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Abstract

Computational phonology studies sound patterns in the world’s languages from a compu-

tational perspective. This article shows that the similarities between different generative theo-

ries outweigh the differences, and discusses stochastic grammars and learning models within

phonology from a computational perspective. Also, it shows how the hypothesis that all sound

patterns are subregular can be investigated, pointing the direction for future research. Taken to-

gether, these contributions show computational phonology is identifying stronger and stronger

universal properties of phonological patterns, which are reflected in the grammatical formalisms

phonologists employ.

This article is intended primarily for phonologists who are curious about computational

phonology, but do not have a rigorous background in mathematics or computation. However, it

is also informative for readers with a background in computation and the basics of phonology,

and who are curious about what computational analysis offers phonological theory.

1 Introduction

In Computational Phonology – Part I: Foundations, the foundations of the theory of computation

were presented and the first major result of computational analysis of phonological patterns was

given: they are regular patterns. This article explains why

1. different grammatical formalisms in phonology (in particular, SPE-style phonology, Two-
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Level Phonology, Declarative Phonology, and Optimality Theory) are similar to each other

from a computational perspective,

2. computational analysis informs stochastic approaches to grammars,

3. computational analysis is of paramount importance in addressing the learning problem, and

4. why the future of computational analysis of phonological patterns is subregular.

Part I emphasized that phonological theories factor the phonology of a language into individual

generalizations as shown in Figure 1. It was explained that for SPE-style grammars, Kaplan and

F1 × F2 × . . . Fn = PL

Figure 1: Theories of phonology.

Kay (1994) showed that each rule (Fi) encodes a regular relation and that the interaction of these

rules (×) is exactly given by the composition operation (◦) of finite-state transducers. Assuming

that phonological rules cannot re-apply to the locus of their structural change, it follows that the

phonology of the whole language (PL) is also a regular relation, describable with a single finite-

state transducer.

In this article, Sections 2-4 show that research on Two-Level Phonology, Declarative Phonol-

ogy, and Optimality Theory (OT) reveals that the grammars in these theories also describe gener-

alizations and whole phonologies as regular relations, which interact in similar ways. Sections 5-7

discuss stochastic grammars, learning, and subregular properties, respectively. Section 8 concludes.

2 Two-level Phonology

Architecture. Inspired by Kaplan and Kay (1981), Koskenniemi (1983) presents a theory of

phonology called TWO-LEVEL PHONOLOGY (2LP).1 Under this theory, all individual phonolog-
1Koskenniemi called his theory “Two-Level Morphology” since he describes morphophonological alternations.
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ical generalizations (Fi) are stipulated to be regular relations, but these relations are no longer

conceived as rules that transform one string to another. Rather, they are individual constraints that

enforce well-formedness conditions on alternations in parallel. These conceptual shifts ought not

be underestimated as they foreshadow the later development of OT (Prince and Smolensky, 2004).

The interaction of these constraints is accomplished through what I will call the PATH PRODUCT

operation on finite-state transducers. Examples of paths are given in Part I. Every transducer not

only describes a regular relation, it also describes a set of paths. The path product of T1 and T2 is

an operation that yields another transducer which describes exactly the intersection of the paths of

T1 and T2. Kaplan and Kay (1994) explain this operation in more detail.

Karttunen (1993) makes clear that the 2LP grammars decompose the phonology of the whole

language in a different manner than the way SPE grammars do. The decomposition in 2LP is just as

logically consistent as the one in SPE. Both state individual phonological generalizations as regular

relations. 2LP uses path product, but SPE uses composition.

Expressivity. Kaplan and Kay (1994) apply their analysis to two-level phonology and show that

it, like the SPE-style grammars, expresses all and only regular relations. They conclude “Although

there may be aesthetic or explanatory differences between the two formal systems, empirical cover-

age by itself cannot be used to choose between them.”

Computational Complexity. Barton et al. (1987) determine the generation problem (part I, prob-

lem 4-a) for 2LP grammars belongs to NP, when the grammars are given as a set of individual

generalizations. In other words, there is no deterministic algorithm that is guaranteed to compute

the surface form from any underlying form for any 2LP grammar in fewer than f(n) steps where

f is a polynomial function and n is the length of the underlying form. This is due to the fact that

taking the path product of arbitrarily many FSMs belongs to NP (Hopcroft et al., 2001).

Barton et al. (1987) make clear that complexity results of this kind ought to lead to future

work. Complexity results necessarily consider the worst case, but whether actual phonologies are
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among the worst cases remains unknown. Given the earlier observation that phonological patterns

are almost certainly subregular, it is a distinct possibility that actual phonologies are not among the

worst cases, but instead belong to less expressive, but more computationally tractable, areas of the

regular languages.

3 Declarative Phonology

Architecture. Declarative Phonology (DP) (Scobbie, 1993; Coleman, 2005), like 2LP, maintains

that each phonological generalization (Fi) is an exceptionless constraint expressed as a regular re-

lation and every constraint must be satisfied by every form. But the interaction of these relations is

via set intersection (∩). Consequently, the whole phonology maps an underlying form u to a surface

form s if and only if every individual phonological generalization maps u to s. In FSM terms, set

intersection (∩) is equivalent to the automata product (×) operation, which is distinct from the path

product.

One difference between DP and 2LP is that a lexical item is explicitly given as a finite language

which contain all and only its surface variants. For example, consider a prefix which ends with a

nasal, which always agree in place with the following consonant (and assume there are no vowel-

initial words). As it is impossible to ascertain the place of the nasal, the prefix is represented as a

finite state acceptor which describes the language {im-, in-, iN-}. This is similar to underspecifica-

tion analyses in phonology (Archangeli, 1988; Mohanan, 1991; Ito et al., 1995; Steriade, 1995) (see

also Hooper (1976)).

Another difference between DP and other theories is that the individual generalizations were

stated with logical formulae because DP’s proponents wanted to emphasize the denotational nature

of phonological constraints with declarative statements, independent of any particular implementa-

tion.
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Expressivity. Regular relations are not closed under intersection. This means that the intersection

of two regular relations may not be regular.2 Thus even though DP presumes the constraints are

regular, there is nothing in the theory that ensures that the phonology of the whole language (PL)

is regular. Thus, DP is strictly more expressive than either SPE or 2LP and consequently, as a

scientific hypothesis about what is a possible phonological pattern, is a weaker theory than either

SPE or 2LP. As far as I know, this additional expressivity is also unnecessary as no bonafide context-

free phonological pattern has been established.

Computational Complexity. Computing the product of arbitrarily many FSMs belongs to NP

(Hopcroft et al., 2001). Consequently, as with 2LP, it remains to be learned whether further restric-

tions on possibles constraint in DP alleviates this intractability.

4 Optimality-Theoretic Phonology

Architecture. SPE, 2LP, and DP view the individual phonological generalizations (Fi in Figure 1)

as language-specific. On the other hand, in OT every language has the same individual phonological

generalizations (Prince and Smolensky, 1993; McCarthy and Prince, 1995; Prince and Smolensky,

2004), and languages only differ in how those generalizations interact. Like DP and 2LP, the indi-

vidual generalizations are constraints. But the interaction (×) of constraints in OT is more subtle

than in either of those theories: the constraints are prioritized and underlying forms are mapped

to surface forms which optimally satisfy these constraints. Standardly, constraints are stipulated to

come in two kinds: MARKEDNESS CONSTRAINTS, which penalize alternations with marked surface

forms, and FAITHFULNESS CONSTRAINTS, which penalize surface forms which deviate from the

underlying form (Kager, 1999; Prince and Smolensky, 2004; McCarthy, 2007b).

Formally, the architecture of OT grammars admits three main components. GEN relates under-

lying forms to a potentially infinite set of candidate surface forms. CON is a list of totally ordered
2Beesley and Kartunnen (2003) explain clearly why on pages 54-56.
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constraints, each of which maps an underlying form u and a candidate surface form s to a non-

negative integer (the number of times (u, s) violates the constraint). Thus as a whole, CON maps

each (u, s) pair to a vector of numbers called the VIOLATION PROFILE. EVAL selects, for a given

underlying form, the candidate surface form with the most favorable violation profile: the one that

violates the most important constraints the least.

Prince (2002) establishes the logic of constraint interaction and procedures for reasoning about

OT grammars from the essential information provided by violation profiles. This work makes clear

the logical foundation for the inference of constraint ranking from partial information originally

explored by Tesar (1995), which is discussed in more detail below.

Expressivity. How restrictive is the theory? In a departure from 2LP and DP, the founders of OT

made no assumption that it ought to “be regular.” As Eisner (1997c) observes, without restricting

what counts as a possible markedness or faithful constraints, there are hardly any limits on the

expressivity OT. For example, it is generally assumed that a context-free markedness constraint

which assigns violations to words with with a string of n consonants followed by n vowels (CnVn)

does not belong to the CON, but nothing in the theory precludes this.

Such constraints are probably tacitly omitted because of the intuitions phonologists have that

no phonology permits such an individual phonological generalization, which would be manifest in

some language and therefore desirable to include in the factorial typology. Indeed, much phonolog-

ical research examines the expressivity of OT grammars by comparing predicted typological facts

to known typological facts. Idsardi (1998, 2000) and Bakovic (2005) establish that OT is unable

to describe attested opaque alternations. Other research establishes that the interaction of plausi-

ble constraints either neatly matches the relevant typology (Prince and Smolensky, 1993; McCarthy

and Prince, 1995; Kager, 1999) or leads to undesirable typological predictions due to the unexpected

ways constraints interact (Eisner, 1997a,c; Wilson, 2001; McCarthy, 2003; Gordon, 2007). Antilla

(2008) describes a procedure which calculates a TYPOLOGICAL ORDER from a given set of candi-

dates with their violation profiles, which provides another way to measure the predictions a set of
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constraints makes against the known typology.

Given earlier results that showed phonological patterns are regular, other researchers have asked

what conditions need to be placed on CON and GEN to ensure that an OT grammar describes a regu-

lar relation. Frank and Satta (1998) show that if the only requirements are that GEN and the contents

of CON be regular then OT grammars can describe context-free relations. Placing an upper bound

on the number of violations regular constraints in CON can assign, however, reduces the expressiv-

ity of OT grammars to regular relations. Like Kaplan and Kay’s work, their proof is constructive.

Karttunen (1998) achieves the same conclusion constructively and further expresses the interaction

of the constraints precisely in terms of an operation called LENIENT COMPOSITION (because it is

defined in terms of ordinary composition and a special union operation over relations). Together

these researchers show that, under the assumptions stated above, that OT grammars combine reg-

ular OT constraints in a manner which describes a single regular relation. The importance of this

result is that differences between OT grammars and SPE-style rule grammars fade away: like 2LP

and DP, they are both particular compositions of regular relations which ultimately describe the

same regular, functional characterizations of phonological patterns. This point is made repeatedly

by Karttunen (1993, 1998).

Another question is whether every regular relation can be expressed with an OT grammar. This

question has not been answered. I venture that, unlike Kaplan and Kay’s (1994) work, it is not the

case that any regular relation can be described by an OT grammar, at least with traditional (and

regular) markedness and faithfulness constraints. This is because there are regular relations which

describe opaque alternations (because they are describable with SPE-style phonologies), which can-

not be described by OT grammars (McCarthy, 2007a).

TheGeneration Problem. Ellison (1994) was the first to give a solution to the generation problem

(Part I, 4-a) in OT. Frank and Satta (1998) provide a simpler solution, and Karttunen’s (1998) lenient

composition operator makes their solution clearer. Gerdemann and van Noord (2000) improve

Karttunen’s result in the sense that they obtain a more efficient implementation.
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Riggle’s (2004) constructive, computational analysis of OT is especially noteworthy because he

shows that the generation problem in OT can be solved using Dijkstra’s shortest paths algorithm

(Dijkstra, 1959). Riggle presents a ranking-independent representation of EVAL as a finite-state

transducer where the transitions are ‘weighted’ with violation profiles. This FSM is constructed

through a special product operation over the constraints in CON (represented as transducers) called

M-INTERSECTION. Given the ranking of constraints and this representation, Dijkstra’s algorithm

finds the optimal path through the machine in linear time. Furthermore, unlike earlier approaches,

there is no need to place an upper bound on the number of the number of violations constraints can

assign to achieve this result.

Riggle also shows how to efficiently generate the CONTENDERS—all and only those candidates

that could win under any possible ranking, which provides a solution to the typological problem

(Part I, 4-d). Even though Riggle’s GEN produces infinitely many candidates, in a variety of simu-

lations, the contenders are few.

Recalling Frank and Satta’s results, an open question remains: Is the particular GEN function

which Riggle employs one that permits the construction of a regular transducer for any (regular)

CON and ranking? More generally, what restrictions are necessary on EVAL, GEN or CON to

guarantee that optimization yields a regular relation? Riggle (2004b, Chap. 7) presents some pre-

liminary, promising work addressing this issue.

Computational Complexity. Eisner (1997b, 2000) building on work by Ellison (1994), was the

first to establish that the generation problem in OT is NP as the number of tiers or constraints

grows arbitrarily large. Wareham (1998) proves the same result with a different proof and Idsardi

(2006) presents an alternative version of Eisner’s proof using phonologically standard constraints.

Heinz et al. (2009) qualify their results by identifying the source of hardness to be computing the

product of individual constraints. (Recall that the automata product of individual FSMs, which

represent constraints, belongs to NP.) If the constraint set is represented differently (with Riggle’s

(2004) ranking-independent EVAL) then, as mentioned, the generation problem becomes linear.
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But if EVAL is represented in terms of individual constraints then their compilation into a ranking-

independent EVAL with M-intersection is also NP.

OT Variants. There are many distinct variants of OT; three are discussed here. The original

version (Prince and Smolensky, 1993), dubbed CONTAINMENT THEORY, requires that all candidates

produced by GEN to be at least as long as the underlying form, with special markers indicating

deletions and epenthesis. With the exception of Riggle (2004a), it is this version that has been

subject to the computational analyses above.

McCarthy and Prince (1995) introduce CORRESPONDENCE THEORY where underlying forms

are indexed and GEN produces every logical possible indexing over every logically possible word.

Thus the underlying form /k1æ2t3/ has fully merged candidates [k1,2,3], partially merged candidates

[k1,2], ‘reverse’ candidates like [k3æ2t1] and [t3æ2k1], epenthetic candidates [k1æ2t3s], split candi-

dates [k1æ2t3s1], and so on.

McCarthy (2008) presents HARMONIC SERIALISM (HS), where GEN is very restricted. Infor-

mally, for each underlying form, the candidates produced by GEN can differ by at most one single

change, where a single change is roughly speaking, a single insertion, deletion, or substitution.

If this was all there was to it, then Harmonic Serialism would be inadequately expressive since

many phonological alternations exhibit several changes between underlying forms and their surface

forms. However, HS asserts that EVAL and GEN are called repeatedly: for an underlying form u,

EVAL selects the best candidate c1 from Gen(u), and then EVAL selects the best candidate c2 from

Gen(c1) and so on until candidate cn+1 = cn. In this way HS is a model which is both derivational

and constraint-based. Taking what is meant by “single change” at face value, it appears this GEN

is regular, which would suggest that the kinds of relations HS describes are subject to the results of

Frank and Satta’s, Karttunen’s and Riggle’s analyses.

Summary. Table 1 summarizes the architectures of the different formalisms and some of the

known and unknown facts. Because finite-state transducers, which can describe all and only the
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Fi × other conditions properties of PL

necessary sufficient

SPE regular,
lg. specific composition

rules cannot
re-apply to
locus of
structural
change

is regular is regular

2LP regular,
lg. specific path product none is regular is regular

DP regular,
lg. specific intersection none is context-free ?

OT-CT regular,
universal

lenient
composition

none is context-free ?

upper bound on
violation profile is regular ?

OT-R04 regular,
universal M-intersection none ? ?

Table 1: The architectures of different phonological theories expressing how different factors
(i.e phonological generalizations) interact to describe the phonology of a language, recalling that
F1 × F2 × . . . Fn = PL. OT-CT and OT-R04 are the containment theory and Riggle’s (2004)
variants, respectively.

regular relations, are solutions to both the generation and recognition problems (Part I, 4-ab), the

theories which necessarily describe the whole phonology as a regular relation, have solutions to

both of these problems.

5 Stochastic Phonology

Recall the optional rule of word-final coronal stop deletion in English from Part I, repeated below.

(1) [+coronal,-continuant] −→ ∅ / C #

Functional characterizations of phonological generalizations with a codomain of {0,1} as shown in

Part I are unable to distinguish the frequency with which the rule applies, and are unable to make
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finer distinctions in the grammaticality or acceptability of possible surface variants.

For these reasons, sociolinguists and phonologists make use of stochastic grammars, which

not only describe functional characterizations with real codomains, but also leverage results from

statistics and probability theory.

Although it may be surprising, it is nevertheless true: changing the codomain of the functional

characterizations from {0,1} to the set of real numbers in this way does not change their expressivity.

A regular language which is made stochastic is still regular (Vidal et al., 2005a,b). In fact, every

region of the Chomsky Hierarchy admits a probabilistic counterpart (Booth, 1969; Charniak, 1996).

Thus although in some sense probabilistic grammars allow finer distinctions to be made, in an

important sense they are fundamentally the same as their non-probabilistic counterparts. This is

because formal language theory determines expressivity based on structural properties of grammars,

which are independent of whether the codomain of the functional characterization of the language

they describe is real or boolean.

Free variation. Within SPE-style grammars, each rule can be assigned a probability. The optional

rule in (1) can be given as follows.

(2) [+coronal,-continuant] −→ ∅ / C # (0.3)

This means at the stage of the derivation when the rule could apply, it applies 30% of the time

(Sankoff, 1978; Sankoff and Labov, 1979; Guy, 1980). In terms of the functional characterization

of this generalization, pairs of forms are mapped to real values. A fragment of the generalization

stated in (2) is shown in Figure 2. Anttila (1997) and Boersma (1997) provide different approaches

to free variation within OT.

Gradient acceptability judgements. Phonologists also employ probabilistic grammars to predict

gradient acceptability judgements humans give to novel word forms under laboratory conditions.

Although well-formedness and likelihood are logically distinct notions, this research makes the

11



Computational Phonology – Part II

f

(wEst,wEst) → 0.7
(wEst,wEs) → 0.3
(wEst,wE) → 0

. . .

(pIwEst,pIwEst) → 0.7
(pIwEst,pIwEs) → 0.3
(pIwEst,pIwE) → 0

. . .

Figure 2: Fragments of the functional characterization of the post-consonantal, word-final coronal
stop deletion rule which applied 30% of the time.

strong hypothesis that they are in fact the same (Coleman and Pierrehumbert, 1997; Albright and

Hayes, 2003; Frisch et al., 2004; Coetzee and Pater, 2007; Coetzee, 2008; Hayes and Wilson, 2008;

Antilla, 2008; Albright, 2009; Pater, 2009; Heinz and Rogers, 2010; Heinz and Koirala, 2010).

6 Learning Phonology

There are different characterizations of the learning problem (Gold, 1967; Anthony and Biggs, 1992;

Jain et al., 1999; Vapnik, 1998; de la Higuera, 2010). Learners, however, are always characterized

as functions which map data to grammars. Furthermore, learners are always evaluated in terms of

the class of concepts (i.e languages, relations, stochastic languages, etc.) they are guaranteed to

learn under defined criteria of what it means to “learn.” This makes sense from the computational

perspective discussed in Part I. From the computational perspective, learning algorithms are not just

step-by-step procedures, they are step-by-step procedures that solve well-articulated problems. For

learning algorithms proposed within phonology, we ought to ask What problem does this algorithm

solve?

Recursive Constraint Demotion (RCD) is an algorithm in exactly this sense. Essentially, RCD

solves the alternation learning problem (Part I, 4-e). Consider any finite set of computable con-

straints CON. Let a data point be an underlying form paired with its surface form and consider any

finite set of data points. Question: What rankings of CON (if any) are consistent with the set of
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data points? RCD provably answers this question correctly in every case (Tesar, 1995; Tesar and

Smolensky, 1998, 2000).3

On the other hand, some of the proposed variants of RCD (Tesar, 1999; Hayes, 2004; Prince

and Tesar, 2004) are not algorithms in this sense. They are clear step-by-step procedures, but it is

not known what problem they solve, in the computational sense of the word. Instead these variants

are motivated in response to claims that RCD is inadequate in certain respects, and simulations are

run in order to get a sense of whether the proposed variant appears to resolve this inadequacy. Often

the simulation leads to observations that in some cases the inadequacy is resolved, but in others it

is not. The next step in this process is to characterize these cases, and then to modify the variant

further. If the simulations appear to work in every case, then it may be possible to state and prove

which problem the variant is actually solving.

In my opinion, the simulation-based methodology is not the best way to develop an algorithm

which provably solves a particular problem (RCD being a case-in-point). This is not to say that

simulation-based research is not addressing real inadequacies with existing algorithms or that the

ideas present in such procedures fail to capture important intuitions. However, I would argue that

there is no replacement for a procedure which provably solves a problem. Knowing what problem

the algorithm solves means intimately understanding the algorithm’s behavior. In this case, running

the algorithm is no longer a simulation; it is a demonstration. In the growing field of modeling the

acquisition of sound patterns, it is not a reach to say that simulations are the norm, and demon-

strations are a rarity. One only need to witness the role RCD played in the development of OT to

understand the power of procedures that are provable solutions to problems.

An instructive example of simulation-based research is from Gildea and Jurafsky (1996). They

begin with OSTIA (Oncina et al., 1993), an algorithm that provably solves a problem: this algorithm

identifies in the limit from positive data (Gold, 1967) a proper subclass of regular relations, those

that are describable by a subsequential transducer. Even though Gildea and Jurafsky show that the
3Technically, RCD returns a particular partial ordering of CON. But minor modifications to RCD allow one to generate

all total rankings consistent with the data set (Riggle, 2009).
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SPE-style English tapping rule can be represented by a subsequential transducer, they show that OS-

TIA fails to learn the rule, even when presented with a corpus of ∼50,000 pairs of underlying forms

and surface forms adapted from the Carnegie Mellon University (CMU) Pronouncing Dictionary,

which were uniformly modified to exemplify the rule where it applied. They next modify OSTIA in

three ways to capture the intuitions that similar sounds behave similarly, that underlying sounds are

similar to the sounds they surface as, and that structural descriptions of rules may contain variables.

They show that this modified OSTIA returns a transducer which much more closely represent the

English tapping rule than what was returned by the original OSTIA algorithm.4

There are three important questions this work leaves us with, which have never been answered

satisfactorily. First, why does OSTIA fail to learn the tapping rule? Gildea and Jurafsky hint at the

answer: the kind of data that OSTIA would need to see to converge to the tapping rule is not present

in the CMU dictionary. Importantly, it is not an issue of quantity, it an issue of kind: OSTIA likely

needs to see forms that would never occur in any English lexicon; for example, words with three

adjacent [t]s. The second and third questions are What class of rules can the modified OSTIA learn

(i.e. What is the problem this algorithm solves?) and Why?

The answers to these questions are not yet known but tools exist to find them. It is often the case

that algorithms which solve learning problems are able to characterize exactly the kind of data the

algorithm needs to be fed in order for it to succeed. An early example comes from Angluin (1982).

The grammatical inference community has provided many more such results (de la Higuera, 2005,

2010). Examples relevant to phonology include Heinz (2010a,b). The utility of such character-

izations are many. They can be used to develop artificial language experiments and they can be

compared with the forms to which children and infants are actually exposed. In the case of OSTIA

above, it ought to be possible to identify the kind of data OSTIA needs to learn the English tap-

ping rule and whether such data is present in the CMU dictionary (all without actually running the

learning algorithm!)
4They also study the case of German word-final stop devoicing.
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Additional influential work which approaches phonological learning with simulations include

Coleman and Pierrehumbert (1997); Ellison (1992); Boersma and Hayes (2001); Albright and Hayes

(2003); Hayes and Wilson (2008); Albright (2009); Goldsmith and Xanthos (2009); Tesar (to ap-

pear); Heinz (2009) and Goldsmith and Riggle (to appear). Apart from RCD, work within phonol-

ogy which presents algorithms which provably solve learning problems include Riggle (2009); Ma-

gri (2009); Heinz (2010a,b) and Heinz and Rogers (2010). Magri (2010) also proves that the phono-

tactic learning problem (Part I, problem 4-d) within OT is not in P. Notably, he suggests research

“to find phonologically plausible assumptions on generating function and constraint set that make

the problem of the acquisition of phonotactics tractable.”

7 Subregular patterns

Recall the hypothesis presented in Part I that phonology is subregular, restated below:

(3) Hypothesis: Phonology ⊂ Regular

There are three reasons to be interested in subregular language classes.

First, although any phonological pattern is regular, “being regular” does not make a pattern a

possible phonological one. This is because there are many regular patterns which are not phono-

logical (for example patterns that require words to have a number of consonants evenly divisible

by some n). Classifying phonological patterns according to known subregular language classes

helps us understand what kind of regular patterns they are. In turn, this allows strong, restrictive

hypotheses of universal properties of phonological patterns to be formulated and examined.

Second, several negative complexity results mentioned above follow when a parameter of the

problem includes all regular patterns. Virtually every researcher acknowledges that if stronger, as-

sumptions are made, these negative results may disappear. It is perfectly possible—but unknown—

whether restricting the parameters of problems to certain subregular classes eases the problems’

complexity.
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Third, there is wide consensus that the learning problem is hampered by hypothesis spaces that

are too expressive (Vapnik, 1998; Jain et al., 1999; Sober, 2008; Gallistel and King, 2009). If the

right restrictive properties are discovered, it is possible that they may contribute to the learnability

of phonological patterns (Heinz, 2007, 2009; Tesar, to appear; Magri, 2010; Heinz, 2010a).

Subregular hierarchies. The class of regular languages contains a dual hierarchy of nested re-

gions. There is a LOCAL branch and a PIECEWISE branch. Figure 3 shows the proper inclusion

relationships in this hierarchy. Rogers and Pullum (to appear) and Rogers and Hauser (2010) pro-

The Local Branch                                 
(contiguous subsequences)                  

                           The Piecewise Branch
                                     (subsequences)

Locally Testable

Strictly Local

Piecewise Testable

Strictly Piecewise

Regular

NonCounting

Figure 3: Dual subregular hierarchies (simplified from Rogers et al. (2009)).

vides an accessible introduction to the local branch and Rogers et al. (2009) to the piecewise branch.

The local branch was originally studied by McNaughton and Papert (1971) and the piecewise lan-

guages by Simon (1975) and Rogers et al. (2009).

Each language class in these hierarchies has independently motivated, converging characteri-

zations and is claimed to correspond to specific, fundamental cognitive capabilities (Rogers and

Pullum, to appear; Rogers and Hauser, 2010). Here I provide an informal treatment.

Languages along the local branch only make distinctions on the basis of contiguous subse-
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quences (up to some length k, known as k-factors). For example, the 2-factors of {!}abcd{"} are

{{!}a, ab, bc, cd, d{"}} ({!} and {"} are the left and right word boundaries, respectively). Gram-

mars of STRICTLY K-LOCAL (SLk) languages can be thought of as sets of prohibited k-factors and

the words belonging to the language of the grammar are all and only those words which do not con-

tain any of those k-factors.5 For example, the grammar {ab} generates the language that contains

all words with no contiguous ab sequence. Grammars of LOCALLY K-TESTABLE (LTk) languages

can be thought of as sets of sets of prohibited k-factors and the words belonging to the language of

the grammar are those words whose set of k-factors is not the same as any of the prohibited sets in

the grammar. For example, the LT2 grammar {{{!}a, ab, bc, c{"}}} generates the language that

contains all words except those with exactly the set of k-factors {!}a, ab, bc, and c{"}, i.e. all

words but abc (so abcd is part of the language).

Languages along the piecewise branch only make distinctions on the basis of subsequences (up

to some length k, not necessarily contiguous). For example, the 2-long subsequences of abcd are

{ab, ac, ad, bc, bd, cd}.6 STRICTLY K-PIECEWISE and PIECEWISE K-TESTABLE grammars and

languages are defined analogously to (SLk) and (LTk) grammars and languages, respectively.

Finally, the NONCOUNTING class of languages includes all and only those regular patterns

which do not count modulo some number n (so it excludes constraints that penalize words with

an even number of consonants, for example). McNaughton and Papert (1971) show that for every

noncounting language, there is some n such that for all logically possible words u, v, w, either both

uvnw and uvn+1w belong to the language or neither do.

What kinds of subregular patterns are actual phonologies? Recent work has begun to address

where phonological patterns fall in the Subregular hierarchy. A first hypothesis is that markedness

constraints are Strictly Local. For example, Hayes and Wilson (2008) use this kind of constraint

exclusively, and many markedness constraints in OT appear to belong to SL (though no comprehen-
5Techincally, we let all logically possible words belong to {{!}}·Σ∗· {{"}}.
6Unlike with the Local branch, word boundaries are unnecessary here.
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sive survey has been conducted). Locally conjoined markedness constraints (Smolensky, 2006) like
∗ab&∗bc are Locally Testable when the domain is the word.7 Heinz (2010a) hypothesizes that long-

distance phonotactic constraints are Strictly 2-Piecewise. Edlefsen et al. (2008) examine whether

stress patterns are Strictly-Local and if so for what k. They find most ∼ 72% are SLk for k ≤ 6

and that ∼ 49% are SLk for k ≤ 3. Graf (to appear) argues that some stress patterns are not

Noncounting.

There are other subregular classes of languages.8 Heinz (2007, 2009) hypothesizes that all stress

patterns and all phonotactic patterns are NEIGHBORHOOD-DISTINCT, an automata-theoretic local-

ity condition, which defines a class which cross-cuts the subregular hierarchies. Heinz (2007) shows

that the neighborhood-distinct languages properly includes the SL3 and SP2 language classes.

No language-theoretic characterization of the neighborhood-distinct class yet exists, though Heinz

(2008) begins the analysis.

Tesar (to appear) hypothesizes that the phonological patterns are output-driven. It is not known

whether all regular relations can be defined in terms of output-driven maps. I conjecture output-

driven regular relations are subregular; i.e. there is at least one regular relation which is not output-

driven.

Subregular relations. As currently defined, the subregular classes are languages (functions with

domain Σ∗) suitable for describing phonotactics and/or markedness constraints, and not relations

(functions with domain Σ∗ × Σ∗), which are suitable for describing alternations. It is an open

question how to most fruitfully generalize the subregular hierarchies from sets to relations.
7The Locally Testable grammar would include all subsets of Σ2 that have both ab and bc. If the domain is smaller than

the word then the pattern is Strictly k-Local iff the size of the domain is bounded by k. Otherwise, the pattern belongs to
some to-be-determined subregular class.

8Others that have been studied because of their learnability properties include Angluin (1982); Heinz (2008, 2010b)
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8 Conclusions

The computational study of phonology makes clear that the similarities between competing phono-

logical theories outweigh their differences. In each case, the grammar formalisms decompose the

phonology of a language PL into individual generalizations, which interact in particular ways. Al-

though the nature of the generalizations and interactions differ in the frameworks, they all have

something very important in common: the individual generalizations can all be described as regular

relations, their interaction can all be described as a kind of product over regular grammars, and

attested phonologies (the PL themselves) can be described as regular relations.

Current computational analysis of phonological patterns is revealing stronger, universal prop-

erties of phonological patterns. They are subregular. A current hypothesis locates the individual

generalizations in the Strictly Local and Strictly Piecewise classes (and their yet-to-be-determined

relational counterparts). Stress patterns appear more complex.

It is my hope that this article communicates the importance of the computational perspective to

the study of phonology, and more generally to linguistic theory. Several open problems have been

identified, which, along with the computational perspective, I hope encourages people to undertake

computational analysis when studying the sound patterns in the world’s languages.
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