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1 Introduction

A computer is something that computes, and since humans make computations when pro-
cessing information, humans are computers. What kinds of computations do humans make
when they learn languages?

Answering this question requires the collaborative efforts of researchers in several differ-
ent disciplines and sub-disciplines, including language science (e.g. theoretical linguistics,
psycholinguistics, language acquisition), computer science, psychology, and cognitive science.
The primary purpose of this chapter is explain to developmental psycholinguists and lan-
guage scientists more generally, the main conclusions and issues in computational learning
theories. This chapter is needed because

1. the mathematical nature of the subject makes it largely inaccessible to those without
the appropriate training (though hopefully this chapter shows that the amount of
training required is less than what is standardly assumed)

2. to correct falsehoods which exist in the literature about the relevance of computational
learning theories to the problem of language learning.

The main points in this chapter are:

1. The central problem of learning is generalization.

2. Consensus exists that, for feasible learning to occur at all, restricted, structured hy-
pothesis spaces are necessary.

3. Debates about statistical learning vs. symbolic learning are misplaced. To the extent
meaningful debate exists at all, it is about how learning ought to be defined; in par-
ticular, it is about what kinds of experience computers are required to succeed on in
order to say that they have “learned” something.

4. Computational learning theorists and developmental psycholinguists can profitably in-
teract in the design of meaningful artificial language learning experiments.
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In order to understand how a computer can be said to learn something, a definition of
learning is required. Only then does it become possible to ask whether the behavior of the
computer meets the necessary and sufficient conditions of learning required by the definition.
Computational learning theories provide definitions of what it means to learn and then asks,
under those definitions: What can be learned, how and why? Which definition is “correct”of
course is where most of the issues lie.

At the most general level, a language learner is something that comes to know a language
on the basis of its experience. All computational learning theories consider learners to
be functions which map experience to languages (Figure 1). Therefore, in order to define
learning both languages and experience need to be defined first.

Learner

Experience Languages

Figure 1: Learners are functions φ from experience to languages

2 Languages, grammars, and experience

2.1 Languages

Before we can speak of grammars, which are precise descriptions of languages, it will be useful
to talk about languages themselves. In formal language theory, languages are mathematical
objects which exist independently of any grammar. They are usually defined as subsets of
all logically possible strings of finite length constructible from a given alphabet. This can be
generalized to probability distributions over all those strings, in which case they are called
stochastic languages.

The alphabet can be anything, so long as it is unchanging and finite. Elements of
the alphabet can represent IPA symbols, phonological features, morphemes or words in
the dictionary. If desired, the alphabet can also include structural information such as
labeled phrasal boundaries. It follows that any description of sentences and words that
language scientists employ can be described as a language or stochastic language with a
finite alphabet.1

1Languages with infinite alphabets are also studied (Otto, 1985), but they will not be discussed in this
chapter.
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It useful to consider the functional characterizations of both languages and stochastic
languages because they are the mathematical objects of interest to language scientists. As
functions, a language L maps strings to one only if the string is in the language and all
other logically possible strings are mapped to zero. Stochastic languages, as functions, map
all logically possible strings to real values between zero and one such that they sum to
one. Figure 2 illustrates functional characterizations of English as a language and as a
stochastic language. The functional characterization of English as a language only makes

English as a language English as a stochastic language
John sang → 1 John sang → 1.2 ×10−12

John and sang → 0 John and sang → 0
John sang and Mary danced → 1 John sang and Mary danced → 2.4 ×10−12

. . . . . .

Figure 2: Functional characterizations of English as a language and a stochastic language.

binary distinctions between well-formed and ill-formed sentences. On the other hand, the
functional characterization of English as a stochastic language makes multiple distinctions.
In both cases, the characterizations are infinite in the sense that both assign nonzero values
to infinitely many possible sentences. This is because there is no principled upper bound on
the length of possible English sentences.2

How stochastic languages are to be interpreted ought to always be carefully articulated.
For example, if the real numbers are intended to indicate probabilities then the functional
characterization in Figure 2 says that “John sang” is twice as likely as “John and Mary
sang” On the other hand, if the real numbers are supposed to indicate well-formedness, then
the claim is that that “John sang” is twice as well-formed (or acceptable) as “John sang and
Mary danced.”3

As explained in the next section, from a computational perspective, the distinction be-
tween stochastic and non-stochastic languages is often unimportant. I use the word pattern
to refer to both stochastic and non-stochastic languages in an intentionally ambiguous man-
ner.

2.2 Grammars

Grammars are finite descriptions of patterns. It is natural to ask whether every conceivable
pattern has a grammar. The answer is No. In fact most logically possible patterns cannot
be described by any grammar at all of any kind. There is an analogue to real numbers.
Real numbers are infinitely long and some are unpredictable in an important kind of way:

2If there were, then there would be a value n such that “John sang and John sang
︸ ︷︷ ︸

n−1 times

” would be well-formed

but “John sang and John sang
︸ ︷︷ ︸

n times

” would be ill-formed like “John and sang.”

3There is a technical issue here. If there are infinitely many nonzero values, then it is not always the case
that they can be normalized to yield a well-formed probability distribution. For example, if each sentence is
equally acceptable, we would expect a uniform distribution. But the uniform distribution cannot be defined
over infinitely many elements since the probability for each element goes to zero.
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no algorithm exists (nor can ever exist) which can generate the real number correctly up to
some arbitrary finite length; such reals are called uncomputable. In fact, uncomputable real
numbers turn out to be the most common kind of real number (Turing, 1937)!

We assume that the functional characterizations of patterns (like English above) are
computable (i.e. have grammars of some kind). Although there are many different kinds
of grammatical formalisms, formal language theory provides a universal means for studying
them on the basis of the kind of patterns they are able to describe. This is because the
formal language theory studies properties of the languages and stochastic languages that are
independent of the particular grammatical formalism used to describe them.4

The Chomksy Hierarchy classifies logically possible patterns into sets of nested regions.
For further details regarding the Chomsky Hierachy, readers are referred to Harrison (1978);
Hopcroft et al. (1979, 2001) and Thomas (1997). The Finite patterns are those whose func-

Recursively Enumerable

Context-
Sensitive

Mildly
Context-
Sensitive

Context-FreeRegularFinite

Yoruba copying

Kobele 2006

Swiss German

Shieber 1985
English nested embedding

Chomsky 1957

English consonant clusters

Clements and Keyser 1983 Kwakiutl stress

Bach 1975

Chumash sibilant harmony

Applegate 1972

Figure 3: The Chomsky Hierarchy with natural language patterns indicated.

tional characterizations have only finitely many sentences with nonzero values. Regular
languages are all those describable with finite state automata, and regular stochastic lan-
guages are those describable by probabilistic finite-state automata. In other words, regular

4In some cases, particular grammatical formalisms are especially good at illuminating important prop-
erties of the patterns themselves and so the grammatical formalism becomes strongly identified with the
languages. This seems to be the case with (probabilistic) finite state automata and regular (stochastic)
languages, for example.
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patterns, whether stochastic or not, only require grammars that distinguish finitely many
states. On the other hand, context-free patterns require grammars that distinguish infinitely
many states. The class of recursively enumerable (r.e.) patterns are exactly those patterns
describable with grammars; i.e. they are computable patterns.

It is of course of great interest to know what kinds of patterns natural languages are.
Figure 3 shows where some natural language patterns fall in the Chomsky Hierarchy. For
example, phonological patterns do not appear to require grammars that distinguish infinitely
many states5, unlike some syntactic patterns, which appear to require grammars which make
infinitely many distinctions.

It is also important to understand the goals of computational research on natural lan-
guage patterns. In particular establishing complexity bounds is different from the hypotheses
which state both neccessary and sufficient properties of possible natural language patterns.
For example the hypothesis that natural language patterns are mildy context-sensitive Joshi
(1985), is a hypothesis that seeks to establish an upper bound on the complexity of natural
language. Joshi is not claiming, as far as I know, that any mildly context-sensitive pattern is
a possible natural language one. In my opinion, it is much more likely that possible natural
language patterns belong to subclasses of the major regions of the Chomsky Hierarchy. For
example, Heinz (2010a) hypothesizes that all phonological segmental phonotactic patterns
belong to particular subregular classes and Clark and Eyraud (2007) present a learnable sub-
class of the context-free languages which describes syntactic patterns like nested embedding.

Although from the perspective of formal language theory, grammars are the mathematical
objects of secondary interest, it does matter that learners return a grammar, instead of
a language. This is for the simple reason that as mathematical objects, grammars are
of finite length and the functional characterizations of patterns are infinitely long. Thus
while Figure 1 describes learners as functions from experience to languages, they are more
accurately described as functions from experience to grammars (Figure 4).

Learner

Experience Grammars

Figure 4: Learners are functions φ from experience to grammars.

5For more on the hypothesis that all phonological patterns are regular see Kaplan and Kay (1994); Eisner
(1997) and Karttunen (1998).
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2.3 Experience

There are many different kinds of experience learning theorists consider, but they agree that
the experience is a finite sequence (Figure 5). It is necessary to decide what the elements

s0
s1
s2
. . .
sn

↓ time

Figure 5: The learner’s experience

si of the sequence are. In this chapter we distinguish four kinds of experience. Positive
evidence refers to experience where each si is known to be a non-zero-valued sentence of
the target pattern. Positive and negative evidence refers to experience where each si is
given as belonging to the target pattern (has a nonzero value) or as not belonging (has a
zero value). Noisy evidence refers to the fact that some of the experience is incorrect. For
example, perhaps the learner has the experience that some si belongs to the target language,
when in fact it does not (perhaps the learner heard a foreign sentence or someone misspoke).
Queried evidence refers to experience learners may have because they specifically asked for
it. In principle, there are many different kinds of queries learners could make. This chapter
does not address these last two kinds; readers are referred to Angluin and Laird (1988) and
Kearns and Li (1993) for noisy evidence, and to Angluin (1988a, 1990); Becerra-Bonache
et al. (2006) and T̂ırnauca (2008) for queries.

2.4 Learners as functions

Armed with the basic concepts and vocabulary all learning theorists use to describe target
languages, grammars, and experience, it is now possible to define learners. They are sim-
ply functions that map experience to grammars. This is a very precise characterization of
learners, but it is also very broad. Any learning procedure can be thought of as a function
from experience to grammars, including connectionist ones (e.g. Rumelhart and McClel-
land (1986)), Bayesian ones (Griffiths et al., 2008), learners based on maximum entropy
(e.g. Goldwater and Johnson (2003)), as well as those embedded within generative mod-
els (Wexler and Culicover, 1980; Berwick1985, 1985; Niyogi and Berwick, 1996; Tesar and
Smolensky, 1998; Niyogi, 2006). Each of these learning models, and I would suggest any
learning model, takes as its input a finite sequence of experience and outputs some gram-
mar, which defines a language or a stochastic language. Consequently, all of these particular
proposals are subject to the results of formal learning theory.
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3 What is learning?

It remains to be defined what it means for a function which maps experiences to grammars
to be successful. After all, there are many logically possible such functions, but we are
interested in evaluating particular learning proposals. For example, we may be interested in
those learning functions that are humanlike, or which return humanlike grammars.

This chapter draws on a large set of learning literature. Readers are referred to Nowak
et al. (2002) for an excellent, short introduction to computational learning theory. Niyogi
(2006) and de la Higuera (2010) provide detailed, accessible treatments, and Jain et al.
(1999), Zeugmann and Zilles (2008) Lange et al. (2008) Anthony and Biggs (1992), and
Kearns and Vazirani (1994b) provide technical introductions. I have also relied on the
following research: (Gold, 1967; Horning, 1969; Angluin, 1980; Osherson et al., 1986; Angluin
and Laird, 1988; Vapnik, 1995, 1998).

3.1 Learning Criteria

In addition to deciding what kinds of experience learners must necessarily succeed on, learn-
ing theorists must also define what counts as success. The general idea in the learning theory
literature is that learning has been successful is the learner has converged to the right lan-
guage. Is there some point n after which the learner’s hypothesis doesn’t change (much)?
Convergence can be defined in different ways, to which we return below. Typically, learning
theorists conceive of an, infinite stream of experience to which the learner is exposed so that
it makes sense to talk about a convergence point. Is there a point n such that for all m ≥ n,
Grammar Gm % Gn (given some definition of %)? Figure 6 illustrates.

datum Learner’s Hypothesis

↓ time

s0 φ(〈s0〉) = G0

s1 φ(〈s0, s1〉) = G1

s2 φ(〈s0, s1, s2〉) = G2

. . .
sn φ(〈s0, s1, s2, . . . , sn〉) = Gn

. . .
sm φ(〈s0, s1, s2, . . . , sm〉) = Gm

Figure 6: If, for all m ≥ n, it is the case that Gm % Gn (given some definition of %), then
the learner is said to have converged.

The infinite streams of experience are also called texts (Gold 1967) and presentations of
data (Angluin 1988). All three terms are used synonymously here.

Defining successful learning as convergence to the right language after some point n, raises
another question with respect to experience: Which infinite streams require convergence?
Generally two kinds of requirements have been studied. Some infinite streams are full ; that
is, every possible kind of information about the target language occurs at some point in the
presentation of the data. For example, in the case of positive evidence, each sentence in the
language would occur at some finite point in the stream of experience.
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Table 1: Choices which make the learning problem easier and harder.
Makes learning easier Makes learning harder

a. positive and negative evidence A. positive evidence only
b. noiseless evidence B. noisy evidence
c. queries permitted C. queries not permitted
d. approximate convergence D. exact convergence
e. full infinite streams E. any infinite sequence
f. computable infinite streams F. any infinite sequence

Table 2: Choices providing a coarse classification of learning frameworks.

The second one is about computability, for which there are two concerns. First, there
are as many infinite texts as there are real numbers and so most of these sequences are not
computable. Should learners be required to succeed on these? Also, there are infinite sets of
elements such that each element is computable, but the set itself is not. This is because there
can be no program that is able to generate all (the programs for) the elements of the set
itself.6 So another strand of research limits the infinite sequences the learners are required
to succeed on to computable data presentations. This means not only is the set of infinite
sequences under consideration computable, but so is each element within the set as well.

3.2 Definitions of Learning

Table 2 summarizes the kinds of choices to be made when deciding what learning means.
The division of the choices into columns labeled “Makes learning easier” and “Makes

learning harder” ought to be obvious. Learners only exposed to positive evidence have more
work to do than those given both positive and negative evidence. Similarly, learners who
have to work with noisy evidence will have a more difficult task than those given noise-free
evidence. Learners allowed to make queries have access to more information than those not
permitted to make queries. Exact convergence is a very strict demand, and approximate
convergence is less so. Finally, requiring learners to succeed for every logically possible
presentation of the data makes learning harder than requiring learners only to succeed for
full or computable presentations simply because there are far fewer full and/or computable
presentations of the data. Figure 7 shows the proper subset relationships among full and
computable presentations of data.

Using the coarse classification provided by Table 2, I now classify several definitions of
learning (these are summarized in Table 3 on page 14). For example, the learning paradigm
known as identification in the limit from positive data (Gold, 1967) requires that the learner
succeed with positive evidence only (A), noiseless evidence (b), and without queries (C).

6As an example, consider the halting problem. This problem takes as input a program p and an input
i for p, and asks whether p will run forever on i, or eventually halt. It is known that there are infinitely
many programs which do not halt on some inputs. For each such program p choose some input ip. Since ip
is an input, it is finitely long and can be generated by some program. But the class of all such ips cannot
be generated by any program. If it could, it follows there is a solution to the halting problem, but in fact,
no such solution exists (or can exist) because the halting problem is known to be uncomputable; that is, no
algorithm exists which solves it (Turing, 1937).
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Full Computable

Full and computable

Logically Possible Texts

Figure 7: Proper subset relationships between all logically possible classes of texts, classes
of full texts, computable classes of texts, and both full and computable classes of texts.

Exact convergence (D) is necessary: even if the grammar to which the learner converges
generates a language which differs only in one sentence from the target language, this is
counted as a failure. This framework is generous in that learners are only required to succeed
on full infinite sequences (e) but must succeed for any such sequence, not just computable
ones (F).

The learning paradigm known as identification in the limit from positive and negative
data (Gold, 1967) is the same except the learner is exposed to both positive and negative
evidence (a).

Pitt (1985) and Wiehagen et al. (1984) study a learning paradigm I’ll call Identification in
the limit from positive data with probability p where learners are probabilistic (have access to
random information) and convergence is defined in terms of the probability that the learners
identify the target language in the limit given any infinite sequence of experience. Angluin
(1988b) considers a variant of Pitt’s framework which I’ll call identification in the limit from
distribution-free positive stochastic input with probability p where the data presentations
are generated probabilistically from fixed, but arbitrary probability distributions (including
uncomputable ones). The term distribution-free refers to the fact that the distribution
generating the data presentation is completely arbitrary. Thus these frameworks are similar
to identification in the limit from positive data but make an easier choice with respect to
convergence (d).

Gold (1967) also considered a paradigm I’m calling identification in the limit from positive
r.e. texts which is the similar to identification in the limit from positive data except that
the learner is only required to succeed on full, computable streams (f), and not any stream.

Horning (1969); Osherson et al. (1986) and Angluin (1988b) study learning stochastic
languages from positive data, and similarly restrict the presentations of data for which the
learner is required to succeed on. In this chapter I discuss Angluin’s framework since she
generalizes the results of earlier researchers to obtain the strongest result. In this framework,
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which I’ll call Identification in the limit from approximately computable positive stochastic
input” the presentations of data must be generated according to fixed “approximately com-
putable” probability distributions. In this way, this definition of learning is like identification
in the limit from positive data from r.e. texts because learners need only converge on full
and computable presentations of the data in order to have successfully learned.7

Finally, Probably Approximately Correct (PAC) learning (Valiant, 1984; Anthony and
Biggs, 1992; Kearns and Vazirani, 1994a) makes a number of different assumptions. Both
positive and negative evidence are permitted (a). Noise and queries are not permitted (b,c).
Convergence need only be approximate (d), but the learner must succeed for any kind of
data presentation, both non-full and uncomputable (E,F). What counts as convergence is
tied to the degree of “non-fullness” of the data presentation.

3.3 Classes of languages

Finally, computational learning theories are concerned with learners of classes of languages
and not just single languages. This is primarily because every language can be learned by
a constant function (Figure 8). For example, with any of definitions above, it is easy to

Learner

G

Experience Grammars

Figure 8: Learners which are constant functions map all possible experience to a single
grammar.

state a learner for English (and just English). Just map all experience (no matter what it
is) to a grammar for English. Even if we don’t know what this grammar is yet, the learning
problem is “solved” once we know it. Obviously, such “solutions” to the learning problem
are meaningless, even if mathematically correct.

For this reason, computational learning theories ask whether a collection of more than
one language can be learned by the same learner. This more meaningfully captures the kinds
of question language scientists are interested in: Is there a single procedure that not only
learns English, but also Spanish, Arabic, Inuktitut, and so on?

7If a data presentation is being generated from a computable stochastic language, then it is also full.
This is because for any sentence with nonzero probability, the probability of this sentence occurring increases
monotonically to one as the size of the experience grows. For example, we expect that the unlikely side of a
biased coin will appear if it is to be flipped enough times.
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4 Results of computational learning theories

Computational learning theorists have proven, given the above definitions, classes of lan-
guages that can and cannot be learned. Generally, formal learning theorists are interested in
large classes of learnable languages because they want to see what is possible in principle. If
classes of languages are learnable, the next important question is whether they are feasibly
learnable. This means whether learners can succeed with reasonable amounts of time and
effort where reasonable is defined in standard ways according to computational complexity
theory (Garey and Johnson, 1979; Papadimitriou, 1994).

This section provides the largest classes known to be provably learnable under the dif-
ferent definitions of learning above. Where possible, I also indicate whether such classes can
be feasibly learned.

4.1 No feasible learners for major regions of the Chomsky Hier-

archy

Gold (1967) proved three important results. First, a learner exists which identifies the the
class of r.e. languages in the limit from positive and negative data. Second, a learner exists
which identifies the finite languages in the limit from positive data, but no learner exists
which can identify any superfinite class in the limit from positive data. Superfinite classes
of languages are those that include all finite languages and at least one infinite language.
It follows from this result that none of the major regions of the Chomsky Hierarchy are
identifiable in the limit from positive data by any learner which can be defined as mapping
experience to grammars. Again, this includes Bayesian learners, connectionist models, etc.
It is this result with which Gold’s paper has become identified. Gold’s third (and usually
overlooked) result is that if learning is defined so that learners need only succeed given
full presentations which (1) contain only positive evidence and (2) are computable8, then
a learner exists which can learn any recursively enumerable language (identification in the
limit from positive r.e. texts).

Angluin (1988b), developing work begun in Horning (1969) and extended by Osherson
et al. (1986) presents a similar result to Gold’s third result for stochastic languages. She
shows that if the learning criteria is that learners are only required to succeed for presen-
tations of the positive data generable by those stochastic languages, then the class of r.e.
stochastic languages is learnable (because such presentations of data are computable since
r.e. stochastic languages are computable).9

This result contrasts sharply with other frameworks that investigate the power of prob-
abilistic learners. Pitt (1985) and Wiehagen et al. (1984) show that the class of languages
identifiable in the limit from positive data with probability p is the same as the class of
languages identifiable in the limit from positive data whenever p > 2/3. Angluin (1988)
concludes “These results show that if the probability of indentification is required to be
above some threshold, randomization is no advanatge. . . ” Angluin also shows that for all

8Gold referred to these texts as those generable by a partially recursive functions.
9Technically, she shows that the class of approximately computable distributions is learnable. The crucial

feature of this class is that its elements are enumerable and computable, which is why I take some liberty in
calling them r.e. stochastic languages.
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p, the class of languages identifiable in the limit from positive data with probability p from
distribution-free stochastic input is exactly the same as the the class of languages identifiable
in the limit from positive data with probability p. Angluin observes that the “assumption
of positive stochastic rather than positive [data presentations] is no help, if we require con-
vergence with any probability greater than 2/3.” She concludes “the results show that if no
assumption is made about the probability distribution [generating the data presentations],
stochastic input gives no greater power than the ability to flip coins.”

Finally, in the PAC learning framework (Valiant, 1984), not even the finite class of
languages is learnable (Blumer et al., 1989).

In the cases where learners are known to exist in principle, we may also examine their
feasibility. In the case of the identification in the limit from positive and negative data,
(Gold, 1978) shows that there are no feasible learners for even the regular class of languages.
In other words, while learners exist in principle for the r.e. class, they consume too much
time and resources in the worst-cases. In the case of identification in the limit from r.e. texts
and identification in the limit from approximately computable positive stochastic input, the
learners known to exist in principle are also not feasible.10

Table 3 summarizes the results discussed in this section.

4.2 Other results

The previous section appears to paint a dismal picture—either large regions of the Chomsky
Hierarchy are not learnable even in principle, or if they are, they are not feasibly learnable.

However there are many feasible learners for classes of language even in the frameworks
with the most demanding criteria, such as identification in the limit from positive data and
PAC-learning. This rich literature includes Angluin (1980, 1982); Muggleton (1990); Garcia
et al. (1990); Garćıa and Ruiz (1996); Fernau (2003); Garćıa and Ruiz (2004); Clark and
Thollard (2004); Oates et al. (2006); Clark and Eyraud (2007); Becerra-Bonache et al. (2008);
Heinz (2008, 2009); Yoshinaka (2008, 2009); Heinz (2010b) and Heinz (2010a). The language
classes discussed in those papers are not major regions of the Chomsky Hierarchy, but are
subclasses of such regions.

Some of these languages classes are of infinite size and include infinite languages—but
they crucially exclude some finite languages so they are not superfinite language classes.
I return to this point below when discussing why the fundamental problem of learning is
generalization.

Also, the proofs that these classes are learnable are constructive so concrete learning
algorithms whose behavior is understood exist. The algorithms are successful because they
are “aware” of the structure in the class, or equivalently, of its defining properties. They
utilize such structure, or the properties of the language class, to generalize correctly. Often
the proofs of the algorithm’s success involve characterizing the kind of finite experience
learners need to in order to generalize correctly.

To sum up, even though identification in the limit from positive data and PAC-learning
make the learning problem harder by requiring learners to succeed for any data presentation,

10These learners essentially compute an ordered list of all r.e. languages (or r.e. stochastic languages).
They find the first grammar in this list compatible with the experience so far.
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Feasible learnability of the major regions
Definition of Learning of the Chomsky Hierarchy

Identification in the limit from pos-
itive data (Gold 1967)

Finite languages are learnable but no superfi-
nite class of languages is learnable (e.g. regu-
lar, context-free, context-sensitive, r.e.).

Identification in the limit from pos-
itive data with probability p (Pitt,
1985; Wiehagen et al., 1984)

For all p > 2/3, classes identifiable in the limit
from positive data with probability p are the
same as those identifiable in the limit from
positive data.

Identification in the limit from
distribution-free positive stochastic
input with probability p (Angluin,
1988b)

For all p, classes identifiable in the limit from
distribution-free positive stochastic input with
probability p are the same as classes identifi-
able in the limit from positive data with prob-
ability p.

Identification in the limit from pos-
itive and negative data (Gold 1967)

R.e. languages are learnable but the regu-
lar languages are not feasibly learnable (Gold
1978).

Identification in the limit from pos-
itive r.e. texts (Gold 1967)

R.e. languages are learnable but they are not
not feasibly learnable.

Identification in the limit from
approximately computable positive
stochastic input (Angluin, 1988b)
(supersedes Horning 1969, Osher-
son et al. 1986)

R.e stochastic languages are learnable but
they are not feasibly learnable.

Probably Approximately Correct
(PAC) (Valiant 1984)

Finite languages not learnable (Blumer et al.,
1989), and hence neither are the regular,
context-free, context-sensitive, and r.e. lan-
guages.

Table 3: Foundational results in computational learning theory
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so that no learners exist, even in principle, for superfinite classes of languages, there are
feasibly learnable language classes in these frameworks. Furthermore, many of the above
researchers have been keen to point out the natural language patterns which belong to these
learnable subclasses.

5 Interpreting results of computational learning theo-

ries

5.1 Wrong reactions

How have the above results been interpreted? Are those interpretations justified? Perhaps
the most widespread myth about formal learning theory is the oft-repeated claim that Gold
(1967) is irrelevant because

1. Horning (1969) showed that statistical learning is more powerful than symbolic learn-
ing.

2. unrealistic assumptions are made

As shown below, these claims have been made by influential researchers in cognitive science,
computer science, computational linguistics, and psychology.

In this section I rebut these charges. The authors cited below repeatedly fail to distin-
guish different definitions of learnability, fail to identify Gold (1967) with anything other
than identification in the limit from positive data, and/or false statements about the kinds
of learning procedures Gold (1967) considers. With respect to the claim that identification
in the limit makes unrealistic assumptions, I beleive it is fair to debate the assumptions un-
derlying any learning framework. However, the arguments put forward by the authors below
are not convincing, usually because they say they very little about what the problematic
assumptions are and how their proposed framework overcomes them without introducing
unrealistic assumptions of their own.

Consider how Horning is used to downplay Gold’s work. For example, Abney writes

. . . though Gold showed that the class of context free grammars is not learnable,
Horning showed that the class of stochastic context free grammars is learnable.

The first clause only makes sense if, by “Gold”, Abney is referring to identification in the limit
from positive data. After all, Gold did show that the context-free languages are learnable
not only from positive and negative data, but also from positive data only if the learners are
only required to succeed on computable data presentations (identification in the limit from
positive r.e. texts).

As for the second clause, Abney leaves it to the reader to infer that Gold and Horning
are studying different definitions of learnability. Abney emphasizes the stochastic nature
of Horning’s target grammars as if that is the key difference in their results, but it should
be clear from Sections 4 and Table 3 that the gain in learnability is not coming from the
stochastic nature of the target patterns, but rather from the fact that, in Horning’s frame-
work, learners are only required to succeed for full and computable data presentations.

14



Manuscript-Sep. 20, 2010 J. Heinz

Again, Gold (1967) showed this result too, in a non-stochastic setting (identification in the
limit from positive r.e. texts).

Similarly, in the introductory 1999 text to computational linguistics Manning and Schütze
(1999, 386-387) write

. Gold (1967) showed that CFGs [context-free grammars] cannot be learned (in
the sense of identification in the limit that is whether one can identify a grammar
if one is allowed to see as much data produced by the grammar as one wants)
without the use of negative evidence (the provision of ungrammatical examples).
But PCFGs [probabilistic context-free grammars] can be learned from positive
data alone (Horning 1969). (However, doing grammar induction from scratch
is still a difficult, largely unsolved problem, and hence much emphasis has been
placed on learning from bracketed corpora. . . )

Like Abney, Manning and Schütze do not mention Gold’s third result that CFGs can be
learned if the data presentations are limited to computable ones. To their credit, they
acknowledge the hard problem of learning PCFGs despite Horning’s (and later Angluin’s)
results. Horning’s and Angluin’s learners are completely impractical and are unlikely to be
the basis for any feasible learning strategy for PCFGs. So these positive learning results
offer no little insight on how PCFGs which describe natural language patterns may actually
be induced from the kinds of corpus data that Manning and Schütze have in mind.

Klein (2005, 4-5) also writes:

. . . Golds formalization is open to a wide array of objections. First, as mentioned
above, who knows whether all children in a linguistic community actually do learn
the same language? All we really know is that their languages are similar enough
to enable normal communication. Second, for families of probabilistic languages,
why not assume that the examples are sampled according to the target languages
distribution? Then, while a very large corpus wont contain every sentence in the
language, it can be expected to contain the common ones. Indeed, while the
family of context-free grammars is unlearnable in the Gold sense, Horning (1969)
shows that a slightly softer form of identification is possible for the family of
probabilistic context-free grammars if these two constraints are relaxed (and a
strong assumption about priors over grammars is made).

Again, by “Gold’s formalization”, Klein must be referring to identification in the limit from
positive data. Klein’s first point is that it is unrealistic to use exact convergence as a
requirement because we do not know if children in communities all learn exactly the same
language, and it is much more plausible that they learn languages that are highly similar,
but different in some details. Hopefully by now it is clear that Klein is misplacing the
reason why it is impossible to identify in the limit from positive data superfinite classes
of languages. It is not because of exact convergence, it is because learners are required to
succeed for any full presentation of the data, not just the computable ones. In frameworks
that allow looser definitions of convergence (PAC-learning, identification in the limit from
positive data with probability p), the main results are more or less the same as in the
identifcation in the limit from positive data. The real reason for Horning’s success is made
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clear in Angluin (1988): identification in the limit from approximately computable positive
stochastic data only requires learners to succeed for data presentations that are computable.
As for the choice of exactness as the definition of convergence being unrealistic, it is a useful
abstraction that lets one ignore the variation that exists in reality to concentrate on the core
properties of natural language that make learning possible.

Klein then claims that it is much more reasonable to assume that the data presentations
are generated by a fixed unchanging probability distribution defined by the target PCFG.
This idealization may lead to fruitful research, but it is hard to accept it as realistic. That
would mean that for each of us, in our lives, every sentence we have heard up until this point,
and will hear until we die, is being generated by a fixed unchanging probability distribution.
It is hard to see how this could be true given that what is actually said is determined by so
many non-linguistic factors.11 So if realism is one basis for the “wide array of objections”
that Klein mentions, the alternative proposed does not look much better.

Johnson and Reizeler (2002) are much more cautious in their rhetoric:

Turning to theoretical results on learning, it seems that statistical learners may
be more powerful than non-statistical learners. For example, while Golds famous
results showed that neither finite state nor context-free languages can be learnt
from positive examples alone (Gold, 1967), it turns out that probabilistic context-
free languages can be learnt from positive examples alone (Horning, 1969).1

Note the judicious use of “may” in the first sentence. Although the second sentence fails to
ackowledge Gold’s result of learning the class of r.e. languages from positive r.e. texts, their
footnote addresses the different learning definitions in identification in the limit from positive
data and in what is essentially identification in the limit from approximately computable
positive stochastic input (Angluin 1988).

That is, a class of probabilistic languages may be statistically learnable even
though its categorical counterpart is not. Informally this is because the statistical
learning framework makes stronger assumptions about the training data (i.e.,
that it is distributed according to some probabilistic grammar from the class) and
accepts a weaker criterion for successful learning (convergence in probability).

However, there is no discussion whether the stronger assumptions about the trainign data is
warranted.

Like Klein above, Bates and Elman (1996) also argue that Gold (1967) is irrelevant
because of unrealistic assumptions. They write:

A formal proof by Gold [1967] appeared to support this assumption, although
Gold’s theorem is relevant only if we make assumptions about the nature of the
learning device that are wildly unlike the conditions that hold in any known
nervous system [Elman et al. 1996].

11Even if we abstract away from actual words and ask whether if strings of lingusitic categories are
generated by a fixed underlying PCFGS, the claim is probably false. Imperative structures often have
different distributions of categories than declaratives than questions and the extent to which these are used
in discourse depends entirely on non-linguistic factors in the real world.
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By now we are familiar with authors identifying Gold (1967) solely with identification in
the limit from positive data. What assumptions does Gold make that are “wildly unlike
the conditions that hold in any known nervous system?” Gold only assumes that learners
are functions from finite sequences of experience to grammars. It is not clear to me why
this assumption not applicable to nervous systems, or any other computer. Perhaps Bates
and Elman are taking issues with exact convergence, but as mentioned above, learning
frameworks that allow looser definitions of convergence do not change the main results and
even Elman et al. (1996) uses abstract models.

Perfors et al. (2010), while describing an approach to language learning that balances
preferences for simple grammars with good fits to the data, writes

Traditional approaches to formal language theory and learnability are unhelpful
because they presume that a learner does not take either simplicity or degree
of fit into account (Gold 1967). A Bayesian approach, by contrast, provides
an intuitive and principled way to calculate the tradeoff. . . Indeed it has been
formally proven that an ideal learner incorporating a simplicity metric will be
able to predict the sentences of the language with an error of zero as the size of
the corpus goes to infinity (Solomonoff 1978, Chater and Vitànyi 2007); in many
more traditional approaches, the correct grammar cannot be learned even when
the number of sentences is infinite (Gold 1967). However learning a grammar (in
a probabilistic sense) is possible, given reasonable sampling assumptions, if the
learner is sensitive to the statistics of language (Horning 1969).

The first sentence is simply false. While it is true that Gold does not specifically refer to
learners which take either simplicity or degree of fit into account, that in no way implies his
results do not apply to such learners. Gold’s results apply to any algorithms that can be
said to map finite sequences of experience to grammars, and the Bayesian models Perfors
et al. propose are such algorithms. The fact that Gold doesn’t specifically mention these
particular traits emphasizes how general and powerful Gold’s results are. If Perfors et al.
really believe Bayesian learners can identify a superfinite class of languages in the limit from
positive data, they should go ahead and try to prove it. (Unfortunately for them, Gold’s
proof is correct so we already know it is useless trying.)

The last sentence is what we come to expect from authors who are peddling statistical
learning models. The statment that learners that are “sensitive to the statistics of language”
can learn probabilistic grammars is attributed to Horning with no substantial discussion of
the real issues. Readers are left believing in the power of statistical learning, even though
the real issue is whether learning is defined in a way as to require learners to succeed on full
and computable data presentations versus all full data presentations. Again Gold showed
that any r.e. language can be learned from positive r.e. texts. Angluin (1988) showed that
learners that are “sensitive to the statistics of language” are not suddenly more powerful
(Identification in the limit from distribution-free positive stochastic input with probability
p). Finally Perfors et al. hide the real issue behind the phrase “under reasonable sampling
conditions.” In the above discussion of Klein’s comments, I think there is every reason
to question how reasonable those assumptions are. But I would be happy if the debate
could at least get away from “the sensitivity of the learner to statistics” rhetoric to whether
the assumption that actual data presentations are generated according to fixed unchanging
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computable probability distributions is reasonable. That would be progress and would reflect
one actual lesson from computational learning theory.

As for Chater and Vitányi (2007), which extends work begun in Solomonoff (1978), they
provide a more accurate, substantial and overall fairer portrayal of Gold’s (1967) paper than
these others, and corroborate some of the points made in this chapter. However, a couple of
inaccuracies remain. Consider the following passage:

Gold (1967) notes that the demand that language can be learned from every
text may be too strong. That is, he allows the possibility that language learning
from positive evidence may be possible precisely because there are restrictions on
which texts are possible. As we have noted, when texts are restricted severely,
e.g., they are independent, identical samples from a probability distribution over
sentences, positive results become provable (e.g., Pitt, 1989); but the present
framework does not require such restrictive assumptions. (p. 153)

This quote is misleading in a couple of ways. First, Gold (1967) goes much farther than just
suggesting learning from positive evidence alone may be possible if the texts are restricted;
in fact, he shows this (identification in the limit from positive r.e. texts). Secondly, the
claim that their framework does not assume that the stream of experience which is the input
to the “ideal language learner” is not generated by inedpendently drawn samples from a
computable distribution is false.12 Section 2.1 of their paper explains exactly how the input
to the learner is generated. They explain very clearly that they add probabilities to a Turing
machine, much in the same way probabilities can be added to any automaton. In this case,
the consequence is they are able to describe r.e. stochastic languages. In fact they conclude
this section with the following sentence:

The fundamental assumption concerning the nature of the linguistic input out-
lined in this subsection can be summarized as the assumption that the linguistic
input is generated by some monotone computable probability distribution µC(x).
(p. 138)

It is unclear how this sentence and the claim on p. 153 that they make no restrictive
assumptions on the text can both be true. In fact, one important lesson from computational
learning theory that this chapter is trying to get across is that assuming that the data
presentations (the linguistic input in Chater and Vitányi’s terms) are drawn from some
computable class of presentations is the primary factor in determining whether all patterns
can be learned in principle or whether only very restricted classes can be. It certainly looks
from their discussion of their learning framework, that successful learning is defined as success
only on data presentations that are computable.

In fact, the “ideal language learner” does not appear to differ substantially from the one
discussed by Angluin (1988) in the framework identification in the limit from approximately
computable positive stochastic input. I conjecture that Chater and Vitányi’s learner is a
particular instantiation of the Angluin’s learner in Theorem 17. Their ideal langauge learner

12The reference to Pitt 1989 is also odd given that this paper does not actually provide the positive results
the authors suggest as it discusses identification in the limit from positive data with probability p. Horning
1969, Osherson, Stob, and Weinstein, or Angluin 1988 are much more appropriate references here.
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essentially enumerates all possible r.e. stochastic languages by the length of their description.
It then finds the first r.e. stochastic language in this list (i.e. a shortest grammar) consistent
with the data. The only difference between this learner and Angluin’s is that they specify a
natural way to do the enumeration, whereas Angluin is agnostic regarding the details of the
enumeration (because her proof only requires the existence of some enumeration).

Also, there is no indication whatsoever that the “ideal language learner” is feasible. In
fact, the enumeration of all stochastic r.e. languages points to the contrary. Chater and
Vitányi discuss the feasibility of the learner towards the end of their paper, where they
point to a “crucial set of open questions” regarding “how rapidly learners can converge
well enough” with the kinds of data in a child’s linguistic environment. Of course, if my
conjecture is correct, their idealized language learner cannot feasibly learn the r.e. stochastic
languages, even if it can do so in principle (like Angluin’s 1988 learner). Of course it may
be that there is some subclass of the r.e. stochastic languages that the algorithm is able to
learn feasibly, and which may include natural language patterns. In my view, research in
this direction would be a positive development.

Finally, it is worth emphasizing that frameworks which require learners to succeed only on
full and computable data presentations are weaker than frameworks which require learners to
succeed on all full data presentations, computable and uncomputable, for the simple reason
that there are more data presentations of the latter type (Figure 7). Learners successful
in these more difficult frameworks (mentioned in Section 4.2) are more robust in the sense
that they are guaranteed to succeed even when the data presentations to which they are
exposed are not computable. The fact that there are feasible learners which can learn
interesting classes of languages under strong definitions of learning (e.g. PAC-learnable
classes) underscores how powerful those learning results are.

5.2 Correct reactions

Gold (1967:453-454) provides three ways to interpret his three main results:

1. The class of natural languages is much smaller than one would expect from
our present models of syntax. That is, even if English is context-sensitive, it
is not true that any context-sensitive language can occur naturally. . . In par-
ticular the results on [identification in the limit from positive data] imply the
following: The class of possible natural languages, if it contains languages
of infinite cardinality, cannot contain all languages of finite cardinality.

2. The child receives negative instances by being corrected in a way that we
do not recognize. . .

3. There is an a priori restriction on the class of texts [presentations of data;
i.e. infinite sequences of experience] which can occur. . .

The first possibility follows directly from the fact that no superfinite class of languages is
identifiable in the limit from positive data. The second and third possibilities follow from
Gold’s other results on identification in the limit from positive and negative data and on
identification in the limit from positive r.e. texts.
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Each of these research directions can be fruitful, if honestly pursued. For the case of
language acquisition, Gold’s three suggestions can be investigated empirically. We ought to
ask

1. What evidence exists that possible natural language patterns form subclasses of major
regions of the Chomsky Hierarchy?

2. What evidence exists that children receive positive and negative evidence in some,
perhaps implicit, form?

3. What evidence exists that each stream of experience each child is exposed to is guar-
anteed to be generated by a fixed, computable process (i.e. computable probability
distribution or primitive recursion function)? I.e. what evidence exists that the data
presentations are a priori limited?

My contention is that we have plenty of evidence with respect to question (1), some
evidence with respect to (2), and virtually no evidence with respect to (3).

Consider question (1). Although theoretical linguists and language typologists repeatedly
observe an amazing amount of variation in the world’s languages, there is consensus that
there are limits to the variation, though stating exact universals is difficult (Greenberg, 1963,
1978; Mairal and Gil, 2006; Stabler, 2009). Even language typologists who are suspicious
of hypothesized language universals, once aware of the kinds of patterns that are logically
possible, agree that not any logically possible pattern could be a natural language pattern.

Here is a simple example: many linguists have observed that languages do not appear
to count past two. For example, no language requires sentences with at least n words to
have the n word be a verb where n ≥ 3 (unlike verb-second languages like German). This is
a logically possible language pattern. Here is another one: if an even number of adjectives
modify a noun, then they follow the noun in noun phrases, but if an odd number of adjectives
follow a noun they precede the noun in noun phrases. These are both r.e. patterns.

According to Chater and Vitányi (2007), if the linguistic input a child received contained
sufficiently many examples of noun phrases which obeyed the even-odd adjective rule above,
they would learn it. It’s an empirical hypothesis, but I think children would fail to learn
this rule no matter how many examples they were given. Chater and Vitányi can claim
that there is a simpler pattern consistent with data (e.g. adjectives can optionally precede
or follow nouns) that children settle on because their lives and childhoods are too short for
there to be enough data to move from the simpler generalization to the correct one. This
also leads to an interesting, unfortunately untestable, prediction, that if humans only had
longer lives and childhoods, we could learn such bizarre patterns like the even-odd adjective
rule. In other words, they would explain the absence of even-odd adjective rule in natural
languages as just a byproduct of short lives and childhoods, whereas I would attribute it
to linguistic principles which exclude it from the collection of hypotheses children entertain.
But there is a way to Chater and Vitányi can address the issue: How much data does “the
ideal language learner” require to converge to the correct unattested pattern?

The harder learning frameworks—identification in the limit from positive data and PAC—
bring more insight into the problem of learning and the nature of learnable classes of patterns.

First, these definitions of learning makes clear that the central problem in learning is
generalizing beyond one’s experience because under these definitions, generalizing to infinite
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a. b. c. d. e. f. g.

Table 4: Birds (a,b) are “warbler-barblers”. Which birds (c-g) do you think are “warbler-
barblers”?

patterns requires the impossibility of being able to learn certain finite patterns (Gold’s first
point above). I think humans behave like this. Consider the birds in Table 4. If I tell you
birds (a,b) are “warbler-barblers” and ask which other birds (c,d,e,f,g) are warbler-barblers
you’re likely to decide that birds (c,f,g) could be warbler-barblers but birds (d,e) definitely
not. You’d be very surprised to learn that in fact birds (a,b) are the only warbler-barblers
of all time ever. Humans never even consider the possibility that there could just be exactly
two “warbler-barblers”. This insight is expressed well by Gleitman (1990:12):

The trouble is that an observer who notices everything can learn nothing for there
is no end of categories known and constructible to describe a situation [emphasis
in original].

Chater and Vitányi (2007) can say that grammars to describe finite languages are more
complex than regular or context-free grammars, and they are right, provided the finite lan-
guage is big enough. Again, the question is what kind experience does “the ideal language
learner” need in order to learn a finite language with exactly n sentences, and is this hu-
manlike? This question should be asked of all proposed language learning models, and it
is interesting to contrast “the ideal language learner” with Yoshinaka’s (2008,2009) learners
which generalize to anbn and anbncn with at most a few examples (and so those learners
cannot learn, under any circumstances, the finite language that contains only those few
examples).

Second, classes which are learnable within these difficult frameworks have the potential to
yield new kinds of insights about which properties of natural languages make them learnable.
As discussed in section 4.2, there are many positive results of interesting subclasses of major
regions of the Chomsky Hierarchy which are identifiable in the limit from positive data and/or
PAC-learnable, and which describe natural language patterns. The learners for those classes
succeed because of the structure inherent to the hypothesis space—structure which can reflect
deep, universal properties of natural language. Under weaker definitions of learning, where
the r.e. class of patterns is learnable, such insights are less likely to be forthcoming.

As for Gold’s second point, there has been some empirical study as to whether children
use negative evidence in language acquisition (Brown and Hanlon, 1970; Marcus, 1993).
Also learning frameworks which permit queries (Angluin, 1988a, 1990), especially correction
queries (Becerra-Bonache et al., 2006; T̂ırnauca, 2008), can be thought as allowing learners
to access implicit negative evidence.

As for third question above, I don’t know of any research that has addressed it. Nonethe-
less, it should be clear that the commonly-cited statistical learning frameworks that have
shown probabilistic context-free langauges are learnable (Horning, 1969), and in fact the r.e.
stochastic languages are learnable (Angluin, 1988b; Chater and Vitányi, 2007) are pursuing
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Gold’s third suggestion. It also ought to be clear that the postive results that show r.e. pat-
terns can be learned from positive, full and computable data presentations are “in principle”
learners only. As far as is known, they can not learn these classes feasibly. Of course it may
be possible that such techniques can feasibly learn interesting subclasses of major regions
of the Chomsky Hierarchy which are relevant to natural language. If shown, this would be
an interesting complement to the research efforts pursuing Gold’s first suggestion, and could
also reveal universal properties of natural language that contribute to their learnabilty.

6 Artificial language learning experiments

Many questions raised in the last section can in principle be addressed by artificial language
learning experiments. These experiments probe the generalizations people make on the basis
of brief finite exposure to artificial languages (Marcus et al., 1999; Fitch and Hauser, 2004;
Wilson, 2006; Berent et al., 2008). The performance of computational models of learning
can be compared with the performance of humans (Wilson, 2006; Michael C. Frank et al.,
2007) on these experiments.

But the relationship can go beyond comparison and evaluation to design. Well-defined
learnable classes which contain natural language patterns are the bases for experiments. As
mentioned, there are non-trivial interesting classes of languages which are PAC-learnable,
which are identifiable in the limit from positive data, and which contain natural language
patterns. The proofs are constructive and a common technique is identifying exactly the
finite experience the proposed learners need to generalize correctly to each language in a given
class. This critical finite experience is called the characteristic sample. The characteristic
sample essentially becomes the training stimuli for the experiments. Other sentences in the
language that are not part of the characteristic sample become test items. Finally, more
than one learner can be compared by finding test items in the symmetric difference of the
different patterns multiple learners return from the experimental stimuli. These points are
also articulated by Rogers and Hauser (2010) in the context of formal language theory and
I encourage readers to study their paper.

7 Conclusion

In this chapter I have tried to explain what computational learning theories are, and the
lessons language scientists can draw from them. I believe there is a bright future for research
which honestly integrates the insights of computational learning theories with the insights
and methodologies of developmental psycholinguistics.
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Chater, Nick, and Paul Vitányi. 2007. ‘ideal learning’ of natural language: Positive results
about learning from positive evidence. Journal of Mathematical Psychology 51:135–163.

Clark, Alexander, François Coste, and Lauren Miclet, eds. 2008. Grammatical Inference:
Algorithms and Applications , vol. 5278 of Lecture Notes in Computer Science. Springer.
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