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Large language models show remarkable capacities, but it is unclear what abstractions 
support their behavior. Methods from developmental psychology can help researchers 
understand the representations used by these models, complementing standard 
computational approaches—and perhaps leading to insights about the nature of mind.  
 
Imagine first contact with an alien intelligence. A scientist might ask, do the aliens have the 
same concepts as humans? Do they understand other minds? Can they reason about cause 
and effect? Such scenarios are common in science fiction—and in the past few years, in 
interactions with large language models (LLMs). Yet developmental psychologists have been 
asking such questions for years about another kind of alien intelligence: human children. 
Methods from this research can help researchers probe the capacities of LLMs. 
 
Language modeling has been used for decades as a technique for predicting the next word in a 
sequence. Such models were widely used as simple baselines for human sequence learning, 
but it was taken for granted that they would not display other abilities. Yet in the past few years, 
predictive models trained on massive datasets have begun to show a host of interesting 
behaviors in complex task contexts [1]. LLMs make predictions that are grammatical and 
semantically coherent, and they produce satisfactory—and sometimes even delightful—results 
when asked, for example, to make analogies, summarize text, or compose poetry. 
 
These results have led both lay users and researchers to speculate about what underlies LLMs’ 
seemingly intelligent behaviors – whether they possess human-like cognitive abstractions or 
whether these behaviors result from simple word prediction (albeit at massive scale). For 
example, LLMs can correctly answer questions about the beliefs of a character in a story, even 
when those beliefs are false. This finding could be taken as evidence that LLMs have acquired 
the set of abstractions about human internal states that together are referred to as “theory of 
mind”. Alternatively, it could be that LLMs are showing highly fluent responses to superficial 
linguistic cues [2].  
 
Such debates are consequential because abstract representations, which enable flexible and 
adaptive behavior across a wide range of contexts, are a key feature of the cognition of mature 
humans. Their presence in an LLM provides a proof of concept that such abstractions can be 
learned from data rather than being innately specified [3]. Yet creating behavioral tests that 
conclusively demonstrate the presence of a particular representation is challenging, whether the 
test is being given to an LLM or to a child. The trouble is that many test questions can be 
answered via multiple strategies. 
 



 

 

In these cases, comparative and developmental psychologists are generally guided by a 
principle known as Morgan's Canon [4]: don't jump to the conclusion that a system has a high-
level abstraction when a lower-level capacity would suffice to explain its behavior. Yet beyond 
this general principle, developmental researchers have converged around a set of empirical 
strategies for making claims about the presence of abstract representations. Many of these can 
be applied directly to LLMs, although LLMs also allow approaches that are impossible (or 
unethical) to implement with human learners.  
 
The developmentalist’s toolkit 
 
First and foremost, generalization to novel situations is critical for making claims about 
abstraction. If a child has seen a particular stimulus item before, they might produce a learned 
response reflecting prior experience, rather than reasoning based on an underlying abstract 
representation. Consequently, many developmental studies rely on teaching novel words like 
“dax” or showing children novel objects like “blicket detectors.” Using words or objects that 
children could not have encountered outside the laboratory removes the possibility that they are 
relying on a previously learned stimulus-response mapping to complete the task. Because the 
largest LLMs have been trained on hundreds or thousands of scientific papers containing 
examples of evaluations in both machine learning and psychology, standard experimental 
prompts are probably useless in evaluating such models. Model responses could reflect 
experience with the stimuli—for example, providing sample answers from a research paper—
rather than generalization. When designing a new study for preschoolers, researchers often 
break out the markers and glue to create novel stimuli; scientists will need to be equally creative 
in designing new tasks for LLM evaluation. 
 
Developmentalists also often avoid using rich, naturalistic stimuli. This practice might seem 
surprising: stimuli that resemble infants’ day-to-day experience should be easier for them to 
process than more schematic stimuli. However, for babies—and for LLMs—the richer a stimulus 
is, the more routes there are to a lower-level solution [5]. For example, to test whether babies 
know that greater effort indicates a more valuable goal, researchers chose to show simple 
geometric figures “jumping” over barriers of different heights. Creating videos with human actors 
would have been more ecologically valid, but it would also have confounded the effort involved 
in an action with other visual and social cues such as facial expression and body posture [6]. 
Simplified stimuli are a challenge for LLMs and other models because they are typically outside 
of the model’s training distribution—but for that reason they provide a strong test of the model’s 
underlying abstractions.  
 
Even for highly simplified stimuli, some superficial stimulus features are often still confounded 
with the manipulation of interest. Thus, the trick of a truly clever experimental design is to hold 
every aspect of the probe stimulus constant across conditions, while making a single key 
modification that changes the observer’s interpretation. Classic language learning experiments 
demonstrate this design by using the same probe stimulus (for example, the novel word ‘golatu’) 
but creating learning environments in which the statistics of its use differ (for example, one 
where the syllables ‘go’, ‘la’, and ‘bu’ follow each other consistently vs. one where they are 



 

 

heard together only via the conjunction of two other words, ‘pigola’ and ‘tudaro’) [7]. This kind of 
design ensures that prior associations do not bias the result; without a closely matched control 
condition, an incidental preference for the word ‘golatu’ might lead to the appearance of success 
even in the absence of learning. In the case of LLMs, such matched controls are especially 
critical because models encode a massive set of prior associations that could bias their 
responses.  
 
Finally, providing evidence for a cognitive abstraction typically requires converging evidence 
across multiple experimental tasks and across development. For example, children typically 
learn to say number words by age three. Yet when asked to give an experimenter a quantity like 
seven, even children who can count to ten will often provide a large uncounted pile of objects. 
And even after they can correctly give seven objects, they might not always understand that 
seven is smaller than eight. Each of these tasks (reciting the count list, enumerating a set, and 
comparing magnitudes) probes a different aspect of a child’s number concepts, providing clues 
about the underlying representation and allowing for developmental dissociations [8]. Thus, like 
children, LLMs need to be tested on multiple tasks and measures of the same conceptual 
abstraction. Ideally, these tests should be conducted multiple times over the course of model 
training to identify how performance changes as the model acquires more experience. 
 
The computational scientist’s toolkit 
 
Because LLMs are computational artifacts, scientists can also investigate their capacities using 
tools that are typically not available to psychologists. These methods complement carefully 
designed behavioral tasks, allowing insight into the mechanisms by which LLMs succeed.  
 
First, researchers can manipulate LLM training data to investigate what inputs lead to the 
emergence of a target behavior, a practice known as “controlled rearing” in the animal cognition 
literature. As an example, experience with mental state language (verbs like ‘think’ and ‘believe’) 
likely plays a role in the emergence of theory of mind [9], which raises the question of whether 
removing such input from training corpora would change model behavior.  
 
Second, the internal representations used by LLMs can be directly accessed, unlike in children 
where existing neuroscience methods provide only noisy and indirect measures of brain states. 
Thus, researchers can probe and intervene on the model’s internal representations to measure 
how specific behaviors relate to model states. Although LLMs are sometimes referred to as 
‘black boxes,’ decoding and intervention methods for neural networks are advancing rapidly. 
One inspiring line of work used causal interventions on models’ internal representations—
literally changing the values of “neurons” in the neural network—to establish equivalence 
between the neural network’s representations and a higher-level symbolic representation, 
providing insight into exactly what representations supported the model’s behavior [10].  
 
However, both controlled rearing and probing methods require full access to LLM training and 
parameters. This limitation highlights an important issue for the research community: the most 



 

 

sophisticated and intriguing models from a cognitive science perspective—currently GPT-type 
models [1] —are often accessible only via limited commercial interfaces. 
 
Synthesizing insights from human and machine learning 

 
Careful investigation of LLMs might reveal more about their capacities, but it might also lead to 
insights about the nature of learning more broadly. As strong statistical learners, LLMs provide a 
valuable proof of concept of how abstractions can—or cannot—emerge purely from data-driven 
learning. Current LLM architectures start to show the ability to perform arbitrary new tasks at the 
level of hundreds of billions of words of training data, whereas humans need many orders of 
magnitude fewer. Investigating this gap in efficiency might help scientists triangulate what 
makes humans so efficient. The more we synchronize progress in artificial intelligence with what 
we know about human development, the more we will learn about each. 
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