
A BAYESIAN EVALUATION OF THE COST OF ABSTRACTNESS

ABSTRACT. In this paper, we show how the modern study of reasoning under uncertainty can

shed light on problems in phonology. In particular, we show how Bayesian reasoning can be

used for model comparison, modeling an ideal learner. Taking a typical case of abstractness

in phonology as an example, we show that Bayesian reasoning has inherent in it a simplic-

ity bias, which is of potentially great interest to researchers in linguistics. We describe the

consequences for phonological grammars and for the study of language acquisition.

1. INTRODUCTION

Model comparison is crucial in the study of human language. As in any science, the data

is noisy, is typically many layers removed from the real object of study, and in general, for

any number of other reasons, always underdetermines the theory. In the study of human

cognition, however, model comparison has a second significance, entirely separate from the

ordinary workings of science. Modern linguistics is a science of discovery: a discovery

procedure is one of the things to be modeled. A productive language system develops over

time in a child in response to linguistic input; the diversity of human languages and the

uniformity of speakers’ generalizations within a linguistic community show that what this

language system (a model) will be depends on the input (the data). Implicitly or explicitly,

then, the language learner is making comparisons between possible models of the ambient

language, just as the analyst makes comparisons between possible models of the language

learner.

The search for formal principles of discovery has always been of great interest within lin-

guistics, from Harris’s (1951) algorithmic recommendations for the analyst, through Chom-

sky and Halle’s (1968) evaluation metric, to modern simulated parameter learners like those
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of Dresher and Kaye (1990) and Yang (2002). Yet the analyst attempting to deduce the cor-

rect mental analysis of some language still relies largely on subjective criteria; it is safe to say

that, although model comparison is an integral part of linguistics, our understanding of the

human language learner’s principles of model comparison have yet to reach the stage where

they are useful to linguists.

At the same time, however, the science of complex inference is a well developed one, with

much to offer the cognitive scientist. One of the most popular modern approaches is the

Bayesian approach, which leverages a particular kind of probabilistic reasoning. The main

insight behind probabilistic approaches to model comparison is that the problems involve

substantial uncertainty, both for the analyst and for the learner; probability theory is the

simplest and most widely accepted formal theory of reasoning under uncertainty. In this

paper we illustrate the ideas behind these methods and show how they apply to the special

problems of inference in linguistics.

To demonstrate the reasoning, we take a standard problem of abstractness in phonological

grammar as an example problem. Since the publication of the Sound Pattern of English (SPE;

Chomsky and Halle 1968), phonologists have been deeply concerned with the question of

what constitutes an appropriate use of abstractness in a phonological analysis (Kiparsky 1968,

1971; Hooper 1976). More recently, researchers formulating grammars in Optimality Theory

(Prince and Smolensky 1993)—which, in its original formulation, captures only surface-

true interactions among processes—have avoided analyses which crucially rely on opaque

process interactions (Sanders 2003); this appears to be true even in light of the introduction

of serialism into OT. Apart from general concerns about abstractness, however, there is no

consensus on just what kinds of abstractness are actually favoured or disfavoured by learners.

Here we will give a typical case of abstractness, a simple apparent case of opacity in

Kalaallisut, an Inuit language of Greenland, and show how Bayesian reasoning applies. Al-

though a full analysis would require a fair amount of mathematics and computer simulation,

we simply highlight the way the reasoning works. In particular, we highlight the fact that
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a Bayesian learner will, all other things being equal, favour simpler models; that is, if we

assume the axioms of decision making under uncertainty that underlie this approach, we

immediately impute an Occam’s Razor like simplicity bias to the learner. We show how a

particular set of assumptions about the mechanisms of phonological grammar would com-

pel an ideal learner to arrive at an abstract solution simply by force of these well-motivated

domain-general reasoning strategies. We discuss the implications for the study of language

acquisition.

2. KALAALLISUT PHONOLOGY

Kalaallisut is an Inuit language spoken in Greenland; it has been the sole official language

of Greenland since 2009. The inventory of Kalaallisut, closely following Rischel 1975, is

given in Table 1 (omitting length distinctions, which are contrastive for both vowels and

consonants, but irrelevant here).1

TABLE 1. The phonemic inventory of Kalaallisut, roughly following Rischel
1975. Length is also contrastive for both vowels and consonants (omitted
here). The uvular nasal [ ] is marginal.

Bilabial Coronal Velar Uvular Vowels

The vowel inventory shown in Table 1 contains three phonemes, / /, / /, and / /. As in

many languages with uvular consonants, including the other Inuit languages, vowels are af-

fected by following uvulars, being subject to the process described by the rule in (1) (Rischel

1975; Dorais 1986).
1 Table 1 deviates from the inventory adduced by Rischel in that it omits an underlying voiceless fricative series.

The question is irrelevant for current purposes, and the argument in favour of such an analysis would seem dated

by modern standards, as it turns only on the maintenance of the taxonomic phonemic level; see the original.
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The existence of the process in (1) means that the vowels of Kalaallisut each have a re-

tracted allophone. We will notate these segments as [ ], [ ], and [ ]—rather than [ ], [ ], and

[ ], respectively—for the sake of presentational convenience, and not to make any precise

claims about the phonetic values of these variants. Examples are given in (2)–(3) (examples

from Bittner, undated).2

(2) + + + → [ ], ‘went quickly’

(3) + + + + → [ ], ‘and he is very thin’

In addition to vowel shifts before uvular consonants, processes of regressive consonant

assimilation are also common across the Inuit languages, and are most total and apply most

liberally in the easternmost dialects (Dorais 1986), including Kalaallisut. Importantly, in

addition to total regressive assimilation targeting all other classes of consonants, Kalaallisut

has regressive assimilation targeting uvulars, as seen in (4)–(6).

(4) + + + → [ ], ‘he always travelled’

(5) + + → [ ], ‘he said’

(6) + + + → [ ut], ‘he said’

As can be seen in this second set of examples, these two rules can both apply (indeed, the

syllable structure of the language makes it impossible to construct an example of assimilation

of a uvular in which the retraction rule would not apply), and the resulting interaction is

opaque (a case of counterbleeding in the sense of Kiparsky 1971).
2The non-low retracted variants are notated in the standard Kalaallisut orthography as e and o; the two variants

of the low vowel are collapsed in the orthography as a. Rischel 1975 describes the variants as being lowered

and pharyngealized.
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Kalaallisut opacity is a somewhat nuanced, however, and helps to illustrate some of the

controversy surrounding this kind of abstractness. The nature of the assimilation of uvulars

in Kalaallisut has been a matter of some discussion, for two reasons. First, because, unlike

all other consonant assimilations, it is marked in Kalaallisut orthography; second, because it

is often a detectably incomplete neutralization, even to non-native speakers. Phonetic anal-

ysis by Mase and Rischel (1971) revealed no evidence of frication in assimilated / /. Our

own informal listening suggests that some trace of uvularity remains audible in a substantial

number of cases.

Rischel (1974) proposes several alternate analyses of this fact. In one, the surface uvularity

is cued entirely by the vowel quality. The assimilation in Kalaallisut is across-the-board total

assimilation, as in (7).

(7) C C

Root
This analysis claims that the interaction between the two processes is an opaque one, as

shown in (8).

(8)

/ /

(1) [ ]

(7) [ ]

Though the opaque analysis is one theoretical possibility, there is another grammatical

analysis that has been preferred. Under Rischel’s preferred analysis, assimilation spreads all

features but [+RTR] (Rischel’s [+retracted]). Under this analysis, there is no opacity.

The phonetic question of whether tongue retraction is detectable on the surface “in the

consonant” or not is a crucial one, and it is characteristic of the debate that takes place in these

cases; but it is quite a difficult one, particularly given the results of Alwan (1999), which seem

to suggest that, in the absence of a burst, the main cues to uvular place information would

be found in the first formant of an adjacent vowel. Nevertheless, under the assumption that
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there is a phonological difference to be made between uvular consonants and consonants

preceded by retracted vowels, the question is empirical and as yet unresolved. It is fair to

say that much rests on the empirical outcome, however, as true cases of counterbleeding are a

problem for monostratal theories of phonology (Prince and Smolensky 1993), and substantial

effort has been devoted to denying their existence, sometimes by appealing to subtle phonetic

arguments such as these.

What follows is a theoretical argument. If we assume that uvularity is obscured in at least

some tokens, then it is reasonable to call the current case in some sense opaque; in any case,

there are countless other cases, most of which would also be susceptible to the same phonetic

explaining away. Thus, although the phonetic line is interesting, we are more interested here

in examining a different line that has been pursued against these kinds of opaque interactions.

In the absence of phonetic facts that could be interpreted as suggesting a lack of true opacity,

researchers attempting to debunk these cases of opacity have gone after subtler facts about

the nature of the generalizations formed.

For the well-known case of Canadian Raising, for example, where [ ] and [ ] alternate

with [ ] and [ ] before voiceless stops even when they are neutralized by a subsequent

flapping rule, Mielke et al. (2003) propose that, rather than a single pair of phonemes, / /

and / /, subject to a raising process, there are four phonemes / /, / /, / /, and / /.

Simply storing the surface form is possible only in cases where the alternation does not

occur across a morpheme boundary. For cases in which the raising does apply across a

morpheme boundary, the grammar must preserve both processes. The facts are contested

in the case of Canadian English (see Idsardi 2006), but, as the above examples show, both

processes must apply across morpheme boundaries in Kalaallisut.

Our focus here is on this second kind of argument. Let us therefore assume that (7) is

basically correct, and that the assimilation is truly total for uvulars, at least in some cases.

If the set of Kalaallisut vowels is as given in Table 1, then we have an opaque analysis; but

there is clearly an alternate analysis—a transparent analysis—in which both rules still exist
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(though now perhaps as rules of allomorph selection), but the Kalaallisut vowels are as in

Table 2.
TABLE 2. The phonemic inventory of Kalaallisut under a transparent analysis
(length omitted as above). Position in the chart is not intended to suggest any
particular featural analysis.

Under such an analysis, the underlying form for a word like [ ] would be +

+ , with a stored retracted vowel in the first morpheme (guaranteed to be stored under

the Lexicon Optimization hypothesis of Prince and Smolensky 1993). By the process corre-

sponding to (1), we get a retracted vowel in the second morpheme; we get assimilation of the

final consonant of the first morpheme by the process corresponding to (7).

Such an analysis can capture the facts only to the extent that certain crucial facts are miss-

ing. A word in which assimilation is a demonstrably active process must include the se-

quence / +C/; a word in which retraction is a demonstrably active process must include

the sequence /V+ /; but in order to show that retraction and assimilation are both active

processes in interaction, we would need a sequence /V+Q+C/, where Q is either [ ] or [ ].

The only such morpheme we are aware of is the third person singular morpheme -/ /, but

this always appears word-finally, making it irrelevant, and furthermore never follows open-

class morphemes, leaving its morphological analysis potentially open to claims of reanalysis

even if it were relevant.

This is a typical case of abstractness, an apparent case of opacity in phonology. There

are several possible analyses; here we focus on two. One analysis has more phonemes; the

other relies on interesting non-trivial properties of complex phonological systems (opacity).

There is an intuition that one is somehow “closer” to what is observed than the other, but
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the question of which analysis a human would select, particularly given that the crucial data

appears to be obscured, is an empirical one. This is exactly where we would like some other

facts about the human inference system (the language acquisition device) to come to bear;

this is a perfect opportunity to show how one might apply Bayesian reasoning in linguistics.

First, it is a case where a theory of inference under uncertainty might be informative, because

the correct answer appears to be down to the details of the inference. Furthermore, as we

will show, this is a case where Bayesian inference can give us an interesting result, bearing

directly on the question of abstractness.

What we endorse in this paper is an approach to linguistic theory that incorporates the

insights of probabilistic inference. We warn the reader in advance that taking such an ap-

proach seriously will involve fairly sophisticated mathematics and computer simulation; so

that we can walk the reader through the crucial points, we have opted to idealize somewhat.

The conclusion, however, that the Bayesian approach to reasoning under uncertainty gives

an inherent penalty to more complicated models, all other things being equal, will always be

relevant. In this case, we show how the reasoning leads to abstract solutions.

3. BAYESIAN REASONING IN LINGUISTICS

In the previous section we have demonstrated a typical case of model selection in linguis-

tics. We are unable, given the data, to draw a clear conclusion about the grammatical system

induced by the learner of Kalaallisut; furthermore, the decision hinges crucially on a funda-

mental and divisive issue in the field, that of abstractness. We have presented two analyses,

pitting storage against computation. In such cases, we know that we would benefit substan-

tially from having an independently motivated theoretical stance on the learner. In the rest of

this paper we use this case to demonstrate how Bayesian reasoning can apply to linguistics.

The approach we take is to study an ideal learner. The problem of language acquisition

is the problem of searching for a grammar that is in some sense an optimal model with re-

spect to the primary linguistic data. One theoretical approach to language acquisition is to
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focus on the consequences of various search procedures; this is the general character of the

proposals made by Dresher and Kaye (1990), Clark (1992), Niyogi and Berwick (1996), and

Yang (2002), among others. Each of these proposals describes a different algorithm for ex-

ploring the set of possible grammars (in the case of Yang 2002, a probabilistic search). On

the other hand, the phonological category acquisition work of deBoer and Kuhl (2001), Val-

labha et al., (2007), has taken a different approach. This literature applies standard statistical

techniques to a learning problem—in this case, the problem of determining the location and

extent of vowel categories in a language in acoustic space—in order to approximate some

theoretically optimal solution. By proceeding in this way, these researchers have drawn the

conclusion that the search problems under consideration are in principle solvable in a rela-

tively straightforward search space (in the vowel-learning case, the space of possible formant

values, plus several other acoustic parameters); similarly, by pushing the same models to deal

with more complicated vowel systems and more realistic data sets, Dillon, et al., (in prep),

have drawn inferences about what restrictions need to be put on the hypothesis space a priori

for phonological category learning.

Here we present a study of the second kind. Rather than specifying the mechanism by

which the learner reaches the adult state, we will describe the learning problem at an abstract

level and attempt to find a theoretically optimal solution, in the hope that this will shed light

on the question of what is learnable in phonological grammar.

This approach, of studying a cognitive system—in this case, inference about grammars—

by spelling out what the optimal solution would be and then, ultimately, attempting to mea-

sure how humans deviate from this, has been defended elsewhere (for example, Chomsky

1995). For inference, however, the case is relatively easy to make, because there is an exist-

ing toolkit for studying reasoning under uncertainty which allows us to state the ideal solution

straightforwardly: probability theory. Since we are easily able to state a variety of possible

solutions, we would do well to examine the optimal solution, since it is interesting.
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In what follows, we state how this kind of reasoning works. We show how an Occam’s

Razor effect can be seen as a result. We then state certain theoretical assumptions which

will allow us to highlight this approach in grammatical inference; finally, we spell out some

details in the current case.

3.1. Probability. In this section we provide a brief overview of the elements of probabilistic

reasoning, using examples from phonology.

Let us begin with the phonetics-phonology mapping. That the representation of the speech

stream output by the cochlea (the lowest-level auditory phonetic representation) must be rep-

resented in long-term storage (the phonological representation) is indisputable. Following

standard assumptions, we assume that the mapping from phonetic to phonological repre-

sentations is a mapping from continuous values to discrete values: that the lowest level of

auditory processing sends effectively real-valued signals is simply a physiological fact; that

phonological representations are discrete-valued follows from either of the usual assumptions

that phonological representations are collections of discrete-valued features, or that phono-

logical inventories are finite. Both of these assumptions have been challenged in recent years

(see, for example, Pierrehumbert 2001, Silverman 2006), but we will not attempt to determine

the consequences of assuming these continuous-inventory models here.

Instead, we assume that continuous phonetic values must be mapped to a finite number of

discrete phonological categories, and, furthermore, that determining how exactly this map-

ping is structured is part of the task of the learner. This follows from the fact that identi-

cal phonetic values are mapped to different phonological categories across languages, a fact

which can be seen both in the operation of phonological processes and in speech perception

(Stevens et al., 1969; Werker and Tees 1984; Kazanina et al., 2006; Herd 2000; Dresher

2009).

In probabilistic modeling, the general term for a model in which each observed data point

is a member of one of a finite number of categories is a mixture model. The intuition behind

a mixture model is that, in order to generate a data point, some procedure selects a category,
10
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and, a category having been selected, some other procedure generates an instance of the se-

lected category. In the current case, using a mixture model to describe vowels simply asserts

that there is a many-to-one mapping from possible phonetic tokens to vowel categories. From

a probabilistic modeling perspective, the statement of a mixture model is as in (9):

(9)

Pr(x) =
C

!
i=1
Pr(ci)Pr(x|ci)

Equation (9) is read as follows: the probability of some observed phonetic value x is equal

to the following value, summed over all C vowel phonemes: the probability of the phoneme

ci times the within-phoneme (conditional) probability of the observed token, once we assume

that x is an instance of ci. This statement follows from the basic axioms of probability,

which require that the probability of any of a finite number of mutually exclusive events

(such as the occurrences of a phonetic value x conjoined with each member of the set of

phonemic categories) be equal to the sum of the probability of each event, and that conditional

probabilities be related to joint probabilities (probabilities of conjunctions) by (10).

(10)

Pr(x and ci) = Pr(x|ci)Pr(ci)

By taking the mixture model as a correct theory-neutral description of the phonetics-

phonology mapping, we in some sense follow deBoer and Kuhl (2001) and Vallabha et al.

(2007). It is important to stress, however, that the statement of the mixture model given in

(9) is a completely general one; perhaps most crucially for the conventional phonologist, al-

though it states a relation among probabilities, endorsing (9) as a statement of the phonetics-

phonology mapping does not require a strong commitment to a probabilistic grammar (for

example, the Stochastic OT theory of Boersma 1997, Boersma and Hayes 2001). This is
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because deterministic models can be seen as degenerate cases of stochastic models, and thus

can be modeled using exactly the same reasoning.

For example, the function Pr(x|ci), given some phonetic value x and phoneme category ci,

gives the probability of x as an instantiation of ci. Such a function implicitly defines the set of

instantiations of ci by returning zero for values of x which cannot be possible instantiations of

ci; the remaining values of x are possible instantiations of x. If there is only one such value,

the mapping from phonology to phonetics is deterministic. If there are many such values

of x, then the mapping from phonology to phonetics is not deterministic, but stochastic.

Furthermore, in general, in a probabilistic model, Pr(x|ci) may not be the same for all x. In

that case, the model would be an informative stochastic treatment of the phonetics-phonology

mapping, because the model would impute to the phonological system some knowledge of

the relative propensity of ci to be instantiated in various ways; but if, for all x with non-

zero Pr(x|ci), the value of Pr(x|ci) is the same, then Pr(x|ci) is effectively the characteristic

function of the set of possible instantiations, scaled to sum to one in order to comply with the

axioms of probability (a so-called uniform distribution).3 While the model is still stochastic,

it is not informatively stochastic, because it imputes to the system no knowledge—that is,

maximal uncertainty—about which phonetic realizations of a category are more probable.

Probability theory is the most widely accepted theory—either normative or descriptive—of

reasoning under uncertainty, and, once the level of uncertainty for each point is specified,

gives us a deductive calculus over uncertain knowledge.
3 In the discrete case, it means that that values of x belonging to the set ci do not give a value of 1, but of 1N , where

N is the number of possible values of x. We assume that phonetic values are continuous, making N infinite and

Pr(x|ci) zero. For practical purposes the solution to this problem is to take the integral of a “probability density

function” over neighbouring values of x; a rigorous treatment of continuous probability spaces requires a fairly

sophisticated mathematical understanding. Neither point is relevant to the current paper, and the statement for

discrete probability spaces gives the right intuition for our purposes.
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Similarly, for problems we might take to be deterministic, like the many-to-one mapping

from acoustic tokens to phonological categories, a probabilistic formulation is fully compat-

ible. To see more clearly how a probabilistic formulation can give a deterministic model,

consider the problem of recognizing speech. Given some segment with phonetic values x,

the problem is to determine the phonological category cx which generated x; that is, we must

find the value of c which maximizes Pr(c|x). The crucial relation here is Bayes’ Rule, given

in (11):

(11)

Pr(c|x) =
Pr(x|c)Pr(c)

Pr(x)

Furthermore, we can expand the denominator as above:

(12)

Pr(c|x) =
Pr(x|c)Pr(c)

!Ci=1 Pr(x|ci)Pr(ci)

Now suppose that there is no overlap between phoneme categories, that is, that there is

no acoustic value x such that the phonetics-phonology mapping would simultaneously assign

Pr(x|c1) > 0 and Pr(x|c2) > 0 for c1 #= c2; put another way, suppose there are no regions of

uncertainty. Then, if we are given some x, there is only ever one category ci with a non-zero

value in the expansion of denominator in (12); furthermore, the probability of the correct

category ci (correct according to the model) given some data point x, is always 1:

(13)

Pr(ci|x) =
Pr(x|ci)Pr(ci)

0+ · · ·+Pr(x|ci)Pr(ci)+ · · ·+0

= 1

In short, a mixture model is a stochastic model, which means that, as a model of a cognitive

system, it is capable of imputing to the system detailed “degrees of certainty” (probability)
13
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about various inputs (a probability distribution); nevertheless, probability distributions have

as special cases both maximal certainty (determinism) and maximal uncertainty (uniform dis-

tributions). Probability theory, however, is simply a way—the most widely accepted way—of

formalizing reasoning under uncertainty. In the case of absolute certainty, it can be shown

that it reduces to Aristotelian logic; when there is uncertainty, it can be shown to be reducible

to a very small number of axioms of consistent reasoning (Cox 1946; Jaynes 2003). While

there are other deductive systems for reasoning under uncertainty (for example, fuzzy logic,

and the consequent “possibility theory”; see Zadeh 1978), probability theory is by far the

most widely accepted.

3.2. Bayes Rule and model comparison. In this section, we illustrate statistical inference

using Bayesian model comparison. We introduce some terminology and stress the important

fact that a principle instantiating Occam’s Razor falls out from this approach to inference.

The goal of the learner in finding a phonological grammar and a mapping between phono-

logical categories and phonetic values is to find a model of the attested data. Reasoning under

uncertainty, the optimal solution is therefore the model M which has maximal probability

given the attested PLD D:

(14)

M = argmax
m
Pr(m|D)

As discussed above, many of the theoretical approaches to learning in the literature attempt

to specify the method for searching for this optimal model (for example, in Yang 2002, as

data points come in, changing D, the learner uses a simple reinforcement learning algorithm

to update Pr(m|D) directly). Our approach here is different. In what follows, we simply try

to estimate what the values of this criterion would be under various possible models. We thus

use Bayes’ Rule, given above, to get the criterion in a more convenient form, as in (15).
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(15)

Pr(M|D) =
Pr(D|M)Pr(M)

Pr(D)

This statement should be read as follows: the probability of the model after having seen

some data (the posterior) is proportional to the probability of the data under that model (the

likelihood), times the a priori probability of that model (the prior); equal, when scaled down

by the overall, or marginal probability of the data. The Bayesian approach to model com-

parison makes use of this expansion to do inference. In particular, it accepts that having a

probability distribution over possible models is reasonable; this is to be contrasted with the

frequentist approach to statistical inference, which dominated the statistical toolbox used by

scientists (though not machine learning researchers) throughoutmost of the twentieth century,

and continues to, though there has been a surge in interest in Bayesian methods in recent years

(Kass and Raftery 1995; Jaynes 2003; Mackay 2003; Gelman, et al., 2003; Gallistel 2009).

The frequentist approach rejects the use of Pr(M), because it interprets probability theory not

as a theory of reasoning under uncertainty, but as theory of the counts of particular classes of

events as the number of observations goes to infinity; in such a theory, talk of the probability

of a model is incoherent, because models are not observable events. There are a number of

important theoretical reasons for adopting the Bayesian approach, however, including a num-

ber of well-known paradoxes under the frequentist interpretation; more importantly, just as

probability theory follows as a straightforward generalization of Aristotelian logic, Bayesian

inference is supported by handful of very general decision-theoretic principles (see Ghosh et

al., 2006; Robert 2007).

Bayesian reasoning gives the decision rule in (16), the Bayes decision rule.

(16)

Pr(D|M1)Pr(M1)

Pr(D|M2)Pr(M2)

M1
≷
M2
1
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The left-hand side in (16) is the ratio of Pr(M1|D) and Pr(M2|D). The rule is read as

follows: if the left-hand side (the Bayes factor) is greater than one, decide in favour of model

M1; if the Bayes factor is less than one, decide in favour of model M2; the larger the Bayes

factor, the better the evidence for M1. This can be interpreted as an “odds,” in the gambler’s

sense. (Comparisons are usually done in log, so that, for example, a difference of two orders

of magnitude is considered strong evidence; see Goodman 1998).

The important thing to note here is that the likelihood and the prior are in a trading relation.

We can maximize Pr(D|M) by maximizing the likelihood if the prior is uninformative, or by

maximizing the prior if the likelihood does not help in the model comparison. An immediate

consequence of this is, all other things being equal, we should pick the a priori more probable

model.

As has often been pointed out (Mackay 2003), a Bayes factor analysis gives an automatic

model complexity penalty, because models with more free parameters yield smaller prob-

abilities. To see this intuitively, consider the simple case in which two models are under

comparison, one of which has a single binary valued parameter, and the other of which has

two binary-valued parameters. Suppose that under either model, there is a single parame-

ter value ("̂1, "̂2 respectively) that gives a reasonably good fit—that is, gives a reasonable

likelihood—and the others (or the single other) give near-zero likelihood. We expand out

Pr(D|M) (a marginal likelihood, because it averages over all parameter values under model

M) to get the decision rule in (17).

(17)

Pr(D|"̂1,M1)Pr("̂1|M1)Pr(M1)

Pr(D|"̂2,M2)Pr("̂2|M2)Pr(M2)

M1
≷
M2
1

Suppose both parameter values are equally likely under Model 1, and all four parameter

values are equally likely under Model 2. If the two models are equally likely, and they assign

equal probability to the data under the single good parameter value for each, we get the

decision rule in (18).
16



A BAYESIAN EVALUATION OF THE COST OF ABSTRACTNESS

(18)

Pr("̂1|M1)

Pr("̂2|M2)

M1
≷
M2
1

Since there are four possible parameter values under M2, and under M1 only two, if they

are all equally likely a priori, the Bayes factor is one quarter divided by one eighth—Model

1 is twice as probable.

Importantly, this means the following: Bayesian reasoning not only tells us that, all other

things being equal, we should pick the most probable model (or, of course, conversely, the

priors being equal, we should pick the model that assigns the higher probability to the data);

it also tells us that we should in general pick the model with fewer free parameters. This is

essentially Occam’s Razor.

A word of warning is in order. Fully Bayesian inference will compare models by aver-

aging over all possible parameter values (thus, by using the marginal likelihood). In our

example, we assumed that there was only one parameter value worth looking at, because the

rest assigned negligible probability to the observed data; thus averaging would be pointless,

because we would multiply in likelihood values close to zero for the other parameter values.

We will continue to use this oversimplified reasoning to illustrate how the Bayesian approach

can bring this important complexity penalty to linguistics. In reality, as we increase the num-

ber of free parameters, a number of things change about the performance of the model. First,

we can eventually find parameter values that give greater likelihood to the observed data

(imagine a model with as many parameters as data points); second, we can find more high-

likelihood models (there are more ways to get the same data). Thus, averaging, we might find

that all things are not equal, not only because the best parameter value may be better under

the more complex model, but also because there might be more “best” parameter values to

choose from. There will be some tradeoff against model complexity, as we have shown, of

course; the question is simply how quickly the likelihoods and the number of good fits grow,

17
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as compared to how quickly the conditional priors on the parameters shrink. This can only

be determined given the particular model and data set we are working with.

Abstracting away from this, then, the logic is clear: all other things being equal, Bayesian

reasoning tells us to prefer simpler models. This is the essence of the reasoning we use in

this paper: simpler models are preferred. In the current case, models with fewer phonemes

are preferred. What follows is simply filling in the details.

3.3. Theoretical assumptions. In order to illustrate our point, we will need to make some

assumptions about the shape of the phonological model.

Recall from the preceding discussion that to assume discrete phonemes is to assume a

mixture model, in which there is a choice between some finite number of categories, and

each category has some distribution.

(19)

Pr(x) =
c

!
i=1
Pr(x|ci)Pr(ci)

This probability has two parts for each component: a class-conditional probability Pr(x|ci),

and a mixing probability Pr(ci). For example, following deBoer and Kuhl 2001, Vallabha et

al., 2007, and Feldman et al., 2009, we might assume that Pr(x|ci) (yielding the probability

distribution for acoustic tokens under each phoneme, or component of the mixture) follows a

multivariate Gaussian distribution; we might consider assuming other distributions, including

uniform distributions, though the speech perception literature seems to us to suggest that a

uniform distribution is an inappropriate model for vowels, since identification rates vary in

proportion to distance from the category centre (see for example, Pisoni 1975; Kuhl 1991;

Savela 2009). For current purposes, Pr(ci), the mixing probability, is immaterial; it is most

often modeled as a multinomial distribution (Vallabha et al., 2007), but Feldman et al. (2009)

construct a more complicated model which, seen as a mixture, essentially uses a draw of a

word from a simulated lexicon to get these probabilities.

18
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We will further assume a model of the phonetics-phonology mapping in which the com-

putation of allophony is a subsymbolic process, in particular, the model argued for by Dil-

lon, Dunbar and Idsardi (in prep). In this model, phonetic categories are fit simultaneously

with a set of subsymbolic shifts in phonetic space corresponding to allophonic rules. In this

model, there crucially are no phonetic categories (“phones”), in the sense of phonemes with

all postlexical processes applied to them. This model has many consequences discussed else-

where, but, here, crucially, it is not the case that, in order to get a model with three phoneme

categories, the learner must first find six phonetic categories; rather, the learner will find three

phonetic categories corresponding to the phonemes. It is also not the case that the three pho-

netic categories discovered will each need to cover the entire phonetic space covered by both

(retracted and non-retracted) allophonic variants; the retracted variants will be shifted to fall

into the phonetic region covered by the unretracted ones.

The final assumptionwemake is a theory of possible underlying forms. Under the Richness

of the Base theory, “which holds that all inputs are possible in all languages, distributional

and inventory regularities follow from the way the universal input set is mapped onto an

output set by the grammar,” (Prince and Smolensky 1993; emphasis added). One way to

interpret this is to say that, a priori, no sequence of length N is more probable than any

other. This has the consequence that, for some underlying sequence /ABC/, Pr(/ABC/) =

Pr(/A/)Pr(/B/)Pr(/C/).

We believe that most of these assumptions are well justified. More importantly, we take

up these assumptions in part because they allow us to highlight the Occam’s Razor effect

of Bayesian reasoning. While there are many benefits to reaped from taking the theory of

reasoning under uncertainty seriously, we believe that this particular point will be of deep

interest to linguists.

3.4. The need for fewer categories: a bias in the prior. In this section we show how

the simplicity preference inherent in Bayesian inference manifests itself in the prior. This

is straightforward: we have discussed it above. This section simply spells it out further by
19
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showing how a plausible set of assumptions about what it means to learn categories and

grammars would force the abstract solution.

Following the reasoning given above, we compare models mo, an opaque model, and mt , a

transparent model, using a decision rule as in (20).

(20)

Pr(D|mo)Pr(mo)
Pr(D|mt)Pr(mt)

mo
≷
mt
1

Recall from the previous section that, ordinarily, in model comparison, the hypotheses un-

der comparison each consist of a range of possible parameter values, and in order to compare

the two models, we integrate over all parameter values. In the present case, this type of com-

parison would require far more involved mathematical analysis than is appropriate here. To

get at the intuition behind the approach, we will thus attempt a simpler comparison, between

two particular sets of parameter values under the two models, but taken in the abstract.

Recall also the fact that, if the likelihoods are equal under two models, model comparison

will be driven by the priors. To illustrate the logic, we will assume this to be true in this

section. This is of course not a reasonable assumption in general (otherwise the data would

never have any effect on the outcome of learning), but it is at least plausible for the optimal

solutions under either number of categories. In any case, it is a formal way of stating the bind

we take ourselves to be in: the theory is truly underdetermined by the data, to the point that

neither model is a better explanation at all. In such a situation, in the model comparison rule

in (20), Pr(D|mo) is always equal to Pr(D|mt), and we always get (21). 4

4 We are being sloppy to avoid technical encumbrance. Pr(·|·) is the probability measure on the underlying

event space, but for purely technical reasons, probability distributions are specified with respect to a random

variable, a layer of abstraction away from actual outcomes. Probability distributions are usually specified in

terms of a probability density; the parameters under discussion are really parameters of the density function, not

of Pr.
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(21)

Pr(mo)
Pr(mt)

mo
≷
mt
1

A model of the phonetic/phonological grammar has several parts. First, we must know

the number of categories, K. For mo, we have K = 3; for mt , K = 6. Second, there will be

some grammar, Go for mo, Gt for mt . Finally, we have some set of parameter values for each

category in each model; for mo, call these "/ /,o, "/ /,o, "/ /,3, and call the whole collection

Co; for mt , call them "/ /,t , "/ /,t , "/ /,t , "/ /,t , "/ /,t , "/ /,t , and call the whole collection

Ct . (These parameter values, might, for example, be the means and covariance matrices of

multivariate Gaussians.) We thus state the models as in (22).

(22)

mo := 〈K = 3,Go,Co〉

mt := 〈K = 6,Gt,Ct〉

We can write out the function in (21) in terms of this parameterization and expand it using

the chain rule of probability to obtain (23).

(23)

Pr(mo)
Pr(mt)

=
Pr(Go|Co,K = 3)Pr(Co|K = 3)Pr(K = 3)
Pr(Gt |Ct,K = 6)Pr(Ct |K = 6)Pr(K = 6)

This can be seen as three separate ratios. The leftmost ratio compares the two grammars.

The ratio Pr(Go|Co,K=3)
Pr(Gt |Ct ,K=6) will be different from one to the extent that there is an inherent cost to

crucially derivational grammars (assuming that, apart from the ordering, the two grammars

are basically the same); this cost might be different depending on the rest of the model, but,

again, this bias, if any, would be an a priori one. For example, if there were a coherent rule-

based analysis in which the two rules were in some sense “unordered,” this would have twice

the probability of either ordered rule analysis if the two orders were equally probable. In an
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ideal learner model, this is in fact exactly howwe would spell out the intuition that the opaque

system is “hard to learn,” or that the learner would “wait for certain data points”—like the

crucial case of both rules applying across morpheme boundaries—to posit that the opaque

analysis. The intuition behind these statements is that, even though both the opaque and the

transparent model can give the same strings, the transparent model is inherently preferred

unless there is some data that would not be generated—that is, that has lower probability

(perhaps not zero, though, since the learner can always treat it as noise).

The rightmost ratio, Pr(K=3)
Pr(K=6) , asks whether there is an inherent preference for some number

of categories. We can think of this as being a bias inherent to Universal Grammar—are

languages with three vowel categories treated as inherently more probable by learners than

languages with six vowel categories? This is different from a bias driven by properties of the

deductive system, as we will see.

The values of these two ratios constitute two rather difficult empirical questions—indeed,

this is so even if the null hypothesis is for the learner to be in some sense unbiased, because

the structure of the model we assume will induce biases even if the precise details are all

totally unknown. Without any knowledge about what these two biases are, let us leave their

combined effect as a constant J. If J is less than one, the decision will be biased in favour

of the transparent analysis; if it is more than one, the decision will be biased in favour of the

opaque analysis.

The interesting ratio here is Pr(Co|K=3)
Pr(Ct |K=6) . Let us expand this factor in the decision rule.

(24)

Pr(Go|Co,K = 3)Pr(Co|K = 3)Pr(K = 3)
Pr(Gt |Ct ,K = 6)Pr(Ct |K = 6)Pr(K = 6)

= J ·
Pr("/ /,o,"/ /,o,"/ /,o|K = 3)

Pr("/ /,t ,"/ /,t ,"/ /,t ,"/ /,t ,"/ /,t ,"/ /,t |K = 6)

The decision rule in (24) compares (in addition to the fixed cost ratio for the rule ordering

and the number of categories) the probability of the particular categories (parameter values of

some phonetic probability distributions) recovered under each solution. Intuitively, the ratio

will be smaller than one, because the set of three-category solutions is a proper subset of
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the set of six category solutions; each time we must estimate a new category, we add further

uncertainty to the solution.

To make this true in our case, we need some assumptions. As discussed above, under

the theory of Dillon, Dunbar, and Idsardi (in prep.), the continuous input space in which the

phonetic categories are fit has already had the effects of allophonic processes removed (of

course, the categories must be learned simultaneously with the grammar). This means that,

ideally, if we can find the true categories in the data, we should have Pr("/ /,t ,"/ /,t ,"/ /,t |K=

6) exactly equal to Pr("/ /,o,"/ /,o,"/ /,o|K= 3), because the recovered categories will be the

same. Of course, as discussed in greater detail elsewhere, it might be the case that, under one

or the other hypothesis, it is more difficult to find the true categories (indeed, this is almost

certainly the case); but, so long as there is no strong prior on the phonetic location and extent

of categories, the two should be roughly equal.

This means that we can productively expand the decision rule in (24) using the chain

rule. If, as we assume, some of the categories are shared between the two solutions and the

probabilities cancel, then we have (25).

(25)

J ·
Pr("/ /,o,"/ /,o,"/ /,o|K = 3)

Pr("/ /,t ,"/ /,t ,"/ /,t ,"/ /,t ,"/ /,t ,"/ /,t |K = 6)

≈ J · (Pr("/ /,t ,"/ /,t ,"/ /,t |"/ /,t ,"/ /,t ,"/ /,t ,K = 6)−1

Clearly, the second factor must be greater than one, because the probability inside the

reciprocal can by definition be no more than one. We thus have a direct comparison: whatever

the inherent cost of process ordering, and whatever inherent bias learners might have for

more categories (if this is plausible), their combined value (some J < 1) must overcome the

inherent cost of estimating three new categories in order for a transparent solution to get off

the ground. 5

5
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In order for this to be the case would be it would need to be that, at least given the correct

estimates for the three categories / /, / /, / /, the remaining three sets of parameter values

were extremely probable. Assuming each to be equiprobable, they would each need to have

(conditional) probability 3√J. Even for apparently quite strong biases like J = 10−3, we

get that each set of parameter values would need to have probability 0.10, which indicates

substantial bias toward certain phonetic categories.

In this section we have pointed to some properties of Bayesian model comparison, a power-

ful tool which, up to this point, has gone largely unused in linguistics. This of course requires

some assumptions, particularly when presented in this simplified form, but we believe it is

deeply important to note that the problems of abstractness and simplicity, long-standing prob-

lems in linguistics, are very general problems in inference, to which Bayesian reasoning can

often provide a definitive answer.

3.5. An analysis of Kalaallisut underlying representations: a bias in the likelihood. In

this section we build on the analysis of the previous section, applying the same reasoning

to a slightly different part of the problem. In particular, while in the previous section we

assumed that the likelihoods were comparable under the two hypotheses, we will weaken

that assumption here. We show how the same type of reasoning applies: when there are more

things to estimate under a particular model, the probability of any individual solution under

that model drops, so that, to the extent that the solutions under that model are roughly as good

and as probable as under the simpler model, we should prefer the simpler model.

In particular, recall that the Bayes factor for model comparison is a ratio of two model

probabilities, where each is as in (26).

(26)

Pr(M|D) =
Pr(D|M)Pr(M)

Pr(D)
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In this section we focus on the fact that by hypothesis the underlying phonetic/phonological

model M provides information about phonetic values only by way of phonological cate-

gories. If the model is relatively uninformative with respect to n-gram probabilities of po-

tential phonological strings, then a model with more phonemes will assign lower probability

to an individual string. This affects the likelihood, Pr(D|M), which we previously assumed

to be roughly equal under the two hypotheses. In the extreme case, if the probability of a

phonemic string—say / /—is simply the product of the probabilities of the individual

phonemes, then the fact that having phoneme categories means greater uncertainty will mean

smaller string probabilities. As discussed above, the assumption that all phonemic strings are

equiprobable is roughly the Richness of the Base hypothesis of Prince and Smolensky 1993.

In this section we specify more precisely how such an assumption would interact with the

kind of model comparison under discussion.

Given data D equal to some phonetic input x, the learner must compare models using the

Bayes factor in (26). For x a single one-segment data point we have (27), where each ci is

one of the K phoneme categories.

(27)

Pr(M|x) =

[

!Ki=1 Pr(x|ci,M)Pr(ci|M)
]

Pr(M)

Pr(x)

The expansion in (27) says that each token might have been generated by any of the K

phoneme categories, and that the learner (and indeed the listener) must decide which; equality

follows from the law of total probability. Similarly, if we consider x corresponding to a

sequence of phonemes, we have (28), where w ranges over all possible underlying category

sequences.

(28)

Pr(M|x) =
[!wPr(x|w,M)Pr(w|M)]Pr(M)

Pr(x)
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Making the assumption that the data consists of a sequence of independently drawn se-

quences of phonetic values (that is, that the probability assigned by the model to one phonetic

string does not depend on the identity of the previous ones), we get that the learner will do

model comparison using the Bayes factor in (29), where x ranges over all phonetic sequences

in the data, and w ranges over all possible phonemic strings.

(29)

Pr(D|mo)
Pr(D|mt)

=#
x

!w [Pr(x|w,mo)Pr(w|mo)]Pr(mo)
!w [Pr(x|w,mt)Pr(w|mt)]Pr(mt)

As we know from the previous section, the rightmost factors (the priors) will tend to favour

mo by some amount. It is not clear a priori which of the two likelihood terms should domi-

nate. Note, however, that under certain assumptions the contribution of Pr(x|w,mo) as versus

Pr(x|w,mt) will be nil. In particular, under the model of the phonetics–phonology interface

discussed above, the interface categories are estimated using phonetic values corrected for the

effects of allophonic processes. The consequence of this is that, in a three-category system,

the one-to-many mapping from categories to phonetic values does not result in three large

categories.

This is important, because, ordinarily, when fitting a mixture model, the choice between

one category or two categories results in a roughly equal tradeoff between having greater or

smaller mixing probabilities and requiring narrower or wider coverage. Figure 1 illustrates

this. In Figure 1, a single Gaussian is overlaid with a pair of Gaussians having roughly the

same coverage. Above each is shown a mixing probability, the probability of selecting that

category. If we treat the two Gaussians as an alternate solution to the single Gaussian, then,

clearly, the mixing probability in the single category solution will of necessity be greater

than either of the individual mixing probabilities in the two category solution, because prob-

abilities must sum to one. This will be traded off, however, against the fact that the single

Gaussian will need greater coverage, and thus any individual value will be smaller, again
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because probabilities must sum to one. Thus, comparing the probability density at an indi-

vidual point will come out roughly equal, and comparing individual segment likelihoods will

be uninformative to the extent that the best fit under the two solutions has basically the same

coverage.

On the other hand, under the model we assume, the single category phoneme model needs

only to have the extent of one of the allophonic variants, not both. Thus, although the mixing

probability is greater, the individual densities are not smaller, and comparing points will

favour the single-category solution.

In particular, if the likelihood values for individual points in phonetic space are roughly

the same, we can say something about the comparison between Pr(x|w,mo)Pr(w|mo) and

Pr(x|w,mt)Pr(w|mt), by comparing the probabilities of various underlying forms. In partic-

ular, we will get a model comparison ratio in which the important terms (the ones that differ

between numerator and denominator) will be probabilities of underlying forms containing

retracted vowels under mt , but non-retracted vowels under mo, as in (30).

(30)

Pr(D|mo)
Pr(D|mt)

= #
x with [... Z... ]

· · ·+Pr(x|/. . . Zo . . ./,mo)Pr(/. . . Zo . . ./|mo)Pr(mo)+ · · ·
· · ·+Pr(x|/. . . Zt . . ./,mt)Pr(/. . . Zt . . ./|mt)Pr(mt)+ · · ·

= #
x with [... Z... ]

· · ·+Pr(/. . . Zo . . ./|mo)Pr(mo)+ · · ·
· · ·+Pr(/. . . Zt . . ./|mt)Pr(mt)+ · · ·

The summation is over possible alternate underlying forms for x; by removing the likeli-

hood term we make the simplifying assumption that we can basically ignore the “incorrect”

underlying forms potentially posited by the learner/hearer, and that the remaining likelihoods

are roughly equal across all possible underlying forms in each model, and roughly equal

across the two models. This is a stronger version of the assumption just discussed—that

the probability of individual phonetic segments does not change under the two hypotheses;

this is the crucial premise to our version of Occam’s Razor, but now operating “inside” the

likelihood function.
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The reasoning is now similar to the reasoning from the previous section. By the chain rule

of probability, we obtain (31) from (30).

(31)

#
x with [... Z... ]

· · ·+Pr(x|/. . . Zo . . ./,mo)Pr(/. . ._Zo . . ./|/ /,mo)Pr(/ /|mo)Pr(mo)+ · · ·
· · ·+Pr(x|/. . . Zt . . ./,mt)Pr(/. . ._Zt . . ./|/ /,mt)Pr(/ /|mt)Pr(mt)+ · · ·

The assumption of Richness of the Base given above then crucially tells us the following:

(32)

Pr([ ]|/ /,mo)Pr(/ /|mo)Pr(/ /|mo)Pr(/ /|mo)
Pr([ ]|/ /,mt)Pr(/ /|mt)Pr(/ /|mt)Pr(/ /|mt)

Given that the probability of the surface string is roughly the same under both grammars,

this reduces to (33).

(33)

Pr(/ /|mo)
Pr(/ /|mt)

Assuming a uniform distribution of segments, the fact that Kalaallisut has fifteen conso-

nant phonemes gives us a ratio of 15+615+3 ≈ 1.17, preferring the opaque solution. Clearly, the

same will hold for any other sequence. Here, as above, then, we see that putting linguistic

assumptions into a formal framework for decision making under uncertainty can often be in-

formative; in this case, we see how simple principles of reasoning under uncertainty can take

hold under the right circumstances to give interesting results that inform our understanding

of general issues like abstractness in learning.

Note, however, that, we are not finished. The model comparison ratio is a product, taken

over the entire data set; this means that each data point will contribute by multiplying in its

probability, which, being less than one, will shrink overlall probabilities exponentially. In the

analysis of scientific data, Bayes factors are usually compared as logarithms; comparisons

of 3 or more in favour of a model are generally considered very strong evidence (Goodman
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1998). The log score in favour of an abstract model for a here is N log1.17+ log PrmoPrmt ≈

0.154+ log PrmoPrmt , where N is the number of data points. Clearly it will take very little time

for this number to reach 3, regardless of how the model priors compare. The more times

the learner must use its grammar to encode speech, the more uncertainty accrues about the

speech it has heard.

As we have seen, this type of result falls out under the Bayesian approach to reasoning

under uncertainty, because the Bayesian approach is to assume probability distributions over

parameter vectors and models; as shown here, however, under certain models, this type of ef-

fect can even be obtained within the likelihood term, because the structure of certain models

(like a model in which phonetic values are generated by discrete phonemes) implies a kind of

“hidden prior,” in this case so that if the observed phonetic values are roughly equally prob-

able under either model, we fall back on the probabilities of underlying phoneme sequences.

The correct interpretation of this quantity is up for debate, but it is plausibly not informatively

modeled under either hypothesis, leading us to conclude that, in the case of the number of

phonemes in the model, the tendency to minimize the objects in the model is very strong.

One possible objection here is to our interpretation of the Richness of the Base. According

to the Richness of the Base, the choice of phonological model does not affect the set of

possible lexical encodings. Thus, one might conclude that we have a choice between / /

and / / under either model. The consequence of this, however, depends on what it means

to “learn the discrete category / /.” If the category / / is really just a point in a finite-

valued feature space, and learning that there are only three categories in mo simply means

learning that some feature is truly irrelevant (except at the phonetics–phonology interface,

where its effect will be restored), then it is reasonable to suppose that an encoding of / /

is still an encoding of / /, regardless of the value for that feature. Thus when we talk about

“representations containing / /,” we are referring to representations with either feature value,

and are thus summing over both of the representations possible in mt ; the conclusion clearly

does not change.
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In any case, there will be tradeoffs to be made under any set of assumptions. If there is a

substantially better fit to the phonetic data under one theory than another, then the improved

fit will accrue in the same way, multiplying through for each data point; and, if there are

some surface forms that are ambiguous under one theory but not another, then those points

would be more probable under that theory, because they would have more possible sources.

We would be satisfied, however, regardless of the correct answer, simply to have the debate

about learnability take place at this level rather than in the realm of speculation.

4. DISCUSSION

In this paper we have shown how Bayesian reasoning applies to problems of inference

in linguistics, which arise both in the context of normal scientific reasoning, and because

inference is part of the object of study.

Because it is interesting and important, we selected a simple problem of phonological ab-

stractness, in which more abstract solutions are pitted against solutions with more phonemes,

to demonstrate an important feature of reasoning under probability theory, and, more specif-

ically, Bayesian reasoning: more complex solutions are dispreferred, all other things being

equal. This is exactly the kind of issue that has been debated within linguistics for many

years.

We drew conclusions in a slightly simplified framework, making particular assumptions

about the nature of phonology and phonetics as cognitive systems. Under other assump-

tions, or under a more realistic model comparison scheme, we would perhaps obtain different

results, of course.

More crucially, model selection is almost inevitably strongly dependent on the parame-

terization of the space of possible hypotheses. Even under extensionally equivalent theories

of grammar with the same general architecture, we might conclude that some grammar is

far less likely in one theory than another, perhaps because it requires substantially more ma-

chinery to state; changing the distributional assumptions for our phonetic categories (even
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changing how those distributions are parameterized) will, of course, also change the solution

in general. We believe that this simply indicates that the current state of the art in phonol-

ogy is inadequate for proper model comparison. If the various current models of interacting

phonological processes could be reduced to their bare theoretical essentials and stated in a

common metalanguage (for example, an automata-theoretic formulation along the lines of

Heinz 2007), then we would have a much clearer basis for comparison; arguments about the

correct intensional statement of grammars would then to some degree be arguments about the

priors. Suffice it to say, however, simply asserting that certain types of grammars are more

complex or costly than others is at least theoretically uninteresting.

Our study has been of an ideal solution to an inference problem, thus a study at the com-

putational level in the sense of Marr 1982, in that it specified the learning problem precisely

without giving an algorithmic account of how the learner would arrive at the ideal solution.

This is a more abstract approach than has been taken in some other theoretical language ac-

quisition literature. It is in the spirit of the evaluation metric theory of Chomsky and Halle

1968, in the sense that it attempts to specify a cost function for grammar induction without

specifying a search algorithm. In this case, the difference does not appear to be important,

since the grammatical part of the solution—the two processes in (1) and (7)—is the same

across both models. In other cases, the search function might need to be exposed to certain

crucial data points in order to “discover” certain rules that would allow it to escape from local

maxima in the cost function. Nevertheless, we believe that specifying the cost function first

is a fruitful approach in any case.

Although we reach a similar conclusion to Chomsky and Halle—namely, that the evalu-

ation metric includes an Occam’s Razor like principle—it should be reiterated that the goal

of the present work was to point out that such a principle follows from general principles of

reasoning under uncertainty. Indeed, the “Occam factor” obtained by Bayesian model com-

parison can be restated as (the limiting case of) a principle of Minimum Description Length

(Rissanen 1978), consonant with the counting-symbols cost function of Chomsky and Halle.
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Furthermore, our goal has not been to show definitively that an abstract solution for this

particular problem is correct, but simply that a tendency towards abstract solutions falls out

from simple, domain-general assumptions about rational decision making. We believe that

a future approach to linguistic theory that attempts to find optimal statistical solutions to the

problems of inference we face will therefore be highly informative, since it touches on these

fundamental issues. Perhaps contrary to expectations, abstractness is not inherently more

costly or difficult for the learner; indeed, it may be optimal.
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FIGURE 1. A two-component Gaussian mixture distribution as versus a single
Gaussian of similar shape to the combination of the two smaller ones. The pair
of smaller distributions will each individually give greater likelihood values
than the single Gaussian (as shown by the height of the peaks), but this must
be traded off against the mixing probabilities (probabilities of the categories)
by which each data point must be multiplied in model comparison. If the
single distribution only needed to be the width of one of the two components,
however, the greater mixing probability for a single category would favour the
single category solution because of the increased likelihood.
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