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Abstract

By the time children begin to rapidly acquire new word mean-
ings they are already able to determine the grammatical cat-
egory of novel words based on syntactic and morphological
cues. Here we test whether children can leverage this knowl-
edge when inferring the meaning of a novel word. Through
a novel word learning experiment we determine that children
can use this information, drawing different conclusions for the
most likely meanings of novel words in distinct grammatical
categories. We use a Bayesian model to formalize the higher
level knowledge that children might have about noun and ad-
jective meanings. Simulations show that children’s behavior
reflects the type of shift we would predict on the basis of noun
and adjective meanings in the English lexicon.
Keywords: language acquisition; word learning; Bayesian in-
ference

One of the most striking phenomena in language acquisi-
tion is children’s ability to rapidly learn the meanings of novel
words with only limited exposure. How exactly children do
this has been researched extensively, with three lines of in-
quiry dominating the attempts to formalize this process: hy-
pothesis elimination (Berwick, 1963; Pinker, 1989; Siskind,
1996), associative learning (Colunga & Smith, 2005; Regier,
2005) and Bayesian inference (Xu & Tenenbaum, 2007). Xu
and Tenenbaum argue that Bayesian inference is superior to
hypothesis elimination and associative learning because it
uniquely allows the learner to take advantage of ‘suspicious
coincidences’ when learning words for overlapping concepts.
For example, in a word learning experiment they found that
when children were shown three Dalmatians labeled with a
novel object label, there was a strong bias for children to think
that the novel word meant Dalmatian, rather than dog, or ani-
mal. This bias was not as strong when children only saw one
Dalmatian labeled with the novel label. Neither hypothesis
elimination nor associative learning predict the effect of the
suspicious coincidence that results from the narrow distribu-
tion of exemplars on the kind hierarchy (which is in turn con-
tingent on the number of exemplars). Xu and Tenenbaum’s
model does predict this effect, via the likelihood term, which
takes into account both the number of exemplars and the size
of the hypothesis.

One key assumption that Xu and Tenenbaum relied on was
that the candidate concepts fell on a hierarchy of kinds. That
is, in their model the learner does not have to determine what
domain to generalize across, as this domain was given by
the kind hierarchy. This assumption has two implications
for their model: (1) most of the work in hypothesis selec-
tion is being done by the likelihood, as the prior probability
of each hypothesis is comparatively much less variable and

(2) it largely limits the model to the discussion of object la-
bel learning, as this is the domain that primarily uses the kind
hierarchy.

In this paper we probe the predictions of the Bayesian
model on different grammatical categories, nouns and adjec-
tives, which tend to draw from different concept hierarchies.
This allows us to better test the role of the prior probabil-
ity of a concept given a grammatical category by letting us
examine the link between grammatical category and concept
hierarchy. Toward these goals we conducted a word learn-
ing experiment that replicates Xu and Tenenbaum’s finding
with learning novel nouns, and extends the paradigm to novel
adjective learning. We find that children use the grammatical
category of the novel word to constrain their hypotheses about
the meaning of the novel word. This is demonstrated through
their sensitivity to the suspicious coincidence in the distribu-
tion of exemplars on the kind hierarchy when learning nouns
but not adjectives. A Bayesian model that takes into account
not only conceptual similarity but also the link between gram-
matical category and concept matches the qualitative shift be-
tween nouns and adjectives seen in the children’s data. The
model’s ability to capture this shift highlights the crucial role
that children’s prior beliefs contribute to their generalizations
in word learning. Through this work we extend the Bayesian
model of word learning in ways that make it more realistic
with respect to both the structure of natural language and the
task faced by a child acquiring novel words.

Our paper is organized as follows. We first present our
word learning experiment. We then use a Bayesian model
to formalize children’s prior distribution over concepts. The
next section presents simulations comparing the model to
children’s behavior. We conclude by discussing the implica-
tions that this work has for language acquisition, in particular
the importance of considering how a learner’s prior knowl-
edge affects the way in which the data from the environment
are used in language acquisition.

Word Learning Experiment
In a novel word learning experiment children were presented
with an array of animals and vehicles and taught a novel label
(noun or adjective) for a concept. Children were then asked to
generalize their inferred concept to novel items. The stimuli
allowed generalization along both kind and property dimen-
sions. If children are able to use syntactic information to con-
strain their inference of words’ meanings, then we should ex-
pect them to generalize differently when learning nouns ver-
sus adjectives.



Figure 1: The stimuli for our experiment included 36 objects
in subordinate, basic, and superordinate vehicle and animal
categories. Half the items were striped and half spotted.

Methods

Our experiment tested two groups of children using a between
subjects design. The noun group learned two novel nouns,
and the adjective group learned two novel adjectives.
Participants Participants were 24 children (mean
age = 4;0, range = 3;6-5;0) recruited from the greater
College Park area as well as an on campus preschool.
Children either visited the lab with their parents or were
visited by researchers at their preschool. Four children were
excluded from the final analysis for the following reasons.
One was too shy to interact with the snail and three said
they didn’t know when they were asked to perform the
generalization task outlined below.
Stimuli All children were presented with an array of pic-
tures (Figure 1) that included 36 items from two superordi-
nate categories on the kind hierarchy (18 vehicles and 18 an-
imals). Each category had items from several basic levels
(animals: 12 dogs, 2 cats, 2 squirrels, 2 owls; vehicles: 12
roofed cars, 2 convertibles, 2 vans, 2 trucks). One basic level
from each superordinate category had items from two subor-
dinate level categories (dogs: 6 Dachshunds and 6 Yorkshire
terriers, roofed cars: 6 taxis and 6 police cars). There were
both striped and spotted items of each item type.
Procedure A snail puppet was introduced to the child, and
the child was told that the snail spoke a funny snail lan-
guage that was mostly like English but included some new
words. The experimenter explained that they would try to
figure out the snail’s words by listening to him talk about
some of the pictures. Before proceeding further, the exper-
imenter checked that both the snail and the child could see
all of the pictures in the array. This ensured that participants
were aware of the range of items in the experimental world.

During the word learning phase the snail looked at the
pictures and pointed out an item from one of the subordinate

Speaker Utterance Action
Snail ‘This is a blicky

one’
points to striped
Dachshund 1

Snail ‘Look, another
blicky one’

points to striped
Dachshund 2

Snail ‘Here’s another
blicky one’

points to striped
Dachshund 3

Snail ‘I’m going to go
have a rest’

retreats to shell

Experimenter ‘Here are some
more pictures.
Can you put
circles on all
the blicky ones
to surprise the
snail?’

lays out new
array of pictures
and gives the
child a set of
rings

Child — puts rings on
items that match
child’s hypoth-
esis for the
meaning of blicky

Table 1: Sample adjective trial. Noun trials were identical
with blick substituted for blicky one.

level categories (e.g., a striped dachshund). In the noun con-
dition he described it as a blick, and in the adjective condition
he described it as a blicky one. This happened 3 times, with
the snail pointing to a different striped dachshund each time.
Then the snail would get tired and retire to his shell for a nap.

While the snail slept, the experimenter initiated the test
phase, during which the child was presented with another ar-
ray of pictures and asked to place circles on the other blicks
(noun condition) or blicky ones (adjective condition). A sin-
gle trial is schematized in Table 1. The entire procedure was
repeated for a second novel word used to describe another
item from a different subordinate level (e.g., a spotted taxi).
Order of item (dog before vehicle or vice versa), described
subordinate level item (dachshund vs yorkie and taxi vs po-
lice car), and described pattern order (striped before spotted
and vice versa) were counterbalanced across subjects.

Results
Each item presented during the word learning phase was con-
sistent with seven candidate concepts (illustrated in Table 2),
picking from the kind hierarchy, property hierarchy or com-
bining concepts from both. For data analysis, children’s hy-
potheses were collapsed depending where the generalization
fell on the kind hierarchy. Children’s choices were coded
as follows, with one response recorded per trial. Subordi-
nate responses were recorded if children chose only items
from the same subordinate level as the example (e.g., only
dachshunds after being presented with dachshunds). Basic
responses were recorded if children chose from only the ba-
sic level (e.g. either dog type after being presented with



Hypothesis Dimension Level
Dachshund Kind subordinate

Dog Kind basic
Animal Kind superordinate
Striped Property neutral

Striped ∧ Dachshund Property ∧ Kind subordinate
Striped ∧ Dog Property ∧ Kind basic

Striped ∧ Animal Property ∧ Kind superordinate

Table 2: Candidate concepts, given three exemplars of striped
Dachshunds.

dachshunds) or from the basic and subordinate levels. A
superordinate response was recorded if children chose only
from the superordinate level (e.g., any animal after being
presented with dachshunds) or from the superordinate level
with any combination of the lower levels. Finally, neutral re-
sponses were recorded if children chose from anywhere on
the kind hierarchy (e.g., anything from the vehicle hierarchy
after being shown a dachshund). All items chosen by chil-
dren with neutral responses were consistent with the property
(either striped or spotted) that they had been taught.

Results are shown in Figure 2(a). In the noun condi-
tion, we replicated Xu & Tenenbaum’s finding, uncovering
a bias for the subordinate level meaning when all observa-
tions fall into the same subordinate level. In the adjective
condition, however, we see a different pattern. The place-
ment of the item on the kind hierarchy had no bearing on
children’s choices, with the overwhelming majority choosing
the neutral interpretation, indicating their belief that the novel
adjective’s meaning referred just to the most salient property
(striped versus spotted) rather than the kind. Planned compar-
isons revealed that the proportion of trials that children chose
the subordinate and neutral meanings differed significantly
by condition (subordinate: t(33) = 3.49, p < 0.002, neutral:
t(26) = 3.39, p < 0.003).

Discussion
These results demonstrate that children use their knowledge
of grammatical categories, and the associated kinds of mean-
ings that correlate with these categories, when inferring the
meanings of novel words. In particular, they favor concepts
from a kind hierarchy for novel nouns, and from a property
hierarchy for novel adjectives. In one respect this result is not
new, as infants as young as 14 months have been shown to
know the mapping between grammatical and conceptual cat-
egories (Waxman & Markow, 1998; Booth & Waxman, 2003,
2009). Instead, the novelty is in showing that this mapping
constrains children’s inferences. A very low prior probability
for a hypothesis on the kind hierarchy blocks it from being
determined the most likely for a novel adjective meaning, de-
spite it being the narrowest possible hypothesis.

This finding emphasizes the role of the hypothesis space,
since the most likely hypothesis differs depending on the
grammatical category of the word being learned. In order

to determine whether children are behaving optimally with
respect to a specific hypothesis space (conditioned by gram-
matical category and the information available to them in the
English lexicon), we used a Bayesian model to predict gen-
eralization behavior from the nouns and adjectives that are
likely to be present in the children’s early lexicons.

Model
We assume the generative model shown in Figure 3(a). Our
model assumes that the snail in our experiment, having cho-
sen a grammatical category for the word he will teach the
children, chooses a concept to teach (such as dog, striped, or
dachshund), and then independently chooses three objects as
examples of that concept.

The children in our experiment inferred what concept a
new word referred to based on the grammatical category of
the novel word (noun or adjective) and the objects the snail
identified as examples of that word. Our model therefore
computes the probability of each concept C for a given gram-
matical category P and set of objects X ,

P(C|X ,P) (1)

We can use Bayes’ rule to compute the posterior probabil-
ity over concepts given a set of examples and a word’s gram-
matical category,

P(Ci|X ,P) =
P(X |Ci) ·P(Ci|P)

∑
C j∈{all concepts}

P(X |C j) ·P(C j|P)
(2)

We assume that the probability of the data X depends only
on the concept C and is independent of the grammatical cat-
egory, given the concept. Since the normalizing constant in
the denominator will be the same for all candidate concepts,
we only need to find the values of P(X |Ci) and P(Ci|P) for
the concepts we are considering.

Concept Prior: P(C|P)
Following Goodman, Tenenbaum, Feldman and Griffiths
(2008) (cf. Austerweil & Griffiths, 2010), we represent
concepts according to the concept grammar in Figure 3(b),
with nonterminal nodes Kind and Property representing the
dimensions a concept is defined along. Words like dog
and striped are defined along only one of these dimensions
(Kind and Property, respectively). Words like kitten, which
describes a young cat, are defined along both dimensions
(Kind ∧Property). The derivation of each concept involves
first applying a rule determining the dimension of the concept
and then applying the dimension-specific rules until all termi-
nal nodes have been identified. For example, in our concept
language, the concept dog is formed by first applying the rule
Concept→ Kind and then applying the rule Kind→ dog.

If we assign probabilities to each of the rules in this concept
grammar and assume that the rules are applied independently
of one another, then the resulting PCFG will determine the
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Figure 2: (a) Results of word learning experiment and (b) results of modeling.

C

X

P

(a) (b) Concept → Kind
→ Property
→ Kind ∧ Property

Kind → animal
→ dog
→ dachshund
→ ·· ·
→ vehicle
→ car
→ taxi

Property → spotted
→ striped

Figure 3: (a) Grammatical categories P determine the param-
eters for our prior over concepts C. Specific objects X are
sampled from the set of items that exemplify a concept. (b) A
probabilistic context-free grammar for concepts. Probabili-
ties for each expansion rule are discussed in the Concept Prior
section.

probabilities of all the concepts in our experiment. The prob-
ability of each concept would be the product of the probabil-
ities of the rules applied to form it,

P(C) = ∏
R∈{rules to form C}

P(R) (3)

The differences in the types of concepts denoted by nouns
and adjectives are represented in our model through differ-
ences in the probability distributions over the set of rules that
expand Concept to particular dimensions. We assume chil-
dren are computing this prior distribution separately for each
part of speech, keeping track of the number of nouns or ad-
jectives whose meanings denote a kind, a property, or both a
kind and a property. They can estimate the rule probabilities
from these counts using a Dirichlet-multinomial model. Un-
der this model, the prior over dimension expansions based on

Kind Property Both
Noun 335 4 24

Adjective 3 61 2

Table 3: Average counts (rounded) from 22 participants’ rat-
ings of nouns and adjectives as descriptions of kinds, proper-
ties, or both.

the counts pdi,P of the productions seen by the learner of a
particular dimension di for that grammatical category P is

P(di|P) =
pdi,P +1

∑
d j∈{all dims}

pd j ,P +3
(4)

We approximated these production counts from a Mechan-
ical Turk survey where for each word in a vocabulary list of
429 words (363 nouns and 66 adjectives) that 30-month-old
children likely know (Dale & Fenson, 1996), we asked adult
English speaking participants to judge whether the word was
best described as a kind, a property, or both. Different but
often overlapping sets of 10 people were asked to respond to
each word, and so we had a total of 22 participants in our
study. Two participants’ judgments were excluded due to an
extraordinarily high proportion of Both responses (proportion
Both > 0.36, over two standard deviations outside the mean
proportion of Both responses). While the children in our ex-
periment (3-5 year-olds) were much older than 30 months,
we believe that this vocabulary list is appropriate for our pur-
poses, since the children in our experiments are almost cer-
tainly familiar with these words and differ only in additional
words they might know. We assume that the distribution of
noun and adjective dimensions in this set of words is repre-
sentative of that of the larger and more varied set of words that
our participants are familiar with. Table 3 shows the average
counts of each description for each grammatical category.

For kinds, we assume a structure like Xu and Tenenbaum
(2007) where the probability of a concept depends on its dis-
tinctiveness. For these measures we use a hierarchical cluster
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Figure 4: Hierarchical clustering of experimental item simi-
larity.

tree, shown in Figure 4. To make this tree, we conducted
a similarity judgment study, similar to Xu and Tenenbaum’s
using the items that the snail had labeled in our experiment.
Our participants, 26 students from the University of Mary-
land who received course credit for their participation, rated
the similarity of all possible pairs of the 36 pictures on a scale
from 1 (not similar at all) to 9 (very similar).

To incorporate cluster distinctiveness, Xu and Tenenbaum
measure the branch length (which represents the Euclidean
distance) between the concept node and its parent node. By
this measure, the further a particular node is from its parent,
the more distinct it is considered to be. Where K is the set
of all Kind concepts, the probability of a concept Ci given
that it is defined over the Kind dimension is the branch length
normed over all Kind concepts,

P(Ci|Kind) =
height(parent(Ci))−height(Ci)

∑
C j∈K

height(parent(C j))−height(C j)
(5)

For properties, we assume that in our experiment they are
chosen from a multinomial distribution with each property
equally likely to be selected. Since there were only two very
salient properties in our experiment, we give each property
the probability of 1

2 ,

P(C|Property) =
1
2

(6)

Example Derivation of a Concept Prior Under this model
of the concept prior, the prior probability that the noun blick
refers to the concept Dachshund will have the following
derivation. First, we have production counts for nouns that
describe kinds pKind,Noun that were found in our Mechanical
Turk study (we found that on average 335 out of 363 nouns
were categorized as kinds). From this production count and
the total production counts for nouns, we derive the probabil-
ity of expanding Concept to Kind.

P(Kind|Noun) =
pKind,Noun +1

∑
d∈{Kind, Property, Both}

pd,Noun +3

=
335+1
363+3

= 0.92

(7)

Then we find the probability of the concept being
Dachshund given that it is defined only along the Kind di-
mension, using the height of the branch Dachshund and
its immediate parent dog. These heights were 0.1259 and
0.3115, respectively.

P(dachshund|Kind) =
height(parent(dog))−height(dog)

∑
C∈K

height(parent(C)−height(C)

=
0.1856
1.7576

= 0.1056

(8)

Finally, to compute the prior probability of the concept
Dachshund given that it is a noun, we multiply the proba-
bility of expanding Concept to Kind by the probability of the
concept being Dachshund.

P(Dachshund|Noun) = P(Kind|Noun) ·P(Dachshund|Kind)

= 0.92 ·0.1056 = 0.09715
(9)

Concept Likelihood: P(X |C)

We assume that, given a set of objects that are examples of a
concept C, each object is equally likely to be chosen by the
snail.1 Therefore, the probability of the data given a concept
is proportional to the size of the set of things matching that
concept. For example, for the concept dog, the probability
of picking a particular dog, Fido, is inversely proportional to
the number of dogs there are in the scene. So if n objects
are chosen by the snail as examples of a concept C, and these
objects are plausible examples of the concept,

P(X |C) =

(
1
|C|

)n

(10)

Simulations
For each experimental trial we computed the posterior proba-
bility over concepts using both the noun and adjective priors.
We assumed that on each trial children were sampling a con-
cept from the posterior distribution over concepts given the

1Xu and Tenenbaum use a different estimate of category sizes for
kinds, which is based on the same heirarchy as their concept prior.
We found little difference when we compared the our own likelihood
distributions with those computed by Xu and Tenenbaum’s methods
on our experimental items. A very similar ordering applied over
concepts, and each item was on the same order of magnitude for
both measures of the likelihood.



grammatical category of the novel word. Thus the posterior
probability over concepts as generated by the model should
give us the frequency with which a child should show any
given behavior. In order to be able to compare the model to
the experimental data, we sorted the concepts into the same
categories that we used for analyzing the experimental data:
subordinate, basic, superordinate and neutral. The candidate
concepts for striped Dachshund, along with the levels they
mapped on to, are found in Table 2 (in the Results section of
the Word Learning Experiment, above).

The results of our model are shown in Figure 2(b). Overall
the model captures the qualitative shift seen between noun
and adjective generalization in the experimental results, with
a much higher posterior probability for the subordinate level
given a noun, and a shift of a large part of the probability to
the neutral level given an adjective.

Discussion
In this paper we have shown that while children tend to map
novel nouns onto a kind hierarchy, they prefer to map novel
adjectives onto a property hierarchy. This behavior is pre-
dicted if children use their knowledge of grammatical cate-
gories and the distributions of different concept types within
these categories to constrain the space of hypothesized mean-
ings when learning novel words. A Bayesian model trained
on the distribution of concepts across grammatical categories
in the English lexicon predicts a qualitatively similar gener-
alization pattern. Together these results suggest that not only
are children able to use what they know about grammatical
categories when inferring the meanings of novel words, the
way they do this is predicted by the distributions of concept
types across grammatical categories in English. Moreover,
the constraints imposed on inference by grammatical cate-
gory are powerful enough to overcome much of the effect of
the size principle on the likelihood.

These findings have several implications for language ac-
quisition and models of language acquisition. First, while the
‘size principle’ has received considerable attention as a so-
lution to the word learning problem, this work demonstrates
that the beliefs children bring to the word learning task also
play a key role in word learning. Second, while a model
based on priors derived from the lexicon captured the shift we
see between noun adjective generalizations, it does not per-
fectly predict children’s behavior. Future research will probe
whether this can be explained by making a closer approxima-
tion of the child’s lexicon (as our Mechanical Turk task may
have overestimated the number of both concepts), or whether
it stems from the learner’s tendency to amplify biases that ex-
ist in the input (e.g. Hudson-Kam & Newport, 2009). Third,
we can ask how children behave with respect to concept hi-
erarchies in languages that collapse the distinction between
nouns and adjectives (e.g., Georgian). Does the size prin-
ciple play a role only to the extent that nouns are likely to
draw from the kind hierarchy? Next, as these beliefs are at-
tributable to the distribution of concept types across grammat-

ical categories in the children’s own lexicons, there are obvi-
ous extensions of this work to modeling the infant word learn-
ing by weakening (or making nonexistent or unavailable) the
link between between grammatical category and concept hi-
erarchy. There are several findings that would be interesting
to model this way, including (1) that 11-month-olds make the
same generalizations for words presented as nouns and adjec-
tives and these generalizations are neutral with respect to kind
vs. property meanings (Waxman & Booth, 2003), or (2) that
the noun-kind link is established earlier than the adj-property
link (Booth & Waxman, 2003, 2009). Finally, we can ask
to what degree a group of exemplars’ distribution on a given
concept hierarchy is used in acquiring linguistic phenomena
that extend beyond word meanings (e.g., word classes).
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