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Abstract 
 

To acquire one’s native phonological system, language-specific phonological categories 

and relationships must be extracted from the input. The acquisition of the categories and 

relationships have each in their own right been the focus of intense research. However, it is 

remarkable that research on the acquisition of categories and the relations between them have 

proceeded, for the most part, independent of one another. We argue that this has led to the 

implicit view that phonological acquisition is a ‘two-stage’  process: phonetic categories are first 

acquired, and then subsequently mapped onto abstract phoneme categories. We present 

simulations that suggest two problems with this view: first, the learner might mistake the 

phoneme-level categories for phonetic-level categories and thus be unable to learn the 

relationships between phonetic-level categories; on the other hand, the learner might construct 

inaccurate phonetic-level representations that prevent it from finding regular relations among 

them. We suggest an alternative conception of the phonological acquisition problem that 

sidesteps this apparent inevitability, and acquires phonemic categories in a single stage. Using 

acoustic data from Inuktitut, we show that this model reliably converges on a set of phoneme-

level categories and phonetic-level relations among subcategories, without making use of a 

lexicon.  
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1. Introduction 

 

In recent years, statistical approaches to language acquisition have generated much 

enthusiasm, especially in the domain of phonological acquisition (Saffran, Aslin & Newport, 

1996; Maye, Werker & Gerken, 2002; Chambers, Onishi & Fisher, 2003). The problem of how 

human children acquire phonological categories (phonemes) of spoken language presents an 

ideal model problem for these approaches to language acquisition: we understand a good deal 

about the time course of phonological development, how the perceptual input to learning is 

represented, and what the desired end stage of acquisition is. Furthermore, there are very good 

reasons to model the acquisition process using well-understood methods for statistical inference 

over perceptual input, as we describe below. However, the general approach to phonological 

category formation as perceptually driven statistical inference has led to the view that the 

categorization acquired by the learner is in some sense isomorphic to all and only the distinctions 

present in the acoustics. 

This view leads to a model of acquisition that is incomplete from the point of view of 

contemporary models of phonological knowledge. This is because it is common for phonological 

theories to distinguish between phones and phonemes. Phonemes are language-specific, abstract 

categories used for the purposes of memory encoding in the lexicon. A single phoneme, however, 

may comprise a set of distinct pronunciations (or phones) that reflect its phonological 

environment. For example, English is commonly thought to have a single phoneme category /t/ 
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that comprises a number of distinct acoustic realizations (its allophones). An English word like 

'sit' is thought to be stored in the lexicon using this abstract phonemic category as its final 

segment, typically written using slash notation as in /sɪ t/. In pronunciation, the final /t/ phoneme 

is typically mapped to an unreleased [t|] phone (where brackets denote phonetic categories) in 

word-final position. This acoustic realization can vary widely based on phonological context, 

however: The morphological process of adding -ing to the verb root produces a predictable 

change in the pronunciation of the root-final /t/, such that in 'sitting' the /t/ is pronounced as a 

flap [ɾ ], a phone that is phonetically more like Spanish r than it is like other pronunications of /t/. 

This change is due to the phonological environment created by the addition of 'ing': Here, the /t/ 

is flanked by a stressed vowel to its left, and an unstressed vowel to its right, a phonological 

context that triggers the flap pronunciation. The mapping from /t/ to its allophone in context is 

referred to as a phonological rule or process. Thus, the /t/ phoneme category in English 

comprises many distinct acoustic phones. The presence of allophonic alternations of this sort is 

ubiquitous in the world's languages (see, e.g., Kenstowicz 1994), and the set of allophonic 

alternations a language may have is subject to wide cross-linguistic variation. As such, 

allophonic processes are an important consideration for models of phonological acquisition.  

However, statistical models that cast phonological category learning as perceptual 

clustering imply that the goal of learning is to discover phonetic, rather than phonemic, 

categories. But if the goal of phonological acquisition is to discover the categories used in lexical 

storage, then phonetic categories are not the desired end state of phonological acquisition.   

There are varied theoretical approaches to the problem of learning abstract phoneme categories, 

and the problem of how to learn abstract phonological systems has itself generated a sizeable 

body of research (Harris, 1951; Tesar & Smolensky, 1998; Boersma & Hayes, 2001; Peperkamp, 
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Le Calvez, Nadal & Dupoux 2006; Goldsmith & Xanthos, 2009; among others). However, 

modeling studies of this kind have typically assumed an input consisting of sequences of 

phonetic categories, and, in doing so, have tacitly assumed that the learner is able to reliably 

identify these categories in a prior stage (see also Lin & Mielke, 2008, who discuss this 

simplifying assumption). 

As we argue, this disconnect between the statistically-induced phonetic categories and the 

phonemic categories that are the target of acquisition has led to an implicit two-stage view of 

phonological learning. That is, learners first learn phones using statistical interference over 

acoustic input, and then build phonemes and phonological systems by identifying relations 

between these phonetic categories. In this paper, we suggest that such a view is a consequence of 

current models of first stage statistical categorization, because these approaches will converge on 

phonetic, rather than phonemic, categories. This requires a second stage of acquisition that 

subsequently builds the relevant phonemic categories from the phonetic categories.  

Although the structure of current models of phonetic category formation seem to suggest 

a two-stage model of phonological categorization, we argue in this paper that this two-stage 

approach is not inevitable. Indeed, the need for a close relationship between phonetic and 

phonological learning has been noted by a number of researchers investigating the acquisition of 

phonological systems (Seidl, Cristià, Bernard, & Onishi, 2009; Maye, Daland & Goldrick, 2008). 

We present two arguments in favor of an alternative, single-stage approach to the acquisition of 

phonological categories. First, we present simulation evidence with a data set from Inuktitut that 

suggests that seemingly inconsequential errors during a phonetic categorization stage impede a 

second-stage phoneme discovery procedure. Second, we show that with this same data set, the 

correct phonemic categorization of the data can be obtained with a single-stage categorization 
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model that jointly learns phonemes and processes by factoring out predictable alternations 

conditioned on environment, rendering sub-phonemic categories epiphenomenal. The results 

show the viability of a single-stage conception of phonological category acquisition, and suggest 

that, for the data set examined here, such an approach is in fact more successful than a two-stage 

approach to phoneme discovery. 

 

1.1. The phonological learning problem 

 

As alluded to above, the two-stage view of phonological acquisition parallels a 

distinction that linguists have long drawn between phonetics and phonology. Phonetics refers to 

the study of perception and production of speech, and phonology is concerned (sometimes 

implicitly) with the encoding of speech in the lexicon (i.e. long-term memory). Much work in 

phonetics stems from the observation that phonetic representations are finely detailed and best 

represented as continuous rather than discrete values (Fant, 1960; Ohala, 1976; Ladefoged, 2001). 

The phonological level is instead thought to abstract away from the detailed properties of the 

phonetic representations to varying degrees, and it is almost always taken to be a discrete rather 

than a continuous encoding  (Chomsky & Halle, 1968; Goldsmith, 1976; Prince & Smolensky, 

2004). The inventory of discrete phoneme categories varies from language to language, and an 

infant acquiring her native tongue must identify the phoneme categories that are relevant for her 

language. Part of this task is phonetic in nature, as the infant must determine the distribution of 

each speech category in acoustic and/or articulatory space. Determining which acoustic 

realizations (or articulatory movements) map to which phonemes is a prime example of an 

unsupervised learning problem. This characterization of the problem has allowed researchers to 
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make direct contact with a vast literature in statistics and machine learning, and has led to 

important new models of phonological acquisition.  

 One way of modeling this sort of phonological knowledge is with a mixture model  

(McLachlan & Peel, 2000). Mixture models are statistical models that describe a set of data (e.g, 

a stream of acoustic observations) as coming from a probability distribution generated by a finite 

set of component categories (e.g., phoneme segments). On this model of the phonetics-

phonology mapping, the listener has an acoustic map which indicates how likely an acoustic 

token is as a realization of a given phoneme, Pr(acoustics|phoneme). Furthermore, each phoneme 

also has its own mixing probability Pr(phoneme) of occuring, so that an ambiguous sound will be 

more likely classified as a more probable phoneme. Cast this way, the task of the learner is to 

learn the parameters and the mixing probabilities of the components that make up the mixture 

distribution; in this way, to fit a mixture model to data is to specify these two probability 

distributions. This is a statistical formulation of the clustering task in machine learning, because 

the observations form “clusters”   associated with different mixture components. Fitting such a 

model is an example of unsupervised learning, because the knowledge of the component 

assignments which give the phonemic category of any given token is not provided to the fitting 

algorithm. Instead, this information must be guessed on the basis of the clusters formed by the 

input. Presumably, the problem faced by the infant in learning phonological categories is an 

unsupervised clustering problem of this sort, and so phonetic or phonological categorization can 

be usefully modeled as the search for a mixture model that is optimal for the infant’s speech 

environment. As we detail below, this basic model has formed the basis for a number of 

successful approaches to the acquisition of phonological categories.  



 8 

 However, this view of phonological category acquisition as unsupervised clustering is 

complicated by contaminating factors such as environmental noise, speaker variation, and, most 

importantly here, the non-trivial mapping between phonemic and phonetic representations 

because of the existence of phonological processes. In many theoretical approaches that view 

phonological processes as operations over discrete units, the relation between the phoneme and 

its pronunciations is stated as a process taking a discrete object (for example, the phoneme /t/) to 

another discrete representation (its phonetic realization as unreleased [t|] or the flap [ɾ ]). If it is 

assumed that more detailed, quasi-continuous phonetic information is filled in after all 

phonological processes have taken place, then there is a clear distinction between two discrete 

levels of representation involved in phonological cognition. One is the lexical level (the phoneme 

level);;  the  other  is  the  discrete  “surface”  level,  which  is  obtained  following  the  application  of  all  

of the discrete contextual phonological rules, but none of the phonetic-detail rules which fill in 

the details of how the segments are pronounced (the phone level).  

Although it is a useful (and nearly ubiquitous) theoretical device, it is not clear that there 

is any independent motivation for assuming that a unique, coherent level of discrete 

representation follows the application of all contextual rules. Nonetheless, many researchers 

maintain discrete levels of phonetic and phonemic representation, and this has provided the 

implicit theoretical motivation for a two-stage model of phonological acquisition: having two 

discrete levels of representation allows for a view of phonological acquisition in which the 

mapping between discrete phones and detailed phonetic information is learned before the 

mapping between phones and phonemes.  
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1.2. The two-stage approach  

 

The theoretical distinction between discrete phonetic and phonemic encodings is also 

found in research on phonological acquisition, with research generally focusing on either 

categorization of a phonetic nature, or on the mapping between phonetic and phonological 

categories. This division of labor has led to an implicit two-stage approach to phonological 

acquisition. Such a model suggests that phonological acquisition proceeds by first identifying 

phonetic-level categories, and then using those categories to discover phonemic categories. 

The first stage of phonological acquisition, the mapping from acoustics to phones, has 

been explored in a large body of work on discovering category structure from acoustic data. This 

work often employs explicit statistical models of inference (de Boer & Kuhl, 2003; Coen, 2006; 

Vallabha, McClelland, Pons, Werker & Amano, 2007; Feldman, Griffiths & Morgan, 2009). The 

acquisition target of these models is sometimes cast in a way that is neutral between phones and 

phonemes: Vallabha et al. (2007), for instance, propose a model for learning “sound categories”  

(p. 13273). On the other hand, Feldman et al. (2009) explicitly note that, although their model 

contains a lexicon, it is more likely to converge on phonetic, rather than phonemic categories. In 

both cases, this follows from the structure of the model: without explicit modeling of the 

phonological processes, this stage of acquisition is guaranteed to converge on categories that do 

not abstract out these phonological processes. If the standard understanding of the relation 

between phones and phonemes is to be preserved, then any one of the resulting categories in 

such a model is a phone, not a phoneme, whether it happens to cover all, or only one, of the 

predictable allophones of a given phoneme. For this reason, this line of research implicitly 

presents itself as one stage in a two-stage process; if the end goal of acquisition is phonemic 
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categories, then models that do not explicitly encode this fact imply the existence of a second 

stage of acquisition to reach the target state. 

The observation that these previous approaches do not reach phonemic solutions is not 

intended as an argument against statistical approaches to discovering category structure. There is 

arbitrary variation in acoustic targets for the same phone or phoneme category across languages 

(Flemming 2001; Pierrehumbert 2003), and so it seems that the learner must acquire at least 

some of the phonetics-phonology mapping. Any fully specified model of phonological 

acquisition should contain a mechanism for inferring category structure over a perceptual space. 

Furthermore, given that not all acoustic tokens of a single category within a language will be 

identical, a learning mechanism is needed which is statistical, in the general sense that it deals 

with noisy data in some well-defined way. For this reason, the alternative single-stage model we 

discuss below shares many of the assumptions of these first-stage statistical models.  

However, a model of the acoustics-to-category acquisition process which can find only 

phones requires a way of addressing the second half of the phonological learning problem: the 

acquisition of the mapping from phones to units of lexical encoding (phonemes) and the 

phonological grammar. One possibility for this stage is to trivialize this mapping and deny the 

existence of phonemes, a position that we argue is not desirable on theoretical or empirical 

grounds. Assuming this is not tenable, it is necessary to develop an explicit theory of how to 

group phones into phonemes. Ideas about this procedure are implicit in much of theoretical 

linguistics, including the well-known complementary distribution test (Harris, 1951). More 

recently,  Peperkamp, Le Calvez, Nadal & Dupoux (2006) have proposed solving this problem 

by comparing the sequence-level distributions of pairs of phones: that is, for each pair of phones 

p1, p2, they examined the probability distribution over phones adjacent to p1 as versus p2. They 
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proposed that phones with the most dissimilar context distributions are more likely to be variants 

of the same phoneme, with the probability distributions reflecting a generalization of the 

traditional notion of complementary distribution, subject to further naturalness constraints on 

possible phone-to-phoneme relationships. By investigating the context distributions of discrete 

phones, this algorithm implicitly assumes that phones have been uniquely identified and 

categorized at previous stage of acquisition. Note also that in this approach, phonological 

learning is still not complete once the phonemes have been identified. The learner must still learn 

the grammatical mapping between the phones and phonemes (i.e., the form of the relevant 

phonological process). 

An alternative conception of this second stage is seen in work on learning of Optimality-

theoretic grammars (OT; Prince & Smolensky, 2004). On this approach, the set of phonological 

processes (the phonological grammar) is a ranked set of well-formedness constraints, which 

determine the correct pronunciation of a lexical item in its stored (phonemic) form. There are 

several well-known, computationally explicit algorithms for learning these grammars (Tesar & 

Smolensky, 1998; Pulleyblank & Turkel, 1998; Boersma & Hayes, 2001; Hayes, 2004). Though 

they vary in their approach, they also share the assumption that the input to learning is a set of 

discrete, phone-level representations, and the grammar is derived once these phones are 

identified. The work on phonetic learning by Boersma, Escuerdo and Hayes (2003) does 

incorporate low-level phonetic learning into an OT constraint-ranking grammar, but these 

constraints do not incorporate any contextual or grammatical information at the phonetic level of 

learning, and thus implicitly ascribe all the systematic contextual pronunciation rules to the 

mapping between phonemes and phones. By taking the output of a first-pass mapping from 

acoustics to phones, these approaches thus also implicitly endorse the two-stage view of 
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phonological acquisition. There exist still other approaches to the phoneme-finding problem 

(Jakobson, 1941; Goldsmith & Xanthos, 2009; Dresher, 2009), but all are formulated under the 

assumption that a set of phones has already been discovered. 

The assumption of two-stage learning is not innocent, however, since, as we will detail 

below, the success of a two-stage approach to phonological learning crucially depends on the 

accuracy achieved in the first stage. Errors made in the phone acquisition stage could in principle 

impair the ability of a second-stage mechanism to extract the correct phonology. Furthermore, 

although a two-stage view of phonological acquisition appears to be implicit in the majority of 

research on phonological acquisition, it is not the only possibility. In the remainder of this paper, 

we explore the feasibility of a single-stage approach to phonological categorization. In particular, 

we focus on statistical methods of category identification. As noted above, all theories of 

phonological acquisition must address this mapping from acoustics to discrete categories. 

Because of this fact, asserting the feasibility of a single-stage approach amounts to asserting the 

possibility of folding the acquisition of processes and phoneme level categories into the initial 

mapping from acoustics to linguistic categories. 

 

1.3. Mapping from acoustics to linguistic categories in acquisition 

 

The relation between acoustic variation and linguistic categorization has been the subject 

of much research in psycholinguistics. One important and reliable finding is that young infants 

are initially able to discriminate a wide range of speech sounds, even those not present in their 

linguistic input (Werker & Tees, 1983; 1984). A number of studies have shown that these 

discriminatory abilities quickly decay as the infant develops. Declining sensitivity to non-native 
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language vowel contrasts is apparent as early as 6 months (Kuhl, Williams, Lacerda, Steven & 

Lindblom, 1992), and by 8 months, similar effects are evident in consonant contrasts (Werker & 

Tees, 1984). This changing sensitivity is taken to reflect the development of perceptual models of 

speech sound categories (whether phone-level or phoneme-level). The early onset of this 

development raises the possibility that this category learning may not be entirely driven by the 

building of a lexicon, as has been sometimes assumed (Jusczyk, 1985; Best, 1995). Infants at this 

age know relatively few words (Stager & Werker, 1997), and if the relevant lexical knowledge is 

knowledge of minimal pairs, it may be that these are too rare to have such a reliable effect so 

early (Dietrich, Swingley & Werker, 2007).  

For these reasons, some researchers have hypothesized that distributional learning 

mechanisms play an important role in phonological development (Maye et al., 2002; Chambers 

et al., 2003; see also Vallabha et al., 2007), and there is experimental evidence in support of this 

hypothesis. For example, Maye and colleagues (2002) trained infants at 6 and 8 months of age by 

exposing them to sets of stop consonants with either bimodal or unimodal distributions over 

voice-onset times (VOTs). When presented with bimodal distributions, infants showed enhanced 

sensitivity to differences between points at the extremes of the VOT ranges. Infants in the 

unimodel condition were less able to discriminate endpoints on the VOT continuum, suggesting 

that they had classified them together on some level. Building on results that show that infants 

are sensitive to distributional information in other modalities, such as word-learning (Saffran et 

al 1996), the authors interpreted these findings as showing that distributional characteristics of 

the input directly impact the dimensions of the signal the infants view as relevant or contrastive. 

Werker, Pons, Dietrich, Kajikawa, Fais and Amano (2007) went on to show that, for the vowel 

space, clear distributional cues in the infant-directed speech of both Japanese and English 
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speakers appear to support the relevant contrasts (e.g. duration cues for the Japanese vowel 

space), and minimize irrelevant dimensions of variation.  

In addition to these experimental results, computational models have been more and more 

successful in capturing the acquisition of speech categories using various types of statistically 

informed frameworks. As discussed above, the acoustics-to-category mapping can be modeled 

with a range of statistical techniques, with mixture models playing a prominent role. For example, 

de Boer and Kuhl (2003) used a mixture of Gaussians (MOG) to model the acquisition of vowel 

categories using the values for the first two formants. MOG models are a form of mixture model 

that represents category structure as a set of parameterized Gaussian distributions in the input 

space, each weighted by a mixing probability (see above). The authors fit MOG models to 

vowels recorded during mother-child interactions using Expectation Maximization (EM, an 

algorithm used for maximizing the likelihood of a model with unobserved structure; see 

Dempster, Laird & Rubin, 1977). They focused on the vowels at the extreme points of the vowel 

space in English (/i/, /u/, and /a/) and they fixed the number of components in the model at three 

when fitting the model. By applying this approach, and clustering separately for each speaker, 

they showed that the model was better able to acquire the categories on infant-directed speech 

than on adult-directed speech, suggesting one possible utility of infant-directed speech.  

Vallabha and colleagues (2007) also used a MOG to model the acquisition of the 

Japanese and English data that was analyzed by Werker et al. (2007). The models were sets of 

four-dimensional Gaussians in the raw acoustic space (F1 × F2  × F3 × duration), the parameters of 

which were updated iteratively after processing each input point online. While similar to 

standard EM, their method of fitting the MOG acquired categories online, as opposed to batch 

processing over a corpus of data (as in standard EM). The online nature of the Vallabha et al. 
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model is arguably closer to the procedure used by human infants. Applying this technique on 

several distinct datasets, each from a different speaker, the model matched the true vowel 

systems 80% of the time; an alternate model that dropped the assumption of Gaussian 

components was successful 60% of the time. McMurray, Aslin and Toscano (2009) also used a 

version of this online algorithm to model the acquisition of phonetic categories. 

Still other modeling attempts have tested different assumptions about what information is 

recruited to solve the phonological learning problem: Coen (2006) analyzed video samples of 

American English vowels, and used a cross-modal manifold learning technique (not the MOG 

approach assumed elsewhere) to form and cross-correlate clusters in both acoustic and visual 

space (i.e. shape of mouth). Feldman and colleagues (2009) constructed a hierarchical Bayesian 

model including an embedded MOG that jointly solved the problem of inferring categories and a 

lexicon, allowing for the construction of a base of lexical knowledge that delivered impressive 

performance in separating highly overlapping categories in English vowel data. The success of 

the simple MOG approach has thus been shown to benefit from the addition of extra 

disambiguating information.  

Despite these successes, the mapping from acoustics to linguistic categories remains an 

extremely challenging problem in its own right. Because it appears to vary between languages, 

this mapping must be learned and is an essential part of any phonological acquisition model. We 

we now turn to a more detailed examination of these models. We first focus on the problem of 

acquiring phonetic categories using a MOG approach. Using data from Inuktitut, we demonstrate 

that the sorts of models explored in the literature up to now are at risk of extracting categories 

that are either insufficiently fine-grained, or too poorly aligned with the real categories of the 

language, to enable learners to discover the systematic relations between phones in a second 
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stage of acquisition. With this data set, it does not appear that a two-stage approach to acquiring 

the Inuktitut phonemes is likely to be successful. In light of this, we consider an alternative 

conception of the first stage of category acquisition. We show that it is possible to extract 

categories which correspond better to the phoneme level than the phone level in the acoustic 

clustering stage (a single-stage approach to phonemic category acquisition), rather than leaving 

that step for a second stage of acquisition. When compared with a basic MOG approach, the 

single-stage approach returns a more realistic set of phoneme categories. This provides initial 

evidence that a single-stage approach to the acquisition of phonological categories is in principle 

possible, and on the Inuktitut data set considered here, this approach outperforms two-stage 

approaches by providing a categorization of the acoustic space that better fits the target of 

acquisition. 

 

2. Experiment 1: Mixture of Gaussians 

 

As noted above, human infants learning speech sound categories may be said to be 

discovering mixture models of the speech segments they encounter, regardless of the 

representational level (phonetic or phonemic) of the categories acquired. Most of the models of 

this learning problem in the literature have assumed each category to be a single multivariate 

Gaussian in acoustic space; for vowels, this is typically the first two or three formant values, as 

extracted from the speech spectra. Previous results indicate that, at least in simple settings, a 

Gaussian mixture model with categories approximating the true categories can be found using 

the standard techniques applied to this problem in statistics. This has been taken to suggest that 

our understanding of this part of the infant’s learning problem is already fairly clear. This has 
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been demonstrated primarily for simple phonetic category systems; it becomes progressively 

more difficult to discover the true categories underlying a data set as the clusters become more 

poorly separated in the input space when the clusters are not actually generated in a way that 

satisfies the model assumptions (for example, to the extent that MOG is an inaccurate 

approximation of the learner’s perceptual map). We argue, however, that previous approaches 

may find significant difficulty for even fairly simple systems, for other reasons. 

In what follows, we examine the role of phonological processes in the speech sound 

category learning problem. We use data from Inuktitut. Inuktitut is an Eskimo-Aleut language 

spoken in northern Canada. Like many other related languages, Inuktitut has three vowel 

phonemes: /i/, /u/, and /a/. The quality of a vowel, however, is often affected when followed by 

one of the uvular consonants (/q/ or /ʁ /; Dorais, 1986). In the dialect of Kinggait (Cape Dorset), 

uvular consonants lower all vowel tokens to some degree (Denis & Pollard, 2008), suggesting 

the presence of six phonetic categories (see Fig. 1). Three vowels plus a strong retraction effect 

before uvular consonants is a fairly common phonological system; similar systems are found in 

Quechua and Modern Standard Arabic (Pasquale, 2009; Kuriyagawa 1984). Such a system could 

potentially make each phoneme acoustically bimodal. 

 

 
Fig. 1: Plots of Inuktitut vowels, both grouping (panel A) and splitting (panel B) predictable 

allophones, in F2 × F1 (backness by height) space. The ellipses mark a 66% confidence region for 
Gaussians estimated by maximum likelihood on the points from the indicated category.  

 

------------------------------Insert Figure_1.pdf about here ------------------------------- 

 

The presence of additional contextually-determined subcategories of the three phonemic 
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vowels (for convenience, we will refer to these as [e], [o], and [ɑ], three contextual allophones 

of /i/, /u/, and /a/, respectively) suggests the presence of six phonetic categories. For such a 

system, a two-stage model of phonological acquisition must first satisfactorily recover these six 

categories before any procedure that discovers links between phones can successfully operate. In 

Experiment 1 we ask whether learning under a simple MOG model does in fact return the set of 

six adult phonetic categories which could be used as input to a second stage of acquisition. If the 

result of learning were nicely consistent in giving these six phonetic categories, we would have 

some indication that a two-stage model is plausible for this data set, although this would still 

leave open the question of how learners come to have systematic knowledge of phonological 

processes.  

 

2.1. Materials 

 

The Inuktitut vowel corpus that we employ comes from a study on Inuktitut phonetics 

(Denis & Pollard, 2008). All vowel tokens were measured from elicited speech of an Inuktitut 

speaker from Kinggait, and were hand-labeled by trained phoneticians for first formant (F1) and 

second formant (F2) values; these measurements were chosen because these two acoustic 

parameters are known to be highly informative indicators of vowel height and backness 

respectively. 239 vowel tokens were measured in this way; we resampled simulated corpora for 

use in training containing 1000 and 12000 tokens from this dataset nonparametrically using a 

two-dimensional kernel density estimate using the ks package for R (Duong, 2011), respecting 

the frequencies of each of the phones in Inuktitut, balanced according to the natural mixing 

proportions obtained from the Nunavut Hansard corpus (version 2.0; Martin, Johnson, Farley & 
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Maclachlan, 2003). These proportions differed from the proportions found in the raw phonetic 

corpus mainly in the relative frequency of the two back phones [u] and [o].1 

 

2.2. Methods 

 

There are various methods for optimizing over the set of possible mixtures of Gaussians. 

We chose a standard Bayesian estimator: a point estimate taken from a sample from the posterior 

distribution. The posterior distribution of interest was over mixtures of Gaussians given a 

Dirichlet process prior (an infinite mixture of Gaussians: Ferguson, 1973; Escobar & West, 1995). 

This represents a particular way of stating formally that the hypothesis space is all possible 

Gaussian mixture models, including models with different numbers of categories, along with a 

particular way of weighting different mixture models (a Dirichlet process in this context is 

essentially a certain prior probability distribution over mixture models). After this choice of prior 

is made, the remainder of the solution is a standard problem in Bayesian statistics. 

Bayesian inference makes use of the posterior distribution over hypotheses, that is, the 

measure of how probable a hypothesis is (in this case how likely any given Gaussian mixture 

model is) that would be derived by a rational agent under the specified prior distribution (set of 

modelling assumptions). A “rational”  agent is simply one that obeys the axioms of probability 

theory for making decisions under uncertainty. For formal justification, see Cox (1946) and 

Jaynes & Bretthorst, (2003); see also Chater & Oaksford (1998) for empirical justification of the 

                                                
1  Relative frequencies of each phone in an extract from the Inuktitut Hansard corpus 
(version 2.0; Martin et al., 2003), with orthographic vowel–“q”  and vowel–“r”  sequences taken 
to be tokens of retracted vowels, were: [i], 0.31; [e], 0.05; [u], 0.24, [o], 0.04, [a], 0.29, [ɑ], 0.07. 
In contrast, the relative frequencies in the phonetic corpus were: [i], 0.31; [e], 0.08; [u], 0.18, [o], 
0.17, [a], 0.15, [ɑ], 0.12. For the low frequency phones, therefore, we were able to draw on a 
relatively robust sample to construct our training sets. 
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common use of the term “rational”  for such models.  

A Bayesian estimator is useful in this context because joint inference can be done 

straightforwardly on problems of potentially arbitrary complexity. This is advantageous, for 

example, when inferring the number of categories in a mixture model (a crucial part of the 

problem of phonetic category learning). In contrast, frequentist methods (e.g., the traditional EM 

algorithm) explicitly prohibit the statement of probabilities over model parameters, and this is a 

serious liability given the inherently hierarchical nature of this problem. There are standard 

methods available for deriving estimators for the underlying set of mixture components and 

mixing probabilities justified by the data, assuming some particular fixed number of categories. 

However, because the learner by hypothesis needs to estimate the number of categories justified 

by the data, Bayesian estimators that incorporate uncertainty over this part of the model provide 

a more attractive option for modeling acquisition.  

The Bayesian solution to hierarchical problems like this is to treat the parameters as 

unobserved data and put a prior probability measure on them; the parameters of this prior 

probability (the hyperparameters) can in turn be learned in exactly the same way, and we can 

continue to place hyperpriors on the parameters until we have reached a level of model 

complexity that we believe mirrors that of the human learner relatively well (keeping in mind 

that adding more learned parameters to the model will not be much better than simply specifying 

them manually if we do not have enough relevant data). Just as in frequentist estimation, the 

result will be sensitive to the modelling assumptions, but these assumptions can in principle be as 

vague (lack of bias) or as precise (strong bias) as desired.  

In the case of the number of mixture components, the standard Bayesian solution is to put 

a prior probability measure on sets of mixture components (in this case, on sets of Gaussians) 
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and associated mixing probabilities, and compute the posterior probability over hypotheses given 

the observed data set. One common probability measure used for this purpose is the Dirichlet 

process, which has as free parameters a concentration parameter, α, controlling the a priori 

tendency to add new categories, and a base distribution, G0, the prior distribution on individual 

Gaussian components. This can be seen as a method for regularization in which there is a penalty 

to the likelihood not only for the number of categories but also for having mixture components 

which do not adhere to some prior expectation about reasonable mixture components (the base 

distribution). 

A posterior sample from a Dirichlet process mixture of Gaussians was drawn using a 

Gibbs sampler with component parameters drawn from a Normal-Inverse-Wishart distribution 

with fixed inverse scale matrix and degrees of freedom parameter, and with location parameter M 

and inverse scale parameter ω; M was itself sampled from a normal distribution centered at zero, 

and ω from an inverse Gamma distribution; α was sampled from a Gamma distribution. (See 

Escobar & West, 1994; West, 1995; and Neal, 2000, for the basic details of the algorithm). To fit 

each model, a sample of 500 points was drawn from the Gibbs sampler at a lag of 10 after 1200 

burn-in samples. The sample with the highest joint posterior density was used as a point estimate. 

Hyperparameters were tuned to ensure that they were appropriate to find between one and seven 

categories on the raw data from which the training corpus was sampled.  

Although the use of an informative prior guards against overfitting, we chose to also train 

each model using tenfold cross-validation—that is, partitioning each data set into ten subsets and, 

for each subset, training on its complement. By testing on the held-out subset, we can verify that 

the model fits are not overly sensitive to idiosyncracies of the training set. A single chain giving 

one point estimate was derived from each of the ten training subsets, for each of the three 
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different sized training sets (raw data, 1000 point sample, 12000 point sample). Geweke’s   z-

statistic (Geweke, 1992) was computed on all real-valued parameters and hyperparameters for 

each chain (comparing the first 10% and second 50% of the chain) to test for stationarity; only 

runs for which all variables had two-sided normal p-values above 0.001 were retained. Three 

runs of the 1000-point model were dropped by this criterion. 

  

2.3. Results 

 

To assess the quality of the fitted phoneme models, we first constructed ideal sets of 

Gaussian phonetic and phonemic categories using the maximum likelihood estimators for each 

phoneme (sample means and sample covariances), for each different data set used to train the 

model (see Fig. 1 for a representative plot). Using these Gaussians as category models, we 

classified the data sets from which the Gaussians were constructed using a Bayes-optimal 

decision rule, labelling a point according to the mixture component with the highest posterior 

probability given that point. This decision rule is optimal in the sense that it minimizes the 

probability of classification error under the simple zero-one loss function (Duda, Hart & Stork 

2000).  

We summarize the baseline levels of performance provided by these optimal 

classifications in Table 1 using three statistics: pairwise precision, pairwise recall, and pairwise 

F-measure (Amigó, Gonzalo, Artiles & Verdejo, 2009). Pairwise refers to the fact that the 

statistics are constructed by examining every pair of data points and asking whether the two are 

in the same class (according to either the fitted model or the ideal model). Pairwise statistics are 

used in clustering evaluation to avoid the issue of constructing a mapping between the model’s 
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categories and the true categories; they are still meaningful even if the model finds the wrong 

number of categories. We obtained the model’s predictions about shared class membership, 

compared them to the true classifications, and computed the precision (percentage of pairs 

predicted as the same which actually are), recall (percentage of pairs which actually are the same 

that were predicted as the same), and F-measure (the harmonic mean of precision and recall). 

The same statistics were then computed for each of the models fit for each data set and averaged 

(geometric mean). Results for models fit in Experiments 1-3 are shown in Table 2.  

------------------------------Insert Table 1 about here ------------------------------- 

------------------------------Insert Table 2 about here ------------------------------ 

The results shown in Table 2 show that the MOG model is capable of finding three-

category solutions which are not unlike the phonemes of Inuktitut; this is seen in the 

classification scores for the 1000-point models: the F scores are reasonably close to the F scores 

for the ideal models (compare Table 1), and are reasonably well-balanced between precision and 

recall. See Fig. 2 for a representative example. 

 

 
Fig. 2: Plot of a representative three-category model found for the 12000-point data set in F2 × F1 
(backness by height) space, in Experiment 1. Outlined ellipses mark a 66% confidence region for 
the estimated Gaussians. Shaded ellipses mark a 66% confidence region for individual Gaussians 

estimated by maximum likelihood for the true phoneme categories. 
 

------------------------------Insert Figure_2.pdf about here ------------------------------- 

 

More fine-grained phonetic solutions become apparent as the number of data points 

increases, which is to be expected, partly because of the prior, and partly because the likelihood 

term, which will come to dominate the prior as the number of data points increases. The 
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likelihood term, all other things being equal, prefers larger numbers of categories (the mixture 

model with the highest possible likelihood would generally be obtained with as many categories 

as data points). See Fig. 3 for representative plots of five- and six-category solutions found by 

this model. 

 

 
 

Fig. 3: Plot of representative six-category (panel A) and five-category (panel B) models found 
for the 12000-point data set in F2 × F1 (backness by height) space, in Experiment 1. Outlined 

ellipses mark a 66% confidence region for the the estimated Gaussians. Shaded ellipses mark a 
66% confidence region for individual Gaussians estimated by maximum likelihood for the true 

phonetic categories. 
 

------------------------------Insert Figure_3.pdf about here ------------------------------- 

 

 

2.4. Discussion 

 

Experiment 1 replicates previous work (de Boer & Kuhl, 2003; Vallabha et al., 2009; 

Feldman et al., 2009) in showing that a MOG approach to vowel categorization appears to 

provide a good starting point for modeling the acquisition of language-specific sound categories. 

On the Inuktitut data, smaller data sets led to three-category solutions, whereas larger data sets 

tended to give solutions with more vowel categories. The results of Experiment 1 suggest that a 

learner assuming Gaussian categories (a simplifying assumption shared with previous research) 

could come to a phonemic analysis of Inuktitut vowels with the appropriate biases, but also that 

an analysis with phone-like categories could also be found with the appropriate bias. The role of 

bias is important here, as these solutions are not “in the data”:  the learning outcome depends on 
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the specific bias implied by the model and its hyperparameter settings, in conjunction with the 

amount of data the model is given. In particular, as the number of data points increases, models 

tend to prefer a greater number of mixture components. It should not be surprising that much 

more research in psychology and speech perception is still needed before we can obtain a 

complete picture of what that bias looks like.  

However, both types of  “complete” solutions found by the simple mixture of Gaussians 

in Experiment 1—three-category and six-category solutions—represent at best an incomplete 

representation of the target phonological knowledge. Consider first the case of the three-category 

solutions discovered by the learner modeled in Experiment 1. Although it appears that these 

models arrive at knowledge that approximates the target phonemic categorization, by 

immediately jumping to phoneme-like phonetic categories, such a model would require a second 

stage wherein learners rediscover the systematic relationships between particular contexts and 

the pronunciations of these categories. Importantly, the systematic relationship between a 

phoneme and its retracted allophone in Inuktitut forms an active piece of knowledge that 

speakers must acquire: even in novel words, speakers adapt the pronunication of the phoneme to 

its phonological environments. Novel words with the appropriate combination of morphemes are 

easy to construct, given the complex, polysynthetic nature of Inuktitut morphology. For example, 

Inuktitut has a productive process of noun incorporation with certain verbs that allows the direct 

object and the verb to form a single phonological word (Johns 2009). Any incorporated noun 

ending in a vowel will be subject to the effect of a following uvular. Thus a word like /titirauti/, 

“pen” becomes [titeraute] in the expression /titirautiqaqtunga/, “I have a pen,” which is 

pronounced as [titerauteqɑqtunga]. If the phonemic three solution category arrived at by the 

simple MOG model here is correct, then some other mechanism would be needed to allow 
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speakers to recover the knowledge of the allophone subcategories necessary to capture these 

facts about Inuktitut. 

Although a three-category solution is problematic, a six-category, phonetic categorization 

could potentially provide the necessary first step for a two-stage model of phonological category 

acquisition. If learners gain knowledge of two separate allophones for a phoneme, they must 

have the means of learning which of the allophones is to be deployed in any given context. The 

traditional understanding of this relationship among linguists has been that the phonetic and the 

phonemic categories occupy different representations in the discrete space of possible lexical 

representation. This implies that, at the perceptual level, speakers treat [i] and [e] differently, and 

equate them at a higher, more abstract level of processing. A six-category mixture is consistent 

with this claim, with the addition of a phonological rule relating the two. Thus it is natural to ask 

whether the phone-like mixtures reported above would be amenable to a search for such a 

phonological rule—a second “stage”  of learning.  

Visual inspection of the resulting five- and six-category models suggests that these 

models would not provide adequate input to a second stage of learning based on a 

complementary distribution test. For example, in Fig. 3 it appears that the high back phoneme /u/ 

has been divided into more fronted and more backed subphonemic categories, rather than the 

more high and more retracted categories suggested by the ideal model in Fig. 1. In order for five- 

or six-category solutions to provide the input to a second stage of phonological category 

acquisition, it should be the case that the acquired categories align with the phonetic categories 

of the target system; it might, however, be the case that the apparent errors at this stage impede 

the discovery of higher-level phonological categories. To determine this, we examined the five- 

and six-category solutions obtained by the learner in Experiment 1 and examined the phonetic 
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models obtained in order to ascertain whether a simple distribution-based test would confirm the 

presence of a rule relating the predictable allophones. Note that we include five-category 

solutions under the assumption that the phonetic difference between the low allophones of /a/ is 

subtle, and if learners form a single perceptual category for /a/, one might speculate that this 

retraction might just be the result of a low-level physiological coarticulation process, not 

perceived or learned. We do not claim that this is true, but since the five-category solutions were 

not substantially different from the six-category solution with respect to the high vowels, 

examining them alongside the six-category solutions simply allowed us to form a better picture 

of what model performance in a second stage might be. 

In order for the phonetic categorization to support a second-stage phoneme acquisition 

process, it must be the case that the retracted allophones are reliably found in the context of 

uvular segments, while non-retracted segments are not. To determine this, we applied the 

symmetrized Kullback-Leibler divergence criterion of Peperkamp et al. (2006). Symmetrized 

KL-divergence (SKLD) is a standard information-theoretic quantity that is used to ascertain how 

different two probability distributions are; it can take on any non-negative real number value, and 

larger numbers represent more different distributions. Following Peperkamp and colleagues, we 

examined the probability of observing a uvular consonant versus a non-uvular consonant 

following each of the five categories constructed by the model, and computed the SKLD for each 

pair of categories. In Tables 3 and 4 we present the SKLDs for each phone found by the model 

(for the five-category solutions, the average over the two models along with maxima and 

minima); the category labels were clear and easy to assign by visual inspection (see Fig. 3).  

------------------------------Insert Table 3 about here ------------------------------- 

------------------------------Insert Table 4 about here ------------------------------- 
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Peperkamp and colleagues’   statistically-grounded complementary distribution test 

attempts to find allophonically related pairs of phones by looking for large values of SKLD; 

large values suggest more divergent context distributions, and thus a relation closer to 

complementary distribution. There is no obvious prior notion of “large”  SKLD   in this context, 

and Peperkamp et al. used a threshold determined from the distribution of SKLD scores. From 

this point of view, the pattern in the SKLDs is clear: the SKLD for [i]-[e] is consistently among 

the highest values found, suggesting that complementarity-based metrics for discovering 

phonemic identity could readily recover the relation between these two phones given this MOG. 

However, [o]-[u] consistently had some of the lowest SKLD scores. This is consistent with the 

visual observation that the models did not correctly identify [o]-[u], instead splitting the /u/ 

phoneme in an inappropriate way. The low SKLD values make it unlikely that the five- or six-

category MOG solutions found for this data could provide input to a second stage of learning, 

because the MOG categories do not properly align with the target allophones. 

One surprising finding about the MOG model solutions is that they split the /u/ phoneme 

into front and back variants, rather than the expected [o] and [u]. This suggests that the 

substantive assumptions implicit in the MOG model are not being met by the data. If the 

generating categories are not truly Gaussians centered on these phones, then there is no 

guarantee that an MOG model will converge on the correct classification. In training on raw data 

and data sampled in a non-parametric fashion, we depart from previous literature that 

generally trains on data sampled from an ideal mixture of Gaussians. This resampling procedure 

preserves deviations from the multivariate Gaussian distribution in the raw [o]/[u] data, and so 

such deviations will make it less likely that the model will be capable of discovering the [o]/[u] 

categories.The failure of the MOG model to find the correct phonetic categories given these data 
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does suggest that the assumptions of a simple model of the /u/ phoneme as two Gaussians 

corresponding to [o] and [u] is not being met. This may be because Gaussian phonetic categories 

are overall a poor model of vowel phones, or it may be because there are additional phonological 

processes that lead to fronting of the /u/ phonemes (as are attested in the related language 

Kalaallisut; see Rischel, 1974). The first explanation would imply that human learners do not 

expect Gaussian phonetic category distributions, but rather make some other distributional 

assumptions which are not yet understood. Further research is necessary to distinguish these two 

possibilities.  

Thus Experiment 1 suggests that, although a phonetic category system with enough 

phonetic categories might be discovered by a learner with a simple Gaussian MOG model, the 

correct phonemic system would be unlikely to be detected in a second stage of phoneme 

discovery that uses conventional complementarity-based criteria. The model was able to recover 

the correct three-category phoneme solution, but we argued that directly accessing phoneme 

categories in a MOG model creates a problem for the learner: without the phonetic distinctions 

between subphonemic categories, it is unclear how the learner could arrive at a full phonological 

system. The results from Experiment 1 thus suggest that the Inuktitut data presented here 

provides a challenge to two-stage models of phonological acquisition, as the phonetic categories 

are not discovered well enough to provide input to a second stage in acquisition. In Experiment 2, 

we begin to explore an alternative, single-stage model of phonemic category acquisition. 

 

3. Experiment 2: Corrected mixture of Gaussians 

 

In Experiment 1, we showed that the two-stage model of phoneme learning is susceptible 
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to a previously overlooked type of problem: the early phonetic categories must align well with 

all the phones of the language, or else later stages in the acquisition process will be adversely 

affected. Above we showed that phonetic clustering is likely to pick out systems of discrete 

categories for Inuktitut that do not align well enough with the phones of the language for a 

second stage of learning based on coocurrences to work, despite a fairly close resemblance to the 

phones; small differences in the individual category models have serious negative consequences 

for such distribution-based methods. In Experiments 2 and 3 we develop a model that takes a 

substantially different approach to solving the same problem by factoring out predictable 

acoustic variation that arises due to the grammatical rules of the language in the acoustic space, 

rather than waiting to discover them based on strings of discrete categories. 

To illustrate this idea, we briefly present a second MOG model for Inuktitut which 

implements this idea directly. In Experiment 2, we manually remove the phonetic effect due to 

following uvulars from all vowel tokens occurring in that context. We then train a MOG model 

on the resulting transformed data to demonstrate the usefulness of factoring out such transforms; 

in Experiment 3 we take up the question of how these transforms are acquired. The phonetic 

category model that results from this procedure is one in which finding phones becomes 

irrelevant, because the uvular retraction rule has already been handled at the phonetic level. This 

avoids the problems of a two stage model in which the phonetic category learning module does 

not have access to information about which tokens occurred in which contexts, and cannot take 

into account possible effects of grammatical processes when learning categories. In a two stage 

model, despite this indifference to the existence of grammatical rules, the category-finding 

component must nevertheless deliver phonetic categories which will form the basis for finding 

these rules. Our alternate conception of the learning problem implies that the category learning 



 31 

component does know that uvulars can potentially affect vowel quality, and that it treats the 

effect of uvulars as a phonetic rule. 

 

3.1. Materials 

 

The materials were the Experiment 1 materials, with one difference. The mean F1, F2 

value for all the points which occurred before a uvular was computed (F+u); the mean F1, F2 

value for all the points which did not occur before a uvular was computed (F-u); and the points 

which occurred before a uvular were corrected for the effect of the following uvular consonant 

by subtracting (F+u −  F-u) from the formant value. This correction was calculated once for all 

three vowel phoneme categories, so that all pre-uvular points had the same vector subtracted, 

regardless of whether they were /i/, /a/, or /u/ tokens. 

 

3.2. Methods 

 

Methods were as in Experiment 1. Application of the Geweke-based criterion for non-

stationary chains resulted in the rejection of two runs of the 12000-point model and two runs of 

the raw-data model. 

 

3.3. Results 

 

As in Experiment 1, pairwise classification scores were computed for held-out test data. 

Note that, since the test data, like the training data, already had the effect of uvularity removed, it 
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would not have made sense to test the model’s classification against the six-way phone 

classification. Table 2 shows the results of this classification. It can be seen that across both 

small and large training sets, 3-phoneme solutions are the most common solution reached by the 

model. The distribution of the phonemes in a three-category solution, as in Experiment 1 (see Fig. 

2), line up closely with the target phonemic categories. 

The results shown in Table 2 show phoneme classification scores that are higher than any 

of those seen in Experiment 1, and show a better balance between precision and recall (for the 

12000-point data set). This is because some of the overlap between categories has been removed; 

this model approximates a listener that can make use of the context in which a segment occurred 

to adapt its acoustic models (as humans do: see, for example, Nearey 1990; Whalen, Best & 

Irwin, 1997), thus making some regions of uncertainty less ambiguous, and making better 

phonemic category models available to the learner. 

 

3.4. Discussion 

 

Experiment 2 provided an initial test of a different conception of the phonetic category 

learning problem than has traditionally been assumed. We removed the effect of a phonological 

rule before providing the data to the category learning component, and in doing so we combined 

two separate stages of the learning problem into the phonetic component. Resulting model fits 

often returned three-category solutions, and these lined up well with the expected phonemic 

categorization. By directly linking phonological processes and phonetic categorization in a single 

space, some of the problems we raised with the results of Experiment 1 are avoided. For three-

category solutions, we have effectively coded the knowledge of the phonological process into the 
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learner, resulting in a system that has the phonological process and the phonemic categories, 

rather than only the undifferentiated categories that were sometimes acquired in Experiment 1. 

Because contextual rules are directly applied in the phonetic component to undo predictable 

alternations prior to categorization, the problems with combining phones into higher-level 

phonemic categories are sidestepped altogether. 

Although Experiment 2 demonstrates the feasibility of folding together rules and 

categories during acquisition, this demonstration raises serious questions about acquisition of the 

rules. We did not require our learner to discover the Inuktitut uvular retraction rule: the 

knowledge of a uvular rule, and the knowledge of the effect of that rule were directly given to the 

learner to investigate the effect on categorization. A fully-specified model of a single-stage 

approach to categorization should be able to acquire the rules and the categories jointly. In 

Experiment 3, we address this by presenting a statistical model that jointly estimates a set of 

categories and a set of phonetic rules. This model can learn a phonetic system while 

simultaneously taking into account the effect of predictable rules which are not provided in 

advance. 

 

4. Experiment 3: Mixture of multivariate linear models 

 

Experiment 1 provided a baseline for the performance of statistical learning of phonetic 

categories on Inuktitut vowel data using a standard mixture of Gaussians model. In Experiment 2, 

we gave an initial demonstration of a different, single-stage conception of the problem. We 

factored out productive rules at the phonetic level, which demonstrates that the traditional two-

stage model is not a necessity, and that a single-stage approach that jointly models rules and 
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categories can provide a satisfactory model of phonological acquisition. In Experiment 3, we 

present a more complete statistical model of the single-stage approach to phonemic acquisition 

that jointly estimates processes and categories from a set of acoustic inputs. 

In order to accomplish this, we implement one crucial change in the model structure.  

Rather than constructing a single Gaussian phonetic model for each category (as in Experiments 

1 and 2), we model the learner as searching for a set of sets of subcategories, where the 

subcategories within a set are related by some rule. In other words, each phoneme is defined by a 

set (in this case a pair) of Gaussians, one for the pre-uvular realizations of that phoneme, and 

another for realizations of that phoneme in other contexts. The idea of a category consisting of a 

set of sub-categories is found in other related area. For example, in the automatic speech 

recognition literature, Hidden Markov Models (HMM) often model an acoustic category as a 

mixture of Gaussians, rather than a single Gaussian (Jurafsky & Martin, 2000). Another example 

is the work of Griffiths, Canini, Sanborn & Navarro (2007), who present Bayesian models of 

category formation in which each category is modeled by some number of sub-categories.  

With respect to the current model, these other models are similar in that they would take 

data that is often modeled as a single Gaussian distribution, and instead model it using multiple 

Gaussians, to get a more fine-grained, less biased representation of a set of data. An additional 

constraint we impose in our model is that the data points which are attributed to the two 

Gaussians need to be in complementary distribution: one Gaussian models the points appearing 

in a conditioning environment, and the other models the points appearing elsewhere. Any 

resulting phonemic category generated by the model consists of these two linked Gaussians. 

Furthermore, in order to obtain a model that has a straightforward interpretation as “phonemes 

plus rules,”  we add an additional constraint of homogeneity of variance. This means that, for the 
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allophonic sub-clusters making up each phoneme, the covariance matrix of the Gaussian (which 

defines its size, shape, and orientation) must be the same. This should be familiar because it is 

exactly the constraint that defines a linear model in statistics. The distribution of the response 

variable is taken to be a Gaussian distribution with a location (mean) that is a linear function of 

the value of a predictor variable, whether continuous (as in regression), or discrete (as in an 

ANOVA). This model is important because it gives us a straightforward way of measuring the 

effect of the predictor. If the only effect of the predictor variable is to shift the mean by some 

fixed amount, then we can reduce the effect to a single number or, in the present case of 

multivariate responses, a single vector.  

In the model presented below, the predictor is the presence or absence of the allophonic 

conditioning environment. The learner must construct a set of categories, each of which is a 

linear model predicting the phonetic values for the set of segments being categorized (in this case, 

vowels) from this discrete indicator variable. Because it is a linear model, the learner therefore 

finds, for each category, an intercept (overall category mean F1 and F2), and an effect of 

conditioning environment (a shift in phonetic space), in addition to estimating variance. In this 

way, the model can thus be said to simultaneously discover a set of phoneme categories and a set 

of associated phonetic rules. In doing so, the model begins to address the problem of learning 

parts of the phonological system beyond the simple phonetic inventory, and does so in a way 

which allows the learner to fully leverage the available information. 

 

4.1. Materials 

 

The materials were the same as those for Experiment 1, except that, in Experiment 3, we 
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annotated the data points with a vector of indicator variables marking the presence or absence of 

a following uvular consonant.  

 

4.2. Methods 

 

The principal difference between this model and the previous model was that each point 

was modeled as having been drawn from a Gaussian centered at ATb, where A is a 2×2 matrix of 

regression coefficients and b is an augmented predictor vector, with the pre-uvular indicator 

(zero or one) as the second element, and one as the first element. The first row of A was thus the 

intercept (a point in the two-dimensional F1×F2 input space), and the second row the effect of 

uvularity on the given phoneme. The covariance matrix, Σ, was again learned, and was uniform 

for all the points assigned to a given category in accordance with the homogeneity of variance 

assumption. The Gaussians centered at the intercept and at the sum of the intercept and the 

uvularity effect make up the model’s representation of the two allophones of a single phoneme. 

Regression matrices A were drawn from a base distribution that was compound matrix normal-

inverse Wishart with fixed inverse-scale matrix, degrees of freedom parameter, location 

parameter (Μ), and row covariance matrix (Ω). 2  M was sampled from a matrix normal 

                                                
2  A matrix normal distribution is a generalization of the multivariate normal distribution 
(in which each of the elements of a vector are normally distributed) to a matrix in which the 
columns of the matrix are normally distributed with some column covariance matrix, and the 
rows are normally distributed with some row covariance matrix. In the current context, the row 
covariance matrix can be seen as a parameter controlling the dispersion of the category locations 
(first row) throughout the space and the similarity of the phonetic rules (second row) to a 
common mean (but the two are not necessarily independent); note that this parameter was 
learned. For sampling purposes, the matrix normal distribution has the useful property that the 
vectorization of a normally distributed matrix follows a multivariate normal distribution with 
covariance equal to the Kronecker product of the two covariance matrices. See Dawid (1981) for 
details. 
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distribution centered at zero with identity row covariance. Ω was sampled from an inverse 

Wishart distribution. Note that this model has a simple mixture of Gaussians as a special case, 

when there are no predictor variables; the Experiment 1 and 2 models were fit using the exact 

same algorithm, with the only difference being the extra hyperparameters needed in this model. 

Apart from the introduction of the full matrix of regression coefficients, along with Ω, and the 

accompanying hyperparameters, the fitting procedure was as before. Again, we ran on three 

separate datasets and performed ten-fold cross validation on each. Application of the Geweke-

based criterion for non-stationary chains resulted in the rejection of three runs of the 12000-point 

model, one run of the 1000-point model, and two runs of the raw-data model. 

 

4.3. Results 

 

As in Experiment 2, the results shown in Table 2 show that, overall, phoneme 

classification performance is better than in Experiment 1. In particular, when the classification 

scores for either of the datasets are compared to the corresponding classification scores from 

Experiment 1, they are seen to be higher. This is true for all data sets. A plot of a representative 

three-category mixture of linear models is shown in Fig. 4. 

 

 

 
Fig. 4: Plot of a representative three-category mixture of linear models found for the 12000-point 

data set in F2 × F1 (backness by height) space by the mixture of linear models (Experiment 3). 
Outlined ellipses mark a 66% confidence region for the sample mean of the estimated Gaussians, 
each of which is itself part of a linear model which sets up two subcategories for that phoneme; 

the dotted outlines represent the subcategories shifted by the uvular retraction rule. Shaded 
ellipses mark a 66% confidence region for individual Gaussians estimated by maximum 
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likelihood for the true phonetic categories. 
 

------------------------------Insert Figure_4.pdf about here ------------------------------- 

 

As in Experiments 1 and 2, pairwise classification scores were computed; in this case, 

however, predictions about category membership of test points were made in a way that 

explicitly took into account the presence or absence of a following uvular. That is, for points 

without following uvular consonants, a decision among the various possible category 

assignments was made on the basis of the density given by the Gaussian centered at the intercept, 

and for points with following uvular consonants, the decision was made on the basis of the 

density given by the Gaussian centered at the intercept plus the effect of uvularity. In other words, 

for the purposes of this evaluation, the classifier was not asked to assign points to one of the 

phonetic sub-categories induced by the model, but to reconstruct the phoneme from the segment 

plus the context. Table 2 shows the results of this classification. 

As in Experiment 1, the model finds three categories fairly reliably, with a slight shift 

towards larger numbers of categories for larger numbers of data points. However, when the 

model does find three categories, its classification performance is better than that of the three-

category MOG models. For the three-category solutions, all three performance statistics are 

statistically significantly higher for the mixture of linear models than for the MOG model (t test 

on arcsine-transformed values of F statistic, t =3.4, Welch df = 32.33, p = 0.002; for precision, 

t=2.9, Welch df = 32.89, p = 0.007; for recall, t=3.6, Welch df = 31.74, p = 0.001). This is also 

true for all the solutions taken together, for both F scores and recall (t test on arcsine-transformed 

values of F statistic, t =2.5, Welch df = 43.11, p = 0.013; for precision, t=0.9, Welch df = 47.26, 

p = 0.350; for recall, t=1.9, Welch df = 48.44, p = 0.055). Note that although the MOG models 
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are less complex than the MLM models in Experiment 3, this does not mean that the better 

categorization performance for the MLM models reflects overfitting of the training data by a 

more powerful model. As all models were evaluated on held out test data, correct performance 

requires generalization beyond the training set. Therefore, the MLM model appears to better 

approximate the true structure of the phonemic categories, rather than idiosyncracies of the 

training data. These results suggest that a mixture of linear models, while more complex, 

provides a more realistic model of speech perception. 

 

4.4. Discussion 

 

Experiment 3 demonstrates a novel approach to the problem of learning speech sound 

categories in human language, contrasting with the standard two-stage model in two ways. First, 

as in the demonstration model presented in Experiment 2, it encodes the processes relating 

predictable allophones using phonetic-level information. Despite this increased model 

complexity (that is, larger search space), the model is able to arrive at phonemic-level categories 

which are as good as or better than those found using a standard MOG model. Second, while the 

model is similar to conventional two-stage models in invoking notions of phonetic similarity and 

complementarity to determine whether a lawful process holds between two phones, it differs in 

that it does not use the complementary distribution test per se, nor the minimal pair test. In fact, 

it does not support a notion of “minimal pair”   at all, because it does not assume any sort of 

lexicon.  

Importantly, the mixture of linear models approach explored in Experiment 3 reliably 

acquires three phonemic categories in addition to rules that relate allophones of those categories 



 40 

to one another in phonetic space. This is a more robust demonstration of the main idea explored 

in Experiment 2, showing that processes and categories can in fact be acquired in a single stage 

of acquisition. Because the model represents both processes and categories in the same phonetic 

space, they can be jointly acquired. This led to better categorization than basic MOG models, but 

also has the benefit of providing a more complete model of the link between acoustic input and 

phonemic categorization. One problem with the results of Experiment 1 was that it was unclear 

how to go from the MOG categorization to the target phonemic categories. Solutions were either 

uninformative about subcategories (as in the MOG three-category solution), or they returned 

phone categories that were different enough from the target phone categories to impede second-

stage acquisition of higher-level phoneme categories. 

Note that this model does not make use of complementary distribution directly, but it can 

easily be shown that, all other things being equal, a linear model will be more likely to appear in 

a model fit if it increases the KL-divergence of the two allophonic sub-categories with respect to 

the predictor. This is mediated, however, by the Gaussian likelihood function that acts as the 

phonetic category map; if the pair of Gaussians cannot be made to fit the data well, then the 

model is equally capable of fitting two separate categories, one for each phone, even if the two 

are in perfect complementary distribution. The constraint imposed by the linear model likelihood 

is that the covariance of the two phones must be the same, and if this is violated sufficiently 

severely by two phones, an appropriate phonemic category will not be found. To our knowledge, 

this is a novel phonetic similarity constraint on allophonic rules, and it is the first that has been 

explicitly incorporated into a model of phonetic categories. We are not aware of any fine-grained 

psychophysical data that would suggest that this is unreasonable as a model of phoneme 

perception, although more work in both production and comprehension of allophonic variants 
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needs to be done to provide further evidence for this constraint. 

 

5. General discussion 

 

 We presented three computational experiments examining the ability of statistical models 

to categorize an unlabeled set of vowel tokens from Inuktitut. We contrasted the simple MOG 

approach (Experiment 1), which is generally understood as one part in a two-stage process of 

phonological acquisition, with an alternative approach to categorization that deals with 

phonological processes and acoustic clustering in the same stage of acquisition (Experiments 2 

and 3). By incorporating the process of discovering phonological processes into the process of 

discovering sound categories, our approach to sound categorization may be said to be a single-

stage approach to the acquisition of phonological categories. Rather than learning phones, the 

model presented in Experiments 2 and 3 settles on abstract, language-specific phoneme 

categories during the initial process of categorizing perceptual input. The single-stage approach 

was seen to give a better fit to the target Inuktitut system in Experiment 3, and had the added 

benefit of explicitly learning the phonological process associated with uvular retraction in 

Inuktitut. Simple MOG approaches, on the other hand, appeared to be unable to recover the 

regular relation between allophonic pronunications of the Inuktitut vowels for two reasons. For 

simple MOG models that settled on three phoneme-like categories, it was unclear how 

information about the subparts of these categories could be extracted from this model. For 

models that more closely approximated a phone-level categorization of the space, it was seen 

that the fit with the target phone categories was not close enough to support a second stage of 

phoneme acquisition based on measures of complementary distribution.  
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 It has long been noted that in both the production and perception of adult speech, 

language-specific coarticulatory effects are ubiquitous, and the acoustic cues to each phoneme 

segment’s   identity  may  be  distributed  across  multiple  segments  (see,  e.g,  Öhman, 1966; Manuel 

1990; Nearey 1990; Beddor, Harnsberger & Lindemann, 2002; inter alia). A number of 

researchers have employed linear regression models to account for these language-specific co-

articulatory effects in production and perception (Nearey, 1990; Cole, Linebaugh, Munson & 

McMurray, 2010). This work has shown that regressing out predictable effects of phonological 

context can improve classification (Nearey 1990), as well as providing greater separation of 

acoustic clusters (Cole et al, 2010). The models we described here extend this research by 

examining the impact of these techniques for the problem of language acquisition. It was seen 

that the resulting mixture of linear models provided a superior categorization of the Inuktitut 

vowel space, as well as a single-stage model of the acquisition of phoneme categories. 

 

5.1. Two-stage versus single-stage phoneme categorization 

  

We have argued above that there is a widespread, but often implicit, consensus that 

phonological category learning is essentially a two-stage process: phone learning is distinct from 

phoneme learning, and both phones and phonemes constitute separable, discrete levels of 

categorization. This view does not necessarily entail that infants precisely master all phones 

before moving on to learning phonology and phoneme categories. It is entirely possible to 

simultaneously explore the full joint distribution on hypotheses about phonetic and phonemic 

categorization. The important feature about two-stage models of phonology is that the 

information made relevant to the two learning problems is different. In models with this property, 



 43 

the first stage cannot make use of all the information available to the second (in this case, 

information about allophonic environments). In Experiment 1 we provided simulation evidence 

that this property can severely limit the ability of the learner to recover both the correct phonetic 

and phonemic categorization of the acoustic space: errors in one stage are carried through to 

another and disrupt learning.   

In Experiments 2 and 3, we provided simulation evidence of the benefits of treating the 

problem of learning phonemes as a problem of learning phonetic rules. This view makes the 

claim that the phonological system includes quasi-continuous phonetic processes in addition to 

discrete phonological processes, an idea that is not without precedent. The possibility of the 

coexistence of these two different types of phonological process throughout the stages of 

phonological processing is alluded to as early as Chomsky and Halle (1968). In their theory, 

although there is a clear qualitative distinction between the binary, classificatory features used to 

store morphemes in the lexicon and the scaled numerical features used to represent phonetic 

information, they write that  “the phonological rules, as they apply to these representations, will 

gradually convert these specifications to integers” (p. 65). However, it is generally the case that 

research in phonology has been concerned with rules that manipulate binary features only, not 

scaled phonetic features (exceptions include Sledd, 1966; Cohn, 1990; Dyck, 1995). One result 

from the simulations in Experiments 2 and 3 is that the choice of whether to treat a process as 

discrete or continuous can have a significant impact on models of phonological acquisition. 

Phonetic rules are continuous rather than discrete, and so they have the advantage that they lie in 

the same representational space as a perceptual phonetic map. In the context of the models we 

presented, this allowed us to construct a tight dependence between the learning of rules and the 

learning of categories. These models perform better than the standard mixture of Gaussians 
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approach in finding phoneme categories, while at the same time capturing the lawful relations 

between regions of the acoustic space.  

There exist alternative interpretations of the results from Experiments 2 and 3. These 

simulations suggest that, if the bias for small numbers of categories is sufficiently weak, a learner 

fitting a mixture model might find phonetic categories only, regardless of whether their model 

allows them to encode phonetic rules. Thus one might conclude that phonetic level categories are 

the only discrete representations in the linguistic system, and that all linguistic encoding is done 

in terms of phonetic categories. Views like this are sometimes cast as a rejection of the existence 

of phonemes (Johnson, 1997; Port & Leary, 2005; Silverman, 2006), but may also be understood 

as the claim that the lexical level of encoding (traditionally, the phonemic encoding) does not 

abstract out phonological processes (Kenstowicz and Kisseberth, 1979). There are, however, 

compelling theoretical and empirical reasons for rejecting this view. A traditional source of 

evidence for the view of abstract phonemes as the relevant unit of lexical encoding is that a vast 

majority of languages actively employ alternations of the sort considered here. As suggested 

above, the productive deployment of allophonic alternations in novel contexts implies that 

speakers have internalized the knowledge of the lawful relation between segments. If sounds are 

stored as a single, abstract category that receives its phonetic value only in context, then these 

basic facts are easily accounted for. In addition, there is experimental evidence from infant and 

adult speech perception that suggests that phoneme level distinctions, rather than phonetic level 

distinctions, are implicated in common measures of discrimination (Whalen et al 1997; 

Peperkamp, Pettinato & Dupoux, 2002; Kazanina, Phillips & Idsardi, 2006; White, Peperkamp, 

Kirk & Morgan, 2008). For example, Kazanina and colleagues (2006) used 

magnetoencephalography to show that one neural signature of sound discrimination (the 
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mismatch field, MMF) to a [t]-[d] distinction was only present for speakers for whom it was a 

phonemic distinction (Russian speakers). In contrast, Korean speakers showed no such 

discrimination; in Korean, both [t] and [d] occur as regular allophones of a single phoneme. 

White and colleagues (2008) obtained related results by studying infants using the head-turn 

preference task. They showed that infants trained on an artificial language were able to 

generalize across regular allophonic variation to extract phonemes. At test, infants treated strings 

of sounds that contained the same sequence of phonemes as one word, regardless of the sequence 

of phones. These results are also important because the infants did not require meaning to detect 

the allophonic alternation. These results are compatible with the model presented here, but run 

against the predictions of models that rely on similarity in meaning to explain allophonic 

variation (Silverman, 2006). Thus there is convergent evidence from linguistics, speech 

perception, and acquisition research that points to a level of sound categorization more abstract 

than simple phonetic clusters. 

An additional advantage to the single-stage approach to phonological acquisition is that 

the acquired model provides all the knowledge necessary to deploy the acquired phonological 

knowledge. This is not true of two-stage models of acquisition. For example, algorithms that 

cluster phones into phonemes based on distributional facts (as in Peperkamp et al. 2006) give the 

learner only limited insight into the processes that generate those allophonic distributions. In 

order to use the phonological system for the purposes of production or perception, another stage 

of learning must be invoked to learn the grammatical processes that are responsible for the 

observed patterns. In exploiting the processes in the category acquisition stage, however, the 

single-stage approach returns a much more deployable set of phonological knowledge: a set of 

phonemes, and the processes that relate them to their allophones. In the case of Inuktitut, the 
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learner converges on three phoneme categories plus a process that predictably shifts the target 

pronunciation in front of uvular segments. Together with the phoneme categories, this knowledge 

gives the language user all the knowledge necessary to produce an appropriate vowel token given 

a phonological environment. In models strictly learning phone categorizations, the acquired 

model would not give learners any insight into the distribution of the phones within the language.  

 

5.2. Extending the single-stage model 

 

The simulations presented in Experiments 2 and 3 provide initial evidence that a mixture 

of linear models can correctly extract phonological processes and categories in the Inuktitut data 

set provided. However, there remain a number of limitations to this model that future work will 

address. 

One important issue for the current model concerns the discovery of potential 

conditioning environments. Although much of the model operated in an unsupervised fashion, 

the model did not need to determine which tokens were in a uvular context. Instead, the learner 

was assumed to have knowledge of which tokens occurred in the context of a uvular segment, 

which was modeled as a categorical constrast collapsing across all uvular phonemes. 

Furthermore, the model was not required to determine which contextual features were relevant to 

phonological processes; only uvular environments were considered because they are known to 

condition retraction in Inuktitut, but presumably this knowledge is not available to the learner 

and needs to be discovered. This latter problem is easily addressed: mixtures of linear models are 

in principle capable of fitting as many contextual effects as there are predictors, and so a more 

complete model could possibly incorporate predictors for all possible conditioning environments. 
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However, the question of how a categorical conditioning environment is identified in the first 

place is more difficult. One response to this is that the learner is jointly attempting to categorize 

all segments in a string, and segments become available as conditioning environments when the 

learner has categorized them. This view suggests that Inuktitut learner would need to classify 

their consonant phonemes before they fully arrive at an analysis of the vowel space. Existing 

experimental evidence, however, suggests that language-specific vowel categories are available 

slightly earlier than are language-specific consonant categories (Werker & Tees 1983, 1984; 

Kuhl et al 1992). Alternatively, it may be the case that learners are able to assign a categorical 

feature   ‘parse’   to   the   acoustic   string,   even   if   they   do   not   have   language-specific consonant 

representations yet (Stevens 1986; Hale & Reiss 2008). If the learner has access to some feature 

parse of the consonants before they have identified the consonant categories in her language, 

then this information could potentially serve as predictors or conditioning environments in a 

mixture of linear models. If this is correct, then learners should be able to acquire the vowel 

retraction rule in Inuktitut as soon as they categorize the vowel space, possibly prior to 

identification of language-specific consonant categories. In order to determine which approach is 

correct, further work exploring the relationship between consonant categorization and cognition 

of phonological processes is necessary. 

 The model presented here may also have implications for adult speech perception. If a 

mixture of linear models is taken as a model of perception, then the predictions differ from those 

of models that collapse over all subphonemic distinctions. For example, if each phoneme is 

modeled by a single Gaussian distribution, then speakers should have a behave as if they have 

unimodal perceptual ‘map’  of an inherently bimodal acoustic surface. On the other hand, models 

that maintain that each phonetic category is distinct predict that there should be no influence of 
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phoneme identity on cross-allophone perception. That is, in Inuktitut [i] and [e] should be 

distinguished as easily as [e] and [a]. The mixture of linear models presented here makes the 

prediction that perceivers should, under ideal circumstances, behave as if the Inuktitut vowel 

phonemes are a complex, bimodal distribution having two  ‘good’  examplar  centers  (perhaps  as  

measured by the perceptual magnet effect, Kuhl, 1991; Kuhl et al, 1992; Iverson & Kuhl, 1996), 

but that there should also be an effect of phoneme identity. Without any categorical distinction 

between [i] and [e], discrimination should be more difficult than for contrasts that differ in 

categorical identity. Further experimental work is needed to evaluate these predictions. 

 Lastly, the single-stage model presented here could provide a novel way of approaching the 

problem posed by incomplete neutralization. Phonological rules that collapse distinctions among 

phonemes are called neutralizing rules; one well-known example is German word-final 

devoicing of obstruents, which occasionally creates near-homophonous pairs such as weck 

(“wake,”  imperative)  and Weg (“path”), both ending in a voiceless sound usually transcribed as 

[k]. The underlying voicing of the obstruent in these words is evident in other morpho-

phonological contexts: the plural form Wege “paths”  is  pronounced  with  a  voiced  velar  obstruent  

[g]. It has been known for some time, however, that this neutralization is not always complete: 

the final consonant of Weg-type words remain phonetically different than weck-type words in 

both production and   perception   (Slowiaczek   &   Dinnsen   1985;;   Port   &   O’Dell,   1986;;   Port   &  

Crawford, 1989), although the effect can be subtle and has at times been controversial (Fourakis 

& Iverson, 1984; Baumann, 1995). A standard phonological account of word-final devoicing 

models the process as a categorical change in a voicing feature on the relevant obstruent, which 

fails to explain the existence of incomplete neutralization. Thus, as suggested by  Port  &  O’Dell,  

the change appears to be subsymbolic. Under a mixture of linear models account, the 
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incompleteness effect receives a natural explanation: because the devoicing rule in this model is 

a shift in the location, but not the scale,  of  the  obstruent’s  phonetic  distribution,  the  distributions  

of derived and underlying voiceless obstruents will not overlap completely. The divergence in 

these distributions may be responsible for better than chance performance at discriminating true 

from derived word-final voiceless consonants (Port & Crawford, 1989). When specified with a 

model of actual German speech, a mixture of linear models approach to this process would make 

firm predictions about which tokens of devoiced consonants German speakers should be able to 

perceive as derived. It remains to be seen if this is an accurate model of the phenomenon of 

incomplete neutralization, and future work will address this issue. 

 

6. Conclusion 

 

In describing a model of phonological category acquisition, the desired end state is a set 

of phoneme categories: sound categories used in lexical storage that may include several distinct 

allophones. Work in phonological category acquisition has tended to focus either on the problem 

of finding phones in acoustic space or on the problem of finding systematic relationships 

between phone categories. In this paper, we suggested an alternative model that directly acquires 

phoneme categories by jointly learning acoustic distributions and the relationships that hold 

between them. Using data from the Inuktitut vowel space, we showed that this model provides a 

better fit to the data, and has the advantage of arriving at the desired phonemic categorization of 

the Inuktitut vowel space in a single step. This provides initial support for a single-stage model 

of phoneme acquisition and further demonstrates the usefulness of the mixture model as a model 

of category acquisition in human language. 
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Table 1: Classification performance for ideal Gaussian models. These values represent the 

highest possible pairwise F-scores (see text) for comparisons between the ideal models’  
predictions and the data. Two different versions of the true classification are evaluated with this 

baseline: a three-category phonemic solution (phoneme labels, K = 3) and a six-category 
phonetic solution (phoneme labels plus an indicator for a following uvular, K = 6). 

 
 

 K  F  Prec  Rec  
Raw (239 points)  3  0.84  0.83  0.85  

 6  0.64  0.66  0.63  
1000 points 3  0.79  0.79  0.79  

 6  0.69  0.64  0.76  
12000 points 3  0.78  0.78  0.78  

 6  0.68  0.63  0.74  
 
Table 2: Results of Experiments 1-3, 10-fold cross-validation on each of three Inuktitut data sets. 
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Left of table shows distribution over number of resulting categories, and right of table shows 
pairwise scores at test (see text for discussion of scores). In parentheses is the difference from 
scores on training data. Comparisons to both 3- and 6-category (italicized) classifications are 

shown for Experiment 1. 
 
Experiment 1: General Mixture of Gaussians  
 K = 1  2  3  4  5  6  F  Prec  Rec  
1000  0  0.125  0.625  0.125  0  0  0.70 (+.02)  0.66 (+.01)  0.74 (+.03) 

       0.60 (+.01) 0.50 (+.01) 0.76 (+.02) 
12000  0  0.1  0.5  0.1  0.2  0.1  0.65 (+.01)  0.68 (+.01)  0.63 (+.02)  

       0.58 (+.02) 0.53 (+.01) 0.63 (+.02) 
Raw  0.1  0.2  0.7  0  0  0  0.65 (−.03)  0.59 (−.03)  0.76 (−.03)  

       0.47 (−.04) 0.34 (−.01) 0.81 (−.02) 
Experiment 2: General Mixture of Gaussians, process-corrected data 
1000  0 0.4 0.5 0.1 0 0 0.73 (+.02)  0.67 (+.02)  0.82 (+.02)  
12000  0 0 0.875 0.125 0 0 0.74 (+.02)  0.72 (+.02)  0.76 (+.02)  
Raw  1.0 0 0 0 0 0 0.63 (−.01)  0.49 (−.02)  0.88 (−.01)  

Experiment 3: Mixture of Linear Models 
1000  0  0.111  0.889  0  0  0 0.75 (+.02)  0.71 (+.02)  0.80 (+.02)  
12000  0.143  0  0.571  0.286  0  0 0.69 (+.02)  0.65 (+.02)  0.76 (+.02)  
Raw  0.125  0.125  0.75  0  0  0 0.69 (−.01)  0.64 (−.00)  0.79  (−.01)  

 
Table 3: Symmetrized KL-divergences for the distribution of uvulars following each of the 

phonetic categories, for the six-category solution found among the model solutions in 
Experiment 1. Phonetic labels were assigned to the categories by visual inspection. Phone pairs 

that are true allophones in Inuktitut are in bold. 
 
 

 [i]  [e]  [u]  [o]  [a]  [ɑ]  
[i] 0  0.810  0.033  0.321 0.330  0.846 
[e] –  0  0.478 0.098  0.093  0.000  
[u] –  –  0  0.138  0.143  0.504 
[o] –  –  –  0  0.000  0.109  
[a] –  –  –  –  0  0.104  
[ɑ] –  –  –  –  –  0  

 
Table 4: Average symmetrized KL-divergences (with standard deviation) for the distribution of 
uvulars following each of the phonetic categories, for each of the two five-category solutions 

found among the model solutions in Experiment 1. Phonetic labels were assigned to the 
categories by visual inspection. Phone pairs that are true allophones in Inuktitut are in bold. 
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 [i] [e] [u] [o] [a] 
[i] 0  0.686±0.025  0.304±0.019  0.183±0.011  0.598±0.018  
[e] –  0  0.068±0.016  0.142±0.021  0.003±0.002  
[u] –  –  0  0.014±0.001  0.043±0.003  
[o] –  –  –  0  0.106±0.002  
[a] –  –  –  –  0  
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