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Abstract

Words are the essence of communication: they are the building blocks of any language.
Learning the meaning of words is thus one of the most important aspects of language acqui-
sition: children must first learn words before they can combine them into complex utterances.
Many theories have been developed to explain the impressive efficiency of young children in
acquiring the vocabulary of their language, as well as the developmental patterns observed in
the course of lexical acquisition. A major source of disagreement among the different theo-
ries is whether children are equipped with special mechanisms and biases for word learning, or
their general cognitive abilities are adequate for the task. We present a novel computational
model of early word learning to shed light on the mechanisms that might be at work in this
process. The model learns word meanings as probabilistic associations between words and se-
mantic elements, using an incremental and probabilistic learning mechanism, and drawing only
on general cognitive abilities. The results presented here demonstrate that much about word
meanings can be learned from naturally-occurring child-directed utterances (paired with mean-
ing representations), without using any special biases or constraints, and without any explicit
developmental changes in the underlying learning mechanism. Furthermore, our model provides
explanations for the occasionally contradictory child experimental data, and offers predictions
for the behaviour of young word learners in novel situations.

1 Acquiring a Lexicon

An average six-year-old child knows over 14,000 words, most of which s/he has learned from hearing
other people use them in noisy and ambiguous contexts (Carey, 1978). To better appreciate the
significance of children’s efficiency at such a complex task, let’s repeat here the classic example
by Quine (1960). A linguist visiting a culture with a language different from her own observes a
rabbit scurrying by, while a native says ‘gavagai’. To understand what the word gavagai means in
the new language, the linguist would have to figure out which part of the scene (if any) is relevant
to the meaning of the word. For example, gavagai may mean rabbit, it may refer to the action
performed by the rabbit, it may have been used to catch the linguist’s attention (as in ‘Look!’),
or may mean something totally irrelevant to what the linguist has observed, e.g., ‘sky’. Similarly,
children learning their native language need to map the words they hear to their corresponding
meanings in a scene they observe. In such a situation, the learner may perceive many aspects of
the scene that are unrelated to the utterance they hear (the problem of referential uncertainty).
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Also, the input might be noisy due to some error in the perception or interpretation of the heard
utterance or the observed scene: for example, not all aspects of the utterance meaning may be
directly observable from the scene. In addition, the learner must resolve the alignment ambiguity ,
that is, which word in the utterance refers to which part of the scene.

Clearly, acquiring the meaning of words is an extremely challenging task children encounter
early in life. Nonetheless, they eventually learn the words of their language reasonably quickly and
effortlessly. Much research has thus focused on trying to better understand what mechanisms and
skills underlie children’s impressive performance in word learning. Psycholinguistic studies have
attempted to explain children’s success at this difficult task through examining specific patterns that
are observed in the course of lexical acquisition in children. These patterns include the vocabulary
spurt (i.e., a slow stage of word learning, followed by a sudden increase in the learning rate), and
fast mapping (i.e., the ability to map a novel word to a novel object in a familiar context), among
others. Many theories have been proposed to account for these patterns, each suggesting specific
word learning mechanisms or dedicated mental biases that help children learn the meanings of words
(e.g., Markman and Wachtel, 1988; Behrend, 1990; Golinkoff et al., 1992). As a result, the literature
contains a variety of such mechanisms and biases, sometimes overlapping or even inconsistent with
each other. What is lacking is a unified model of word learning that brings together the suggested
mechanisms and biases, and that accounts for the various aspects of the process, including the
above-mentioned patterns. Section 1.1 further elaborates on the psycholinguistic theories of early
lexical development in children, as well as on our proposed framework for modeling early vocabulary
acquisition.

Computational modeling is a powerful tool for the precise investigation of the hypothesized
mechanisms of word learning: we can carefully study whether a computational model that is based
on a suggested theory or learning mechanism (and is tested on naturalistic data) shows a pattern
of behaviour similar to those observed in children. Many computational models of word learning
have been developed to simulate and account for the observed patterns, such as fast mapping
and the vocabulary spurt. Most of the existing models, however, use simplified input data that
significantly deviates from the naturalistic input children receive from their environment. Some
use data that does not have the properties explained above — noise, alignment ambiguity, and
referential uncertainty (e.g., Li et al., 2004; Regier, 2005), whereas others test their models on
artificially-generated or on very limited input (e.g., Siskind, 1996; Horst et al., 2006). In addition,
not all proposed models incorporate cognitively plausible learning mechanisms (e.g., Yu, 2005;
Frank et al., 2007). Section 1.2 provides more detailed descriptions of the existing computational
models, identifying some of their limitations, and explaining how our proposed model attempts to
address these shortcommings.

1.1 Psycholinguistic Theories of Child Lexical Development

Learning the meaning of a word involves associating a certain mental representation, or concept,
with a word form. Some psychologists consider word learning, especially at early stages, to be based
on simple associative mechanisms (Smith, 2000): a child hears a word, e.g. dog, while chasing a
dog. The child associates the word dog with the concept of a “dog” after repeatedly being exposed
to similar situations. However, not all natural word learning situations are as simple as the one
depicted above. As noted by Carey (1978), children learn most of their vocabulary from hearing
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words used in noisy and ambiguous contexts.1 In such cases, there are infinitely many possible
mappings between words and concepts. Some researchers thus suggest that children use a variety
of attention mechanisms to narrow down parts of the scene described by an utterance, and to focus
on the referred objects (referential learning). For example, Carpenter et al. (1998) and Bloom
(2000) argue that children use their (innate or acquired) social skills to infer the referent of a word
as intended by a speaker. Similarly, Smith et al. (2007) propose the use of embodied cognition in
focusing on the intended portion of a scene described by an utterance.

Most of the above mechanisms only apply to cases where a direct and deliberate dialogue is
taking place between a child and her caretaker, and do not explain learning from the vast amount
of noisy and ambiguous input that children receive from their environment (see Hoff and Naigles,
2002). A powerful and plausible mechanism for dealing with noise and referential uncertainty is
cross-situational learning. It has been suggested that children learn the correct mappings between
words and their meanings from the huge number of possibilities by observing the regularities across
different situations in which a word is used (Quine, 1960; Pinker, 1989; Gleitman, 1990). The cross-
situational learning mechanism suggests that the meaning of a word is consistent across different
occurrences of it, and can be learned by detecting the set of meaning elements that are common
across all usages of the word.

In their original forms, the associative and the cross-situational mechanisms are not precisely
specified. Moreover, these hypotheses are not sufficient for explaining the particular developmental
patterns (e.g., fast mapping) observed in the experimental data gathered from children. Many
researchers thus believe that, in addition to relying on associationist and cross-situational evidence,
children are equipped with dedicated mental biases and/or constraints that help them learn the
meanings of words (e.g., Behrend, 1990). The literature proposes a variety of such biases and
constraints, each accounting for one (or a few) of the observed patterns. For example, the fast
mapping ability in children has been suggested to be due to the principle of the mutual exclusivity
of word meanings (Markman and Wachtel, 1988), or due to a lexical bias towards finding names for
nameless objects/categories (Golinkoff et al., 1992). Other patterns such as vocabulary spurt, or an
initial reluctance towards learning a second label for a familiar object (synonymy), are sometimes
attributed to a change in the underlying learning mechanism. For instance, it has been suggested
that children learn the meaning of their first words through a simple associative process, and later
switch to referential learning, which allows them to learn new words at a faster pace and to learn
synonyms (e.g., Kamhi, 1986; Behrend, 1990; Reznick and Goldfield, 1992).

Although many specific word learning biases and constraints have been proposed, it has yet
to be proven whether and to what extent children depend on them for learning the vocabulary
of their language. Indeed, there are many researchers who argue against the necessity of such
mechanisms and biases for word learning, and suggest that word meanings are acquired through
general cognitive abilities (e.g., Bloom, 2000; Tomasello, 2003). Proponents of this view believe that
the patterns of word learning observed in children (such as the vocabulary spurt and fast mapping)
are a result of simply receiving more input, and that no developmental changes in the underlying
learning mechanisms (e.g., from associative to referential or constraint-based) are necessary (see
also Huttenlocher et al., 1991; Regier, 2005; McMurray, 2007).

Our goal in the present study is to verify this latter view on word learning through computa-

1A study by Brent and Siskind (2001) shows that isolated words form a considerable portion of infant-directed
speech (around 9%). However, receiving such input is not considered to be necessary for word learning since all
normal children eventually learn the vocabulary of their language.
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tional modeling. We thus propose a novel model of early vocabulary acquisition that learns word
meanings using a general probabilistic approach, without incorporating any specific word learning
biases or constraints, and without any explicit developmental changes in the underlying learning
mechanisms. Our computational model learns the meaning of words from naturalistic child-directed
data that contain noise, alignment ambiguity, and referential uncertainty. The model processes in-
put utterances one by one (incrementally), extracting only very simple probabilistic information
which children have been shown to be sensitive to (e.g., Coady and Aslin, 2004). Specifically, the
model incorporates a probabilistic interpretation of cross-situational learning, and bootstraps its
own partially-learned knowledge of the previously-observed words to accelerate word learning over
time. The model exhibits similar behaviours to those observed in children, suggesting that word
meanings can be acquired through general cognitive mechanisms.

1.2 Related Computational Models

The rule-based model proposed by Siskind (1996) is the first to simulate the process of learning
word meanings from ambiguous contexts, and in the presence of noise and referential uncertainty.
The model relies on cross-situational evidence, as well as on a set of specific principles (e.g., the
principle of compositionality), in order to constrain hypotheses about the meaning of each word.
The model is tested on artificially-generated input. It is shown that under these circumstances
the meaning of words can be learned, and certain types of noise and referential uncertainty can be
handled by detecting and ruling out the inconsistent portions of the input. The rule-based nature
of the model, however, limits its adaptability to natural data. For example, it is not possible to
revise the meaning of a word once it is considered as ‘learned’, which prevents the model from
handling highly noisy data.

Other computational models incorporate probabilistic interpretations of the cross-situational
inference mechanism. The word learning model of Yu (2005) uses an existing translation algorithm
proposed by Brown et al. (1993). This model is also used to examine the role of various factors
in word learning, such as social cues (Yu and Ballard, 2008) and syntax (Yu, 2006). In all cases,
however, the models are tested on limited experimental data containing a very small vocabulary, and
with no referential uncertainty. Frank et al. (2007) propose a Bayesian model of cross-situational
word learning that can also learn which social cues are relevant to determining references of words.
Using only domain-general probabilistic mechanisms, their model can explain various phenomena
such as fast mapping and social generalization. Their experiments are also performed on a small
corpus containing a very limited vocabulary. All these models (those used by Yu, 2005, 2006; Yu
and Ballard, 2008; Frank et al., 2007) are non-incremental and learn through an intensive iterative
batch processing of a corpus.

The Bayesian model of Xu and Tenenbaum (2007) provides insights on how humans learn
to generalize category meanings from examples of word usages. Assuming as prior knowledge a
probabilistic version of the basic-level category bias (Rosch et al., 1976; Markman, 1989), Xu and
Tenenbaum’s model learns appropriate category names for exemplar objects by revising the prior
bias through incorporating the statistical structure of the observed examples. Although their model
shows similar behaviour to that of humans performing the same task, the model is tested only in
a specific word learning situation, and on a small sample of object exemplars.

Many connectionist models have also been proposed for learning associations between a word
form and its meaning, and for investigating various patterns in the process of learning. An impor-
tant shortcoming of existing connectionist models is that they rely on a simplified (unnaturalistic)
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input consisting of pairings of a semantic representation with a single word form (or its phonological
representation) — as opposed to full utterances. Regier (2005), for example, proposes an associa-
tive exemplar-based model that accounts for the developmental changes observed in children’s word
learning, such as fast mapping and learning synonymy, without a change in the underlying learning
mechanism. His simulations are performed on small artificially-created training and test data in
highly controlled conditions. Li et al. (2004, 2007) simulate vocabulary spurt and age of acquisition
effects in an incremental associative model. To reduce the interference effect often observed in con-
nectionist models, they specifically incorporate two modes of learning: an initial map organization
mode and a second incremental clustering mode to account for vocabulary growth. Horst et al.
(2006) focus on fast mapping within a connectionist model of word learning, and show that the
behaviour of their computational model matches child experimental data (as reported in a study
by the same authors, Horst and Samuelson, 2008). However, the learning capacity of their model is
limited, and the fast mapping experiments are performed on a very small vocabulary. While each
of these models investigates an interesting aspect of word learning, they do so using artificial and
clean data, which contains no noise or alignment ambiguity or referential uncertainty.

In our proposed model of word learning, we attempt to address many of the shortcommings
of these existing computational models. Specifically, we incorporate only general and cognitively-
plausible learning mechanisms, we perform experiments in naturalistic settings that resemble the
learning environment of children, and we examine the behaviour of our model in a variety of word
learning tasks using large sets of input data. The following sections (Sections 2 and 3) explain our
proposed computational model in more detail.

2 Overview of Our Computational Model

2.1 Basic Assumptions about the Learning Environment

The main focus of our model is to study word learning in a naturalistic context. We assume that
the learner/child is watching a scene while hearing an utterance describing the scene. In realistic
situations, this is not always the case: as noted by Gleitman (1990), “caretaker speech is not
a running commentary on scene and events in view” (see also Bloom, 2000). It is nonetheless
reasonable to assume that very young children starting to learn the meanings of words are exposed
to many utterances that refer to things and situations in the perceptible scene (Veneziano, 2001).
We also assume that when a child hears an utterance while observing a scene, they can establish
a link between the full utterance and the set of meaning elements inferred from the scene through
observation or other means. We thus use pairings of a complete utterance and a set of semantic
elements (or a scene representation) as the basic input to our model.

Specifically, we use naturalistic input pairs with properties similar to those of the input chil-
dren receive from their learning environment. That is, utterance–scene pairs contain referential
uncertainty, alignment ambiguity, and noise, as explained here:

• Referential uncertainty: the representation of a scene may contain meaning elements that are
not relevant to the corresponding utterance.

• Alignment ambiguity: the mappings between specific words in an utterance and specific
meaning elements in the corresponding scene representation are not explicitly marked. (We
also simply use the term ambiguity to refer to the alignment ambiguity in word learning. To
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refer to lexical ambiguity — that a word type may have more than one meaning in a lexicon
— we use the term homonymy.)

• Noise: an utterance may contain words whose appropriate meanings are not included in the
representation of the corresponding scene.

In summary, an utterance may contain words that have no meaning element included in the corre-
sponding scene representation (noise); the scene representation may contain meaning elements with
no corresponding words in the utterance (referential uncertainty); and it is not explicitly indicated
in the input which word refers to which meaning element (alignment ambiguity). Fig. 1 presents
such a situation, where a child hears the utterance Joe is happily eating an apple, while observing
a scene showing “Joe is quickly eating a big red apple with his hands.”

Utterance: Joe is happily eating an apple
Scene: {joe, quickly, eat, a, big, red, apple, hand}

Figure 1: A sample input utterance–scene pair.

In modeling learning in the presence of referential uncertainty, we assume that the potentially
huge space of possible meanings for each utterance has been considerably reduced through some
attentional mechanism. Many such mechanisms have been shown to be used by children in order
to focus on a small subsection of the complex scenes in the real world, such as embodied cognition
(e.g., Smith et al., 2007), using social cues such as eye gaze and gesture (e.g., Baldwin et al.,
1996; Kalagher and Yu, 2006), or incorporating skills of social cognition and theory of mind for
understanding the intention of the speaker (Carpenter et al., 1998; Bloom, 2000). Although we
assume that such a mechanism is in play prior to the selection of the scene representation in our
input data, we do not make any claims on the nature of this attention mechanism. Moreover, we
assume that although the use of such a mechanism helps the learner to focus on a set of possibly
relevant concepts or objects or events in the scene, some uncertainty still remains. Section 4
provides detail on how we simulate referential uncertainty in the input.

To disentangle the problem of word learning from other acquisition problems, we make several
simplifying assumptions in our model. Learning the meaning of a word in our model is restricted
to the acquisition of associations between a word form (e.g., ball) and a symbol (ball) specifying
either a concept or the referent of the word in the real world. Currently, in our model, we do not
distinguish between the referent of a word, which is an object or an event in the real world, and
a concept that is an internal mental representation of the word’s meaning. We thus use the terms
meaning and referent (or object) interchangeably throughout the paper, and use the same symbol
(e.g., ball) for both. Although syntactic and morphological properties of a word (such as its part
of speech or case marking), as well as its relation to other words, are also considered as part of
the word’s meaning (Carey, 1978; Gleitman, 1990; Gleitman and Gillette, 1994), here we do not
address the acquisition of such properties.

We also assume that the (non-trivial) task of word segmentation is performed prior to word
learning (Jusczyk and Aslin, 1995; Aslin et al., 1998; Mattys et al., 1999; Johnson and Jusczyk,
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2001).2 In addition, we assume that by the time children start to learn word meanings, they can
form conceptual representations from the perceived scenes (Mandler, 1992; Golinkoff et al., 1995).
That is, both the input utterance and the scene representation are broken down into appropriate
units (i.e., words and meaning elements). Both of these tasks are most likely interleaved with word
learning: it has been shown that partial knowledge of word meaning is used in speech segmentation
(Brent, 1996), and that learning word meanings contributes to the formation of concept categories
(Bowerman and Choi, 2003; Choi and McDonough, 2007). However, in this paper, we study word
learning as an isolated process of mapping words to their meanings.

Finally, in processing utterance–scene pairs, we represent words in their root form and ignore
the syntactic properties of the sentence. Morphology and syntax are valuable sources of knowledge
in word learning, and it has been shown that children are sensitive to morphological and syntactic
cues from an early age (Naigles, 1990; Naigles and Kako, 1993; Fisher, 1996; Gertner et al., 2006). In
fact, it has been argued that the meaning of some verbs cannot be learned through cross-situational
learning only, and the knowledge of syntax is vital for their acquisition (Gentner, 1978; Gleitman,
1990). For example, many verbs describe a particular perspective on events that cannot be inferred
merely by cross-situational analysis (e.g., ‘buying’ and ‘selling’ almost always happen at the same
time). Future work will need to integrate these information sources into the model.

2.2 Overview of the Learning Algorithm

We define word meaning as a probabilistic association between a word form and a concept. These as-
sociations (or word meanings) are learned based on a probabilistic interpretation of cross-situational
learning. Experimental data on children suggest that they are sensitive to cross-situational statis-
tics, and that they use such information in word learning (Forbes and Farrar, 1995; Smith and Yu,
2007).

We attempt to find the best mapping between each word and each meaning element from a
sequence of utterance–scene pairs similar to the pair presented in Fig. 1 on page 6. We view this
task as analogous to learning a bilingual word-list that contains the equivalences between words
in two different languages. The word learning algorithm we propose here is thus an adaptation of
an existing model for automatic translation between two languages: the IBM Translation Model
1, originally proposed by Brown et al. (1993). Unlike the original model (and the version used by
Yu 2005 as a computational model of word learning), our adaptation is incremental and does not
require an iterative batch process over an entire set of input pairs.

The model maintains a meaning representation for each word as a probability distribution over
all of the possible meaning elements. We refer to this distribution as the meaning probability of
the word, and refer to the probability of an individual meaning element in this distribution as
the meaning probability of that element for the word. In the absence of any prior knowledge, all
meaning elements are equally likely to be the meaning of a word. Hence, prior to receiving any
usages of a given word, the model assumes a uniform distribution over meaning elements as its
meaning. The input pairs are processed one by one, and discarded after being processed. After
processing each input pair, the meaning probabilities for all the words in the current utterance are
updated.

2Experimental data in these studies show that infants as young as 8 months old are sensitive to speech cues and
have substantial segmentation capabilities. Several computational models have also demonstrated the usefulness of
speech cues for word segmentation (see, e.g., Brent and Cartwright, 1996; Goldwater et al., 2007).
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joe quickly eat a red handapplebig

Joe happily eating an apple

Figure 2: Sample alignments between words in an utterance, and meaning elements in the corresponding
scene representation. Thickness of a line indicates the strength of the established alignment; dashed lines
represent very weak alignments. For readability, only a subset of the alignments are shown.

As the first step in processing an input pair, the meaning/referent of each word in the utterance
must be determined from the corresponding scene — that is, words in the utterance must be aligned
with the meaning elements in the scene. Our model does so through calculating an alignment
probability for each word in an utterance and each meaning element in the corresponding scene.
Fig. 2 depicts some hypothetical alignments established between words and meaning elements in
the utterance–scene pair of Fig. 1. Each alignment between a word and a meaning symbol is shown
as a line whose thickness indicates the strength of the alignment (i.e., the value of the alignment
probability).

To calculate the alignment probabilities, we use the partially-learned knowledge of the model
about the meanings of words (reflected in their meaning probabilities). That is, the probability of
aligning a meaning element and a word is proportional to the meaning probability of that meaning
element for the word. In addition, we assume that words in an utterance tend to contribute
non-overlapping elements in the corresponding scene. In other words, if there is evidence in the
meaning probabilities (prior to receiving the current input pair) that a meaning element in the
current scene is strongly associated with a word in the current utterance, it is less likely for the
meaning element to be (strongly) aligned with another word in the same utterance. Fig. 2 presents
a situation where the model encounters an utterance including some familiar words (e.g., Joe, an,
eating) and some novel ones (e.g., apple). For two of the familiar words, an and eating, the model
has learned strong associations between the word and its correct meaning, and hence establishes
high-confidence alignments between the two (shown as very thick lines). For a word whose meaning
is not learned yet (e.g., apple), uniform (and weak) alignments are established between the word
and those meaning elements that are not strongly aligned to any other word in the utterance (here,
quickly, big, red, apple, and hand). Intuitively, the model assumes that all five of these elements
are equally likely to be the meaning of the novel word apple, and that it is not very likely that
the other elements (e.g., joe, eat, a) are the meaning of this word. Even though the model has
previously seen the word Joe co-occurring with its meaning, it has not yet established a reliable
association between the two. Thus, the model establishes a somewhat strong alignment between
Joe and its meaning, but also some weaker alignments between the word and the novel meaning
elements in the scene representation (shown as dashed lines).

As the second step of processing an input pair, the meaning probabilities of the words in the
current utterance are updated according to the accumulated (probabilistic) evidence from prior
co-occurrences of words and meaning elements (reflected in the alignment probabilities). This
evidence is collected by maintaining a running total of the alignment probabilities over all input
pairs encountered so far. The running total for a word and a meaning element — referred to as the
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red handjoe aquickly bigeat apple

apple

eating

Figure 3: A greyscale representation of the meaning probability distributions for the words eating and apple.
Intensity of the color of each small box shows the confidence of the model in mapping a specific symbol to
a specific word in the learned lexicon.

association score between the two — is increased by their alignment probability (a value between 0
and 1) every time the two appear together in an input pair. In other words, each time a word and
a meaning element appear in an input pair together, we add to their association score a probability
that reflects the confidence of the model that their co-occurrence is indeed because the meaning
element is associated with the word. In summary, in this step the model updates the association
scores for all of the words and meaning elements in an input pair based on the calculated alignment
probabilities for that pair, and then revises the meaning probabilities of the words in the utterance
accordingly. Fig. 3 shows two sample meaning probability distributions after processing the input
pair presented in Fig. 2. For the word eating whose meaning has already been learned by the
model, the meaning probability distribution is skewed towards the correct meaning element eat.
The meaning probability distribution for the novel word apple shows that its meaning is not learned
yet, but also that the model has formed a probabilistic assumption about the possible meanings of
the word.

The two steps explained above are repeated for all input pairs, one at a time. Fig. 4 presents an
example of how the model learns the meaning of a word by processing several input pairs containing
usages of the word. The figure depicts the change in the meaning probability distribution for the
word ball after processing each of the six utterance–scene pairs given in the top portion of the figure.
Utterances are all taken from the CHILDES database (MacWhinney, 2000); see Section 4.1 for
more details. (Note that the scene representations contain irrelevant meaning symbols, simulating
referential uncertainty. Also, noise is added to the fourth input pair by removing the meaning
element ball from the scene representation.) At first, all symbols are equally likely to be the
meaning of ball, albeit with a very small probability (t = 0, not shown in the figure). After receiving
the first input pair (t = 1), the meaning probability of ball slightly increases for those symbols
appearing in the scene, and slightly decreases for other (unseen) symbols (note the difference in the
intensity of the colors for the observed symbols and for the unseen ones). Processing the second
input pair causes an increase in the probability of symbols that are common between the first and
the second input pairs (i.e., a, ball, be), and a decrease in the probability of the other symbols.
Receiving more input in which ball co-occurs with ball causes the meaning probability of ball to
become more and more skewed towards its correct meaning ball. Note that receiving a noisy input
pair (t = 4) does not adversely affect the learning process, but may make it slower (the meaning
probabilities do not change substantially between t = 3 and t = 4).
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Utterance Scene

shall we find you a ball {shall, we, find, you, a, ball, oh, here, be}
with a ball {with, a, ball, that, be, right}
the ball there {the, ball, there, and, what, about, boat}
get your other ball under there look {get, your, other, under, there, look, cooker}
the ball what {the, ball, what, touch, it}
do you kick the ball {do, you, kick, the, ball, what, else}

w
e

shall

here

ohball

afind

you

w
hat

there

right

the

that

w
ith

be

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

Figure 4: A trace over time of the meaning probability distribution for the word ball.

3 Details of the Probabilistic Model

3.1 Utterance–Scene Input Pairs

The input to our word learning model consists of a sequence of utterance–scene pairs that link a
scene representation (what the child perceives or conceptualizes) to the utterance that describes it
(what the child hears). We represent each utterance as a set of words, and the corresponding scene
as a set of meaning symbols, as in:

1. U(t) : Joe is rolling a ball

S(t) : {joe, happy, roll, a, red, ball, hand, mommy, talk}

where the superscript t stands for the time at which the current input pair is received — that is,
t uniquely identifies the current input pair. U(t) stands for the current utterance, and S(t) for the
current scene. The above pair represents a situation where a child hears the utterance Joe is rolling
a ball, while observing that “Joe is happily rolling a red ball with his hand while talking to his
mom.” Section 4 provides details on how the utterances and the corresponding meaning symbols
are selected to form the input pairs.
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3.2 Word–Meaning Associations

Given a corpus of pairings between utterances and their corresponding scene representations, our
model learns the meaning of each word w as a probability distribution p(.|w) over all the meaning
symbols appearing in the corpus. In this representation, p(m|w) is the probability of a symbol m
being the meaning of a word w, reflecting the strength of the association between m and w. As
the learning proceeds, the meaning probability distribution for a word w is expected to become
skewed towards the symbol mw that is the “correct” meaning of w. For example, if the model has
learned the correct meaning of the word ball , we expect p(ball|ball) to be very high (close to 1),
and p(m|ball ) for every m other than ball to be very low (close to 0). The final greyscale diagram
in Fig. 4 (at t = 6) depicts the meaning probability for the word ball when the meaning of the word
is considered to be learned by the model.

3.3 The Algorithm

Step 1: Calculating the alignment probabilities. Recall from Section 2.2 that for a given
utterance–scene pair, U(t)–S(t), the likelihood of aligning a symbol in the scene with a word in the
utterance is proportional to the meaning probability of the given symbol for the word. In addition,
we assume that the words in U(t) are more likely to contribute non-overlapping portions of the
meaning represented in S(t): a meaning symbol in the scene is likely to be strongly aligned with no
more than one of the words in the corresponding utterance.3 More formally, for a symbol m ∈ S(t)

and a word w ∈ U(t), the higher the probability of m being the meaning of w (according to p(m|w)
at the time of receiving the current input pair), the more likely it is that m is aligned with w in
the current input. In other words, a(w |m, U(t), S(t)) is proportional to p(t−1)(m|w). Moreover, if
there is strong evidence that m is the meaning of another word in U(t) — i.e., if p(t−1)(m|w′) is high
for some w′ ∈ U(t) other than w — the likelihood of aligning m to w should decrease. Combining
these two requirements:

a(w |m, U(t), S(t)) =
p(t−1)(m|w)∑

w ′∈U(t)∪{d}

p(t−1)(m|w ′)
(1)

where a(w |m, U(t), S(t)) stands for the probability of aligning w and m in the current utterance–scene
pair, and d represents a dummy word that is added to the utterance as a smoothing factor, prior
to calculating the alignment probabilities. The denominator is a normalizing factor (to get valid
probabilities) that also has the effect of decreasing the alignment probability for w if other words
w′ have a high probability for m.

By adding the dummy word, we do not require that each meaning element from the scene
be aligned with a word from the utterance. Recall that a scene representation contains symbols
that are irrelevant to the meaning of the words in the corresponding utterance. The irrelevant
meaning symbols (which do not have a counterpart in the utterance) may thus be aligned with the

3Note that due to the probabilistic nature of the alignments, one meaning symbol in the scene may be weakly

aligned with many words in the corresponding utterance. This is indeed the case when the model does not have any
prior knowledge of the meaning of words in an utterance. Also note that this assumption differs from what is widely
known as the principle of contrast (Clark, 1990), which assumes contrast across the entire vocabulary. Instead, we
assume a probabilistic contrast among the meanings of the words within an utterance.
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dummy word. Since the dummy word is added to every utterance–scene pair, over time its meaning
probabilities reflect the relative frequency of the meaning elements encountered in the input. Due
to this accumulated probabilistic knowledge, if a previously observed (familiar) meaning element
appears in an input pair without its associated word, the meaning element is likely to be aligned
with the dummy word rather than a new word in the input. By contrast, a novel meaning is
more likely to be aligned with a new word in the utterance, since it has not been linked to the
dummy word earlier. We investigate one of the interesting effects of this informed smoothing on
the acquisition of second labels (synonyms) in Section 8.

Step 2: Updating the word meanings. On the basis of the evidence from the alignment
probabilities calculated for the current input pair, we update the probabilities p(.|w) for each
word w ∈ U(t). We add the current alignment probabilities for w and the symbols m ∈ S(t) to the
accumulated evidence from prior co-occurrences of w and m. We summarize this cross-situational
evidence in the form of an association score, which is updated incrementally:

assoc(t)(w, m) = assoc(t−1)(w, m) + a(w|m, U(t), S(t)) (2)

where assoc(t−1)(w, m) is zero if w and m have not co-occurred prior to receiving the current input
pair. The association score of a word and a symbol is basically a weighted sum of their co-occurrence
counts: instead of adding one each time the two have appeared in an utterance–scene pair together,
we add a probability that reflects the confidence of the model that their co-occurrence is because
m is the meaning of w.

The model then uses these association scores to update the meaning of the words in the current
input pair:

p(t)(m|w) =
assoc(t)(m, w) + λ∑

m′∈M

assoc(t)(m ′, w) + β × λ
(3)

where M is the set of all symbols encountered prior to or at time t, β is the expected number of
symbol types, and λ is a small smoothing factor. Basically, the meaning probability of a symbol m
for a word w is proportional to the association score between the two. The denominator is simply a
normalization factor to get valid probabilities for p(.|w). If a word is novel, this formulation results
in a uniform probability of 1/β over all m ∈ M for the novel word. For a familiar (previously seen)
word w, a meaning symbol m that has not previously co-occurred with it would have a probability
p(m|w), which is generally smaller than λ.

Our model updates the meaning of a word every time the word appears in an utterance. For
a learned word w, we expect the probability distribution p(.|w) to be highly skewed towards its
correct meaning mw. An input-generation lexicon contains the correct meaning for each word, as
described in Section 4. Note that the model does not have access to this lexicon for learning; it is
used only for input generation and evaluation. In other words, p(t)(mw|w) — which indicates the
strength with which w has been learned at time t — should be reasonably high for a learned word.
For ease of reference, we refer to p(t)(mw|w) as the comprehension score of w at time t:

comprehension score(t)(w) = p(t)(mw|w) (4)
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and consider a word w to be accurately learned if its comprehension score exceeds a predefined
threshold, θ. Also, from this point on, we may simply use p(m|w) (omitting the superscript (t)) to
refer to the meaning probability of m for w at the present time of learning.

4 Experimental Setup

We perform a variety of experiments (presented in Sections 5–8), in which we train our model on
input resembling what children receive, and then compare its word learning behaviours to those
observed in children. Specifically, we perform two groups of experiments. In one group, we let the
model process a large number of input pairs one by one (incrementally), and examine its lexical
acquisition behaviour over time — where time is measured as the number of input utterance–scene
pairs processed. These experiments simulate word learning by children in a naturalistic setting. In
these, we use a subset of the full corpus as training data, containing 20,000 (or fewer) input pairs
(see Section 4.1 below for details on the creation of the corpus). As specified in each particular
experiment, the training pairs may or may not contain noise and/or referential uncertainty.

A second group of experiments simulate specific word learning tasks performed by children in a
laboratory setting. In these experiments, we first train our model on a small random subset of the
full corpus (typically containing 1000 pairs), and then present the model with contrived test pairs,
each simulating a particular experimental condition. The initial training data is used to simulate
some amount of learning in the model prior to being exposed to the test pairs. In our experiments,
we found that the exact number of training pairs was not important. In such cases, we report
results of 20 random simulations of the same experiment, either by taking their averages or by
showing some representative sample, in order to avoid behaviour that is specific to a particular
sequence of input pairs.

Next, we elaborate on the properties and sources of the data we use in our experiments (Sec-
tion 4.1), and discuss the values we choose for the parameters of the learning algorithm (Section 4.2).

4.1 Input Data

We train our model on naturalistic utterances paired with automatically-generated scene repre-
sentations corresponding to the utterances. The utterances are taken from the Manchester corpus
(Theakston et al., 2001) in the CHILDES database (MacWhinney, 2000). The Manchester corpus
contains transcripts of caretakers’ conversations with 12 children between the ages of 1; 8 and 3; 0
(years;months). The original corpus contains a number of recording sessions for each child. In order
to maintain the chronological order of the data (with respect to the children’s age), we concatenate
the first sessions from all children, then the next sessions, and so forth. We then preprocess the
transcripts by removing punctuation and lemmatizing nouns and verbs.

There is no semantic representation of the corresponding scenes available from CHILDES.
Therefore, we automatically construct a scene representation for each utterance, as a set con-
taining the correct meanings of the words in that utterance. We get these from an input-generation
lexicon that contains a symbol associated with each word as its meaning. An excerpt from the
input-generation lexicon is shown in Fig. 5(a); sample utterances from CHILDES and their scene
representations are given in Fig. 5(b). Note that, in the input-generation lexicon, each word has
one meaning. That is, in most of our experiments, we assume the input does not contain any
homonymous words. We return to the acquisition of homonyms in our final set of experiments
presented in Section 8.
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Recall that we do not assume that children always form complete semantic representations of
the scene they perceive. To simulate such noise in our input, we pair a proportion of the utterances
with noisy scene representations, where we do not include the meaning of one word (at random)
from the utterance. A sample noisy input pair can be found in Fig. 5(c), in which the scene
representation is missing the meaning of chitchatting. The experiments reported in this article are
performed on a corpus with 20% noisy pairs (unless stated otherwise).

To simulate referential uncertainty, we use every other sentence from the original corpus, pre-
serving their chronological order. We then pair each sentence with its own scene representation
as well as that of the following sentence in the original corpus. Note that the latter sentence is
not used as an utterance in our input; see Fig. 5(d) for a sample set of utterances with referential
uncertainty generated from the six utterance–scene pairs from 5(b). Our assumption here is that
consecutive child-directed utterances taken from a recorded session of parent–child conversations
are likely to be talking about different aspects of the same scene. Thus the extra semantic sym-
bols that are added to each utterance correspond to meaningful and possibly relevant semantic
representations, as opposed to randomly selected symbols (as in, e.g., Siskind, 1996). In the full
resulting corpus containing 173, 939 input pairs, each utterance is, on average, paired with 78%
extra meaning symbols, reflecting a high degree of referential uncertainty.

4.2 Parameters

We set the parameters of our learning algorithm using a development data set, a portion of the
full corpus set aside for development purposes only and not used as part of the training or test
data in our experiments. The expected number of symbols, β in equation (3), is set to 8500
based on the total number of distinct symbols extracted for the development data. Therefore,
the default probability of a symbol for a novel word will be 1/8500 ≈ 10−4. A familiar word,
on the other hand, has been seen with some symbols before. Therefore, the probability of a
previously unseen symbol for it (which, based on equation (3), is generally smaller than λ) must
be less than the default probability mentioned above. Accordingly, we set λ to 10−5. In our
experiments, we often need to decide whether the meaning of a particular word is learned by our
model. Recall from Section 3.3 that we assume a word is learned if its comprehension score exceeds
a threshold θ. In the experiments reported here, we set θ to 0.7 (unless stated otherwise), a value
determined by examining the performance of the model over the development data. Given the large
number of meaning elements in total, a substantial portion of the probability mass for a word is
assigned to irrelevant meaning elements (those other than the correct meaning of the word), even
if each individual probability is very small. Thus, we consider 0.7 a reasonably large portion of the
probability mass to assign to the single correct meaning element.

5 Overall Learning Patterns

This section examines the overall learning behaviour of our model. First, we investigate the ability
of the model in learning mappings between words and their meanings (Section 5.1), and how this
ability is affected by noise and referential uncertainty in input (Section 5.2). Next, we look into
the role of frequency in the acquisition of word meanings in the model (Section 5.3).
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(a) An excerpt from the input-generation lexicon:

Word Meaning symbol

but but

very very

boring boring

now now

mommy mommy

· · · · · ·

(b) Sample utterances from the Manchester corpus, along with their scene representations (without noise
and uncertainty):

Utterance: but it is very boring
Scene: {but, it, is, very, boring}

Utterance: are we going to play now
Scene: {are, we, going, to, play, now}

Utterance: did you get fed up of mommy chitchatting
Scene: {did, you, get, fed, up, of, mommy, chitchatting}

Utterance: was I a bit boring
Scene: {was, i, a, bit, boring}

Utterance: what do you want to play
Scene: {what, do, you, want, to, play}

Utterance: let I play a game
Scene: {let, i, play, a, game}

· · · · · ·

(c) A noisy input pair:

Utterance: did you get fed up of mommy chitchatting
Scene: {did, you, get, fed, up, of, mommy}

(d) Sample utterance–scene pairs with referential uncertainty; the second pair also contains noise:

Utterance: but it is very boring
Scene: {but, it, is, very, boring, are, we, going, to, play, now}

Utterance: did you get fed up of mommy chitchatting
Scene: {did, you, get, fed, up, of, mommy, was, i, a, bit, boring}

Utterance: what do you want to play
Scene: {what, do, you, want, to, play, let, i, a, game}

· · · · · ·

Figure 5: Excerpts from the input-generation lexicon, and sample utterance–scene pairs with or
without noise and referential uncertainty. 15
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kiss (f=18) fish (f=33) book (f=63) car (f=236)

Figure 6: Change in the comprehension scores of four sample words as more usages of the words are
processed.

5.1 Convergence and Learning Stability

Our learning algorithm revises the meaning of a word every time it is heard in an utterance; thus
the model can handle noise by revising an incorrectly learned meaning. It is however important to
ensure that the learning is stable despite this constant revision — that is, the meaning of earlier-
learned words is not corrupted as a result of learning new words (the problem of catastrophic
interference often observed in connectionist models). If learning is stable, we expect the compre-
hension scores for words generally to increase over time as more and more examples of the word
usages are encountered in the input. To verify this, we train our model on 20,000 input pairs with
noise and referential uncertainty (as explained in Section 4), and look at the patterns of change in
the comprehension scores of words over time.

Fig. 6 shows the change in the comprehension scores of four sample words over time. The
words are chosen from different frequency ranges, from kiss having a low frequency of 18 (in 20,000
utterances), to car having a high frequency of 236. For all four words, the comprehension scores
show some fluctuation at the beginning, but they converge on a high value as more examples of the
word are observed. Fig. 7 depicts the change in the average comprehension score of all words, as well
as of those which have been learned at some point (i.e., their comprehension score has surpassed the
threshold θ). The average comprehension score of all words increases rapidly and becomes stable
at around 0.7 after processing around 6,000 input pairs, reflecting the stability in learning. Not
surprisingly, the average comprehension score of the learned words increases more quickly (almost
instantaneously) and reaches a higher value (around 0.85). This difference is expected since the
learned words all have comprehension scores exceeding 0.7.

The stability in the comprehension scores reveals that, in general, after the model has observed
a word in a variety of contexts and has converged on some meaning for it, it becomes less and less
likely that the word has a completely different meaning. Nonetheless, our model does not fix the
meaning of a word — even after a strong association between the word and a meaning element is
acquired — giving the model the ability to revise an incorrect meaning learned due to noisy input,
as well as the ability to learn the secondary meaning of a homonymous word (see Section 8 for
more details on the latter).

5.2 Effects of Noise and Referential Uncertainty

Here, we look into how the learning process in our model is affected by the noise and the uncertainty
in the input. First, we examine the effect of referential uncertainty: we train our model on 20,000
input pairs, both with and without uncertainty, and look at the difference in the rate of word
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Figure 7: Change over time in the average comprehension scores of all words, as well as for learned words
(i.e., words whose comprehension score exceeds a predefined threshold). Time is measured as the number of
input utterance–scene pairs processed.

learning over time in the two conditions. (In both conditions, the input contains 20% noise since
our analysis presented later shows the effect of noise to be constant.) Fig. 8(a) depicts the learning
rates, measured as the proportion of learned words over time. The bottom curve shows the learning
pattern for input with referential uncertainty, and the top one shows the results for data without
uncertainty. In both cases, the proportion of learned words increases over time, with a rapid pace
at early stages of learning, and a more gradual pace later. The plots show that the task of word
learning is much easier in the absence of referential uncertainty, reflected in the sharp vocabulary
growth, as well as in the high proportion of learned words in this condition (90% compared to 70%).

Next, let’s examine the effect of noise on learning. Fig. 8(b) depicts the learning rates on input
(with referential uncertainty), with and without noise. The curves show that noise has a constant
(though minimal) effect on the learning rates: even in the presence of a high rate of noise in the
input (20%), the model learns the meaning of most words. Moreover, the difference in the learning
rates in the absence and presence of noise is not substantial, reinforcing the robustness of the
probabilistic model.

We observe that the adverse effect of referential uncertainty on word learning is much more
pronounced than that of noise. This difference can be attributed to a corresponding difference in
the proportions of uncertainty and noise in our data. On average, each utterance is paired with
78% irrelevant meaning symbols, whereas only 20% of our input pairs are noisy, and even these
are missing only one meaning symbol. We believe this difference is justified since it is much more
likely that the learner/child perceives aspects of a scene that are irrelevant to the corresponding
utterance, as opposed to not being able to observe or conceptualize the meaning of a word from
the utterance.

Overall, our model is robust to noise and referential uncertainty in the input, but learning
gets slower with data that contains these. The observed patterns suggest that cleaner data makes
word learning easier. These results are consistent with the findings of Brent and Siskind (2001) that
children’s access to words in isolation (used with their referents specified clearly and unambiguously)
helps them acquire the words faster. Psycholinguistic studies have shown that the socioeconomic
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Figure 8: Difference in the learning rates: (a) for input with and without referential uncertainty; (b) for
input with and without noise.

and literacy status of mothers affect the quantity and the properties of the mothers’ speech directed
to their children (Schachter, 1979; Ninio, 1980; Pan et al., 2005), and this in turn affects the
pattern of vocabulary production in the children. For example, Pan et al.’s experiments show that
nonverbal input (e.g., pointing) has a positive effect on children’s vocabulary growth, reinforcing
that cleaner data (with less referential uncertainty) accelerates vocabulary acquisition. Similarly,
Schachter’s analysis shows that socioeconomically-advantaged mothers tend to produce significantly
more responsive talk (directed to their children), and that children of advantaged mothers tend to
produce more speech. Nonetheless, our model is capable of learning the meanings of words, even in
the presence of a high degree of noise and referential uncertainty, which is congruent with the fact
that all (normal) children eventually learn the vocabulary of their language (see Pan et al., 2005,
who also find that some differences in maternal input mainly affect vocabulary growth at earlier
stages of learning).

5.3 Effect of Frequency in Word Learning

Here, we examine the role of frequency in word learning by looking into the relation between a
word’s frequency and how easily the model learns it. Specifically, we train our model on input
that contains noise and referential uncertainty, and examine the difference in the learning rates for
words from different frequency ranges. Fig. 9 displays four learning curves: one for all words in the
input, and three others, each for words which have appeared in the input at least twice, three times
or five times, respectively. (Note that low frequency words are only removed from the evaluations,
and not from the input data.) A comparison of the curves shows that the more frequent a word is,
the more likely it is to be learned. In particular, when only considering the learning rate of words
with a minimum frequency of five, learning is as easy as when there is no referential uncertainty in
the input (cf. the top curves in Fig. 8(a) and Fig. 9). These observations conform with the findings
of Huttenlocher et al. (1991) who show that there is a high correlation between the frequency of
usage of a word in mothers’ speech and the age of acquisition of the word. Results of experiments
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Figure 9: Effect of frequency: difference in the rate of learning words from different frequency ranges.

by Schachter (1979), Naigles and Hoff-Ginsberg (1998), and Hoff and Naigles (2002) also suggest
that the frequency of words has a positive effect on their acquisition.4

6 Vocabulary Growth

Examining the patterns of children’s vocabulary growth over the course of lexical development has
provided researchers with insight on the mechanisms that might be at work for word learning, as
well as on whether and how these mechanisms change over time. We thus look at the change in the
pattern and rate of word learning over time in our model (Section 6.1), and accordingly suggest
some possible sources for the patterns we observe (Section 6.2).

6.1 The Developmental Pattern of Word Learning

Longitudinal studies of early vocabulary growth in children have sometimes shown that vocabulary
learning is slow at the very early stages of learning, then proceeds to a rapid pace, and finally
becomes less active (e.g., Kamhi, 1986; Gopnik and Meltzoff, 1987; Reznick and Goldfield, 1992).
The middle stage of such a progression is often referred to as the vocabulary spurt . Vocabulary spurt
has been suggested to arise from qualitative changes in the nature of lexical acquisition over time,
e.g., a shift from an associationist to a referential word learning mechanism (Nazzi and Bertoncini,
2003), a sudden realization that objects have names or the naming insight (Kamhi, 1986; Reznick
and Goldfield, 1992), the development of categorization abilities (Gopnik and Meltzoff, 1987), or
the onset of word learning constraints (Behrend, 1990). The common belief among the proponents
of this view is that children’s early words (those learned prior to the spurt) are learned through
a slow associative process, whereas for learning later words children need to make use of biases
and/or constraints such as those mentioned above.

4A different conclusion was made by Pan et al. (2005) who did not find an independent (significant) effect of
mothers’ tokens on vocabulary growth in children. Nonetheless, their results revealed a positive effect of the produced
types on word learning, and a positive correlation between types and tokens.
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Psycholinguistic experiments examining patterns of vocabulary growth have often shown sub-
stantial individual differences among children, both with respect to whether they show a vocabulary
spurt, and with regard to the age at which the spurt is observed, if at all (Huttenlocher et al., 1991;
Reznick and Goldfield, 1992; Ganger and Brent, 2004; Pan et al., 2005). Moreover, there is no
agreed-upon method for identifying a true spurt in the course of lexical development of a child.
Thus, what might be viewed as a spurt by one researcher may be considered as a gradual increase
by another. For these reasons, another group of researchers have argued against the existence of
a sudden spurt, and have instead suggested that the rate of word learning increases in a more lin-
ear and gradual fashion (e.g., Bates and Carnevale, 1993; Bloom, 2000; Ganger and Brent, 2004).
Proponents of this view believe that the vocabulary growth rate is faster at early stages of word
learning largely due to the properties of the input children receive from their environment (McMur-
ray, 2007). Huttenlocher et al. (1991), for example, suggest that the acceleration in word learning
during early stages might be in part due to an indirect effect of exposure, as reflected in the current
levels of lexical knowledge in the learner.

We examine the pattern of vocabulary growth (i.e., the rate of word learning) in our model to
see whether we observe a sudden or a gradual increase in the learning rate. Whatever pattern we
observe in the behaviour of our model emerges in the absence of any particular developmental change
or shift in the underlying learning mechanism, since our model incorporates a single mechanism of
vocabulary acquisition at all stages of learning. Such an analysis would help us better understand
possible causes of a (sudden or gradual) increase in the rate of learning words in the course of
lexical acquisition, and the extent to which the changes in the vocabulary growth correlate with
the input. To examine the pattern of vocabulary growth in individual children, here we train our
model separately on data from each of the 12 children in our corpus (instead of the usual training
on a subset of the corpus containing 20,000 input pairs).

Fig. 10 depicts the change in the proportion of learned words as a function of the number of
word types received at each point in time. The figure plots the vocabulary growth curve for each
child as the model processes the corresponding training pairs for that child. The number of training
pairs for the different children varies from around 10,000 to just above 18,000, and the total number
of word types in the input ranges from 1387 to 2556. The general pattern of growth is similar for
all children: growth rate is higher at the early stages, but gradually decreases as more input is
processed. The observed pattern can be attributed to the property of our model that uses its own
learned knowledge of word meanings to facilitate the learning of new words. Learning is slow at
the beginning because the model has no knowledge of word meanings. As the model learns some
words, it can bootstrap on this knowledge to acquire new words. This observation is in line with
those studies suggesting that the more words the word learner (a child or a computational model)
acquires, the easier it gets for it to learn the meaning of novel words (Huttenlocher et al., 1991; Yu,
2008). We test our model on realistic data in which new words are received continually; nonetheless,
the learning gradually becomes slower, perhaps mainly due to a corresponding decrease in the rate
of hearing new words.

Similar to the results of experiments on children, here we observe individual differences with
respect to the rate of increase in the vocabulary size. Indeed, we can identify two groups of children:
one with a sharp vocabulary growth at early stages (first group, shown as solid curves), and the
other one with a less steep increase in growth rate (second group, depicted as dashed curves). The
learning curves of the children in the first group are all higher than those of the second group,
suggesting a faster vocabulary growth in the former group. A closer look at the different training
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Figure 10: The patterns of change in the rate of word learning as new words are received.

pairs for the two groups of children reveals that the second group — for whom learning appears
to be harder — receives utterances that are on average longer than those received by the first
group. This observation is based on the values of the mean length utterance (MLU) calculated
over the first 100 utterances: the average MLU of data for children in the first group is 3.66,
whereas that of the second group is 4.32.5 In a related study, Brent and Siskind (2001) show the
accelerating effect of isolated words — utterances of length one — on early word learning. Our
findings, however, are more general and predict that children receiving longer utterances (involving
higher degrees of alignment ambiguity), may have a harder time learning the meanings of words. In
contrast to this prediction, results of experiments by Bornstein et al. (1998) and Hoff and Naigles
(2002) suggest that children of mothers with higher MLU show better vocabulary competence.
In both studies, however, MLU is found to be positively correlated with the number of word
types in the input, which in turn positively correlates with children’s vocabulary growth. (In a
preliminary investigation of our data, we also found that the number of word types in the child-
directed utterances were positively correlated with the number of types produced by children. More
research into this matter requires a careful examination of the speech produced by children, which
is outside the scope of this study.) Thus, it is not clear whether the observed effect in the studies
of Bornstein et al. and Hoff and Naigles is directly due to higher MLU (interpreted as syntactic
complexity of the input utterances) or indirectly due to a larger number of word types in the child-
directed speech. More psycholinguistic studies are needed to further investigate the direct effect of
MLU on word learning in young children.

The observed individual differences in children with respect to the rate of word learning and/or
vocabulary size are sometimes associated with the variation in children’s language learning abilities
(see Huttenlocher et al., 1991, and the references therein). For example, some children may be
more conservative than others in using a learned word in their produced speech. Similarly, the
behaviours we observe in our model are all dependent on the value we choose for the parameter
θ, which is the confidence of the model in whether a word is learned. (Recall that we consider a

5We calculate MLU over the first 100 utterances to better understand its effect on word learning at early stages,
as a boost in the number of learned words at early stages of learning results in an overall faster acquisition of words
in our model.
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Figure 11: Variation in the pattern of vocabulary growth as a function of θ.

word learned when its comprehension score exceed the threshold θ.) If we assume that children
also use a probabilistic representation of their knowledge of word meanings, it is possible that, as
in our model, children also need to reach a certain level of confidence about a word’s meaning
before they can accurately comprehend or produce it. Considering θ as a confidence factor that
enables the model (learner) to comprehend or use a word, we examine the variation in the pattern
of vocabulary growth in our model by varying the value of this parameter. We train the model on
the same input containing 20,000 pairs, and plot the vocabulary growth over time for five different
values of θ, ranging from 0.5 to 0.9 by steps of 0.1 (see Fig. 11).

The plots show that a learner who can comprehend or use a word only if it is associated with a
meaning with a very high confidence (bottom curve, with θ = 0.9) has a much slower and a more
gradual vocabulary growth. In contrast, for a learner who uses a word even if it has been learned
with a low confidence (top curve, with θ = 0.5), we observe a very sharp increase in the rate of
vocabulary growth at a very early stage in learning. The above results suggest that, in addition to
the variation in the input, other factors relating to the learning abilities of children might influence
the rate of vocabulary growth, especially in earlier stages of word learning.

6.2 Context Familiarity and Word Learning

The observed shift from slow to fast word learning suggests that children become more efficient
word learners later in time (e.g., Woodward et al., 1994). Whereas some of researchers attribute
this to a change in the nature of learning, others assume this is a natural consequence of being
exposed to more input (as noted above; see also, Siskind, 1996; Regier, 2005; Horst et al., 2006).
The latter view states that once children have learned a repository of words, they can easily link
novel words to their meanings based only on a few exposures. We examine this effect in our model
by looking at how its ability to learn novel words changes over time. That is, we look at the relation
between the time of first exposure to a word (its age of exposure), and the number of usages that
the model needs for learning that word. Fig. 12 plots this relation for words that have been learned
at some point in time. We can see that, generally, words received later in time require fewer usages
to be learned. Similar to the vocabulary growth pattern discussed above, the change in the ability
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Figure 12: Number of usages needed to learn a word, as a function of the word’s age of exposure.

to learn novel words in our model can also be attributed to the bootstrapping mechanism.
The effect of exposure to more input on the acquisition of novel words can be described in terms

of context familiarity: the more input the model has processed so far, the more likely it is that a
novel word’s context (the other words in the sentence and the objects in the scene) is familiar to the
model. Note that having more familiar words in an input pair in turn results in a decrease in the
degree of alignment ambiguity of the pair. This hypothesis is congruent with the results of a study
done by Gershkoff-Stowe and Hahn (2007), who showed that extended familiarization with a novel
set of words (used as context) led a group of 16- to 18-month-old children to more rapidly acquire
a second set of (target) novel words. (See Alishahi et al. 2008 for a computational simulation of
Gershkoff-Stowe and Hahn’s experiment using the same word learning model.)

7 Fast Mapping

One interesting ability of children as young as two years of age is that of correctly and immediately
mapping a novel word to a novel object in the presence of other familiar objects — a phenomenon
referred to as fast mapping (Carey and Bartlett, 1978). Children’s success at selecting the referent of
a novel word in such a situation has raised the question of whether and to what extent they actually
learn and retain the meaning of a fast-mapped word from a few such exposures. Experiments
performed on children have consistently shown that they are generally good at referent selection
for a novel word. But the evidence for retention is rather inconsistent: for example, whereas the
children in the experiments of Golinkoff et al. (1992) and Halberda (2006) showed signs of nearly-
perfect retention of the fast-mapped words, those in the studies reported by Horst and Samuelson
(2008) did not (all participating children were close in age range). In experiments on children,
retention is tested either by making children generalize a fast-mapped novel word to other similar
exemplars of the referent object (comprehension), or by having them produce the novel word in
response to the referent (production).

The relation between fast mapping and word learning has thus been a matter of debate. Some
researchers consider fast mapping as a sign of a specialized (learned or innate) mechanism for word

23



learning. Markman and Wachtel (1988), for example, argue that children fast map because they
expect each object to have only one name (mutual exclusivity). Golinkoff et al. (1992) attribute
fast mapping to a bias towards mapping novel names to nameless object categories. Some even
suggest a change in children’s learning mechanisms at around the time they start to show evidence
of fast mapping (which coincides with the vocabulary spurt), e.g., from associative to referential
word learning (Gopnik and Meltzoff, 1987; Reznick and Goldfield, 1992). In contrast, others see
fast mapping as a phenomenon that arises from more general processes of learning and/or com-
munication, which also underlie the impressive rate of lexical acquisition in children (e.g., Clark,
1990; Markson and Bloom, 1997; Diesendruck and Markson, 2001; Regier, 2005; Horst et al., 2006;
Halberda, 2006).

We investigate fast mapping and its relation to word learning in the context of our computational
model. We take a close look at the onset of fast mapping in our word learning model by simulating
some of the psychological experiments mentioned above. Specifically, we examine the behaviour of
our model in various referent selection (Section 7.1) and retention (Section 7.2) tasks, and provide
explanations for the (occasionally contradictory) experimental results reported in the literature.

7.1 Referent Selection

In a typical word learning scenario, a child faces a scene where a number of familiar and unfamiliar
objects are present. The child then hears a sentence, which describes (some part of) the scene,
and is composed of familiar and novel words (e.g., hearing Joe is eating a cheem, where cheem is
a previously unseen fruit). In such a setting, our model aligns the objects in the scene with the
words in the utterance based on its acquired knowledge of word meanings, and then updates the
meanings of the words accordingly. The model can align a familiar word with its referent with high
confidence since the previously learned meaning probability of the familiar object given the familiar
word, or p(m|w), is much higher than the meaning probability of the same object given any other
word in the sentence. In a similar fashion, the model can easily align a novel word in the sentence
with a novel object in the scene because the meaning probability of the novel object given the novel
word (1/β, according to equation (3), Section 4.2) is higher than the meaning probability of that
object for any previously heard word in the sentence (the latter probability is generally less than λ
in equation (3), which is itself smaller than 1/β).

Earlier fast mapping experiments on children assumed that it is such a contrast between the
familiar and novel words in the same sentence that helps children select the correct target object
in a referent selection task. For example, in Carey and Bartlett’s (1978) experiment, to introduce
a novel word–meaning association (e.g., chromium–olive), the authors used both the familiar and
the novel words in one sentence (bring me the chromium tray, not the blue one.). However, further
experiments showed that children can successfully select the correct referent even if such a contrast
is not present in the sentence. Many researchers have performed experiments where young subjects
are forced to choose between a novel and a familiar object upon hearing a request, such as give
me the ball (familiar target), or give me the dax (novel target). In all of the reported experimental
results, children could readily pick the correct referent for a familiar or a novel target word in such a
setting (Golinkoff et al., 1992; Halberda and Goldman, 2008; Halberda, 2006; Horst and Samuelson,
2008).

Halberda’s eye-tracking experiments on both adults and pre-schoolers suggest that the processes
involved for referent selection in the familiar target situation (give me the ball) may be different from
those in the novel target situation (give me the dax). In the latter situation, subjects systematically
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reject the familiar object as the referent of the novel name before mapping the novel object to the
novel name. In the familiar target situation, however, there is no need to reject the novel distractor
object because the subject already knows the referent of the target. The difference between these
two conditions can be explained in terms of the use of two different sets of probabilities in our
model. In the familiar target condition, the meaning probabilities are used. In the novel target
condition, however, the meaning probabilities are not informative since they are uniform for the
novel word. In this case, the learner needs to reject the unlikely referent by drawing on its knowledge
of word–meaning associations (as further explained below).

In a typical referent selection experiment, the child is asked to get the ball while facing a ball

and a novel object (dax). We assume that the child knows the meaning of verbs and determiners
such as get and the, therefore we simplify the familiar target condition in the form of the following
utterance (U) and scene (S) pair:

2. U : ball (Familiar Target)

S : {ball, dax}

As described before, the model maintains a meaning probability p(.|w) for each word w over time.
A familiar word such as ball has a meaning probability highly skewed towards its correct meaning.
That is, upon hearing ball, the model can confidently retrieve its meaning ball, which is the one
with the highest probability p(m|ball ) among all possible meanings m. In such a case, if ball is
present in the scene, the model can easily pick it as the referent of the familiar target name, without
processing the other objects in the scene.

Now consider the condition where a novel name is used in the presence of a familiar and a
previously unseen object:

3. U : dax (Novel Target)

S : {ball, dax}

Since this is the first time the model has heard the word dax, both meanings ball and dax are
equally likely because p(.|dax ) is uniform. Therefore the meaning probabilities cannot be solely
used for selecting the referent of dax, and the model has to perform some kind of induction on
the potential referents in the scene based on what it has learned about each of them. We thus
define a new set of referent probabilities representing the likelihood of a particular object m being
the referent of a target word w. This probability is calculated by drawing on the model’s previous
knowledge about the mapping between m and w (i.e., p(m|w)), as well as the mapping between
m and other words in the (learned) lexicon. More specifically, the likelihood of using a particular
name w to refer to a given object m is calculated as:

rf (w|m) = p(w|m)

=
p(m|w) · p(w)

p(m)

=
p(m|w) · p(w)∑

w′∈V p(m|w′) · p(w′)
(5)

where V is the set of all words that the model has seen so far, and p(w) is simply the relative
frequency of w, as in:

p(w) =
freq(w)∑

w′∈V freq(w′)
(6)
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Table 1: Referent selection in Familiar and Novel Target conditions.

Upon hearing the target word
Condition p(ball|target) p(dax|target)
Familiar Target 0.830 ±0.099 $ 0.0001
Novel Target 0.0001 0.0001

After performing induction
Condition rf (target |ball) rf (target |dax)
Novel Target 0.116 ±0.139 0.992 ±0.002

In the formulation of rf in equation (5), the denominator has a high value if the object m is
strongly associated with a word in V; otherwise (if m is a novel object) the denominator has a low
value. The referent of a novel target word w among the present objects, therefore, will be the object
m with the highest referent probability rf (w|m) — that is, the object with the lowest value for
the denominator in equation (5). In the example presented above, the model can infer the referent
of dax by comparing the referent probabilities rf (dax |ball) and rf (dax |dax) after processing the
input pair. Since the symbol ball has strong associations with another word ball, its referent
probability for the novel name dax is much lower than the referent probability of the symbol dax,
which does not have strong associations with any of the words in the lexicon.

To simulate the process of referent selection in our model, we first train it on 1000 input
pairs containing noise and referential uncertainty (as described in Section 4), and then present the
model with one more input pair representing either the Familiar Target or the Novel Target
condition (Examples 2 and 3 above, respectively). Results reported here are averages over 20 such
random simulations. We first compare the meaning probability p(object|target) for both familiar
and novel objects in the scene (see top panel of Table 1). In the Familiar Target condition,
the model demonstrates a strong preference towards choosing the familiar object as the referent,
whereas in the Novel Target condition the model shows no preference towards any of the objects
based on the meaning probabilities of the target word. Therefore, for the Novel Target condition,
we also compare the referent probabilities rf (target |object) for both objects after processing the
input pair as a training pair, simulating the induction process that humans go through to select
the referent in such cases. This time, the model shows a strong preference towards the novel object
as the referent of the target word (see bottom panel of Table 1). Our results confirm that in both
conditions, the model consistently selects the correct referent for the target word across all the
simulations, although using different mechanisms.

The Novel target condition is particularly interesting because it simulates a child’s first
encounter with a word. To understand how much our model learns about a novel word in such
a setting, we look at the meaning probability of the novel word (dax) after the model processes a
Novel target pair such as the one given in Example 3 above. Looking at this probability for
the individual simulations, we observe an interesting pattern: the more familiar the (distractor)
familiar object is, the higher the meaning probability of the novel word for the novel object (that
is, the easier it is for the model to learn the novel word). Table 2 presents the meaning probability
of the object dax for the novel word dax , and that of a distractor object (hammer or ball) for dax
in two conditions: when the distractor object is low frequency (e.g., hammer), and when it has a
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Table 2: Meaning probability of the novel word dax after processing a Novel Target pair, for the novel
object dax and for two groups of familiar distractor objects: low frequency (freq ≤ 5 ), represented by
ball, and high frequency (freq > 5 ), represented by hammer. Results for each group are averages over 20
simulations.

High familiarity
p(dax|dax ) p(ball|dax )

0.864 ± 0.124 0.063 ± 0.134

Low familiarity
p(dax|dax ) p(hammer|dax )

0.530 ± 0.122 0.425 ± 0.132

high frequency (e.g., ball). The latter condition presents a case where the novel word appears in
a highly familiar context, whereas the former condition means that the context of the novel word
is of low familiarity.

Interestingly, when the context is highly familiar (top panel of Table 2), the meaning probability
of dax for its correct referent object is much higher than the probability for the distractor object.
When the context is less familiar, however, the meaning probability of the novel word is roughly
equal for the target and the distractor objects (bottom panel of Table 2). These results show that
words encountered in more familiar contexts are easier to learn (as also confirmed by our results
presented in Section 6.2). This observation predicts that context familiarity may be responsible for
the different results of psycholinguistic experiments focusing on the relation between fast mapping
and word learning. That is, the meaning of a recently fast-mapped novel word can be learned if
it is presented in a highly familiar context, whereas a learner might have difficulty learning the
novel word when appearing in a context of lower familiarity. More psycholinguistic experiments are
needed to verify whether this is a real effect also observed in children acquiring the lexicon of their
language (see Gershkoff-Stowe and Hahn, 2007, for a related set of experiments). The following
section extensively examines the relation between fast mapping and word learning through a series
of more specific experiments.

7.2 Retention

As discussed in the previous section, results from human experiments as well as our computational
simulations show that the referent of a novel target word can be selected based on the previous
knowledge about the present objects and their names. However, the success of a subject in a
referent selection task does not necessarily mean that the child/model has learned the meaning of
the novel word based on that one trial. In order to better understand what and how much children
learn about a novel word from a single ambiguous exposure, some studies have performed retention
trials after the referent selection experiments. Often, various referent selection trials are performed
in one session, where in each trial a novel object–name pair is introduced among familiar objects.
Some of the recently introduced objects are then put together in one last trial, and the subjects
are asked to choose the correct referent for one of the (recently heard) novel target words. The
majority of the reported experiments show that children can successfully perform the retention task
(Golinkoff et al., 1992; Halberda and Goldman, 2008; Halberda, 2006).
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Table 3: Retention of a novel target word from a set of novel objects.

2-Object Retention Trial
rf (dax |dax) rf (dax |cheem)

0.995 ±0.001 0.473 ±0.079

3-Object Retention Trial
rf (dax |dax) rf (dax |cheem) rf (dax |lukk)

0.994 ±0.001 0.435 ±0.063 0.988 ±0.001

We simulate a similar retention experiment by first training the model on a 1000 input pairs
containing noise and referential uncertainty (as explained in Section 4). We then present the model
with two experimental training pairs similar to the one used in the Novel Target condition in
the previous section, with different familiar and novel objects and words in each input:

4. U : dax (Referent Selection Trial 1)

S : {ball, dax}

5. U : cheem (Referent Selection Trial 2)

S : {pen, cheem}

These extra training pairs are followed by a retention test trial, where the two novel objects used
in the previous experimental inputs are paired with one of the novel target words:

6. U : dax (2-Object Retention Trial)

S : {cheem, dax}

After processing the retention input, we compare the referent probabilities rf (dax |cheem) and
rf (dax |dax) to see if the model can choose the correct novel object in response to the target word
dax. The top panel in Table 3 presents the average results over 20 such simulations: the model
shows a strong preference towards the correct novel object as the referent of the novel target word
(this is also the case in all individual simulations).

Recall that, unlike for referent selection, experimental results on retention have not been con-
sistent across various studies. Horst and Samuelson (2008) perform experiments with two-year-old
children involving both referent selection and retention, and report that their subjects perform very
poorly at the retention task. One factor that discriminates the experimental setup of Horst and
Samuelson from others (e.g., Halberda, 2006) is that, in their retention trials, they put together
two recently observed novel objects with a third novel object that has not been seen in any of the
prior experimental sessions. The authors do not attribute their contrasting results to the presence
of this third object, but this factor can in fact affect the performance considerably. We perform
two referent selection trials such as those presented above (in 4 and 5), but present the model with
a different retention test trial, as in:

7. U : dax (3-Object Retention Trial)

S : {cheem, dax, lukk}
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The third object, lukk, is being seen for the first time in the retention trial. We perform the sim-
ulation under the new condition, and collect the appropriate referent probabilities after processing
the training and test pairs. Results (averages over 20 random simulations) are reported in the
bottom panel of Table 3. As can be seen, the model shows a strong tendency towards the correct
novel referent dax for the novel target dax, compared to the other recently seen novel object cheem.
However, the probability of the unseen object lukk is also very high for the target word dax.

Note that the model cannot use any previously acquired knowledge about lukk (i.e., associating
it with another word) to rule it out as a referent for dax. In addition, since the model has seen the
target word dax together with its correct referent dax only once, the model has not yet learned a
strong association between the two, and is thus open to the possibility of lukk being the referent
of dax. These results show that introducing a new object for the first time in a retention trial
considerably increases the difficulty of the task. This can explain the contradictory results reported
in the literature: when the referent probabilities are not informative, other factors may influence
the outcome of the experiment, such as the amount of training received for a novel word–object,
or a possible delay between training and test sessions.

8 Learning Synonyms and Homonyms

Children’s ability at fast mapping is sometimes taken as evidence for a bias towards a one-to-one
mapping between words and meanings (e.g., Markman and Wachtel, 1988). Support for the bias
often comes from experiments which show that even though children are generally very good at
mapping novel words to novel meanings, they exhibit difficulty in learning homonymous and syn-
onymous words — which require the acquisition of one-to-many and many-to-one mappings, re-
spectively (Liittschwager and Markman, 1994; Mazzocco, 1997; Doherty, 2000; Markman et al.,
2003; Doherty, 2004; Casenhiser, 2005).6 The existence of such a bias as a cognitive mechanism for
word learning is sometimes also supported by a common belief that language is primarily a means
of communication, and hence cases that cause ambiguity should be dispreferred (Casenhiser, 2005).
Clearly, however, children are able to eventually learn homonyms and synonyms of their language.

One explanation is that children are equipped with a bias towards a one-to-one mapping (a
bias which may be innate or acquired), and that they need to overcome this bias in order to learn
synonyms and homonyms, hence exhibiting difficulty at earlier stages of learning (Markman and
Wachtel, 1988; Merriman and Bowman, 1989). Another explanation is that children may early on
resist learning the secondary meaning of a homonymous word, simply because an existing mapping
between the word and its primary meaning is triggered every time the word is heard, resulting in
a conflict (Doherty, 2004). (A similar conflict exists between the primary and secondary labels
in the case of synonymy.) The learner thus needs more evidence in order to establish a mapping
between the homonymous word and its secondary meaning (and similarly for learning synonyms).
In contrast, in a situation where a child hears a novel word in the presence of a novel meaning,
neither the word nor the meaning trigger any existing word–meaning mappings, and hence the child
can easily learn a mapping between the novel word and the novel meaning.

A variety of experiments have been performed on children in order to test their ability in the
acquisition of homonyms and synonyms. Children are told stories using picture books, through
which they are familiarized with some homonymous or synonymous words. Towards the end of

6Our focus is on the acquisition of homonyms by young children, hence we are not concerned with the distinction
between homonyms such as bank (‘financial institution’)/bank (‘river bank’), and homophones such as bear/bare.
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the story, children are then tested for their knowledge of the introduced homonyms or synonyms.
In the experiments on learning homonymy, in order to control for a child’s familiarity with the
primary and secondary meanings of a homonym, and to simulate the child’s first encounter with
the secondary meaning of the word, pseudo-homonyms are often used in place of real homonyms.
A pseudo-homonym is a known word (e.g., ball) used to mean something other than its accepted
meaning, often a novel meaning not associated with any other word in the child’s lexicon (e.g.,
dax). Similarly, pseudo-synonyms are used in experiments on the acquisition of second labels for
a familiar object: a pseudo-synonym is a novel word (e.g., dax) referring to a familiar object (e.g.,
ball), for which the child already has learned a name (e.g., ball). We perform similar experiments
to test the ability of our model in learning homonyms and synonyms. We first explain the details
of our homonymy learning experiments, and then discuss how our model performs in the task of
learning synonymous words.

Learning homonymous words: To simulate homonymy learning in our model, we first train
it on 1000 input pairs (containing noise and referential uncertainty), and then present it with a
test trial as follows. We take a typical utterance–scene pair, and add to it a pseudo-homonym
word–meaning pair — that is, we add a familiar word to the utterance and a novel symbol to
the corresponding scene representing the secondary meaning of the pseudo-homonym. The words
and meanings in the original utterance–scene pair act as distractors. To understand the effect of
exposure on the acquisition of the secondary meaning of a homonymous word w, we present the
model with a sequence of 10 test trials, and look at the change in the meaning probability of the
word’s primary and secondary meanings, mprim and msec, respectively.

Examining a number of these individual simulations reveals an interesting pattern: that the
acquisition of the secondary meaning of a homonym word in our model is affected by the “degree
of familiarity” of the pseudo-homonym, as reflected in its frequency of occurrence prior to testing.
Instead of averaging over all the simulations, we thus present the results for a random sample of the
simulations, each containing a pseudo-homonym from one of three different frequency ranges. In
order to examine the patterns in detail, we select 4 words from each frequency range, showing the
results for a total of 12 simulations. Fig. 13 shows the change in the meaning probabilities of the
primary and the secondary meanings, p(mprim|w) and p(msec|w), for sample pseudo-homonyms
from the following three frequency ranges: (a) high: the frequency of the pseudo-homonym is
higher than twice the number of times the secondary meaning appears with the word, the latter
being equal to the number of test pairs (10); (b) medium: the frequency of co-occurrence of the
pseudo-homonym with its primary and secondary meanings is roughly equal; and (c) low: the
pseudo-homonym has appeared only a few times with its primary meaning.

Fig. 13(a) shows that learning the secondary meaning of a homonym in our model is very
difficult if the homonym and its primary meaning are highly familiar. This is consistent with the
view that the difficulty children exhibit in the acquisition of a homonym may indicate difficulties in
suppressing the primary meaning of the word (e.g., Doherty, 2004). Interestingly, for a homonym
with a low frequency of occurrence, the model revises its lexical knowledge, assuming the few times
the word and its primary meaning have appeared together has been due to noise (see Fig. 13(c)). Of
course, if the model receives more evidence to the contrary, it can easily revise this assumption and
learn the primary meaning as a true meaning and not one due to noise or chance co-occurrence.
Fig. 13(b) shows that for words with medium frequency, the model learns both meanings with
somewhat equal probabilities, as both meanings co-occur with the word with comparable frequency.
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(a) high (freq ≥ 20) (b) medium (5 < freq < 20) (c) low (freq ≤ 5)

Figure 13: Patterns of change in the meaning probabilities of the primary and secondary meanings of
homonyms. Results are shown for four representative words randomly selected from each of three frequency
ranges, where freq indicates number of appearances of the homonym (with its primary meaning) in 1000
initial training utterances. The meaning probability of the primary meaning of a homonym, p(mprim|w), is
shown as a dashed curve; a corresponding solid curve plots the meaning probability of the word’s secondary
meaning, p(msec|w). The meaning probabilities are depicted after each test trial, where the trial number 0
shows the values of the probabilities right after training and before testing.

This can be considered as an interesting prediction by our model; it remains to be tested whether
the acquisition of homonymous words in children is similarly affected by the degree of familiarity
of their primary meanings.

Learning synonymous words: We test synonymy learning in our model by performing training
and test experiments similar to those explained above for homonymy learning. The test trials are
different here in that we add a pseudo-synonym word–meaning pair to each typical utterance–scene
pair. More specifically, we add a familiar meaning to the scene, and a novel word to the utterance
representing the second label for the familiar meaning. Here again, the words and meanings in
the original utterance–scene pair act as distractors. We perform 20 simulations, each consisting of
a training process and a full set of 10 test trials as explained above. Results presented here are
averages of the meaning probabilities over the 20 simulations. We have examined the results of the
individual simulations, and have found that they all show very similar patterns.

The solid line in Fig. 14(a) depicts the pattern of change (over time) in the meaning probability
of the second label (the pseudo-synonym), given a familiar meaning/object; the dashed line shows
the meaning probability of the first label for the pseudo-synonym for comparison. The learning of
a second label for a familiar object in children has often been compared against the acquisition of
first labels for novel objects. In Fig. 14(b), we thus show the pattern of change in the meaning
probability of a novel word (first label) for a novel meaning. These results are averages over 20
random simulations of the task of learning a novel label for a novel meaning (the test trials in these
simulations are formed by adding a novel label to the utterance and a novel meaning to the scene).

Unlike in the case of learning a homonymous word, here the acquisition of the second label does
not affect the meaning probability of the first label (the dashed line in 14(a)). This is due to the
way meanings are represented in our model’s lexicon: each word has an independent probability
distribution over the meaning symbols, representing its lexical entry. The results suggest that,
generally, our model can successfully and easily learn second labels for familiar objects. Comparing
14(a) and 14(b), however, indicates that the acquisition of first labels is slightly easier for our
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Figure 14: Patterns of change in the meaning probabilities when learning the first label or the second label
for a given meaning/object.

model: the meaning probability of a novel word increases substantially (close to 0.7) after only
one exposure, whereas more exposure to the second label is needed before its meaning probability
reaches a comparable value. What is responsible in our model for this small difference in the
acquisition of first and second labels is the knowledge accumulated in the meaning probabilities
associated with the dummy word (as explained in Section 3). A familiar object has a higher
probability of association with the dummy word compared to a novel object, since the latter has
not been previously aligned with the dummy word. Thus, compared to a novel object, a familiar
object will be more strongly aligned with the dummy word, and less strongly aligned with a novel
word (its second label). This conflict (between aligning the familiar object with the target word
or the dummy word) results in an alignment between the familiar object and a second label that
is not as strong as the alignment between a novel object and a first label. As noted, however, this
difference is relatively small. Overall, our results on synonymy learning are generally consistent
with the findings of Mervis et al. (1994) and Liittschwager and Markman (1994), whose experiments
show that (2- to 3-year-old) children can learn second labels easily if they receive sufficient training
(see also Doherty, 2004, for similar results on 6- to 9-year-old children).

9 General Discussion

Much research in psychology and linguistics has focused on identifying the mechanisms that are
at play in the course of lexical development in young children. A major source of debate among
researchers is the relative contribution of specific biases and constraints on the one hand, and the
properties of the input on the other. Whereas some researchers strongly believe in the necessity of
special biases for word learning (e.g., Behrend, 1990; Markman and Wachtel, 1988; Golinkoff et al.,
1992), others argue that word meanings are learned through general cognitive mechanisms (e.g.,
Bloom, 2000; Tomasello, 2003). The computational experiments presented in this article provide
new insights into this matter. Our word learning model does not include any of the suggested
biases or constraints, nor does it incorporate any explicit developmental changes in the underlying
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learning mechanism. Results of our experiments (presented in Sections 5–8) thus suggest that much
about word meanings can be learned from naturally-occurring utterances. In all cases, our model
exhibits behaviours similar to those observed in children, with similar developmental patterns that
naturally emerge as a result of processing more data.

Our model adopts a flexible view of word meaning: instead of establishing a rigid mapping
between a word and a meaning element (as in, e.g. Siskind, 1996), the model learns a word’s meaning
as a probability distribution over all meaning elements encountered in the input. The model is also
probabilistic with respect to the learning algorithm it incorporates: it implements a probabilistic
interpretation of the cross-situational learning mechanism. The probabilistic nature of the model,
together with the model’s incrementality, make it robust to noise and uncertainty in the input (as
shown in Section 5). The model can easily revise an incorrectly learned word–meaning mapping
that has resulted from a noisy input, by the natural adjustment of its probabilities in response to
more input. Referential uncertainty — when meaning elements irrelevant to the utterance appear
in the scene representation — is handled as a result of the interaction between the two types of
probabilistic knowledge (alignment and meaning probabilities) acquired over time. We expect that
the irrelevant meaning elements do not regularly co-occur with any given word (in contrast to
the relevant elements). Thus, the association between an irrelevant meaning element and a word
(reflected in the meaning probability of the word) is expected to be low. Since the alignments for
an utterance–scene pair are calculated from the meaning probabilities, those between a word (in
the utterance) and an irrelevant meaning element (in the scene) will be weak. This way, the model
implicitly marks the irrelevant meaning elements in the scene by not strongly aligning them with
any of the words in the utterance.

Because our framework handles highly noisy data, the behaviour of our model can be evaluated
using actual child-directed sentences. Our results in Section 5.2 show that using realistic input data
with a high rate of noise and referential uncertainty significantly increases the difficulty of the task
of learning the mapping between words and their meanings. This raises the question of whether the
existing computational models that assume a much simpler format for their input (e.g., a pairing
of a phonological form and a symbolic meaning) are scalable to more complex settings, and show
the same patterns of behaviour in a realistic situation. In contrast, our model provides a more
realistic testbed that can be used to examine various aspects of word learning, as well as to make
predictions about the behaviour of young word learners in novel situations.

Our probabilistic incremental learning algorithm also enables the model to explicitly use its
partially-acquired knowledge of word meanings to accelerate the acquisition of novel words. This is
possible through the interaction between the two types of probabilities acquired and updated over
time. This bootstrapping mechanism is responsible for some of the observed developmental patterns
in the behaviour of our model, such as the pattern of vocabulary growth presented in Section 6.
Our model exhibits the same developmental pattern observed in children, without having to posit
different learning mechanisms over time. This is in contrast to the theories which suggest that
children become more efficient word learners later in their life due to a change in the underlying
learning mechanisms, e.g., from associative to referential (Kamhi 1986; see also Li et al. 2007
for a computational model that explicitly incorporates two modes of learning to account for the
vocabulary growth in children).

A probabilistic model is also flexible in that it can support different views of the developing
representation (the acquired word meanings) without requiring different learning mechanisms or
biases. For example, our experiments in Section 7 show that a difference in the behaviour of a
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learner in two conditions of the same task (referent selection with familiar or novel target words)
may be attributed to the learner’s use of two different interpretations of the probabilistic knowledge
of word meanings (referred to as the meaning probabilities and the referent probabilities). There,
we argued that the use of a novel set of (referent) probabilities can be interpreted as induction over
the acquired knowledge of word meanings. The particular use of the referent probabilities exhibits
surface behaviour that appears the same as the result of using the mutual exclusivity (ME) bias.
That children are good at ruling out a familiar object as the referent of a novel word is sometimes
taken as evidence for the use of the ME bias as a word learning mechanism (e.g., Markman and
Wachtel, 1988). According to the results of our fast mapping experiments, however, the ME bias
is not a necessary mechanism for word learning, but rather may appear as a consequence of using
a certain problem-solving method in a particular task, such as referent selection.

It has been suggested that the ME bias — a bias towards a one-to-one mapping between words
and meanings — is responsible for the observed difficulty in children’s acquisition of homonymous
and synonymous words: children must override the one-to-one mapping bias in order to learn
homonyms and synonyms (e.g., Liittschwager and Markman 1994; see also Yurovsky and Yu 2008
for related experiments on adults). Our model does not incorporate the ME bias as part of its
learning mechanism, but still exhibits similar behaviours to those observed in children with respect
to learning synonyms and homonyms. Our results (presented in Section 8) suggest that the initial
reluctance of children for learning the secondary meaning of a homonymous word might be due to a
conflict with the primary meaning of the word (as also suggested by, e.g. Doherty, 2004), as opposed
to a need for overriding the ME bias. In fact, our results show that the more familiar the primary
meaning of a homonymous word, the harder it is for the model to acquire the word’s secondary
meaning. A similar conflict is observed when learning a second label for a familiar meaning (a
synonymous word): the model can easily learn a synonym (second label); however, it is still easier
for it to learn a novel word (first label).

Our proposed model successfully accounts for many of the observed patterns in the course of
early vocabulary acquisition in children. Nonetheless, the model has a number of limitations that
need to be addressed in future work. For example, assuming that word learning is an isolated process
in language acquisition, we represent each utterance in the input as an unordered set of words, thus
ignoring the syntactic structure of the sentences. The two processes of syntax acquisition and word
learning are more likely to be intertwined, and in fact there is evidence that children use syntactic
knowledge to learn the meaning of words (e.g., Naigles, 1990; Hoff and Naigles, 2002; Gertner et al.,
2006). By extending the model to also incorporate syntactic information, we can examine the role
of syntax in facilitating the acquisition of word meanings (i.e., syntactic bootstrapping).

The semantic representation in our model is also impoverished: although the input sentences to
our model are selected from recorded conversations between children and their parents, the semantic
representations paired with these sentences are rather naive. We represent the meaning of each
word as a single symbol,7 and construct the semantic representation of a sentence as an unordered
set of such symbols (see Section 4 for details of this process). Although it is not well understood
how humans represent the meaning of a sentence, it is clear that these representations must have
a much more complex (and highly relational) structure than a mere collection of symbols (see,
e.g., Jackendoff, 1990). Even children are expected to use semantic representations that are more
sophisticated than what is included in our model. Therefore, to better model a human word learner,

7In Fazly et al. (2008) we represented the meaning of each word as a set of semantic features (instead of a single
semantic symbol), and showed a similar behavioural pattern in the results.
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we need to extend our current semantic formalism to a more sophisticated one, and preferably use a
naturalistic source for retrieving the semantic information (such as video recordings of interactions
between children and adults) instead of reconstructing it from the textual input.

Using a more appropriate semantic representation would further enable us to investigate a range
of phenomena that are not possible to study in the current setting. For instance, children are shown
to be sensitive to social–pragmatic cues in their input, and use them to map words to their meanings,
especially at earlier stages of word learning (see, e.g., Hoff and Naigles, 2002, and the references
therein). By incorporating a more realistic semantic representation in our model, we would be able
to pay attention to such cues, and use them in the word learning process (see Frank et al., 2007;
Yu and Ballard, 2008, for two such approaches). Another important source of information that a
more elaborate semantic representation can provide is the distinction between different categories
of words. Currently we do not distinguish between different semantic categories, such as words that
refer to perceivable entities versus words that describe a state or action. Nor do we pay attention to
the distinction between different syntactic categories, such as verbs and nouns. It has been shown
that children tend to learn nouns (more specifically, object names) before verbs, and concrete words
before abstract ones (Gentner, 2006). It has also been shown that, when learning the meaning of
a new word, humans have a tendency to assign the new word to a ‘basic’ semantic category (i.e.,
a category at a particular level of the category inclusion hierarchy) (Rosch et al., 1976). A richer
representation that reflects the differences between (syntactic or semantic) categories would make
it possible to study such learning preferences in our model (see Xu and Tenenbaum, 2007, for one
such study).

As mentioned above, in the current setting of our model, we examine word learning as an
isolated language acquisition process. Other computational models that focus on the acquisition of
syntactic and/or semantic categories either assume perfect word–meaning mappings (as in Alishahi
and Stevenson, 2008), or ignore such mappings altogether (as in Parisien et al., 2008). As also noted
by these studies, learning the meaning of words is most probably interleaved with the acquisition of
syntactic and semantic categories, where each process bootstraps the other. One possible extension
to our model is thus to augment the probabilistic word learning algorithm with categorization
processes for the acquisition of syntactic and/or semantic classes of words. A computational model
that combines these different (though related) aspects of language acquisition could shed light on
the interactions among the various components of early language acquisition in children, such as
the role of syntactic and semantic categories in the acquisition of word–meaning mappings and vice
versa.
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