models of language acquisition

The previous two sections described how Maximum Likelihood and Variational Bayes estimators
can be used to infer or learn the probabilities of PCFG rules given strings of words as input data. We
saw that because ML estimators choose the rule parameters that make the data as likely as possible,
they also choose these parameters in a way that assigns as little probability to strings outside the
input data as possible. Bayesian estimators combine the likelihood with a prior, which can bias the
learner towards certain grammars and away from others. We saw that a sparsity-inducing prior can
be used to prefer certain category assignment patterns without requiring prior knowledge of the
category of any specific words.

These models are highly simplified in many ways, and it’s interesting to investigate whether
these methods work in more realistic situations. An obvious experiment is to apply these algo-
rithms to larger grammars and input data. The Expectation Maximization (EM) and Variational
Bayes (VB) algorithms are quite efficient, so they can be run with moderate-sized PCFGs on cor-
pora of millions of words. This has been tried with EM (VB is newer and so less explored) and
the results are generally disappointing: the inferred grammars tend to generate extremely unnatu-
ral phrase-structure analyses, often much worse than simply assigning a uniformly right-branching
phrase structure (Klein and Manning, 2004). (An important lesson to draw from this is that while
it’s relatively easy to come up with learning procedures that do well on toy problems like the exam-
ple above, it’s much harder to develop approaches that work on larger, more realistic input data).
While it’s still unclear exactly why these EM experiments fail to learn reasonable linguistic analyses,
there are at least two reasonable hypotheses: (i) the grammar classes being used are incomplete or
otherwise wrong, and (ii) human learners are exploiting more information than is contained in just
the strings alone, and there’s just not enough information in strings alone to learn a language.

In fact, it’s relatively easy to show that the likelihood optimised by the EM algorithm simply
does not correctly identify linguistically plausible phrase structure analyses. One way to do this
uses a hand-constructed “treebank” of phrase-structure trees, from which the (presumably) correct
PCFG rules can be read off and the rule probabilities estimated (recall that ML estimation is easy
when the trees are visible). If we run the EM algorithm on the strings of the treebank data and
initialize it with the rules and probabilities extracted from the treebank trees, we find that the rule
probabilities change dramatically. (The likelihood increases dramatically during this process, so the
EM algorithm is in fact functioning as advertised). However, the accuracy of the phrase structure
parses generated using this grammar drops dramatically, showing that maximizing likelihood given
this input data does not identify rule probabilities that result in the most accurate phrase-structure
parses of this data.

Today most work on grammar induction in computational linguistics uses dependency grammars
rather than PCFGs (Klein and Manning, 2004). These dependency grammars directly generate
dependencies between words (i.e., head-to-head dependencies), so a dependency grammar repre-
sentation seems simpler than a corresponding constituency representation. Recent formal results
also suggest that dependency grammars are identifiable from strings alone while arbitrary PCFGs
are not (Hsu et al., 2012); this may partly explain why dependency grammars are learned more
successfully. However these dependency representations correspond 1-to-1 to certain X ′ tree rep-
resentations (Johnson, 2007), so perhaps the conclusion that should be drawn from the failure to
infer PCFGs that generate English phrase structure from large corpora is that it’s necessary to use
a PCFG whose rules are suitably constrained.

Now it’s well-known that simple CFGs of the kind used above are grossly inadequate for de-
scribing the syntactic structures of natural languages. A reasonable hypothesis is that the way
PCFGs associate probabilities with phrase structure rules simply is not an appropriate way of pa-

10

rameterizing natural language grammars. As noted above, the locality requirements of CFGs don’t
correspond well with those of natural languages. The Generalized Phrase Structure Grammar
(GPSG) for English proposed by Gazdar et al. (1985), while weakly equivalent to a CFG, makes
extensive use of “meta-rules” and feature-passing conventions to capture linguistic generalizations,
and it’s reasonable to expect that devices of similar complexity would be required in any adequate
PCFG for English (let alone one that encompasses a reasonable portion of Universal Grammar).
So perhaps the reason why EM fails to learn linguistically reasonable PCFGs from large corpora is
simply because the PCFGs we’ve used can’t capture the relevant linguistic generalizations. There
has not been much work on feature-passing versions of PCFGs analogous to the GPSG exten-
sion of CFGs, but this might be one way of developing linguistically more realistic PCFGs: see
Goodman (1998) for one attempt.

Given the linguistic problems with PCFGs, it’s reasonable to ask whether it’s possible to develop
probabilistic versions of other kinds of grammars that will enable ML and Bayesian inference to be
used with them as well. Abney (1997) showed that log-linear grammars, also known as Maximum En-
tropy models, can be used to develop probabilistic versions of virtually any kind of grammar, including
Principles and Parameters grammars and Minimalist Grammars. It turns out that these probabilistic
grammars strictly generalize PCFGs (i.e., every PCFG is a log-linear model, but there are log-linear
grammars that generate non-context-free languages). Log-linear models are very closely related to
Harmonic Grammars, which are in turn a stochastic variant of Optimality Grammars (Smolensky
and Legendre, 2005).

Log-linear grammars relax the strict locality requirements of PCFGs, allowing dependencies
between arbitrary elements in a linguistic structure. This enables them to directly capture a wide
range of different linguistic constraints and generalizations, such as WH-movement, raising, etc.
This extra expressive power comes at a massive increase in computational complexity, which in
general means that estimation of log-linear grammars require additional approximations to be used
on top of those used with PCFGs. ML estimation of log-linear grammars requires the computation
of a “partition function” and/or its derivatives, which involves summing over the possible structures
that the grammar generates (of which there are usually infinitely many) (Johnson and Riezler, 2002).

PCFGs are computationally simpler than log-linear grammars because their strictly local “context-
free” dependencies guarantee that their partition function is a constant, so such intractable sums
are not required. Interestingly, the relevant notion of context-freeness here applies to derivational
structure, rather than the derived surface strings or trees. There are grammar formalisms such as
Tree-Adjoining Grammar (TAG) with a context-free derivation structure that can generate non-
context-free languages; these grammar formalisms have easily computable partition functions and
therefore have many of the attractive computational properties of PCFGs (Resnik, 1992).

While it’s straight-forward to formulate a version of the EM algorithm that learns the weights
of a log-linear model from strings alone, the computational complexity of such an algorithm is
generally assumed to be so high that it would infeasible for realistic grammars and input data.
However, the efficient approximation of partition functions and their derivatives is currently the
focus of intense research in the field of machine learning (Dahl et al., 2012), and it’s not implausible
that successes there will lead to more efficient and accurate EM algorithms for log-linear grammars
as well.

We now move to the second point: that language learning may require additional information
beyond that contained in a set of strings of surface forms. Perhaps language learners need, or can
exploit, some kinds of non-linguistic input in order to learn language?

A Bayesian prior can be regarded as providing a learner with information in addition to the
input data, in the sense that the prior contains information available to the learner in the absence
of experience. Bayesian methods are still comparatively unexplored, but results obtained so far

11

suggest that an appropriate prior can produce significant but not ground-breaking improvements
in language learning compared to ML. For example, (Naseem et al., 2010) uses Bayesian methods
and constraints to disambiguate ambiguities in dependency grammars (e.g., should nouns or deter-
miners be taken to be the heads of NPs?), which improves the accuracy of the dependencies the
learner identifies.

The subfield of computational linguistics known as semantic parsing is concerned with learning the
relationship between surface strings and “meaning representations”, usually mediated by extremely
simple grammars (much of this work focuses on learning a lexicon). For example, Jones et al.
(2012) models the relationship between meaning representations and surface strings using tree
transducers, while Kwiatkowski et al. (2012) learn a Combinatory Categorial Grammar that maps
logical forms (in the lambda calculus) to surface strings. This approach is attractive because the
models do not aim to predict the probability of sentences in general, but rather the conditional
probability of words and constructions given the meaning the speaker intends to express. Focusing
more specifically on the acquisition of a lexicon, Johnson et al. (2012) describes models that exploit
social cues (e.g., the location of the speaker’s gaze) to help infer the intended referent of an utterance,
which is presumably helpful for learning word meanings.

Because log-linear grammars are so general, they can be used to model the relationship between
surface structures and “meaning representations”, but they face the computational challenges men-
tioned earlier. One standard approach for avoiding the computational intractability of the partition
function in log-linear grammars is to use Conditional Maximum Likelihood (CML) estimates in place
of Maximum Likelihood (ML) estimates. CML optimizes a conditional probability distribution,
which requires us to factor the input data items into “input” and “output” representations. (CML
cannot be used to directly estimate a grammar from input data consisting of strings alone, as was
done in the PCFG examples above, because this data does not come in the form of input/output
pairs). In natural language processing parsing applications, where the goal is to recover a parse tree
given an input string, it is standard to use CML to estimate the conditional distribution over parse
trees conditional on surface strings, i.e., the “input” representations are surface strings and the
“output” representations are parse trees. This application of CML produces very accurate parsers
for engineering applications (Charniak and Johnson, 2005).

Johnson and Riezler (2002) suggest that it might be linguistically more natural to use CML to
estimate conditional models in the opposite direction, i.e., where the “input” representations are
underlying forms of some kind (e.g., logical forms or some kind of semantic representation) and the
“output” representations are surface strings. This approach views the goal of language acquisition
to be a mapping from meaning to form. It does not require learning a distribution over possible
underlying forms or meanings, which arguably is not a property of language at all, but depends on
the communicative intentions of the language users. In such an approach it would be natural to
impose a Bayesian prior that prefers sparse distributions over “outputs” (surface representations)
given any “input” (semantic form); this would be a Bayesian formulation of the uniqueness principle
(Wexler and Culicover, 1980) or the principle of contrast (Clark, 1987). It’s not unreasonable to hope
that these conditional distributions might be close to deterministic, in which case statistical esti-
mation might be used to learn a grammar which is essentially non-stochastic. Of course, because
the input data for such a learner consists of underlying form/surface string pairs, the learner must
obtain them somehow, and it’s not clear how a human learner could obtain the underlying forms
required (but see Hsu and Griffiths (2009)).5 It’s worth noting that using CML to estimate log-linear
models of the conditional distribution of surface forms given underlying forms is now common in
computational phonology (Goldwater and Johnson, 2003; Hayes and Wilson, 2008).

5Non-statistical models of language acquisition such as Wexler and Culicover (1980) also assume that the learner’s
input consist of underlying form/surface form pairs.

12

Finally, we turn to the topic of learning the constructions or rules of a grammar as well as their
probabilities. This requires a significant extension of the statistical estimation techniques described
above. The learners described so far are parametric estimators because they learn the values of a fixed-
dimensional vector of parameters (e.g., rule probabilities) that is specified before learning begins.
Learners which learn which parameters from an infinite set of possible parameters are appropriate
based on the input data are called non-parametric estimators. For example, a learner which learns a
set of PCFG rules as well as their probabilities from the input data would be a non-parametric
estimator.

A standard approach for learning rules could be described as employing a “let a hundred flowers
bloom” strategy. This strategy starts by generating an initial (perhaps randomly chosen) set of
rules, and then applies a parametric learner to infer their probabilities from the input data. Then
each rules whose probability falls below some threshold is discarded and new rules are proposed
somehow, usually on the basis of sentences in the input data that the current grammar parses
“badly”. Examples of inference procedures employing this strategy include Carroll and Charniak
(1992) and Stolcke and Omohundro (1994). A weakness of this strategy is that its performance
depends crucially on the procedure for proposing new rules, and these tend to be ad hoc. Such
approaches are often viewed as searching for a set of rules and associated probabilities that score
well on some Bayesian or MDL metric, but there are usually no guarantees that the algorithms
employed will find or even approach an optimum of such a metric.

An obvious application of non-parametric estimation is in the acquisition of the lexicon. There’s no
obvious bound on the number of possible lexical entries in a natural language; rather, the number
of lexical entries as well as the information they contain must be learned from the input data.
Elman (1990) introduced the word segmentation problem (segmenting phonemic representations of
utterances into words) as a simplified version of lexical acquisition and Goldwater et al. (2009)
developed Bayesian non-parametric models for this problem. Bayesian non-parametric approaches have
several advantages over “hundred flowers” strategies: they are less ad hoc because they explicitly
define the goal of inference (the posterior distribution), and there are provably correct inference
algorithms that simultaneously search for a finite set of parameters (i.e., lexical entries) as well as
their values (i.e., the probability of each entry) given the input data. Johnson (2008) describes
a Bayesian non-parametric framework called “Adaptor Grammars” in which a CFG generates an
infinite set of highly structured possible parameters (e.g., lexical entries with morphological category
and syllable structure constraints), from which the learner chooses a finite set on the basis of the
input data.

6 Conclusion

This paper has discussed a variety of ways in which language acquisition might be understood as
statistical inference. We began with a simple example of ML inference of PCFG rule probabilities
from a small corpus of strings, and saw how it could learn both lexical entries and phrase structure
rules in the absence of negative evidence. We also saw how a Bayesian prior could be used to bias
a grammar toward a linguistically reasonable analysis in situations where the input data does not
contain sufficient information. Thus on this simple example at least, statistical learners are capable
of exploiting distributional information in order to infer linguistic generalisations about their input
data.

We then noted that even though these PCFG estimators can be applied to larger, more realistic
input data, the results are uniformly disappointing, and discussed two possible reasons: (i) the
grammars aren’t capturing appropriate linguistic generalizations, and (ii) surface strings on their own
don’t supply sufficient information to learn language. The search for more linguistically-expressive

13

grammars lead us to consider log-linear grammars, which are far more expressive than PCFGs but
whose estimation can involve major computational challenges. We also discussed approaches that
assumed richer input data (say, surface strings/underlying form pairs), and pointed out that it may be
both computationally more feasible and linguistically more reasonable to view language acquisition
as learning the conditional distribution of surface forms given underlying semantic forms. Finally,
we discussed non-parametric inference, which aims to learn which parameters are relevant to the
input data, as well as the values that they take.

A central theme of this paper is that because exact calculations are computationally intractable
in all but the simplest cases, most statistical learning algorithms involve approximations of one kind
or another, and in general we don’t understand what kinds of inaccuracies (if any) these approxima-
tions induce, and what the linguistic implications of these inaccuracies are. This means that most
work in the field adopts an experimental, “try it and see” approach. Since all these models involve
approximations and idealisations of one kind or another, it is hard to draw definitive conclusions
from them about human language acquisition. When an experiment “fails” it is often difficult to
understand why, and even when an experiment “succeeds”, all one can say is that it seems that the
input data coupled with the model’s assumptions suffice to learn the phenomena in question: even
then it’s possible that success is due to idealisations about the input data or algorithmic approxima-
tions unlikely to generalise to more realistic scenarios.

It’s probably fair to say that most of the research discussed above comes from the computer
science literature, and focuses on algorithmic details and implementations. Perhaps this is not sur-
prising, given that there are major technical challenges involved in developing inference procedures
capable of learning human languages, and there are still major gaps in our understanding of the the-
oretical and practical application of these inference algorithms that such technical expertise will be
required to resolve. But I suspect that ultimately the most important insights in this work will turn
out to be linguistic rather than computational. For example, it’s already the case that the log-linear
approach to probabilistic grammars can capture much richer and more complex linguistic gener-
alizations than are currently being explored, and in principle it should be possible for Bayesian
priors to express the kinds of rich linguistic knowledge that linguists posit for Universal Grammar.
It would be extremely interesting to investigate just what a statistical estimator using linguistically
plausible parameters might be able to learn.

Acknowledgements

Avery Andrews, Benjamin Börschinger, Alexander Clark, Stephen Crain, Katherine Demuth and
Mark Steedman all provided insightful comments on early drafts; naturally all responsibility for
errors remain my own. This research was supported by Australian Reseach Council Discovery
Projects DP110102506 and DP110102593.

References

Abney, S. 1997. Stochastic attribute-value grammars. Computational Linguistics, 23(4):597–617.

Carroll, G. and E. Charniak. 1992. Two experiments on learning probabilistic dependency gram-
mars from corpora. In Proceedings of the AAAI Workshop on Statistically-Based Natural Language
Processing Techniques, San Jose, CA.

Charniak, E. and M. Johnson. 2005. Coarse-to-fine n-best parsing and MaxEnt discriminative

14

reranking. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics,
pages 173–180, Ann Arbor, Michigan. Association for Computational Linguistics.

Chomsky, N. 1957. Syntactic Structures. Mouton, The Hague.

Chomsky, N. 1986. Knowledge of Language: Its Nature, Origin and Use. Praeger, New York.

Clark, A. 2004. Grammatical inference and first language acquisition. In Psychocomputational Models
of Human Language Acquisition, pages 25–32, Geneva.

Clark, E. 1987. The principle of contrast: A constraint on language acquisition. In B. MacWhinney,
editor, Mechanisms of Language Acquisition, pages 1–33. Lawrence Erlbaum, New Jersey.

Cohen, S. and N. Smith. 2012. Empirical risk minimization for probabilistic grammars: Sample
complexity and hardness of learning. Computational Linguistics, 38(3):479–526.

Cover, T. and J. Thomas. 2006. Elements of Information Theory. Wiley Series in Telecommunications
and Signal Processing. John Wiley and Sons.

Dahl, G., R. Adams, and H. Larochelle. 2012. Training restricted Boltzmann machines on word
observations. In J. Langford and J. Pineau, editors, Proceedings of the 29th International Conference on
Machine Learning (ICML-12), ICML ’12, pages 679–686, New York, NY, USA. Omnipress.

Elman, J. 1990. Finding structure in time. Cognitive Science, 14:197–211.

Fodor, J. and S. Crain. 1987. Simplicity and generality of rules in language acquisition. In
B. MacWhinney, editor, Mechanisms of Language Acquisition, pages 35–65. Lawrence Erlbaum, New
Jersey.

Gazdar, G., E. Klein, G. Pullum, and I. Sag. 1985. Generalized Phrase Structure Grammar. Basil
Blackwell, Oxford.

Geman, S. and M. Johnson. 2004. Probability and statistics in computational linguistics, a brief
review. In M. Johnson, S. P. Khudanpur, M. Ostendorf, and R. Rosenfeld, editors, Mathematical
Foundations of Speech and Language Processing, pages 1–26. Springer, New York.

Gibson, E. and K. Wexler. 1994. Triggers. Linguistic Inquiry, 25(3):407–454.

Goldwater, S., T. L. Griffiths, and M. Johnson. 2009. A Bayesian framework for word segmentation:
Exploring the effects of context. Cognition, 112(1):21–54.

Goldwater, S. and M. Johnson. 2003. Learning OT constraint rankings using a Maximum Entropy
model. In J. Spenader, A. Eriksson, and O. Dahl, editors, Proceedings of the Stockholm Workshop on
Variation within Optimality Theory, pages 111–120, Stockholm. Stockholm University.

Goodman, J. 1998. Parsing inside-out. PhD thesis, Harvard University.

Hayes, B. and C. Wilson. 2008. A Maximum Entropy model of phonotactics and phonotactic
learning. Linguistic Inquiry, 39(3):379–440.

Headden III, W. P., M. Johnson, and D. McClosky. 2009. Improving unsupervised dependency
parsing with richer contexts and smoothing. In Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics,
pages 101–109, Boulder, Colorado. Association for Computational Linguistics.

15

Hsu, A. and T. Griffiths. 2009. Differential use of implicit negative evidence in generative and
discriminative language learning. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and
A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 754–762, 2009.

Hsu, D., S. Kakade, and P. Liang. 2012. Identifiability and unmixing of latent parse trees. In
P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 25, pages 1520–1528. MIT Press, Cambridge, MA.

Johnson, M. 2007. Transforming projective bilexical dependency grammars into efficiently-parsable
CFGs with Unfold-Fold. In Proceedings of the 45th Annual Meeting of the Association of Computational
Linguistics, pages 168–175, Prague, Czech Republic. Association for Computational Linguistics.

Johnson, M. 2008. Using Adaptor Grammars to identify synergies in the unsupervised acquisition
of linguistic structure. In Proceedings of the 46th Annual Meeting of the Association of Computational
Linguistics, pages 398–406, Columbus, Ohio. Association for Computational Linguistics.

Johnson, M., K. Demuth, and M. Frank. 2012. Exploiting social information in grounded lan-
guage learning via grammatical reduction. In Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics, pages 883–891, Jeju Island, Korea. Association for Computational
Linguistics.

Johnson, M. and S. Riezler. 2002. Statistical models of syntax learning and use. Cognitive Science, 26:
239–253.

Jones, B., M. Johnson, and S. Goldwater. 2012. Semantic parsing with Bayesian tree transducers.
In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 488–496,
Jeju Island, Korea. Association for Computational Linguistics.

Klein, D. and C. Manning. 2004. Corpus-based induction of syntactic structure: Models of depen-
dency and constituency. In Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics, pages 478–485, 2004.

Kurihara, K. and T. Sato. 2006. Variational Bayesian grammar induction for natural language. In
8th International Colloquium on Grammatical Inference, 2006.

Kwiatkowski, T., S. Goldwater, L. Zettlemoyer, and M. Steedman. 2012. A probabilistic model of
syntactic and semantic acquisition from child-directed utterances and their meanings. In Proceed-
ings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pages
234–244, Avignon, France. Association for Computational Linguistics.

Lari, K. and S. Young. 1990. The estimation of Stochastic Context-Free Grammars using the
Inside-Outside algorithm. Computer Speech and Language, 4(35-56).

MacKay, D. J. 2003. Information Theory, Inference, and Learning Algorithms. Cambridge University Press.

Marr, D. 1982. Vision. W.H. Freeman and Company, New York.

Naseem, T., H. Chen, R. Barzilay, and M. Johnson. 2010. Using universal linguistic knowledge to
guide grammar induction. In Proceedings of the 2010 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1234–1244, Cambridge, MA. Association for Computational Linguistics.

16

Neal, R. M. and G. E. Hinton. 2001. A new view of the EM algorithm that justifies incremental
and other variants. In M. I. Jordan and T. J. Sejnowski, editors, Graphical Models: Foundations of
Neural Computation. The MIT Press, Cambridge, Massachusetts.

Nocedal, J. and S. J. Wright. 2006. Numerical Optimization. Springer, New York.

Pereira, F. and Y. Schabes. 1992. Inside-Outside reestimation from partially bracketed corpora. In
Proceedings of the 30th Annual Meeting of the Association for Computational Linguistics, pages 128–135,
San Francisco. Morgan Kaufmann.

Resnik, P. 1992. Probabilistic tree-adjoining grammar as a framework for statistical natural language
processing. In Proceedings of the 14th conference on Computational linguistics - Volume 2, COLING ’92,
pages 418–424, Stroudsburg, PA, USA. Association for Computational Linguistics.

Rissanen. 1989. Stochastic Complexity in Statistical Inquiry. World Scientific Company, Singapore.

Shieber, S. M. 1985. Evidence against the Context-Freeness of natural language. Linguistics and
Philosophy, 8(3):333–344.

Smolensky, P. and G. Legendre. 2005. The Harmonic Mind: From Neural Computation To Optimality-
Theoretic Grammar. The MIT Press.

Stolcke, A. and S. Omohundro. 1994. Inducing probabilistic grammars by Bayesian model merging.
In R. C. Carrasco and J. Oncina, editors, Grammatical Inference and Applications, pages 106–118.
Springer, New York.

Wexler, K. and P. Culicover. 1980. Formal Principles of Language Acquisition. The MIT Press, Cam-
bridge, Massachusetts.

17

