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Bridging the data gap
between children and
large language models
Michael C. Frank ,1,*
Large language models (LLMs)
show intriguing emergent behav-
iors, yet they receive around four
or five orders of magnitude more
language data than human chil-
dren. What accounts for this vast
difference in sample efficiency?
Candidate explanations include
children’s pre-existing conceptual
knowledge, their use of multimodal
grounding, and the interactive, so-
cial nature of their input.
How much learning is needed for the
emergence of intelligence? Some rule-
based systems were designed to act intel-
ligently in the absence of any adjustments
based on training data. By contrast, mod-
ern LLMs exemplify the opposite strategy:
they are fed with massive, internet-scale
text datasets, and their performance typi-
cally grows in proportion to the available
data and computation [1]. The resulting
models are surprisingly competent at a
wide range of tasks, although they still
show systematic flaws in reasoning and
information retrieval.

For many observers, the most interesting
feature of LLMs is their ability to reason
flexibly about new tasks based on a verbal
query, synthesizing information in a text
‘prompt’ to generate, for example, an ex-
planation, a poem, a piece of computer
code, or a tabular dataset. This behavior,
sometimes termed ‘few shot’ or ‘in-con-
text learning’, appears to emerge only at
very large scales of training data.
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Yet another type of intelligence performs in-
context learning with far less data than
even the smallest of LLMs: humans. From
an early age, children can reason flexibly
about novel tasks, and by middle child-
hood they can quickly master new
games, devices, and environments. What
can we learn about human and machine
intelligence by comparing their data
efficiency?

Measuring the gap
The scale of training data for current LLMs
is unprecedented. Training datasets are
typically measured in tokens, a metric
that includes words but also punctuation
and morphological subparts of words.
GPT-3 was trained on 5 x 1011 tokens [2]
and Chinchilla was trained on 1012 tokens
[1]. Many companies keep training-set
sizes secret, but a recent leak suggested
that one industry model was trained on
3.6 x 1012 tokens. How do these numbers
compare with human language experi-
ence? Comprehensive word counts are
difficult to collect, but sampling and ex-
trapolation can provide reasonable upper
and lower bounds for language input
(Figure 1).

A soft upper bound on a child’s linguistic
input – language produced by the people
around them – is around 106 words per
month [3,4]. For a 5-year-old, that would
be 6 x 107 words; for a 20-year-old it
would be 2 x 108 words. We also might
assume that a 20-year-old has been read-
ing for 10–15 years, and for much of this
time they are reading two or three books
(105 words each) per week for an extra
~107 words per year. Our rough upper
bound for a literate 20-year-old could be
as high as 4 x 108 words (or even higher
if they read constantly).

By contrast, children growing up in envi-
ronments with limited language are esti-
mated to experience around 1 x 105

words per month, up to an order of magni-
tude fewer than children in richer linguistic
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environments [5]. Without the boost from
literacy, a lower bound on language expe-
rience would be around 6 x 106 words by
the age of 5 and 3 x 107 by age 20.

Importantly, even a child receiving much
less language will still be able to reason
about novel tasks: for example, learning
the rules of a new board game at school.
By contrast, language models trained on
human-like amounts of data can at best
provide incoherent ‘autocomplete’-like
behaviors, with no in-context learning.
Thus, there is a difference of up to five or-
ders of magnitude in language input be-
tween LLMs and human children, and at
least three between LLMs and even the
most literate adults. What factors explain
the far greater efficiency of human
learners?

Minding the gap
Let us consider three potential – not mutu-
ally exclusive – explanations for human
sample efficiency.

The first explanation is that an immense
evolutionary history has shaped human
minds and brains prior to their initial
contacts with data. Some researchers
posit that infants have innately specified
‘core knowledge’ of objects, agents, and
events, comprising the foundations of a
conceptual model of the world [6]. Other
developmental theories posit architectural
constraints on learning that lead to the
quick emergence of fundamental knowl-
edge structures [7]. In either case, initial
constraints – perhaps expressed via spe-
cific patterns of brain connectivity – could
provide a major speedup in how much
experience an agent needs to bootstrap
further reasoning.

The second explanation is the richness of
the grounded, sensory experience avail-
able to human learners. Children’s experi-
ences contain a profusion of auditory,
visual, haptic, gustatory, olfactory, and
somatosensory data. In constructivist
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Figure 1. Graph of language input to humans versus large language models (LLMs). A gap of around
three to five orders of magnitude exists between estimated human language inputs (red and blue lines) and the
inputs to LLMs (dashed lines).
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proposals, these data allow children to
create and refine theoretical models of
the world [8]. Multimodal data also
‘ground’ language, providing concrete ex-
tensional meanings for many words. In
contrast, LLMs must induce world knowl-
edge from a single stream of information
that primarily contains language – some-
times alongside a complex mélange of
computer code and other types of infor-
mation – rather than connecting linguistic
information to external experiences.

The final potential explanation is the type of
language input that humans receive,
which for children is often generated
through structured social interactions in
which the child plays a part [9]. Some of
this input is simplified by adults, with lim-
ited vocabulary and lower sentence com-
plexity. Such interactional input differs
dramatically from the training data pro-
vided to LLMs, which make predictions
about vast amounts of text from
decontextualized sources and with no op-
portunity to interact or intervene. One ob-
servation supporting this hypothesis is
that newer LLMs are trained via reinforce-
ment learning using human feedback; it is
likely that this ‘interaction training’ is re-
sponsible for the success of products like
ChatGPT in responding appropriately in
conversation.

Crossing the gap
Beyond these three substantive factors,
we should consider the possibility that
much of the apparent difference between
LLMs and human learners is due to differ-
ences in evaluation. LLMs are often evalu-
ated on complex reasoning tasks, while
tasks for children are typically simple and
highly scaffolded. Understanding the gap
between LLMs and children will require
synchronized evaluation (as well as unam-
biguous positive evidence that models are
truly passing the evaluations, rather than
memorizing test data). Tasks like MEWL,
Trends in
a battery of word learning tasks [10], or
the Baby Intuitions Benchmark, a set of so-
cial cognition tasks [11], attempt to create
apples-to-apples comparisons. However,
most developmental experiments are not
conducted in a unimodal, language-only
format, so comparison between children
and LLMs can be challenging.

Even when we have evaluated models and
humans more comparably, it is likely that a
gap in input will persist. After all, human
adults – who pass most LLM evaluations
[2] – still have not experienced anywhere
near the amount of language that the
models have. Testing hypotheses about
this gap will require more work on sample
efficiency, which has not been a priority
given that the artificial intelligence commu-
nity has embraced scale as the route to
better performance [1].

Still, several recent efforts are promising. The
BabyLM challenge (https://babylm.github.
io) asks entrants to train models on curated
107- and 108-word datasets, providing a
framework for comparing different LLM ar-
chitectures on human-scale datasets. Hold-
ing data constant is an effective research
design for understanding how learning ar-
chitectures affect outcomes, though one
worry is that without high-quality training
data – for example, coherent, interactive dia-
logue about the here-and-now – even the
best architecture might fail.

Unfortunately, our best resource for tran-
scripts of grounded, interactive language
use, the Child Language Data Exchange
(CHILDES), is too small to train an LLM. Ex-
tant multimodal datasets are even smaller,
and still only include visual and linguistic
data. One creative workaround is to gener-
ate data automatically: the TinyStories
corpus is an LLM-generated corpus of
child-appropriate stories with a restricted vo-
cabulary [12], and small-scale LLMs trained
on this corpus show surprising competence.
Applying this approach to the generation of
multimodal data could be a promising
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direction for creating more developmentally
appropriate training corpora.

As LLMs grow ever larger, there is a real risk
that developers will run out of high-quality
training data. An alternative path is to figure
out how to make better use of the available
data, increasing efficiency by pursuing learn-
ing strategies that are better aligned with
human learning. Doing so will require a bet-
ter understanding of the gaps between
human learners and current models, how-
ever. Bridging these gaps may prove re-
warding for our understanding of human as
well as machine intelligence.
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