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Abstract

Computational phonology approaches the study of sound patterns in the world’s

languages from a computational perspective. This article explains this perspective and

its relevance to phonology. A restrictive, universal property of phonological patterns—

they are regular—is established, and the hypothesis that they are subregular is pre-

sented.

This article is intended primarily for phonologists who are curious about compu-

tational phonology, but do not have a rigorous background in mathematics or compu-

tation. However, it is also informative for readers with a background in computation

and the basics of phonology, and who are curious about what computational analysis

offers phonological theory.

1 What is Computational Phonology?

Computational phonology is formal phonology, and formal phonology is theoretical

phonology. Computational phonology is not concerned with the implementation of phono-

logical theories on computers (though that may be a byproduct of computational analysis).

The primary concern of computational phonology is the content of the theory itself.
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This article and Computational Phonology - Part II: Grammars, Learning and the Fu-

ture present three important contributions of computational phonology. First, computa-

tional analysis of phonological formalisms reveals that the similarities between generative

theories of phonology like Optimality Theory (OT) (Prince and Smolensky, 2004) and the

one found in The Sound Pattern of English (SPE) (Chomsky and Halle, 1968) outweigh

their differences. This is in part because computational analysis identifies exactly how

different generative theories define and combine the individual factors that make up a lan-

guage’s phonology. It is also in part because of the second contribution: computational

analysis reveals a restrictive, universal property of phonological patterns: they are REGU-

LAR. What are regular patterns? A definition is given in (1).

(1) A pattern is regular if and only if (iff) it is possible to partition the set of logically

possible words into finitely many blocks such that

a. all words in any block either obey the pattern or all do not, and

b. for any block, if it contains words w1 and w2 then, for all words v, there is a

block which contains both w1v and w2v.

For example, consider the pattern given by words composed only of CV syllables. This

pattern is regular. To see why, partition all logically possible words into three blocks:

Block 1 contains all words which either start with V or which contain consecutive CC

or VV sequences; Block 2 contains other words which end in V; and Block 3 contains the

remaining words. In other words, logically possible words like VCV, CVVC, CVCC belong

to Block 1, words like CVCV belongs to Block 2 and words like CVC belong to block 3.

Clearly all words in Block 2 belong to the language and all words in Blocks 1 and 3 do not,

satisfying condition (1-a). It is not hard to see that (1-b) is satisfied as well. To illustrate,
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consider that both CV and CVCV belong to Block 2 and notice that concatenating CCV to

both of those strings results in strings that are in Block 1, whereas concatenating C to both

strings results in strings that are in Block 3, whereas concateting CVCV to both strings

results in strings that are in Block 2. Since the partition above satisfies conditions (1-a)

and (1-b) and has finitely many blocks (there are three), this pattern is regular.1 Additional

examples of regular and nonregular patterns are given later.

The third important contribution is that computational analysis reveals that phonologi-

cal patterns are SUBREGULAR. That is, there are even more restrictive properties shared by

all phonological patterns no matter how diverse; in particular, the kinds of distinctions that

phonological patterns make (the kinds of blocks) are sharply limited. Regular and subreg-

ular patterns are discussed in more detail in Section 2. Taken together, these contributions

show computational phonology is identifying stronger and stronger universal properties of

phonological patterns and identifying the necessary and sufficient conditions for a logically

possible pattern to be a phonological one.

This article establishes the foundations of the theory of computation and the first ma-

jor result of computational phonology: all phonological patterns are regular. Foundational

aspects of the theory of computation include problems, algorithms, decidability, tractabil-

ity, and formal language theory. All of these topics are interrelated, and their relevance to

phonology is made clear.

In a brief review, it is impossible to cover every deserving topic. Notably absent from

this article and Part II are computational analyses of nonlinear phonology (Gibbon, 1987;

Kornai, 1994; Bird and Ellison, 1994; Eisner, 1997) and applications of computational
1In fact, the only essential aspect of the definition of “being regular” in (1) is the word “finitely”. This is

because for any logically possible pattern, there is a partition of the set of all logically possible words which
satisfies (1-a) and (1-b). It’s just that for most logically possible patterns, this partition is infinite.
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phonology to speech technologies (e.g. Carson-Berndsen (1998)).

The remainder of the introduction establishes the general principles that guide the re-

mainder of the article. The first two are the scientific principle of factorizing complex

systems into their component parts and the importance of restrictiveness and adequate ex-

pressivity to linguistic theories. The subsequent principles introduce the computational

perspective: mathematical characterizations of patterns and the Zen-like importance of un-

derstanding problems more than their solutions.

Science and phonology. Phonological systems are complex systems, presumably be-

cause there are many interacting factors. The goal of any science when confronted with

complex phenomena is to identify these factors, the principles underlying them, and their

interaction. Figure 1 illustrates where Fi indicate individual factors and PL is the phonol-

ogy of a particular language L. Generative theories of phonology and morphophonology

F1 × F2 × . . .× Fn = PL

Figure 1: Theories of phonology.

describe the whole phonology of a language in exactly this way: there are individual phono-

logical generalizations (Fi) which interact in particular ways. There are several questions

that are asked about such theories. Are the factors language-specific, language-universal,

or both? What constrains the factors such that PL and PL′ are not arbitrarily different (un-

der a central hypothesis within generative phonology that phonologies of the world’s lan-

guages do not differ arbitrarily). What is the nature of the interaction (×) of phonological

generalizations? Computational phonology helps us understand how different theories of

phonology answer these questions. I refer to the structure of theories as shown in Figure 1
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as the ARCHITECTURE of the theory.

Expressivity and Restrictiveness. When comparing theories, the notions of restrictive-

ness and expressivity are paramount. Which theory is unnecessarily more powerful than

the other, and which theory is inadequately expressive? The most restrictive theory which

is minimally adequately expressive is tacitly assumed to be the most desirable. Theories

that are inadequately expressive leave attested patterns unexplained. On the other hand,

theories that are insufficiently restrictive leave the absence of unattestable patterns without

explanation. A theory that anything is possible is not much of a theory. The theory of com-

putation is a universal theory which concretely defines the dual notions of restrictiveness

and expressivity.

Characterizing phonological patterns. It will be useful to be familiar with set-theoretic,

relational, and functional characterizations of phonological generalizations. A set is a col-

lection of elements. A relation is a set specifying which elements of one set are associated

with which elements of another set. A function maps each element of one set (the domain)

to at most one element of another set (the codomain).

Sets and relations can be described as functions. To illustrate, consider the phonological

generalization that English post-consonantal, word-final coronal stops optionally delete

(Guy, 1980; Guy and Boberg, 1997; Coetzee, 2004). For example, perfect is sometimes

pronounced [pô
"
fEk]. There are additional factors that condition the frequency of the rule’s

application, (such as the initial sound of the followingword, if any) and a general discussion

of frequency effects occurs in Part II. The rule in (2) captures the deletion process.

(2) [+coronal,-continuant] −→ ∅ / C #

5



Computational Phonology – Part I: Foundations

R f
wEst → wEs (wEst,wEs) → 1

(wEst,wEsk) → 0
(wEst,wE) → 0

. . . . . .
pIwEst → pIwEs (pIwEst,pIwEs) → 1

(pIwEst,pIwEsk) → 0
(pIwEst,pIwE) → 0

. . . . . .

Figure 2: Fragments of the relational and functional characterization of the rule in (2). The
function f maps a pair (x, y) to 1 if and only if x → y belongs to R.

Figure 2 shows a fragment of the relational and the functional characterization of (2).

Two things ought to be clear. The first is that it is impossible to write down the relational

and functional characterizations of word-final deletion in their entirety because they are

infinite in size. This follows not only from there not being a principled upper bound on

the length of words, but also from the fact that even if there was, it would be a distinct

generalization from the one about word-final deletion. In the same way that nothing in

the rule in (2) limits its application to actual words in English, there is nothing in the rule

that limits its application to words of certain lengths. The second is that (2) is a precise,

finite, characterization of both the relational and functional characterizations. Armed with

this rule, we can decide which pairs of strings belong to the relational characterization, or

equivalently, which pairs the functional characterization maps to 1.

Computational theories. This article emphasizes the importance of relational and func-

tional characterizations of phonological generalizations because they are the focus of

phonological inquiry, which aims to identify essential properties of phonological gener-

alizations. Computational analysis is exactly the analysis which permits this. Barton et al.
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(1987, 96-7) explain:

Scientific explanation of any complex biological information-processing sys-

tem occurs at three levels: (1) a computational theory, which explains what is

computed and why; (2) a representation for the input and output of the process

and the algorithm for the transformation; and (3) the hardware implementa-

tion, or the device in which the representation and algorithm are physically

realized. . . The competence theories of linguistics correspond to Marr’s (1980)

topmost level of computational theory–explaining what structures are com-

puted and why, ignoring memory limitations, shifts of attention of interest, and

errors.

Additionally, Marr (1980, 27) writes

. . . an algorithm is likely to be understood more readily by understanding the

nature of the problem being solved than by examining the mechanism (and

hardware) in which it is embodied.

What does this mean? In the context of the optional word-final deletion generalization,

it means understanding the relational and functional characterization is likely to be more

important than the procedure implied by the rule in (2) for deciding whether a pair of

strings exemplifies the generalization or not. Informally, the phonological generalization is

the problem and the rule in (2) is one algorithm that solves it.

Organization. This article is organized as follows. Section 2 discuss foundations of the-

oretical computer science relevant to computational phonology. References are generally

withheld and then given in a Further Reading section. Section 3 presents Kaplan and Kay’s
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(1994) analysis which establishes that virtually all phonological patterns are regular. Sec-

tion 4 concludes.

2 Foundations

This section reviews especially relevant foundational issues at the intersection of theoret-

ical computer science, philosophy, and linguistics; in particular, the mathematical notions

of PROBLEMS and ALGORITHMS, as well as their foundational properties such as DECID-

ABILITY, TRACTABILITY, and DETERMINISM. Readers familiar with these concepts may

skip this section.

2.1 Problems and Algorithms

Problems. Informally, problems are questions with several parameters. When all pa-

rameters are set, an instance of the problem is obtained. For example, the phonotactic

well-formedness problem is given below:

(3) For a given phonological grammar G and surface form w, is w well-formed?

In this example, there are two parameters: a grammar and a surface form. When these are

set, we have a specific instance of the phonotactic well-formedness problem. An example

is whether “blick” is a well-formed word according to English phonology.

What is the instance space of the phonotactic well-formedness problem? Much depends

on what is meant by the phrase phonological grammar in (3). For example, it is necessary

to decide whether the phonological grammars are an ordered list of SPE-style rewrite rules

or an ordered list of OT constraints or something else.
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Answers to problems are also from a well-defined set. For the phonotactic well-

formedness problem, the answers can be categorical, i.e. either “yes” or “no” as above,

or they could make more distinctions; e.g. by letting answers be real numbers.2 There is

no loss of generality by assuming the answers are limited to “yes” or “no” and so we make

this assumption for the background exposition. Discussion of problems with real-numbered

answers (e.g. problems relating to free variation) occurs in Part II.

Additional problems of interest to phonology include, but are not limited to, the ones

in (4).

(4) Informal statements of phonological problems.

a. For a given phonological grammar and underlying form, what is the surface

form? (the generation problem)

b. For a given phonological grammar and a surface form, what is the underlying

form? (the recognition problem)

c. Given the set of possible phonological grammars and an underlying form, what

are the possible surface forms? (the typological problem)

d. Given a finite set of surface forms generated by a particular phonological gram-

mar, which phonological grammar generated them (the phonotactic learning

problem)

e. Given a finite set of underlying forms paired with surface forms generated by

particular phonological grammar, what phonological grammar generated them

(the alternation learning problem)

f. Given a finite set of meanings paired with surface forms from a particular

phonological grammar, what phonological grammar and lexicon generated
2Technically, computable real numbers.
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them? (the phonological learning problem)

As already mentioned, much hinges on the the qualifier “phonological” in the phrase

“phonological grammar.” This is because what counts as a phonological grammar defines

the instance space of the problem. For example, virtually no one believes the correct an-

swer to any of the learning problems is a grammar which just regurgitates the training data

and fails to generalize to new forms. Such grammars exist in principle but are presumably

not phonological.

Algorithms. Algorithms are step-by-step procedures which solve problems. An algo-

rithm solves a problem if it can be applied to any instance of the problem and be guaranteed

to output the correct answer.

Mathematically, the distinction between problems and algorithms is subtler. The func-

tional characterization of a problem is given by a mapping of its instances to its answers.

For example, consider the problem “For all strings x, y, does the pair (x,y) exemplify word-

final coronal stop deletion?” The function in Figure 2 maps all instances of this problem to

its answers, where 1 means “yes” and 0 means “no.” Algorithms are particular implemen-

tations of such functions, provided such implementations exist. Henceforth, I will use the

word problem interchangeably with function, and the word algorithm interchangeably with

procedure.

Decidability. Problems are classified according to the inherent difficulty. Most logically

possible problems do not admit any algorithm. Such problems are called UNDECIDABLE.

DECIDABLE problems can be solved by algorithms which always yield an output. With-

out loss of generality, consider a variant of the generation problem (4-a). Instead of ask-
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ing what surface form s an underlying form u maps to, consider the problem which asks

whether (u, s) is a valid mapping, whose answers are “yes” and “no.” If this problem

is decidable, then for every instance of this problem there is an algorithm which always

(correctly) answers “yes” or “no”. SEMI-DECIDABLE problems are those for which there

exists an algorithm which always outputs “yes” on inputs whose answer is “yes” (but it

may never produce an output on inputs whose answer is “no”). Semi-decidable problems

are also called COMPUTABLE. Additional classification is discussed in Section 2.2.

Tractability. Decidable problems are classified into two types: TRACTABLE and IN-

TRACTABLE. Problems are tractable iff there is a algorithmwhich implements this function

in fewer than f(n) steps where f is a polynomial function and n is the length of the in-

put (this input is the problem instance in some string-based representation). Decidable

problems which cannot be so bounded are intractable.

Determinism. Additionally, DETERMINISTIC algorithms are ones for which at every

state there is a single, uniquely defined next action. NONDETERMINISTIC algorithms are

not deterministic so there is at least one state where either no action is defined (the al-

gorithm ‘hangs’), or where more than one action is defined (and what happens next is

determined randomly). Nondeterministic algorithms are often described as “unrealistic”

because they amount to procedures which guess and then verify.3

The distinction between deterministic and nondeterministic algorithms is made because

of the famous hypothesis that the class of problems P solvable by tractable deterministic

algorithms are distinct from the class of problems NP solvable by tractable nondeterminis-
3Nondeterministic algorithms guess which sequence of actions to follow and then at the end of the process,

a “yes” output verifies the choices made, but a “no” output means another guess ought to be explored. See
Garey and Johnson (1979, 29) and Papadimitriou (1994, 45) for more discussion.
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tic algorithms. P is obviously included within NP, but it is unknown whether P equals NP,

and most computer scientists believe it does not.

2.2 Formal Language Theory

Formal language theory forms another important chapter in theoretical computer science

and linguistics and is closely related to the preceding discussion. This is because a language

is a problem, in the mathematical sense described above. Assuming some representational

scheme, each instance of a problem can be encoded as a string, and the question is whether

that string maps to “yes” or “no”. Likewise, languages can be thought of as mapping strings

to “yes” if the string belongs to the language or to “no” if it does not. This is called the

MEMBERSHIP PROBLEM, and this function defines the language. It sounds strange to think

of a language as a problem, but problems are just functions, and languages are functions

too; after all, they are the product of a number of generalizations, which are also functions

(Figure 1).

Languages. It is customary to fix a finite alphabet of symbols. Phonologists could take

this to mean every possible IPA symbol (including diacritics), or as indivisible features

along with symbols which allow groupings of those features to be interpreted. Prosodic

markings (e.g. syllabic, super- and sub-syllabic boundaries) can also be part of the alphabet.

The alphabet can really be anything, so long as it is finite. There is no problem representing

as much phonological structure as necessary (e.g. autosegmental tiers, foot boundaries)

with strings, provided we know how to interpret the string.

Standardly, the symbol Σ denotes this alphabet and Σ∗ the set of all logically possible

finite strings writable with this alphabet, and a LANGUAGE is a subset of Σ∗. Phonologists
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are often interested in how underlying forms are related to surface forms. Without loss

of generality, assume the same alphabet is used for underlying and surface forms. An

ALTERNATION is then a subset of Σ∗ × Σ∗ (i.e. a subset of the set containing all logically

possible pairs of strings).

Grammars. A grammar G is a finite description of a potentially infinite language L.

Essentially, G is an algorithm which solves the ENUMERATION PROBLEM: What is the

nth string of L? (A set is enumerable if and only if it is finite or can be put in one-to-one

correspondence with the natural numbers.)

Languages for which the membership problem is semi-decidable are exactly those for

which the enumeration problem is solvable. Thus, a theory of phonology which only asserts

its patterns are semi-decidable is hardly a theory at all—because there are no restrictions

on what constitutes a grammar other than the fact that it can be written down in a finite

period of time.

The Chomsky Hierarchy. The Chomsky Hierarchy classifies languages according to

their inherent expressivity. There are five major nested regions (5).

(5) finite ⊂ regular ⊂ context-free ⊂ context-sensitive⊂ semi-decidable

The finite languages are also regular languages, which are also context-free, and so on (but

not vice versa). Importantly, the choice of alphabet has zero impact on a language’s place

in the hierarchy. It does not matter whether phonological strings are coded with zeroes and

ones or with thousands of symbols.

Every region goes by other names. For examples, languages which are semi-decidable

are also called TYPE-0 and RECURSIVELY ENUMERABLE. These terms come from dif-
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ferent formalisms, which were later realized to describe exactly the same set of languages.

This is one reason why the ChomskyHierarchy attracts somuch attention. When independently-

motivated formalisms converge to exactly these same regions, it suggests deeper principles

are involved. This is exactly the case with regular patterns which are describable by regular

expressions, formulae of Monadic-Second Order (MSO) logic, and finite-state machines

(FSMs). Each of these formalisms essentially yield a finite partition of the space of all

logically possible words in accordance with (1).

This classification is also independent of whether we consider languages as functions

which map strings to “yes” or “no” or as functions mapping strings to real numbers. Lan-

guages which describe probability distributions over Σ∗ are called STOCHASTIC LAN-

GUAGES, and are typically described with probabilistic variants of the common grammati-

cal formalisms used to define the regions in (5).

Since any pattern is a language in the sense above, a distinct advantage of the Chomsky

Hierarchy is it allows for the comparison of patterns from different domains. Another

advantage is that different grammatical formalisms within a domain (like phonology) can

be compared in terms of their expressive power.

What kind of formal languages are phonological patterns? The consensus is that

phonological patterns are regular. The arguments are discussed in Section 3. This hy-

pothesis is made not only with respect to the functional characterizations of individual

phonological generalizations obey (1) but also with respect to the product of these phono-

logical generalizations as well. “Being regular” is a property of phonological patterns at

Marr’s highest level, the computational level.

There are two important points to make in this regard. First, just because we can de-
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scribe phonological patterns with FSMs, for example, does not mean FSMs are the correct

description at the algorithmic level. The grammatical formalisms phonologists or psy-

cholinguists employ may be exactly the right ones. I would argue, however, that it is vital

for phonologists to relate their formalisms to the computational level, and to the widely

adopted representations at this level, in order to be able to communicate the nature of

phonological patterns effectively with people in other sciences, and to compare and con-

trast them with patterns in other domains.

Second, while “being regular” may be a necessary property of phonological generaliza-

tions, it is almost certainly not a sufficient one. Many regular languages describe unnatu-

ral phonological patterns. For example, imagine the logically possible language in which

words are well-formed only if they contain an even number of vowels, regardless of their

order. Words like bbb,baba, bbaa, aab, bbaabbb are all well-formed according to this pat-

tern, unlike words like a, ababa, bab, bababab. This pattern is a regular language,4 though

most phonologists would agree natural languages do not contain bonafide phonological

generalizations of this sort (nor could natural languages do so).

What this means is that phonological patterns are almost certainly subregular; that is,

they occupy some area strictly smaller than the regular languages.

(6) Hypothesis: Phonology ⊂ Regular

There has been little research to date determining the exact nature of the subregular region

phonology occupies. The discussion of some promising results are postponed until Part II

because they are relatively recent and point the direction for future research.
4To see this, consider a partition of Σ∗ into two blocks: Block 1 contains all and only those words with an

even number of vowels and Block 2 contains all and only those words with an odd number of vowels. Clearly
(1-a) is satisfied. Also, it is not hard to verify that for any two strings u, v in the same block, there is no string
x that can be concatenated to them to yield strings ux, vx belonging to different blocks (1-b).
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2.3 Further Reading

Garey and Johnson (1979) and Papadimitriou (1994) provide excellent introductions to

computational complexity theory. The first chapters of these books introduce several im-

portant concepts and are highly recommended. Sipser (1997) is also very good. Rogers

(1967) explains the theory of recursive functions.

Harrison (1978) provides an introduction to formal language theory and the Chomsky

Hierarchy. Salomaa (1973) and Thomas (1997) are more technical but provide an algebraic

and logical perspectives, respectively.

Beesley and Kartunnen (2003) provides an excellent introduction in the context of

morpho-phonology to regular sets, relations, and FSMs, as well as providing a useful suite

of software for morpho-phonological analysis. Hopcroft et al. (2001) is another excellent

source on regular patterns and FSMs in a non-linguistic context.

Rogers and Pullum (to appear); Rogers et al. (2009) and Rogers and Hauser (2010)

provide excellent, accessible introductions to subregular language classes, though Mc-

Naughton and Papert’s (1971) original treatment and analysis is irreplaceable.

Manning and Schütze (1999) and Jurafsky and Martin (2008) also address many of

these topics specifically for readers interested in computational linguistics. Kracht (2003)

and Kornai (2007) offer rigorous mathematical treatments.

3 SPE-style Phonology

Architecture. In the Sound Pattern of English, Chomsky and Halle (1968) present a the-

ory of phonology where individual context-sensitive rules represent individual phonologi-

cal generalizations which interact by their ordering. I refer to this theory as SPE-STYLE
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PHONOLOGY. Recalling Figure 1, the individual factors in the phonology of a language

are given by these rules, and their interaction (×) is given by their ordering.

One important consequence of the ordering of rules is that the later application of a rule

may obscure the earlier application of another. As a consequence, a central claim of this

theory is that there are bonafide phonological generalizations that may not be “surface-true”

in the whole phonology of the language (Kiparsky, 1973).

Expressivity. Johnson (1972) and Kaplan and Kay (1994) independently recognized that

despite the context-sensitive rewrite rules, the functional characterizations of SPE-style

phonologies are regular.

For example, Figure 3 shows a deterministic finite-state representation of the rule in

Figure 2. This finite-state machine is a TRANSDUCER. Transducers are grammars that

describe alternations (i.e. relations) in the following way. Paths along the transitions of the

machine correspond to pairs of strings. Paths that begin in initial states and end in final

states represent pairs of strings that are in the relation. For example, the string wEst is

related to wEs because there is a path through the machine that starts in state 0 and ends

in state 1: (w:w), (E:E), (s:s), (t:ε). (ε is the empty string so t:ε means that [t] is rewritten

with nothing.) Similarly, wEst is not related to wEst because no such path exists: 0 is not

a final state and the only path to 1 erases word final [t]s by writing them as ε. It is easy to

see that the FSM in Figure 3 captures the (infinite) functional characterization of the rule

in Figure 2.

The only assumption required to obtain the conclusion that phonologies are regular is

that SPE-style rewrite rules are forbidden from applying to their “own output.” By “own

output”, Kaplan and Kay do not mean the rule cannot reapply to any part of the output
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0 1

x:x
t:t
d:d

t:ε

d:ε

Figure 3: A FSM representation of the rule in (2). The symbol x is an abbreviation meaning
any symbol in the alphabet other than [t, d]. The symbol ε is the empty string. Labels on
transitions a:b mean a is rewritten as b. Initial states are marked with an incoming arrow
with no source and final states with double peripheries. Hence State 0 is a non-final, initial
state and State 1 is a final, non-initial state.

string; they mean something much narrower: rules cannot reapply within the specific part

of the string that they have rewritten (i.e. the locus of structural change). Rules can reapply

to their own output, provided the part of the string currently targeted by the rule is not

properly contained in what was already rewritten. Kaplan and Kay employ this condition

in order to prohibit reapplication of the the kind of rule in (7) which would otherwise result

in nonregular patterns.

(7) ∅ −→ ab /

If this epenthesis rule could reapply within its own locus of application, then for example,

the string ki would be related with abki, aabbki, aaabbbki and so on, and the relation

obtained is not regular because the pattern anbn is properly context-free (Chomsky, 1956).5

Kaplan and Kay’s analysis is especially insightful because it is constructive. In other

words, they show, under the one assumption mentioned, how each SPE-style rewrite rule

describes a particular regular relation as well as how to construct the finite-state transducer
5To illustrate, consider a partition ofΣ∗ into two blocks: Block 1 contains words anbn for all n and Block

2 contains all other words. Words aab and b both belong to Block 2, but concatenation of b to these yields a
word in Block 1 (aabb) and a word in Block 2 (bb), violating (1-b). In fact, no finite partition of Σ∗ satisfies
both (1-a) and (1-b).
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which accepts exactly that relation. Then they show how the interaction of those rules via

their ordering define new regular relations using the COMPOSITION operator (◦).

Regular relations are closed under composition. This means that the relation obtained

by composing two regular relations is also regular. In FSM terms, it means the composition

of two finite-state transducers is also a finite-state transducer. Thus for any two distinct

phonological generalizations F1 and F2, their composition F1 ◦ F2 can also be interpreted

as a phonological generalization. Thus the phonology of the whole language PL can also

be thought of as a single (though complicated) phonological rule. It follows, conversely,

that there are many ways to decompose PL into a sequence of ordered rules (Karttunen,

1993). Not only do these facts mitigate criticisms of SPE rule-ordering on the grounds

that intermediate forms are not meaningful, but it also solves the recognition problem (4-b)

because transducers are bidirectional.

Another revealing aspect of their analysis is their characterization of optional rules. In-

stead of letting such rules apply optionally, the optionality is built into the rule itself. For

example, they would characterize the optional rule of word-final stop deletion (2) with the

relational and functional characterizations in Figure 4. A nondeterministic FSM represent-

ing those generalizations is shown in Figure (7). It is not not clear what empirical evidence

could ever distinguish between the generalizations in Figure 2 and Figure 4.

Not only do Kaplan and Kay show that SPE-style phonologies generate regular rela-

tions, they show that every regular relation can be described with a SPE-style phonology.

In other words the expressivity of the SPE-style phonology is exactly the regular relations

under the assumption that rules do not reapply within the loci of their structural changes.

The question of empirical adequacy of SPE-style phonology can now be addressed.

Since SPE-style grammars have been used to describe virtually all known phonological pro-
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R f
wEst → wEst (wEst,wEst) → 1
wEst → wEs (wEst,wEs) → 1

(wEst,wEsk) → 0
(wEst,wE) → 0

. . . . . .
pIwEst → pIwEst (pIwEst,pIwEst) → 1
pIwEst → pIwEs (pIwEst,pIwEs) → 1

(pIwEst,pIwEsk) → 0
(pIwEst,pIwE) → 0

. . . . . .

Figure 4: Fragments of the relation and functional characterization of optional post-
consonantal, word-final coronal stops deletion in English.

0 1

x:x
t:t
d:d

t:ε

d:ε

Figure 5: A FSM representation of the optional rule in (2) with optionality built-in. Sym-
bols and notation as in Figure 3.

cesses such as local assimilations and dissimilations, stress assignment, deletions, epenthe-

sis, metathesis, vowel and consonantal harmony and disharmony, the conclusion is that all

of these processes are regular, as is the product of their interactions, provided none can

reapply within the loci of their structural changes.

Cyclic application of rules (Chomsky and Halle, 1968, p. 60) is a specific proposal

which in principle permits rules to apply within the loci of their structural changes. Con-

sequently, a theory which permits cyclic application cannot be regular. Kaplan and Kay (p.

365) write

The cycle has been a major source of controversy ever since it was first pro-

20



Computational Phonology – Part I: Foundations

posed by Chomsky and Halle (1968), and many of the phenomena that mo-

tivated it can also be given noncyclic descriptions. Even for cases where a

nonrecursive, iterative account has not yet emerged, there may be restrictions

on the mode of reapplication that limit the formal power of the grammar with-

out reducing its empirical or explanatory coverage.

In other words, an empirically adequate, cyclic theory of phonology which prohibits rules

from reapplying within the loci of their structural changes may be possible. To my knowl-

edge, this has never been followed up. Until a clear case of a phonological rule necessarily

reapplying within the loci of its structural change appears, the stronger, more restrictive

hypothesis that phonological processes are regular appears well-supported by the impres-

sive empirical coverage of non-cyclic SPE-phonological grammars and Kaplan and Kay’s

careful computational analysis.

Another challenge to Kaplan and Kay’s findings comes from reduplication. But redu-

plication is arguably a morphological, and not a phonological, process (Inkelas and Zoll,

2005; Roark and Sproat, 2007).

In sum, Kaplan and Kay’s work establish that regular relations adequately cover virtu-

ally all phonological processes, stated both as individual generalizations and as the whole

phonology.

Complexity of the Generation Problem. It is well-known that the generation problem

for finite state transducers is linear in the length of the input string. It follows that the

generation problem (4-a) for a given SPE-style grammar is also linear in the length of

the underlying form. This follows regardless of whether the grammar is represented as an

ordered list of individual transducers (recalling Figure 1, F1× F2× . . . Fn) or, equivalently,
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as a single transducer (PL). The latter case follows trivially, and the former case follows

because, under composition (i.e when × = ◦), the output of one transducer becomes the

input to the next. Hence the surface form can be computed on the order of n|u| time steps.

4 Conclusion

The theory of computation is relevant to phonology. It provides a universal theory of ex-

pressivity and restrictiveness. When applied to phonological patterns, Kaplan and Kay

established that SPE-style grammars describe exactly the regular class of languages. Since

SPE-style grammars are descriptively adequate for virtually all known phonological pat-

terns, the hypothesis that all phonological patterns are regular is well-supported.

Part II shows how this fact leads to another: that different grammatical formalisms

employed by phonologists are much more similar than generally realized because, in part,

they all describe regular relations.

Finally, it is almost certainly the case that not all regular patterns are phonological ones.

Thus while “being regular” may be a necessary property of phonological patterns, it is not a

sufficient one. Thus, computational analysis points to a further hypothesis: all phonological

patterns are subregular. Part II also points the way for this future research by introducing

subregular language classes as they relate to phonological patterns.
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