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Abstract

How do children acquire the sounds, words, and structures of their native language? A

wealth of recent evidence suggests that probabilistic learning mechanisms play a role in

language acquisition. Nevertheless, the structure of these mechanisms is controversial and

it is still unknown how broadly they apply to the tasks faced by language learners.

Computational models can serve as formal theories of probabilistic learning by

instantiating proposals about the learning mechanisms available in early language

acquisition. However, fulfilling this promise requires that models be evaluated on two

grounds: their sufficiency—whether they are able to learn aspects of language given

appropriate input—and their fidelity—whether they fit the patterns of success and failure

shown by human learners. I review experimental and computational evidence for the

application of probabilistic learning across a range of acquisition tasks and argue that

models of probabilistic learning succeed when they use expressive representations to

capture complex regularities in the input and when they implement a parsimony bias.
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Introduction

How do children learn their native language? Over a handful of years, infants who

know almost nothing about any language become children who can express their thoughts

fluently in one language in particular. Though the broad developmental course of

language acquisition is well-established, there is virtually no consensus on the

psychological mechanisms by which the different aspects of language are acquired. Are

substantial aspects of linguistic structure innately given (Lenneberg, 1967; Chomsky,

1981; Pinker, 1995)? Or are infants endowed only with more general probabilistic learning

mechanisms that can be applied to a broad class of tasks (Rumelhart, McClelland, & the

PDP Research Group, 1986; Elman et al., 1996)? Since the birth of the field of language

acquisition, the use of formal or computational tools to give a description of the

machinery necessary to acquire a language has been recognized as an important strategy

for answering these questions (Chomsky, 1975; Pinker, 1979).

In recent years, exciting empirical results on infant learning abilities (Saffran, Aslin,

& Newport, 1996; Marcus, Vijayan, Bandi Rao, & Vishton, 1999; Gómez, 2002; Gerken,

Wilson, & Lewis, 2005) combined with promising computational results (Vallabha,

McClelland, Pons, Werker, & Amano, 2007; Goldwater, Griffiths, & Johnson, 2009;

Goldsmith, 2001; Albright & Hayes, 2003; Perfors, Tenenbaum, & Regier, 2006; Alishahi

& Stevenson, 2008; Bannard, Lieven, & Tomasello, 2009) have together suggested that

probabilistic learning is important for language acquisition.

I have chosen the term probabilistic learning to describe a phenomenon that is

observed across a very broad range of experiments: that learners are able to acquire

information even from observations that are individually ambiguous between a number of

different hypotheses. I use this term instead of the more common term statistical learning

because of the association that statistical learning has with a particular set of paradigms

(Saffran, Aslin, & Newport, 1996; Saffran, Johnson, Aslin, & Newport, 1999; Fiser &
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Aslin, 2002), and the contrast that has been made by some authors between statistical

learning and other kinds of learning (Marcus et al., 1999; Pena, Bonatti, Nespor, &

Mehler, 2002; Endress & Bonatti, 2007). In addition, a recent review gives the definition

that statistical learning “involves no overt reinforcement or direct feedback but rather

operates by mere exposure or observation” (Aslin & Newport, 2008). Although the vast

majority of the computational theories reviewed here are unsupervised—they receive no

feedback or reinforcement—probabilistic learning encompasses a broader range of possible

learning mechanisms.

It is now widely accepted that general probabilistic learning mechanisms plays a

large role in tasks like identifying the phonetic units of a language or identifying words

from fluent speech (e.g. Kuhl, 2000, 2004; Saffran, Aslin, & Newport, 1996), but the

nature and number of these mechanisms and their application to more complex aspects of

language learning is still controversial. Although probabilistic learning mechanisms are

acknowledged to play a part in word learning, they are often thought of as only one “cue”

to identifying word meanings (Waxman & Gelman, 2009). In the acquisition of syntax,

the ability of probabilistic mechanisms to identify language-specific rules has been even

more controversial (Pinker, 1979; Wexler & Culicover, 1983; Pearl & Lidz, 2009). Thus,

despite the progress that has been made, many questions regarding the role of

probabilistic learning in language acquisition are still unanswered.

Creating computational models of individual tasks in acquisition—from sound

category learning to syntactic rule learning—allows researchers to instantiate proposals

about how a particular learning mechanism might perform in a particular domain. This

strategy has led to a profusion of models in recent years, but it is not always clear how

they should be compared or what generalizations emerge across different areas of

acquisition. Thus, this article is a review of progress in modeling different areas of

language acquisition. The review has three goals: (a) to describe criteria for evaluating
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models on their adequacy as theories of language acquisition, (b) to survey computational

models of early language acquisition across the full range of acquisition challenges and

evaluate them on these criteria, and (c) to describe similarities between the most

successful models across a range of tasks.

Summarizing the conclusions of the review, I argue that models should be evaluated

on two criteria: sufficiency (learning the same thing as human learners with the same

amount of input) and fidelity (making the same mistakes along the way). Application of

these criteria to models of different acquisition tasks suggests that a tremendous amount

of progress has been made in modeling early acquisition—sound category learning, word

segmentation, and word learning. An important goal is consolidating this progress:

systematic evaluations of existing models, extension of these models to incorporate other

information sources, and testing of the models on novel predictions. In contrast, models of

more complex acquisition tasks—word class learning, morphology learning, and syntactic

rule learning—have further to go. Although there have been successes in these domains,

there has been overall less convergence on assumptions that are shared across successful

models.

As Goldsmith (2010) notes, if you dig deep enough into any task in acquisition, it

will become clear that in order to model that task effectively, a model of every other task

is necessary. While most of the models we review are models of a single domain, the

review of different tasks concludes with a section on synergies between acquisition tasks

(M. Johnson, 2008b). I finish by describing two broad generalizations that can be drawn

from the models that succeed across all classes of tasks: first, that representations within

these models should be efficient compressions of input data at the desired level of analysis,

and second, that models should include some bias towards parsimony in the

representations they learn.
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Criteria for assessing proposed learning mechanisms

How can we assess whether a hypothesized learning mechanism (LM) truly plays a

role for children in solving a particular challenge of language acquisition? Pinker (1979)

proposed six conditions:

1. Learnability: LM must be able to acquire a language in the limit

2. Equipotentiality: LM must be able to learn any human language

3. Time: LM must be able to learn within the same amount of time as the child

4. Input: LM must be able to learn given the same amount of input as the child

5. Developmental: LM must make predictions about the intermediate stages of

learning, and

6. Cognitive: LM must be consistent with what is known about the cognitive

abilities of the child.

Although these conditions provide a detailed specification for evaluating a potential

LM, several are difficult to evaluate. In particular, the time and cognitive conditions

present a clear challenge for evaluation. How should the amount of time taken by a child

to learn their native language limit a computer model of this process? The mapping

between developmental time and computation cycles in a serial, digital computer is

unknown (and the question in fact may not be well-formed). The number of computation

cycles used by a computer program is a product of many conditions, including the

operation set of the processor it is run on, the compiler or interpreter used to run it, and

low-level algorithmic decisions in the code. None of these should be germane to the

decision about whether it provides useful insight into language acquisition.

Likewise, although the cognitive condition appears compelling, and although we

have an intuitive grasp of what can be consciously computed or remembered, we know

very little about the true computational abilities of human learners. In the study of

memory, it is continually surprising both how much we can (Brady, Konkle, Alvarez, &
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Oliva, 2008) and cannot (Cowan, 2001) remember. With respect to computations, the

computations hypothesized for perception (Marr & Poggio, 1979; Pouget, Dayan, &

Zemel, 2000; Ma, Beck, Latham, & Pouget, 2006) or motor control (Koerding & Wolpert,

2004; Todorov, 2009) are often far more complex than those hypothesized to be difficult or

impossible for language learners (Yang, 2004). Applied indiscriminately, the cognitive

condition uses researchers’ intuitions to limit the kinds of models that we consider. If

those intuitions are incorrect, we may fail to consider appropriate mechanisms.

There has been recent interest in the distinction between incremental and batch

models of learning. Batch models must have all of their input data present in order to

perform their learning algorithm, while incremental models process their input example by

example. Incremental learning is often argued to instantiate some version of Pinker’s

cognitive condition (Fazly, Alishahi, & Stevenson, 2008; McMurray, Aslin, & Toscano,

2009; McMurray, Horst, & Samuelson, under review). Incremental models thus describe a

situation where memory for input data is sharply limited. Surely in the limit, human

learners do not remember all the data they are exposed to, but should incremental models

of human learning be preferred in every situation? Models that are too profligate with

memory resources seem intuitively unappealing, but the fully incremental alternative is

not always preferable.

Fully incremental learning prevents backtracking or re-evaluation of hypotheses in

light of earlier data. This issue reappears throughout work on inference in computer

science. For example, beam search is a standard search method for pruning

low-probability search paths to decrease memory requirements; but the tradeoff involved

in beam search is that of accidentally pruning a correct answer that seems unlikely at

some time during search. The same issue arises in Bayesian modeling. The particle filter

is a sequential Monte-Carlo method for finding the posterior distribution in complex

statistical models (Doucet, Godsill, & Andrieu, 2000). Particle filters are an incremental
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inference method, with the number of particles represented during inference corresponding

to the number of hypotheses that are maintained during inference. With a very small

number of particles, the memory demands of this inference method are limited, but like

beam search schemes, the particle filter is limited in its ability to store initially

low-probability hypotheses that turn out to be correct.

The general problem of a learning system with a short memory can be thought of as

a problem with “Sherlock Holmes”-type inferences. As Holmes says, “when all other

contingencies fail, whatever remains, however improbable, must be the truth,” (Doyle,

1930). This kind of inference is impossible when the improbable possibilities have been

forgotten (“pruned,” in the language of search algorithms). From our current state of

knowledge about the mind and brain, it seems potentially reasonable to assume that

incremental learning is most useful for continuous, perceptual learning problems in which

these Sherlock Holmes inferences rarely arise, while maintaining more of the input

data—at least the most useful or perplexing examples—during learning is most useful in

higher-level, more cognitive tasks. Nevertheless, this is an argument from intuition, not

from empirical facts, and could be false or misleading. Because of these considerations I

am unsure of the utility of the Cognitive and Time conditions.

The other four of Pinker’s conditions on learning can be summarized easily. An LM

should be able (a) to succeed in learning the appropriate parts of (b) any language (c)

given the amount of input that children receive, and (d) it should make the same mistakes

along the way that children make. These conditions can be consolidated into two criteria

(Frank, Goldwater, Griffiths, & Tenenbaum, 2010): sufficiency—learning the right thing

from the data—and fidelity—making the same mistakes along the way. These conditions

are also easily mapped onto empirical tests of a proposed LM that is instantiated in a

computational model. First, the model should converge to the right answer (whether it is

an appropriate set of phonetic categories, a correct set of word-object mappings, or a set
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of interpretations for sentences) given an appropriate sample of data—ideally from any

one of a number of languages. Second, the model should fit human performance across a

wide variety of experimental conditions, reproducing the different patterns of performance

shown by children at different ages when it is given corresponding amounts of input data.1

In the review that follows, I use the conditions of sufficiency and fidelity as a guide

in our evaluation of models and how they succeed and fail. However, there are two caveats

to even these rough conditions for evaluation. First, models are most often proposed to

capture a single learning task that children face, rather than to learn the entirety of a

language. This decomposition of the learning task can be a useful tool—though it runs

the risk of failing to take advantage of possible synergies between tasks (I return to this

issue briefly at the end of the review)—but it can create situations where evaluating the

output of a model is difficult. When a model solves a task that is intermediate along the

way to a larger goal it may be difficult to evaluate a model on either of the proposed

criteria. How are researchers to know what kind of performance would either be sufficient

in the limit or faithful to human performance? The growing literature on artificial

language learning tasks provides one partial solution to this issue, allowing models to be

tested on their fit to what learners (often—somewhat problematically—adults, but

sometimes children) can acquire from miniature languages. Thus, I include in this review

a brief discussion of relevant artificial language results where appropriate.

Second, a model does not need to supersede previous work on these metrics to be

important. In the words of the statistician George Box, “all models are wrong, but some

are useful” (Box & Draper, 1987). The criteria proposed here should not be taken as a

1These conditions are similar but not identical to the conditions of descriptive adequacy and explanatory

adequacy proposed by Chomsky (1965); for example, explanatory adequacy was not necessarily intended

to encompass the pattern of successes and failures during learning. To minimize confusion, I have avoided

using these terms.
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suggestion that the only direction for new work should be in the positivistic improvement

of performance or empirical coverage. Some models are good beginnings, providing

framework ideas that can later be expanded dramatically; others are good demonstrations

of principles that are simple enough to understand.

Computational models of language acquisition

In the following sections, I outline how the approach described above can be applied

to models across a variety of domains of language acquisition and summarize the level of

progress that has been achieved. A full review of progress in all areas of modeling

language acquisition would be prohibitively long, so this review is necessarily somewhat

selective. Wherever possible I have attempted to focus on those proposals that show

particular promise in learning from corpus data or matching empirical work. I have

divided the broader task of language acquisition into a list of sub-tasks: sound category

learning, word segmentation, word learning, word-class learning, morphology learning, and

syntactic rule learning. This classification is both ad-hoc—it reflects divisions in

categories of models rather than being based on either clear psychological claims of

modularity or the relative separability of tasks—and incomplete—it leaves out important

areas such as prosody, pragmatics, and formal semantics because of the paucity of models

in these areas. Nevertheless, it captures the majority of the active areas of modeling work.

Sound category learning

Learning the sound categories of their native language is the first step that children

take towards acquiring their native language. Although human infants (Eimas, Siqueland,

Jusczyk, & Vigorito, 1971) and other mammals (Kuhl & Miller, 1975) are sensitive to some

of the consonant distinctions across the world’s languages due to basic properties of their

auditory system, as infants gain exposure to their native language, a variety of work has

documented how they acquire language-specific vowel (Kuhl, Williams, Lacerda, Stevens,
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& Lindbloom, 1992) and consonant (Werker & Tees, 1984) distinctions that other animals

do not learn.2 In addition, longitudinal studies have suggested that this learning process

lays the groundwork for future language learning achievement (Tsao, Liu, & Kuhl, 2004).

Computational systems for recognizing sound categories in human speech have a

long history and have grown quite sophisticated (Flanagan, 1972; Rabiner & Juang, 1993),

but the canonical approach to speech recognition involves using supervised input—input

that is tagged with category labels. In contrast, because learners do not know ahead of

time which contrasts are meaningful, models of the acquisition of sound categories must

be unsupervised : they must derive the categories from the data without being given labels

by a designer. Hence, designers of computational models for sound categorization must

look to developmental data for ideas about the learning process.

Experimental work provides the suggestion that infants can induce categories from

the distribution of exemplars in acoustic space, via some type of probabilistic learning.

Maye, Werker, and Gerken (2002) presented infants with phonetic tokens across a

continuum and found that infants who heard unimodally-distributed stimuli for a short

familiarization did not discriminate exemplars at the endpoints of the continuum, while

those who heard bimodally-distributed exemplars did. Followup work suggested that this

same paradigm could be used to facilitate 8-month-olds’ discrimination of non-native

contrasts (Maye, Weiss, & Aslin, 2008).

Recent models of sound category learning have made great progress in building on

the available empirical data by investigating probabilistic learning mechanisms that use

this clustering intuition (Boer & Kuhl, 2003; Vallabha et al., 2007; McMurray et al.,

2009). Strikingly, all of these models have used variants of a mixture-of-Gaussians model:

2There are important distinctions between the perception of consonants and vowels—e.g., consonants

are perceived categorically while vowels do show reduced discrimination at category boundaries but are

perceived continuously—but for the purpose of this review we focus on similarities between the two.
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a statistical technique that assumes that training data are generated independently from a

set of Gaussian distributions and tries to recover the parameters of these distributions. It

is highly unusual that nearly all of the modeling work on a particular phenomenon should

converge on the same representational format, and may be indicative of a valuable

convergence.

With respect to the sufficiency of these systems, the model of Vallabha et al. (2007)

is the best example of a system that has the potential to scale up to the larger acquisition

task. The Vallabha mixture model succeeded in learning vowel categories from

multi-dimensional input generated from acoustic measurements of actual speakers. This

success provides a valuable proof-of-concept and suggests the possibility of extensions to

learning a larger space of sound categories from naturally-occurring data (rather than

synthetic examples generated from natural measurements). In terms of fidelity, statistical

models of this type have also shown considerable promise. Feldman, Griffiths, and Morgan

(N. H. Feldman, Griffiths, & Morgan, 2009a) have used a related model of category

discrimination that captures a large number of experimental findings on the perception of

variable acoustic stimuli (including the “perceptual magnet effect,” the tendency of vowel

exemplars to be perceived as closer to the category center than they truly are; Kuhl et al.,

1992). Work by Lake, Vallabha, and McClelland (2009) similarly applies the Vallabha

model to the perceptual magnet effect.

To summarize work in this domain, there is a convergence of recent work on a single

model class: variants of Gaussian mixture models. These models appear to have the

potential to learn appropriate category structure (but for an account of possible

weaknesses of these models on data with large numbers of overlapping categories, c.f.

N. H. Feldman, Griffiths, & Morgan, 2009b). In addition, they appear to be able to

account for a number of findings in the developmental and adult literatures on speech

perception. Finally, a number of authors have explored online and neural net
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approximations to these mixture models (Shi, Griffiths, Feldman, & Sanborn, in press;

McMurray et al., 2009; Vallabha et al., 2007). Thus, in this domain computational models

provide a guiding framework theory that strongly constrains hypotheses about the nature

of early sound category learning.

Word segmentation

Although the boundaries between words are not marked by silences, there are a

variety of language-specific cues such as stress, allophonic variation, and phonotactic

constraints that are informative about where words begin and end (Jusczyk, 2000). Since

these cues vary between languages, one proposal for a language-general strategy for

segmentation is the use of statistical regularities in the occurrences of phoneme or syllable

strings to find consistent linguistic units (Harris, 1951; Saffran, Aslin, & Newport, 1996;

Saffran, Newport, & Aslin, 1996). Work by Saffran, Aslin, and Newport (Saffran, Aslin, &

Newport, 1996; Saffran, Newport, & Aslin, 1996) suggested that infants and adults were

able to identify frequent sequences of syllables from streams of continuous, monotonic

speech with no prosodic cues.

Since they were first reported, findings on “statistical learning” have framed

discussions of the role of probabilistic learning in language acquisition. In recent years the

literature on statistical segmentation and related paradigms has blossomed, providing

evidence that the same kind of segmentation is possible across a wide variety of domains

and modalities (Kirkham, Slemmer, & Johnson, 2002; Fiser & Aslin, 2002; Saffran et al.,

1999; Conway & Christiansen, 2005) and that species as diverse as tamarin monkeys

(Hauser, Newport, & Aslin, 2001) and rats (Toro & Trobalon, 2005) can succeed in similar

tasks. The sequences used in these tasks are typically designed to be simple enough for an

experimental participant to learn the appropriate units after only a few minutes of

exposure. As a consequence they can be solved effectively by a wide variety of possible
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computational mechanisms (Frank et al., 2010).

In an early paper, Saffran, Newport, and Aslin (1996) suggested that success in

statistical learning tasks could be accomplished via the computation of sequential

transition probabilities (TPs) and the detection of local minima in TP. This proposal was

supported by the suggestion that infants are able to succeed in statistical learning tasks

even when raw frequencies do not distinguish coherent from incoherent sequences (Aslin,

Saffran, & Newport, 1998). Since then, many authors have assumed (implicitly or

explicitly) that pairwise statistics like TP, backwards TP (Perruchet & Desaulty, 2008), or

mutual information (Swingley, 2005) are the mechanisms underlying human performance

in statistical learning tasks (e.g. E. Johnson & Jusczyk, 2001; Tyler & Cutler, 2009;

Endress & Mehler, 2009) and other language-learning phenomena (Thompson & Newport,

2007).

However, pairwise statistics like TP perform poorly on tests of sufficiency where

they are evaluated on natural language corpus data (Brent, 1999a; Yang, 2004; Swingley,

2005). This poor performance has led some authors to suggest that statistical learning

itself is unlikely to play a large part in language acquisition (Yang, 2004; Endress &

Mehler, 2009) or may be a kind of bootstrapping cue that allows for the identification of

more reliable cues (Swingley, 2005). Yet neither of these inferences, nor the inference that

the computation of pairwise statistics underlies performance on statistical learning tasks,

is supported by the data (Saffran, 2009). In principle, the computations underlying

success in these simple paradigms could be much more complex, and hence could be

sufficient for success in far more difficult tasks. The fact that a particular computational

proposal (like sequential TP estimation) performs poorly may be evidence against that

proposal, rather than evidence against the more general suggestion of a probabilistic

computation in word segmentation.

Since these initial proposals, a range of other models of segmentation have been
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described, including a heuristic, information-theoretic clustering model (Swingley, 2005);

Bayesian lexical models (Brent, 1999b; Goldwater et al., 2009); and PARSER, a

memory-based lexical model (Perruchet & Vinter, 1998, 2002). Both PARSER and the

Bayesian models learn by assuming that unsegmented input was generated by combining a

discrete set of words (a lexicon), which must then be recovered. Each provides different

ways of balancing between the two edge-case lexicons: a too-long lexicon that includes

each sentence in the input as a separate word, and a too-parsimonious lexicon that

includes only the atoms of the language as words. PARSER uses memory mechanisms to

make this tradeoff, retaining items in the lexicon that occur frequently enough not to

decay out of usage. In contrast, Bayesian approaches apply a statistical tradeoff between

the length of the lexicon itself (how many words there are) and the lengths of each

individual word.3 Nevertheless, they are highly related and perform similarly in

comparisons to human data (Frank et al., 2010), suggesting a significant underlying unity.

Assessments of the sufficiency of these models in learning from corpus data have

favored Bayesian lexical models (Brent, 1999b; Goldwater et al., 2009); models using this

approach have also been adopted in the computational linguistic literature as the state of

the art in segmentation across languages (e.g. Liang & Klein, 2009; M. H. Johnson &

Goldwater, 2009). Investigators have also begun to examine the fidelity of different models

of segmentation to human performance. Experiments in the auditory domain (Giroux &

Rey, 2009) and in the visual domain (Orbán, Fiser, Aslin, & Lengyel, 2008) have both

provided support for models of segmentation—like PARSER or the Bayesian lexical

models—that posit the learning of discrete chunks (words in the auditory domain, objects

in the visual) rather than transitions between syllables. In addition, Frank et al. (2010)

3These current models follow from an older tradition of work that addressed similar questions using

heuristic techniques related to Minimum Description Length (Olivier, 1968; Wolff, 1975). For a summary of

related approaches to segmentation and morphology learning, see Goldsmith (2010).
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assessed the fidelity of a variety of models to experimental data in which systematic

features of the speech input were varied (sentence length, number of word types, number

of word tokens). They found that while all current models succeeded in learning the

simple artificial languages, no models provided good fit to data without the imposition of

memory constraints that limited the amount of data that was being considered.

Supporting the importance of understanding the role of memory in segmentation, other

results suggest that learners may not store the results of segmentation veridically, falsely

interpolating memories that they have heard novel items that share all of their individual

transitions with a set of observed items (Endress & Mehler, 2009).

Taken together, this work suggests an emerging consensus that lexical

models—models that look for a small set of explanatory chunks—are most effective in

segmentation. Challenges for future work are the extension of the current set of models

(which mostly deal with transcribed data) to operate over noisy, acoustic data, and the

integration of statistical models with other cues for segmentation. This second challenge is

especially important. Unlike in sound category learning, where distributional cues are

assumed to be the primary source of information, in segmentation a rich body of empirical

work suggests not only that probabilistic learning interacts with language-specific acoustic

cues like stress (E. Johnson & Jusczyk, 2001; Thiessen & Saffran, 2003), but also that

these language-specific cues can be acquired from a remarkably small amount of data

(Thiessen & Saffran, 2007). Thus, a key part of creating successful models of word

segmentation is understanding what part probabilistic learning plays in the acquisition

and use of language specific cues.

Word learning

Given that many of the most successful grammatical frameworks in linguistics

(Pollard & Sag, 1994; Steedman, 2000; Bresnan, 2001) and natural language processing
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(Collins, 2003) are lexicalized (contain syntactic information that is linked to individual

word forms), the majority of language acquisition could be characterized as “word

learning.” Inferring the meanings of individual lexical items—especially open-class words

like nouns, adjectives, and verbs—is an important early challenge in language acquisition.

As Quine (1960) observed, for any body of evidence about the use of a word, there are an

infinite possible range of meanings that could fit the evidence exactly. Work on early word

learning has recognized many ways that learners can overcome the problem of referential

indeterminacy, from conceptual heuristics (Markman, 1991), to explicit social signals

(Bloom, 2002), syntactic cues (Gleitman, 1990), or cross-situational associations (Yu &

Ballard, 2007). Yet reviews of the state of the art in word learning sometimes read like a

list of ad-hoc strategies, ending with an acknowledgment that future work needs to bring

together disparate proposals into a more coherent framework (Snedeker, 2009).

Computational models are a promising method for uniting these proposals. I describe

models that address two aspects of the word learning problem: (a) matching words and

meanings under ambiguity, and (b) generalization of word meanings from a limited set of

examples.

Matching words with their meanings. A body of recent work has focused on the

problem of matching words and their meanings when there are many words uttered and

many candidate meanings present. Models of this problem have made use of the repeated

observation of the co-occurrence of words and their meanings (“cross-situational

observation”). An early model by Siskind (1996) provided a compelling demonstration

that word meanings could be guessed by repeated observation and the application of

deductive principles. Although other authors had speculated about the utility of

cross-situational observation as a method for vocabulary acquisition (e.g. Gleitman, 1990;

Pinker, 1984), Siskind’s model provided a first quantification of the utility of this strategy.

A body of experimental and theoretical work persuasively argues that this strategy is
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most appropriate for learning nouns and that learning relational terms like verbs may

require additional linguistic information (Gleitman, 1990; Gillette, Gleitman, Gleitman, &

Lederer, 1999; Snedeker & Gleitman, 2004). Although Siskind used his system to learn

even complex, relational meanings, the majority of the recent work in this area has

focused on learning concrete nouns.

Despite this limitation, the cross-situational, cross-situational word learning models

appear to be a promising framework for the integration of different information sources

and strategies for word learning (Yu & Smith, 2007; Frank, Goodman, & Tenenbaum,

2009). Though the first model of this process used artificial data (Siskind, 1996), several

models following up on that initial work have been applied to natural or naturalistic data

(Roy & Pentland, 2002; Yu, Ballard, & Aslin, 2005). One recent model applied a machine

translation algorithm for matching words across different languages to the problem of

mapping words to objects that are present in the learner’s field of view (Yu & Ballard,

2007). They coded the objects present in videos from CHILDES (MacWhinney, 2000) of

mothers and children playing and used their system to match these with words in the

sentences being spoken by the mothers. They found that such a system successfully

identified correct word-object mappings. In addition, when they integrated

manually-identified prosodic and social cues into their model, they found that these cues

substantially increased their model’s accuracy (Yu & Ballard, 2007).

A concern about these computational proposals is the possibility that they require

memory and processing resources that are unavailable to human learners, especially

infants. However, recent empirical investigations by Yu, Vouloumanos, and colleagues (Yu

& Ballard, 2007; L. B. Smith & Yu, 2008; Vouloumanos, 2008; Vouloumanos & Werker,

2009) have given evidence that both adults and young children can use cross-situational

exposure to learn associations between words and their meanings. This work provides a

proof-of-concept that cross-situational learning is possible, and work is now emerging that
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also attempts to characterize the mechanisms underlying these inferences in more detail

(Yurovsky & Yu, 2008; Ichinco, Frank, & Saxe, 2009; Kachergis, Yu, & Shiffrin, 2009;

Yurovsky, Fricker, Yu, & Smith, 2010). Analytical explorations have also provided some

evidence for the viability of this type of strategy for acquiring large-scale lexicons (K.

Smith, Smith, & Blythe, in press). Thus, it seems possible that the kind of

cross-situational learning described by these computational models is not out of reach for

human learners.

Although the models of cross-situational word learning described above show

considerable promise in accounting for a range of phenomena, they neglect a crucial aspect

of early word learning: its intentional character. Classic experiments demonstrate that

from a very early age, word learners do not simply associate the words they hear with the

objects in front of their eyes, but instead mediate these associations with their best guess

at the speaker’s intended referent (Baldwin, 1993; Akhtar, Carpenter, & Tomasello, 1996).

To capture this idea, my colleagues and I introduced a probabilistic word learning model

relying on the idea that learners are jointly trying to infer speakers’ referential intention

(what object they are talking about) and the meanings of the words that speakers utter

(Frank, Goodman, & Tenenbaum, 2009). We found that our intentional model showed

considerable improvement in the precision of the lexicons that were learned compared

with the associative models. While the associative models learned many incorrect lexical

associations, for example between function words and objects, the intentional model

correctly rejected these spurious pairings. The intentional model also showed promise in

accounting for empirical results. The model successfully predicted human performance in

cross-situational word learning (Yu & Ballard, 2007), intentional word learning (Baldwin,

1993), and object individuation (Xu, 2002) experiments. These results suggest that

integrating social aspects of word learning with the machinery to make statistical

inferences could have the potential to account for a large variety of experimental data.
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The phenomenon referred to as “mutual exclusivity” (ME) has been a key part of

discussions of cross-situational word-meaning mapping. In a standard ME experiment,

children are presented by an experimenter with a pair of toys, one novel and one familiar,

and asked by the experimenter “give me a dax,” where “dax” is a novel name. Across a

wide variety of experimental procedures, children from the middle of their second year

onward choose the novel object to go with the novel word (Markman & Wachtel, 1988;

Halberda, 2003; Markman, Wasow, & Hansen, 2003). Though this phenomenon has

primarily been explained in terms of lexical principles (like an language-specific bias to

prefer one-to-one mappings in lexicons, Markman, 1991; Mervis & Bertrand, 1994) or

pragmatic principles (E. Clark, 1988; Diesendruck & Markson, 2001), it can also be

accounted for via inferences within a variety of probabilistic learning mechanisms. For

example, the intentional model described above predicts mutual exclusivity and can

generate novel predictions about mutual exclusivity in cross-situational word learning

paradigms (Ichinco et al., 2009). However, other models also predict the same result: both

an associative, exemplar-based model (Regier, 2005), and an incremental, probabilistic

model similar to the translation model mentioned above (Fazly et al., 2008; Fazly,

Alishahi, & Stevenson, in press) both were able to produce the basic mutual exclusivity

phenomenon. These converging results suggest that, without having to posit separate

lexical or pragmatic principles, general probabilistic learning may account for data on

mutual exclusivity.

To summarize this section: models of word-meaning mapping have made great

progress in recent years both in learning from corpus data and in fitting developmental

data. However, a major weakness of all current studies is the limited scope of the data

used for demonstrations of sufficiency. No existing model has been evaluated on a natural

corpus longer than 20 minutes—in part because no such corpus exists. Thus, one

important direction for future work in this area is the creation and annotation of
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necessary data for evaluating models on their ability to learn words from interactions

between parents and caregivers.

Generalizing word meanings. The problem of generalization is both a fundamental

problem in cognitive science (Margolis & Laurence, 1999; Murphy, 2004) and a core part

of the problem of word learning. Simplifying assumptions of the models discussed above

to the contrary, knowing which word goes with which object in the current discussion

(reference) does not imply knowledge of the meaning of the word that is being used. For

example, sub- and super-ordinate labels like “animal” or “dalmation” can co-occur with

more common, basic-level labels like “dog.” In Quine’s famous example, an anthropologist

observes a tribesman labeling a rabbit as it runs by. Although the anthropologist assumes

the word means “rabbit,” Quine points out that the tribesman could equally well be

saying “un-detached rabbit parts” or “momentary temporal part of an enduring rabbit.”

Work in infant development suggests that strong, shared notions of objecthood (Spelke,

Breinlinger, Macomber, & Jacobson, 1992) and supports the notion that even very

different human populations will likely share much of the same conceptual framework.

Nevertheless, Quine’s problem applies in more run-of-the-mill situations as well. Even if

learners do not consider hypotheses like “un-detached rabbit parts” they still must

consider sub- and super-ordinate labels like “white-tailed hare” and “animal.”

An influential theory of generalization for early word learning suggested a set of

principles which initially constrain children’s inferences about the meanings of novel

words, including considering only whole objects (rather than parts or properties) and

considering only taxonomic categories (rather than e.g. thematic categories; Markman,

1991). As in the case of mutual exclusivity described above, recent work has begun to

investigate whether learners could use make probabilistic inferences about what

generalization best unites examples of a novel word. Xu and Tenenbaum (2007) described

a simple Bayesian model of word meaning generalization that relies on the notion of a
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suspicious coincidence. To take Quine’s example above, if you see a single rabbit and it is

labeled “gavagai,” the word could mean “rabbit” or “animal”; if you see three rabbits

pointed out to you as “gavagai” examples, but no other animals, it starts to seem

improbable that the tribesman just happened to pick three examples of an animal that are

exactly similar. Xu and Tenenbaum formalized this inference using the “size

principle”—the idea that individual datapoints are probable under more specific

hypotheses. Under this explanation, a very general hypothesis like “animal” should be

disfavored unless it is the only hypothesis that fits.

A second suggestion for overcoming difficulties in word learning is the possibility

that learners build up expectations about the kinds of ways that labels relate to concepts

(L. Smith, 2000; L. Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson, 2002). Children

tend to use shape as the criterion for generalizing novel nouns (S. S. Jones, Smith, &

Landau, 1991). Although this “shape bias” could be given innately, evidence suggests that

it may be a learned expectation about category organization. L. Smith et al. (2002)

trained children on novel categories that were organized around shape and found that at

the end of training not only were the children able to use shape-based generalization in

other novel categories, but their noun vocabulary had also increased considerably with

respect to controls who did not receive the training. Both Bayesian (Kemp, Perfors, &

Tenenbaum, 2007) and connectionist models (Colunga & Smith, 2005) predict these

findings, suggesting that “overhypotheses”—distributions on the hypotheses likely to be

true of a new set—like the shape bias can be learned quickly from data by learners with

the appropriate representational capacity.

Work on word learning that uses statistical principles to overcome problems of

generalization and referential indeterminacy has blossomed in the past decade.

Increasingly, though, models of word learning have gone beyond simple associations

between words and referents—or even words and concepts—to include social (Frank,
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Goodman, & Tenenbaum, 2009; Yu & Smith, 2007), prosodic (Yu & Smith, 2007), and

conceptual (Xu & Tenenbaum, 2007) information. The success of models taking these

steps supports the view that probabilistic learning is not separate from the factors that

have previously been identified. Instead, probabilistic learning may be the glue which

holds these disparate kinds of information together and allows them to be used together in

the service of learning words.

Word-class learning

Although tremendous progress has been made in tasks from learning speech sounds

to learning words, progress at the highest levels of acquisition has been somewhat slower.

Understanding how the structure of natural languages can be learned is a difficult

challenge for both theories of language acquisition and for the applied fields of machine

learning and natural language processing (NLP). Nevertheless, there has been

considerable progress on important sub-problems like syntactic category learning,

morphology learning, and verb argument-structure learning, and several recent systems

show promise in more challenging fields, like grammatical inference.

A first step in acquiring a grammar is the extraction of syntactic categories (e.g.

nonterminal categories in a context-free grammar like noun and verb). Despite the

increasing emphasis on lexicalization—the use of syntactic representations that are tied to

lexical content (Goldberg, 1995; Tomasello, 2003)—syntactic categories of some kind are

largely agreed to be useful abstractions in characterizing the productivity of adult

language. Evidence from adult language processing paradigms like syntactic priming

supports the psychological reality of such categories (Bock, 1986) and recent evidence

provides some support for this view in early child language (Thothathiri & Snedeker,

2008).

In NLP, learning syntactic categories from supervised (hand-labeled) data is largely
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considered a solved problem (Jurafsky, Martin, & Kehler, 2000; Manning & Schütze,

2000), with performance very high on most measures. However, unsupervised learning of

syntactic categories is not as simple. The output of such systems is a clustering of words

into categories, but evaluating these categories is non-trivial. Although there have been a

number of proposals for linking the gold-standard categories created by annotators to the

categories found by unsupervised systems, there is no reason to assume that the output of

such systems would be maximally correct if they did precisely match human annotations.

Because we do not know the precise form of syntactic abstractions, we cannot say what

the correct standard for the sufficiency of such a system should be.

Nevertheless, following initial suggestions by Maratsos and Chalkley (1980), a

number of systems have addressed the challenge of unsupervised category induction using

distributional information. For example, Redington and colleagues used a hierarchical

clustering system that grouped words on the basis of their distributional context and

recovered clusters that shared strong qualitative similarities with linguistic categorizations

(Redington, Crater, & Finch, 1998). Other work has suggested that a number of different

strategies, including minimum-description length clustering (Cartwright & Brent, 1997),

clustering based on frequent contexts (Mintz, Newport, & Bever, 2002; Mintz, 2003), and

Bayesian approaches (Goldwater & Griffiths, 2007; Parisien, Fazly, & Stevenson, 2008) all

show relatively similar performance (Goldwater, 2007), suggesting that—at least at the

highest level of granularity—word categories are relatively over-determined by the

distributional data and can be learned through a number of different strategies.

In contrast, human results on “unsupervised” syntactic category learning have been

mixed. Artificial language paradigms which should be amenable to simple distributional

analyses have proven to be difficult for human learners. For example, the classic

“MN/PQ” paradigm asks learners to acquire an artificial language whose sentences have

either the form MN or PQ, where each letter represents an arbitrary class of nonsense
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words or syllables. While this kind of learning is trivial for nearly any statistical model

that posits word classes (e.g. a hidden Markov model), human learners tended to learn

positional regularities (e.g. that M and P words came first in the sentence) rather than

the abstract relation between categories (K. Smith, 1966).

Human learners only seem to succeed in finding category structure when there are

multiple cues available. Braine (1987) showed evidence that distributional learning

strategies could succeed in this task, but only when they were supplemented by additional

referential or morpho-phonological information. Mintz (2002) showed that multiple

distributional cues to category membership (e.g., a frame of two words rather than a

single word) would allow learning (Mintz, 2002). Gerken et al. (2005) showed that

17-month-olds could learn a part of the Russian gender marking system, though only when

some portion of the training stimuli were double-marked. Lany and Saffran (2010) even

showed successful learning of categories by 18-month-olds using coordinated distributional

and syllabic cues. One open explanation for this set of findings is that the pattern of

failures in MN/PQ-style tasks may be due to learners’ memory limitations and that

adding coordinated cues may simply give extra cues for encoding (Frank & Gibson, 2011).

Although syntactic category acquisition has been a paradigm case for distributional

learning (Maratsos & Chalkley, 1980), progress in this area has been hindered by the fact

that a gold standard for syntactic categories is necessarily theory-based and cannot be

uncontroversially derived from data. In addition, human experimental data are equivocal

about whether distributional category learning is easy for human learners. One way in

which distributional models can be evaluated more directly, however, is through the use of

syntactic categories as an intermediate representation in another task (ideally one that

can be compared directly to an uncontroversial gold standard). Thus, we suspect that

further progress in this area will likely come through the use of categories in

word-meaning mapping, the use of semantic information to extract sub-classes of words
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(Alishahi & Stevenson, 2008), or the joint induction of categories and syntactic rules

(Bannard et al., 2009).

Morphology learning

Morphological generalization has long been accepted as one of the methods for

productivity in natural languages (Berko, 1958). Even before artificial language

experiments demonstrated the plausibility of distributional learning strategies for aspects

of language acquisition, the suitability of distributional strategies for morphological

generalization was a topic of intense debate in studies of the English past tense. Early

investigations using neural network models suggested that regularities in the frequencies of

English verbs supported appropriate generalizations to novel forms (Rumelhart &

McClelland, 1986). This work came under heavy criticism for its representational

assumptions, generalization performance, and match to the empirical data, however

(Pinker & Prince, 1988). Following on that initial investigation, Plunkett and Marchman

investigated a broader range of connectionist systems for learning past tense forms

(Plunkett & Marchman, 1991, 1993, 1996), which again elicited criticism for their match

to empirical data (Marcus, 1995).

The controversy over the form of mental representations of past-tense morphology

has had several positive outcomes, though, including an increased focus on fidelity to

empirical data and a move towards the direct computational comparison of symbolic and

associative views. Work by Albright and Hayes (2003) compared a purely analogical

model of past-tense inflection to a model which used multiple stochastic rules of varying

scopes. They found that the multiple-rules approach provided a better account of human

generalizations in a nonce-word task than a pure similarity approach. The multiple-rules

approach allowed the generalization system to capture the widely-varying scope of

different rules (from non-generative exceptions like went to the fully general rules that
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allow for regular inflection in novel forms like googled). The multiple-rule learner, though

heuristic in nature, had a strong similarity to standard probabilistic clustering methods

that can be used to model artificial language data as well, suggesting that this kind of

expressive, rule-based approach might be broadly useful for modeling the acquisition of

simple morphology-style regularities (Frank & Tenenbaum, 2010).

The unsupervised learning of morphological systems more generally has been a topic

of interest in NLP. Given the wide diversity in morphological marking in the world’s

languages, computational systems for parsing in isolating languages like English will have

only limited success when applied to morphologically-rich languages like Turkish. Systems

for the induction of a morphological grammar from text thus play an important role the

broader project of parsing text from these languages. Minimum-description length (MDL)

formalisms have been used successfully for the induction of general morphological

grammars (de Marcken, 1996). Goldsmith (2001) described a model based on this

principle which searched for suffix morphology and identified linguistically-plausible

analyses across a range of European languages. Unfortunately, although the MDL

approach is highly general, full search for solutions in this formalism is intractable and so

implemented systems must rely on a set of heuristics to find good descriptions.

Probabilistic systems using inference techniques such as Markov-chain Monte Carlo

may offer a better alternative by allowing a full search of the posterior distribution over

solutions. Recent work by Goldwater, Johnson, and colleagues (Goldwater, Griffiths, &

Johnson, 2006; M. Johnson, Griffiths, & Goldwater, 2007; M. Johnson, 2008a) has made

use of non-parametric Bayesian techniques to model the different processes underlying the

generation of morphological rule types and the individual word tokens observed in the

input. This dissociation of types and tokens allows for a more accurate analysis of the

morphological rules that govern tokens. These new techniques present the possibility of

unifying earlier work on the past tense with the broader project of learning morphology
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from un-annotated data (Frank & Tenenbaum, 2010; O’Donnell, Tenenbaum, &

Goodman, 2009).

Thus, the pattern in morphology learning is similar to those in other fields of

acquisition. Initial computational work this area focused on simple, exemplar-based

models of learning and generalization that computed simple statistics over the relations

between datapoints. Issues with these strategies led more recent work to move towards a

probabilistic framework that attempts to infer a parsimonious set of morphological

descriptions within an expressive representational space (Albright & Hayes, 2003; M.

Johnson et al., 2007). This work is still in its infancy, however, and little work has

attempted to unite models which show sufficiency on larger corpora (Goldsmith, 2001) to

those that show fidelity to human learning and generalization performance (Albright &

Hayes, 2003).

Syntactic (and semantic) rule learning

Although there is still much work to be done, extracting the elements of

language—phonemes, morphemes, words, and word categories—from distributional

information is now largely assumed to be possible using statistical models. From the

perspective of cognitive modeling, the major open challenge in this field is linking these

statistical proposals to the abilities of human learners. In contrast, it is still unknown

whether the structural features of language can be learned in the same way, or whether

distributional learning mechanisms must be supplemented with other sources of

information. Our last section reviews some of the heterogeneous literature on the learning

of structured representations.

A large literature on learnability discusses the a priori possibility of a model that

fulfills the sufficiency criterion for natural language syntax without assuming a large

amount of structure.. The original learnability results in this field were by Gold (Gold et
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al., 1967), with further investigation by a number of others (Horning, 1969; J. Feldman,

1972) (reviewed in Nowak, Komarova, & Niyogi, 2002). Discussion of this large and

complex literature is outside of the scope of the current review. However, given the

importance of these arguments, we note that while the mathematical results are clear,

their applicability to the situation of children learning their native language is far from

obvious (MacWhinney, 2004; A. Clark & Lappin, 2010). To take one example, the

assumption of Gold’s theorem is of an adversarial language teacher, who can withhold

crucial examples for an infinite amount of time in order to derail the process of language

acquisition. This assumption is strikingly different from the relationship that is normally

assumed to hold between children and their caregivers (A. Clark & Lappin, 2010). Even if

parents do not explicitly teach their children, they are unlikely to be adversarial in their

use of syntax. More generally, the growth of systems for grammar induction has been so

rapid, and their relationship to the assumptions of traditional “learnability in the limit”

models is so complex, that we believe work on grammar induction should not be

discounted on the basis of theoretical arguments (but c.f. Berwick & Chomsky, 2009). If

we accept the possibility of success, then the development of novel techniques is important

regardless of the sufficiency of the individual systems that initially instantiate these

techniques.

In this vein, one of the most compelling early demonstrations of the power of

statistical learning was by Elman (1990), who created a recurrent connectionist network

that learned regularities in sequential artificial language data by the errors it made in

predicting upcoming material. This network was only able to learn from small languages,

but some work has attempted to translate these insights directly to much larger-scale

systems with mixed results (Rohde, 2002). Although connectionist architectures have not

generally proven efficient for large-scale language processing, the interest provoked by this

proof of concept was considerable.
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Unsupervised grammar induction has been a topic of persistent interest in NLP as

well. Although the specific challenge of learning a set of correct rules from written, adult

corpora is not directly comparable to the task of syntactic rule learning for children, this

field still has the potential to contribute important insights. Early experiments for learning

context-free grammars (CFGs) from plain-text representations were not highly successful

(Carroll & Charniak, 1992; Stolcke & Omohundro, 1994), underperforming simple

baselines like purely right-branching structures (Klein & Manning, 2005). More recent

work has made use of related formalisms. Klein and Manning (2005) explored a model

which induced constituency relationships (clusters) rather than dependencies between

words and found increases over baseline. Clark and colleagues (A. Clark & Eyraud, 2006,

2007) have introduced efficiently-learnable formalisms that cover a large subset of the

CFGs. The ADIOS system is related to both of these approaches via its clustering of

related contexts; it uses a heuristic graph-merging strategy to perform scalable inferences

over relatively large corpora (Solan, Horn, Ruppin, & Edelman, 2005). Taken together,

these results suggest that it may be possible to circumvent learnability-in-the-limit results

via formalisms that do not map directly to levels of the Chomsky hierarchy.

An interesting formal similarity exists between a number of these methods. Models

by Klein and Manning (2005), Solan et al. (2005), and A. Clark and Eyraud (2006) all use

similarities in distributional context to infer properties related to substitutability. The

basic insight is that if strings x and y both occur in the context a b, then they are at least

partially substitutable and may be syntactically identical. These systems build on work on

syntactic category acquisition (Redington et al., 1998) that uses distributional methods to

merge items that occur in similar contexts. Work using these methods for sequence

learning typically builds relatively item-specific syntactic rules (or analogous sequential

regularities) and then merges them together based on various definitions of

substitutability. These systems have shown a number of suggestive results, although more
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work is necessary to understand how they relate to human performance given failures in

comparable learning situations (e.g. the “MN/PQ” scenario described above).

Other work has attempted to unify insights from NLP with work on child language

acquisition. For example, Perfors, Tenenbaum, and Regier (2010) used a Bayesian

model-comparison approach to compare parsers of different formal expressivities on their

overall complexity and fit to data when trained on a corpus of child-directed speech. They

found that a CFG provided a smaller representation of the grammar than a finite-state

grammar while still parsing sentences appropriately, suggesting that even a relatively

small amount of input could allow a learner to conclude in favor of a more expressive

formalism like a CFG over a simple linear representation of syntax. Although the Perfors

system gave evidence in favor of such expressive representations, progress in learning

grammars directly from child-directed speech has been limited.

Using insights from construction-based grammatical formalisms—which assume that

children’s initial syntactic representations may be centered around individual verbs rather

than fully abstract grammars (Tomasello, 2003)—several recent systems have been applied

to create models of children’s productions. MOSAIC, an incremental, memory-based

system, approximates this type of learning by memorizing parts of input strings that are

congruent with primacy and recency factors (Freudenthal, Pine, Aguado-Orea, & Gobet,

2007). In addition, Borensztajn, Zuidema, and Bod (2008) and Bannard et al. (2009)

created sophisticated probabilistic models that learn item-specific regularities, but both

are complex systems incorporating novel formalisms. In the case of the Bannard et al.

(2009) model, for example, the authors found that perplexity (prediction error) on

children’s early productions was decreased more by an item-based probabilistic

context-free grammar (PCFG) and a traditional PCFG that did not contain item-specific

information. The authors did not, however, present evidence that both learning models

had actually learned adequate representations of the input data (in other words, that the
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authors’ search procedure had converged). Given the results described above describing

the difficulties in unsupervised PCFG induction, more evidence will be necessary that

both concrete and item-based grammars can be learned effectively from data.

Several psycholinguistically-inspired models have also attempted to link syntactic

and semantic information, though these models have typically been more limited in the

kinds of representations they posit. Early work on this topic was done by Kawamoto and

McClelland (1987), who used a supervised neural network to identify the thematic roles

associated with words in sentences. More recent work on this topic has been inspired by

systems for semantic-role labeling in NLP, using animacy, sentence position, and the total

number of nouns in a sentence to classify nouns as agents or patients (Connor, Gertner,

Fisher, & Roth, 2008, 2009). Incorporating richer representations than the feature vectors

used in previous work, a system by Alishahi and Stevenson (2008) learned verb classes

and constructions from artificial corpora consisting of utterances and their associated

thematic role information. Mirroring the development of children’s productive use of verbs

(Tomasello, 2003), they found that constructions gradually emerged through the

clustering of different frames for using verbs. In addition, their model was able to simulate

the generalization of novel verbs across a variety of experimental conditions. This body of

work raises the intriguing possibility that children’s early learning of language structure

can be described better via semantic acquisition rather than the acquisition of

fully-general syntactic rules.

Following this same idea, a number of groups have attempted to model natural

language syntax and semantics jointly. Mooney and colleagues (Kate & Mooney, 2006;

Wong & Mooney, 2007) have presented models based on discriminative learning

techniques (e.g. support-vector machines) that attempt to learn parsers that directly

translate natural language sentences into database queries. Other recent work has made

use of combinatorial categorical grammar (CCG: Steedman, 2000), a linguistic framework
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by which word order and logical forms are jointly derived from the same grammar. A

series of systems now exist for learning CCG parsing systems that similarly identify the

logical forms of natural language sentences (Zettlemoyer & Collins, 2005, 2007, 2009).

Although these systems were not applied to data from acquisition (in large part due to the

challenges of designing appropriate representations for sentential meaning in unrestricted

contexts), they show considerable promise in unifying syntactic and semantic information

in the service of sentence interpretation.

Recent work by Kwiatkowski and colleagues has taken further steps towards using

child-language data (Kwiatkowski, Goldwater, & Steedman, 2009; Kwiatkowski,

Zettlemoyer, Goldwater, & Steedman, 2010). The system presented in this work induces a

CCG representation of the data and shows promising performance in parsing sentences

from previous database query corpora and from sentences of child-language with their

corresponding logical forms. Nevertheless, the logical forms underlying sentences in child

language were derived directly from previous syntactic parses of these sentences; thus, the

system assumes that the child already has access to some kind of valid syntactic trees

corresponding to the input. This system is among the most promising current models of

syntactic acquisition, but future work must solve the issue of appropriate training data

before further progress can be made.

The human literature on learning rule-based structures in artificial languages is

large and mixed, and unfortunately has made relatively little contact with the

computational literature on grammar induction. On the one hand, there is a large recent

literature on the ability of infants to learn identity-based regularities over short strings

(e.g. “ABB”, where A and B are distinct syllable classes; Marcus et al., 1999; Saffran,

Pollak, Seibel, & Shkolnik, 2007; Marcus, Fernandes, & Johnson, 2007; Frank, Slemmer,

Marcus, & Johnson, 2009). Although the representations necessary for success in these

experiments are relatively impoverished, they nonetheless represent evidence that young
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children can make inferences of the same type as those made by more sophisticated

models of morphology and grammar learning (Frank & Tenenbaum, 2010).

On the other hand, there is an extensive literature on artificial grammar learning

(AGL); although the majority of this work has been carried out with adults (Reber, 1967),

some has also been conducted with infants (Gómez & Gerken, 1999; Saffran et al., 2008).

The learning mechanisms underlying AGL have been studied for decades, and a full

discussion of this literature is beyond the scope of this review (for more detailed discussion

and an argument that statistical learning of the sort described in the section on word

segmentation and AGL are parallel tasks, see Perruchet & Pacton, 2006). It is unknown

whether the general mechanisms underlying AGL are involved in linguistic rule learning,

though this point has been heavily debated (Lieberman, 2002). To date relatively few

models of language acquisition have been applied directly (but cf. Perruchet & Vinter,

1998, 2002), though there is a parallel literature of models that apply only to AGL and

not to language learning (Cleeremans & Dienes, 2008). An important task for future

research is the application of models of language acquisition to AGL stimuli—a model

that not only captured aspects of natural language learning but also the idiosyncratic

phenomena of AGL would be an important advance in understanding the shared

mechanisms of learning underlying success in these tasks.

To summarize: although work in the unsupervised learning of language structure is

still in its infancy, there has nevertheless been a tremendous amount of progress in the last

ten years. Recent developments have suggested that moving away from grammatical

formalisms like CFGs to frameworks that fit natural language more closely can result in

impressive progress (e.g. Kwiatkowski et al., 2009). Unfortunately, this work has not been

as tightly connected to children’s language acquisition or to artificial language results as

work on sound category learning and word segmentation (for some exceptions, see e.g.

Bannard et al., 2009; Alishahi & Stevenson, 2008; Kwiatkowski et al., 2009; Perfors et al.,
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2010). Thus, important goals for future work on syntactic rule learning should be (1) the

development of systems and experimental paradigms which allow direct links between

human data and the learning performance of models, and (2) the creation of syntactically-

and semantically-annotated corpora.

Synergies between tasks

The vast majority of the work that we have described here is confined to a single

task like word segmentation or morphology learning. But there is no reason to believe

that learners perform only one task at a time. In fact, it is very likely that children are

learning over multiple timescales and across multiple tasks and representations. Our

models, by focusing on a single timescale or a single task, may miss important synergies

between tasks: opportunities where learning about one aspect of a problem may help in

finding the solution to another (M. Johnson, 2008b).

Although work of this type is still in its infancy, there is some evidence that

synergies in acquisition do exist. For example, N. H. Feldman et al. (2009b) created a

model which both learns a set of lexical forms and learns speech categories. They found

that these two tasks informed one another, such that performance in speech-category

learning was considerably improved by the ability to leverage contrasting lexical contexts.

Their work suggested that the space of English vowels may not be learnable via pure

distributional clustering alone (e.g. mixture models like Toscano & McMurray, 2010), but

instead may require this kind of joint lexicon learning.

A second example of using these kinds of synergies comes from work by Mark

Johnson and colleagues, who proposed models that simultaneously segmented words from

unsegmented input and learned the correspondences between words and objects.

Compared with a text-only segmentation model, the joint model achieved better

segmentation performance on referential words due to the ability of the model to cluster
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those words based on their common referents (B. Jones, Johnson, & Frank, 2010). In

addition, even greater synergies were found by a model that included the constraint that

collocations (statistically coherent sequences) should include at most one referential word

(M. Johnson, Demuth, Frank, & Jones, 2010).

Different tasks also operate over different timescales. Recent work on word learning

has used two tasks to inform each other: sentence interpretation—which happens in the

moment-by-moment of online interaction—and word-object mapping—which involves the

aggregation of information over many different interactions. Models of word-object

mapping that study the interplay between these two kinds of situations (Frank, Goodman,

& Tenenbaum, 2009; McMurray et al., under review) suggest that synergies between the

two timescales allow for better word learning and better fit to developmental phenomena

such as the ability to use words for object individuation (Xu, 2002) and the decrease in

reaction times in spoken word recognition across development (Fernald, Pinto, Swingley,

Weinbergy, & McRoberts, 1998).

Although relatively little work to date has examined synergies of these types,

research in this field is among the most important because it bridges across traditional

boundaries between tasks in acquisition. These synergies also provide a crucial argument

against approaches that make use of simple descriptive statistics: model-free statistics like

co-occurrence are not able to capture how two independent tasks can nevertheless

mutually inform one another. Together these findings suggest that there may be many

more synergies between acquisition tasks that provide powerful leverage for language

learners.

Expressive representations and parsimony biases

Chater and Vitányi (2003) consider how human learners solve the problem of

induction: that any dataset is consistent with an infinity of possible generalizations. They
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propose that the principle of simplicity, that “the cognitive system should prefer that

pattern that gives the shortest code for the data,” accounts for human inductive biases.

Instantiating this simplicity principle mathematically leads to two closely related

formalisms. The first is the minimum description length formalism, in which

representations are preferred that are both themselves short and also efficiently compress

the input data (Rissanen, 1983; Li & Vitányi, 2008).4 The second is the Bayesian

formalism, in which model complexity is balanced with the fit of the model to the input

data (Tenenbaum & Griffiths, 2001; Gelman, 2004). Both formulations include a tradeoff

between two terms: one that favors complex, expressive representations that compress the

data with high efficiency, and one that favors parsimony in the representations that are

learned.

Although models of language acquisition are stated in a wide range of formalisms,

these two elements—expressive representations and parsimony bias—figure into nearly all

successful models. For work in computational linguistics and machine learning, they are

close to universal (and describing them comes close to describing common sense). Despite

this, theorizing about probabilistic learning in cognitive science still often starts from the

premise that what is important in probabilistic learning is “counting something”: keeping

track of frequencies or co-occurrences. This premise is not necessarily consistent with the

elements above and may lead to poor inferences, given what we know about successful

models (reviewed above).

Successful models of language acquisition tend to use representations that are

sufficiently expressive to be able to compress the input data effectively. This notion of

compression requires introducing some concepts from information theory. In information

theory, any variable—e.g., the identity of the next word in a sentence or the position of

4These ideas have been applied directly to language acquisition, e.g. Brent and Cartwright (1996), Chater

and Vitányi (2007), Goldsmith (2001).
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Figure 1. The distribution of vowel tokens in formant space. From “Acoustic Characteristics

of American English Vowels” by J. Hillenbrand, L. A. Getty, M. J. Clark, & K. Wheeler,

1995, Journal of the Acoustical Society of America, 97, p. 3103.

the next phoneme in acoustic space—has an associated entropy. Entropy quantifies the

uncertainty of that variable. If it is perfectly random, it has high entropy; if perfectly

predictable, its entropy is zero. The flip side of entropy is redundancy: the lower the

entropy of a variable is, the higher its redundancy. Redundancy can be eliminated via

compression. A code (a re-representation of samples from that variable) can be used to

write a series of samples from that variable in a more compact form. Codes can either be

lossless, preserving all the information in a variable, or lossy, preserving only some

information (Shannon, 1948; MacKay, 2003).

Under this construal, learning is the name we give to the process of finding a code

for a particular variable. For example, the distribution of phonemes in acoustic space is

highly non-random. Tokens of vowels plotted by their first and second formant energies

are shown in Figure 1. If vowel tokens were perfectly random, they would cover this space
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uniformly; instead each vowel has its own defined region. Learning phonetic categories can

be thought of as learning a code that compresses samples from this acoustic space into a

small alphabet of phonetic symbols. This code then allows for phonetic categorization and

production in new situations.5 Learning a grammar for how words are put together can

likewise be thought of as learning a code for sentence structure. With such a code, it

becomes possible to generate new sentences and to encode sentences more efficiently. At

all levels of organization, language is non-random: it is characterized by a high degree of

redundancy and hence there is a lot of room for compression (Shannon, 1951).

It is somewhat unusual to consider the products of language acquisition—phonetic

categories, a lexicon, or a set of syntactic rules—as codes. In part this may be because

these codes are not used independently from one another. For example, it seems more

psychologically normal to compress sentences with respect to their meaning as opposed to

their syntax. Despite this intuition, early experiments in the information theoretic

paradigm did find effects of compression based on syntactic predictability (reviewed in

Attneave, 1959) and recent psycholinguistic studies have revived this paradigm as a model

of linguistic complexity (Levy, 2008). In addition, models of language acquisition describe

the search for lossy representations of language structure (phonemes, words, grammars).

The most successful of these models use codes that are highly expressive and hence allow

for efficient compression of the data.

The generalization that good models of human learning make use of compressive

representations seems close to tautological. Yet often discussions of language acquisition

models implicitly assume representations that do not compress the input efficiently. For

example, as reviewed above, many models of word segmentation presuppose the

5We give phoneme recognition as a simplified example. In practice, producing and recognizing meaningful

phonetic strings requires duration and spectral information as well as information about co-articulation with

other phonemes.
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representation of large state-transition matrices keeping count of the transitions from

syllable to syllable. These matrices can be justified as an algorithmic step along the way

to the desired representation (a set of words in the language). Since such a matrix is

actually a relatively poor compression of the regularities of syllable patterns, claiming

such a step is akin to claiming that human learners use a sub-optimal representation for

word segmentation. Such transition-probability based algorithms do not learn effectively

from corpus data (Brent, 1999a) and they do not fit human performance (Frank et al.,

2010), suggesting that they succeed on neither of the criteria outlined above. Instead,

codes based on a list of words (a lexicon)—and perhaps even their dependency

relationships— seem to be much more effective (Brent, 1999a; Goldwater et al., 2009).

There is a tradeoff between the complexity of a code and how well it can compress

data of a particular type. For example, grammar-based codes can be highly efficient

because of the complexity of the regularities in the data that they can capture (Kieffer &

Yang, 2000, 2002). But for data that are known to have only regularities of more limited

complexity, efficient coding can be achieved using a simpler formalism. The observation

that successful models tend to use compressive representations should not be taken to

mean that all models should have a degree of complexity in their representations beyond

what is necessary to achieve optimal compression. In fact, successful models tend to

incorporate some bias towards parsimony that limits the complexity of the representations

that are learned.

A parsimony bias is in its essence, the imposition of some cost on learning such that

if one thing is learned, another will not be. This kind of bias can be implemented in many

different ways. In a Bayesian formalism, it is often implemented through the imposition of

a prior probability distribution favoring simpler hypotheses (Goodman, Tenenbaum,

Feldman, & Griffiths, 2008); in the minimum description length framework, a cost is

assigned directly to the length of the coded representation (Goldsmith, 2001). In a
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connectionist framework, some version of such a bias can be implemented through

competition between hidden units (Rumelhart & Zipser, 1985). A parsimony bias can

even be implemented directly in a co-occurrence matrix of the type mentioned above

(Dayan & Kakade, 2000). The key is, however, that adding extra complexity to a

particular instance of a code comes at a cost.

This tradeoff between appropriately expressive representations and a bias towards

parsimony can be instantiated in a wide variety of different formalisms, but it is key to the

success of many of the models reviewed above. For example, the Vallabha et al. (2007)

analysis of phonetic category learning attempts to find a set of Gaussian categories that fit

the observed data; it does so both by “assigning” datapoints to categories but also by

using a competitive mechanism to prune categories that do not account for much of the

data. Using a different formalism but a very similar principle, the Frank, Goodman, and

Tenenbaum (2009) word learning model is able to avoid learning spurious word-object

pairings by imposing a prior probability distribution on the size of the lexicon such that

only those pairings which increase the model’s ability to predict the corpus data are added.

At yet a higher level of representational abstraction, Albright and Hayes (2003)’s minimal

generalization learner uses a highly compressive representation (so-called “SPE” rules for

describing inflectional morphology regularities) but selects specific sets of rules based on

their scope (the number of cases they cover) and reliability (their accuracy on those cases).

In all three cases, these models are successful because they posit a relatively rich

description of the input data that is therefore highly compressed. This compression is

achieved both representations which go beyond the storage of individual datapoints (or

even single summary statistics on those datapoints) and by the imposition of a bias to

eliminate elements of the representation that do not serve to compress the data further.
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Conclusions

We began by asking how children are able to learn the elements and structures of

their native language. There is now a substantial body of experimental and computational

evidence that statistical inference mechanisms play an important part in both of these

tasks. Our review focused on the nature of the statistical inferences that best describe

different aspects of language acquisition. Across the spectrum of learning tasks involved in

language acquisition that we reviewed above, the models that performed best at learning

from corpus data (sufficiency) and fitting human performance (fidelity) were not those

that were framed in terms of simple distributional statistics. Instead, models that framed

the problem as learning a parsimonious set of explanatory regularities like words,

morphemes, categories, or rules—expressive units that allowed for efficient

compression—were more successful.
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Li, M., & Vitányi, P. (2008). An introduction to kolmogorov complexity and its

applications. Springer-Verlag New York Inc.

Liang, P., & Klein, D. (2009). Online EM for Unsupervised Models. In Proceedings of

Human Language Technologies: The 2009 Annual Conference of the North American

Chapter of the Association for Computational Linguistics (pp. 611–619).

Lieberman, P. (2002). Human language and our reptilian brain: the subcortical bases of

speech, syntax, and thought. Cambridge, MA: Harvard University Press.

Ma, W., Beck, J., Latham, P., & Pouget, A. (2006). Bayesian inference with probabilistic

population codes. Nature Neuroscience, 9 (11), 1432–1438.

MacKay, D. J. C. (2003). Information theory, inference, and learning algorithms.

Cambridge University Press.

MacWhinney, B. (2000). The CHILDES Project: Tools for Analyzing Talk. Third Edition.

Mahwah, NJ: Lawrence Erlbaum Associates.

MacWhinney, B. (2004). A multiple process solution to the logical problem of language

acquisition. Journal of Child Language, 31 (04), 883–914.



Computational models of early language acquisition 53

Manning, C. D., & Schütze, H. (2000). Foundations of statistical natural language

processing. MIT Press.

Maratsos, M., & Chalkley, M. (1980). The internal language of children’s syntax: The

ontogenesis and representation of syntactic categories. Children’s language, 2,

127–214.

Marcus, G. F. (1995). The acquisition of the english past tense in children and

multilayered connectionist networks. Cognition, 56 (3), 271–279.

Marcus, G. F., Fernandes, K. J., & Johnson, S. P. (2007). Infant rule learning facilitated

by speech. Psychological Science, 18 (5), 387.

Marcus, G. F., Vijayan, S., Bandi Rao, S., & Vishton, P. M. (1999). Rule learning by

seven-month-old infants. Science, 283 (5398), 77.

Margolis, E., & Laurence, S. (1999). Concepts: core readings. The MIT Press.

Markman, E. M. (1991). Categorization and naming in children: Problems of induction.

The MIT Press.

Markman, E. M., & Wachtel, G. F. (1988). Children’s use of mutual exclusivity to

constrain the meanings of words. Cognitive Psychology, 20, 121–157.

Markman, E. M., Wasow, J., & Hansen, M. (2003). Use of the mutual exclusivity

assumption by young word learners. Cognitive Psychology, 47 (3), 241–275.

Marr, D., & Poggio, T. (1979). A computational theory of human stereo vision.

Proceedings of the Royal Society of London. Series B, Biological Sciences,

204 (1156), 301–328.

Maye, J., Weiss, D., & Aslin, R. (2008). Statistical phonetic learning in infants:

Facilitation and feature generalization. Developmental Science, 11 (1), 122.

Maye, J., Werker, J., & Gerken, L. (2002). Infant sensitivity to distributional information

can affect phonetic discrimination. Cognition, 82.

McMurray, B., Aslin, R., & Toscano, J. (2009). Statistical learning of phonetic categories:



Computational models of early language acquisition 54

insights from a computational approach. Developmental science, 12 (3), 369.

McMurray, B., Horst, J. S., & Samuelson, L. K. (under review). Using your lexicon at two

timescales: Investigating the interplay of word learning and recognition.

Mervis, C., & Bertrand, J. (1994). Acquisition of the novel name-nameless category (n3c)

principle. Child Development, 65 (6), 1646–1662.

Mintz, T. (2002). Category induction from distributional cues in an artificial language.

Memory and Cognition, 30, 678–686.

Mintz, T. (2003). Frequent frames as a cue for grammatical categories in child directed

speech. Cognition, 90 (1), 91–117.

Mintz, T., Newport, E., & Bever, T. (2002). The distributional structure of grammatical

categories in speech to young children. Cognitive Science: A Multidisciplinary

Journal, 26 (4), 393–424.

Murphy, G. (2004). The big book of concepts. The MIT Press.

Nowak, M., Komarova, N., & Niyogi, P. (2002). Computational and evolutionary aspects

of language. Nature, 417 (6889), 611–617.

O’Donnell, T. J., Tenenbaum, J. B., & Goodman, N. D. (2009). Fragment grammars:

Exploring computation and reuse in language (Tech. Rep. No. CSAIL-TR-2009-013).

Massachusetts Institute of Technology.

Olivier, D. (1968). Stochastic grammars and language acquisition devices. Unpublished

doctoral dissertation, Ph. D. thesis, Harvard University.

Orbán, G., Fiser, J., Aslin, R. N., & Lengyel, M. (2008). Bayesian learning of visual

chunks by human observers Bayesian learning of visual chunks by human observers.

Proceedings of the National Academy of Sciences, 105, 2745–2750.

Parisien, C., Fazly, A., & Stevenson, S. (2008). An incremental Bayesian model for

learning syntactic categories.

Pearl, L., & Lidz, J. (2009). When domain-general learning fails and when it succeeds:



Computational models of early language acquisition 55

Identifying the contribution of domain specificity. Language Learning and

Development, 5 (4), 235–265.

Pena, M., Bonatti, L. L., Nespor, M., & Mehler, J. (2002). Signal-driven computations in

speech processing. Science, 298 (5593), 604.

Perfors, A., Tenenbaum, J., & Regier, T. (2006). Poverty of the stimulus? a rational

approach.

Perfors, A., Tenenbaum, J., & Regier, T. (2010). The learnability of abstract syntactic

principles. Cognition.

Perruchet, P., & Desaulty, S. (2008). A role for backward transitional probabilities in

word segmentation? Memory & cognition, 36 (7), 1299.

Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One

phenomenon, two approaches. Trends in Cognitive Sciences, 10 (5), 233–238.

Perruchet, P., & Vinter, A. (1998). PARSER: A model for word segmentation. Journal of

Memory and Language, 39 (246-263).

Perruchet, P., & Vinter, A. (2002). The self-organizing consciousness as an alternative

model of the mind. Behavioral and Brain Sciences, 25, 360–380.

Pinker, S. (1979). Formal models of language learning. Cognition, 7 (3), 217–283.

Pinker, S. (1984). Language learnability and language development. Cambridge, MA:

Harvard University Press.

Pinker, S. (1995). The language instinct: The new science of language and mind. Penguin

London.

Pinker, S., & Prince, A. (1988). On language and connectionism: Analysis of a parallel

distributed processing model of language acquisition. Connections and symbols,

73–193.

Plunkett, K., & Marchman, V. (1991). U-shaped learning and frequency effects in a

multi-layered perception: Implications for child language acquisition. Cognition,



Computational models of early language acquisition 56

38 (1), 43–102.

Plunkett, K., & Marchman, V. (1993). From rote learning to system building: Acquiring

verb morphology in children and connectionist nets. Cognition, 48 (1), 21–69.

Plunkett, K., & Marchman, V. (1996). Learning from a connectionist model of the

acquisition of the english past tense. Cognition, 61 (3), 299–308.

Pollard, C., & Sag, I. (1994). Head-driven phrase structure grammar. University of

Chicago Press.

Pouget, A., Dayan, P., & Zemel, R. (2000). Information processing with population codes.

Nature Reviews Neuroscience, 1 (2), 125–132.

Quine, W. (1960). Word and object. The MIT Press.

Rabiner, L., & Juang, B. (1993). Fundamentals of speech recognition. Englewood Cliffs,

NJ.

Reber, A. (1967). Implicit learning of artificial grammars1. Journal of verbal learning and

verbal behavior, 6 (6), 855–863.

Redington, M., Crater, N., & Finch, S. (1998). Distributional information: A powerful cue

for acquiring syntactic categories. Cognitive Science: A Multidisciplinary Journal,

22 (4), 425–469.

Regier, T. (2005). The emergence of words: Attentional learning in form and meaning.

Cognitive Science: A Multidisciplinary Journal, 29 (6), 819–865.

Rissanen, J. (1983). A universal prior for integers and estimation by minimum description

length. The Annals of statistics, 11 (2), 416–431.

Rohde, D. (2002). A connectionist model of sentence comprehension and production.

Unpublished doctoral dissertation, Carnegie Mellon University.

Roy, D., & Pentland, A. (2002). Learning words from sights and sounds: a computational

model. Cognitive Science, 26, 113–146.

Rumelhart, D. E., & McClelland, J. L. (1986). Learning the past tenses of english verbs:



Computational models of early language acquisition 57

Implicit rules or parallel distributed processing. In Parallel distributed processing,

Vol. 2: Psychological and biological models (pp. 195–248). Cambridge, MA: MIT

Press.

Rumelhart, D. E., McClelland, J. L., & the PDP Research Group. (1986). Parallel

distributed processing: Explorations in the microstructure of cognition. Cambridge,

MA: MIT Press.

Rumelhart, D. E., & Zipser, D. (1985). Feature discovery by competitive learning*.

Cognitive Science, 9 (1), 75–112.

Saffran, J. R. (2009). What is statistical learning, and what statistical learning is not. In

S. P. Johnson (Ed.), Neoconstructivism: The new science of cognitive development.

Oxford University Press.

Saffran, J. R., Aslin, R., & Newport, E. (1996). Statistical learning by 8-month-old

infants. Science, 274 (5294), 1926.

Saffran, J. R., Hauser, M., Seibel, R., Kapfhamer, J., Tsao, F., & Cushman, F. (2008).

Grammatical pattern learning by human infants and cotton-top tamarin monkeys.

Cognition, 107 (2), 479–500.

Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning

of tone sequences by human infants and adults. Cognition, 70 (1), 27-52.

Saffran, J. R., Newport, E., & Aslin, R. (1996). Word segmentation: The role of

distributional cues. Journal of memory and language, 35 (4), 606–621.

Saffran, J. R., Pollak, S., Seibel, R., & Shkolnik, A. (2007). Dog is a dog is a dog: Infant

rule learning is not specific to language. Cognition, 105 (3), 669–680.

Shannon, C. (1948). A mathematical theory of communication. Bell System Technical

Journal, 27, 379–423, 623–665.

Shannon, C. (1951). Prediction and entropy of printed english. Bell System Technical

Journal, 30 (1), 50–64.



Computational models of early language acquisition 58

Shi, L., Griffiths, T., Feldman, N., & Sanborn, A. N. (in press). Exemplar models as a

mechanism for performing bayesian inference. Psychonomic Bulletin and Review.

Siskind, J. (1996). A computational study of cross-situational techniques for learning

word-to-meaning mappings. Cognition, 61, 39-91.

Smith, K. (1966). Grammatical intrusions in the recall of structured letter pairs: mediated

transfer or position learning? Journal of Experimental Psychology, 72, 580–588.

Smith, K., Smith, A. M., & Blythe, R. A. (in press). Cross-situational word learning:

mathematical and experimental approaches to understanding tolerance of referential

uncertainty. Cognitive Science.

Smith, L. (2000). Learning how to learn words: An associative crane. Becoming a word

learner: A debate on lexical acquisition, 51–80.

Smith, L., Jones, S., Landau, B., Gershkoff-Stowe, L., & Samuelson, L. (2002). Object

name learning provides on-the-job training for attention. Psychological Science,

13 (1), 13.

Smith, L. B., & Yu, C. (2008). Infants rapidly learn word-referent mappings via

cross-situational statistics. Cognition, 106 (3), 1558–1568.

Snedeker, J. (2009). Word learning. In L. Squire (Ed.), Encyclopedia of neuroscience (pp.

503–508). Elsevier.

Snedeker, J., & Gleitman, L. (2004). Why it is hard to label our concepts. Weaving a

lexicon, 257–294.

Solan, Z., Horn, D., Ruppin, E., & Edelman, S. (2005). Unsupervised learning of natural

languages. Proceedings of the National Academy of Sciences of the United States of

America, 102 (33), 11629.

Spelke, E., Breinlinger, K., Macomber, J., & Jacobson, K. (1992). Origins of knowledge.

Psychological Review, 99 (4), 605–632.

Steedman, M. (2000). The syntactic process. MIT Press.



Computational models of early language acquisition 59

Stolcke, A., & Omohundro, S. (1994). Inducing probabilistic grammars by bayesian model

merging. Grammatical Inference and Applications, 106–118.

Swingley, D. (2005). Statistical clustering and the contents of the infant vocabulary.

Cognitive Psychology, 50, 86-132.

Tenenbaum, J., & Griffiths, T. (2001). Generalization, similarity, and Bayesian inference.

Behavioral and Brain Sciences, 24, 629–640.

Thiessen, E., & Saffran, J. (2003). When cues collide: Use of stress and statistical cues to

word boundaries by 7-to 9-month-old infants. Developmental Psychology, 39 (4),

706–716.

Thiessen, E., & Saffran, J. (2007). Learning to learn: Infants’ acquisition of stress-based

strategies for word segmentation. Language Learning and Development, 3 (1),

73–100.

Thompson, S., & Newport, E. (2007). Statistical learning of syntax: The role of

transitional probability. Language Learning and Development, 3 (1), 1–42.

Thothathiri, M., & Snedeker, J. (2008). Syntactic priming during language comprehension

in three-and four-year-old children. Journal of Memory and Language, 58 (2),

188–213.

Todorov, E. (2009). Efficient computation of optimal actions. Proceedings of the National

Academy of Sciences, 106 (28), 11478.

Tomasello, M. (2003). Constructing a language: A usage-based theory of language

acquisition. Harvard University Press.

Toro, J. M., & Trobalon, J. B. (2005). Statistical computations over a speech stream in a

rodent. Perception and Psychophysics, 67 (5), 867-875.

Toscano, J. C., & McMurray, B. (2010). Cue integration with categories: Weighting

acoustic cues in speech using unsupervised learning and distributional statistics.

Cognitive Science, 34, 434–464.



Computational models of early language acquisition 60

Tsao, F., Liu, H., & Kuhl, P. (2004). Speech perception in infancy predicts language

development in the second year of life: a longitudinal study. Child Development,

75 (4), 1067–1084.

Tyler, M., & Cutler, A. (2009). Cross-language differences in cue use for speech

segmentation. The Journal of the Acoustical Society of America, 126, 367.

Vallabha, G., McClelland, J., Pons, F., Werker, J., & Amano, S. (2007). Unsupervised

learning of vowel categories from infant-directed speech. Proceedings of the National

Academy of Sciences, 104 (33), 13273.

Vouloumanos, A. (2008). Fine-grained sensitivity to statistical information in adult word

learning. Cognition, 107 (2), 729–742.

Vouloumanos, A., & Werker, J. (2009). Infants’ learning of novel words in a stochastic

environment. Developmental psychology, 45 (6), 1611–1617.

Waxman, S., & Gelman, S. (2009). Early word-learning entails reference, not merely

associations. Trends in cognitive sciences.

Werker, J., & Tees, R. (1984). Cross-language speech perception: Evidence for perceptual

reorganization during the first year of life. Infant Behavior and Development, 7 (1),

49–63.

Wexler, K., & Culicover, P. (1983). Formal principles of language acquisition. Cambridge,

MA: MIT Press.

Wolff, J. (1975). An algorithm for the segmentation of an artificial language analogue.

British Journal of Psychology.

Wong, Y., & Mooney, R. (2007). Learning synchronous grammars for semantic parsing

with lambda calculus.

Xu, F. (2002). The role of language in acquiring object kind concepts in infancy.

Cognition, 85 (3), 223–250.

Xu, F., & Tenenbaum, J. (2007). Word Learning as Bayesian Inference. Psychological



Computational models of early language acquisition 61

Review, 114, 245.

Yang, C. (2004). Universal Grammar, statistics or both? Trends in Cognitive Sciences,

8 (10), 451–456.

Yu, C., & Ballard, D. (2007). A unified model of early word learning: Integrating

statistical and social cues. Neurocomputing, 70, 2149–2165.

Yu, C., Ballard, D., & Aslin, R. (2005). The role of embodied intention in early lexical

acquisition. Cognitive Science: A Multidisciplinary Journal, 29 (6), 961–1005.

Yu, C., & Smith, L. (2007). Rapid word learning under uncertainty via cross-situational

statistics. Psychological Science, 18 (5), 414–420.

Yurovsky, D., Fricker, D., Yu, C., & Smith, L. B. (2010). The active role of partial

knowledge in cross-situational word learning. In Proceedings of the 32nd annual

conference of the cognitive science society.

Yurovsky, D., & Yu, C. (2008). Mutual exclusivity in crosssituational statistical learning.

Zettlemoyer, L., & Collins, M. (2005). Learning to map sentences to logical form:

Structured classification with probabilistic categorial grammars.

Zettlemoyer, L., & Collins, M. (2007). Online learning of relaxed ccg grammars for

parsing to logical form.

Zettlemoyer, L., & Collins, M. (2009). Learning context-dependent mappings from

sentences to logical form. In Proceedings of the Association for Computational

Linguistics (pp. 976–984).


