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Abstract We develop an unsupervised algorithm for morphological acquisition to
investigate the relationship between linguistic representation, data statistics, and learn-
ing algorithms. We model the phenomenon that children acquire the morphological
inflections of a language monotonically by introducing an algorithm that uses a boot-
strapped, frequency-driven learning procedure to acquire rules monotonically. The
algorithm learns a morphological grammar in terms of a Base and Transforms rep-
resentation, a simple rule-based model of morphology. When tested on corpora of
child-directed speech in English from CHILDES (MacWhinney in The CHILDES-
Project: Tools for analyzing talk. Erlbaum, Hillsdale, 2000), the algorithm learns the
most salient rules of English morphology and the order of acquisition is similar to
that of children as observed by Brown (A first language: the early stages. Harvard
University Press, Cambridge, 1973). Investigations of statistical distributions in cor-
pora reveal that the algorithm is able to acquire morphological grammars due to its
exploitation of Zipfian distributions in morphology through type-frequency statistics.
These investigations suggest that the computation and frequency-driven selection of
discrete morphological rules may be important factors in children’s acquisition of
basic inflectional morphological systems.
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1 Introduction

The relationship between linguistic representation and computation can be explored
through models of unsupervised learning from a corpus. A system for unsupervised
language learning embodies a formalism for linguistic representation, whose end shape
is determined by the learning algorithm and the content of the input data. Unsupervised
algorithms have been developed to learn a variety of levels of linguistic structure, such
as word segmentation (Brent and Cartwright 1996), morphology (Goldsmith 2001,
2006), distributional part of speech classes (Schütze 1993; Redington et al. 1998),
syntactic constituency and dependency (Klein and Manning 2004), and semantic word
classes (Deerwester et al. 1990). These algorithms have shown that the statistical con-
tent of linguistic usage and principles of machine learning may, to some extent, explain
how humans may be learning language.

An interesting application for unsupervised learning is in modeling child language
acquisition. An algorithm that acquires linguistic structure in conditions similar to that
of children may be informative about possible mental mechanisms for representing
and processing language, and the contribution of the input. However, not any unsuper-
vised algorithm is suitable as a model for child language acquisition: a cognitively-ori-
ented algorithm should also model children’s behaviors in language acquisition under
appropriate input conditions. The benefit of this is that such requirements on the learn-
ing process impose additional constraints upon the learning architecture to be devel-
oped, thereby leading to a deeper understanding of the principles involved in learning
languages.

The particular problem that we choose to model is the observation that chil-
dren acquire the set of morphological inflections for their language monotonically,
in a sequence over time (Brown 1973; Slobin 1973; Hooper 1979; Bybee 1985;
Slobin 1985–1997; Dressler 2005); see Table 4 for an example for English. Cross-
linguistically, it appears that children’s first inflections tend to be of nominative sin-
gular forms for nouns and adjectives, and third-person present tense singular forms
or infinitive for verbs. Other inflections are acquired at a rate dependent upon the
phonological and syntactic complexity of the morphological forms. Inflections that
are easily identified and unambiguous tend to be acquired sooner than those that are
ambiguous. Why do we see these behaviors in child language acquisition? We believe
that a computational model may provide a principled explanation.

In this paper, building upon Chan (2008) and Lignos et al. (2009, 2010) we present
a batch unsupervised algorithm for morphology learning in which the grammar is
constructed monotonically. The algorithm acquires a Base and Transforms model, a
simple rule-based model of regular morphological systems in which a word consists of
a lexical stem and a grammatical suffix. Rule-based models of morphology in general
(Chomsky and Halle 1968; Halle 1973) apply rewrite rules to a morphological base
forms to produce the set of inflected forms of a lexeme. The benefit of employing a
rule-based representation is that the monotonic growth of a grammar can be easily
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modeled. Beginning with an empty grammar, the algorithm acquires rules one at a
time, without subsequently changing them.1 The algorithm is applied to data of child-
directed speech in English, and the order of acquisition of suffixes is compared to
previous analysis in the language acquisition literature (Brown 1973).

To gain a better understanding of the learning model, we also analyze statistical
distributions of morphological data in corpora and consider their implications for lin-
guistic representations and learning. A key feature of the algorithm is how it exploits
Zipfian distributions of morphology. The algorithm primarily involves greedy boot-
strapping of a rule-based model of morphology through type-based computations. The
ability of the algorithm to effectively acquire a morphological system is due to the fact
that the input data in language usage is Zipfian-distributed.

With an understanding of the algorithm in terms of its structural and statistical learn-
ing biases, we have a computational account of children’s behaviors in morphology
acquisition: the monotonic acquisition of inflections by children may be attributed
to the learning of rules through type-based computations over data from linguistic
experience. This explanation relies on the assumptions that morphological data is
Zipfian-distributed, and that children have the capacity to compute rule-based rep-
resentations or their equivalent. The cognitive focus of our investigations therefore
leads to insights about the relationship between linguistic representation, statistical
distributions, and computation.

The rest of this paper is as follows. Section 2 reviews previous work in morphology
induction, from the point of view of developing a cognitive model of morphology
acquisition. Sections 3 and 4 present the algorithm and experiments on corpora. In
Sect. 5 we examine the statistical characteristics of morphology in corpora and their
implications for linguistic representation and learning. Section 6 discusses the impli-
cations of this work for language acquisition, theories of linguistic representation,
and unsupervised learning techniques, and also model limitations and future work.
Section 7 concludes.

2 Previous Work in Morphology Learning

Many different algorithms have been designed for morphology learning, involving
a wide range of problem definitions, formalisms for linguistic representation, and
learning techniques. As we desire an unsupervised algorithm for learning morphol-
ogy that can also serve as a cognitive model of child language acquisition, several
characteristics are desirable. First, the quantity of input data should be comparable
with what children encounter in the early period of language acquisition.2 Second,

1 The correction of children’s overgeneralizations of English past tense verbs (e.g., eated/ate) is not neces-
sarily a counterexample to monotonicity. It can be modeled by the addition of a rule for a small number of
irregular words, and the switch of rule membership of a lexeme to this new rule. The previously applying
default past tense rule (add -ed) would still exist for other words in the vocabulary. The learner we present
here does not attempt to model the acquisition of irregular verbs or the accompanying “U-shaped” learning
patterns (see Marcus et al. 1992) observed in children.
2 According to Dan Swingley (p.c.), in an analysis of the Brent corpus of CHILDES (MacWhinney 2000),
mothers of 9 to 15-month old children spoke to them at an average rate of 1737.5 words per hour. Assuming
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the linguistic representations that are assumed to be available in the input must be
justified by the existence of other unsupervised algorithms for inducing those struc-
tures. For example, the assumption of discrete words as input to morphology induction
may be justified by the body of research on the problems of inducing and segmenting
waveforms into phonemes (e.g. Lin 2005), and segmenting phoneme sequences into
words (e.g. Gambell and Yang 2004). Third, the inflections of a language should be
acquired monotonically, and the particular order should be consistent with children’s
acquisition. Other characteristics may be desirable as well for an algorithm to be a
cognitive model, such as online processing of the input, but we will concentrate upon
those mentioned above.

2.1 Supervised Inflection Learning Models

A large number of models have been developed for single-inflection learning. Given
a set of word pairs (basei , derivedi ), where basei is a base form, derivedi is a form
derived from the base, and all derivedi are of the same inflection, the learning task
is to acquire the ability to map new base forms to their corresponding derived forms,
whether regular or exceptional. The prototypical single-inflection problem has been
the acquisition of English past tense verbs. For example, the input to a past tense learner
could be word pairs such as (in orthography) (walk, walked), (beat, beat), (eat, ate),
etc. “Past tense” models of learning and processing have been a topic of strong inter-
est in cognitive science (Rumelhart and McClelland 1986; Pinker and Prince 1988;
Pinker 1999; Pinker and Ullmann 2002; McClelland and Patterson 2002), and many
learning systems have been developed for this problem (Golding and Thompson 1985;
Rumelhart and McClelland 1986; Wothke 1986; Ling 1994; Daelemans et al. 1996;
Mooney and Califf 1996; Molnar 2001; Clark 2001, 2002; Albright and Hayes 2002).

Despite the cognitive focus of “past tense” learning, it is problematic as a model for
language acquisition. The learner begins with pairs of morphologically related words,
each of one of two different inflections, and it knows which of the word forms is the
base. What justifies making these assumptions? Would it be logically possible for an
unsupervised algorithm be able to supply this information, before the learner begins
the process of learning the rule or mapping? Current unsupervised algorithms would
not be able to provide such information as a pre-processing step.

An issue not addressed by single-inflection learners is how to acquire the full set of
inflections in a language. Most systems that address this problem are have a techno-
logical orientation (Johnson 1984; Theron and Cloete 1997; Yip and Sussman 1997;
Manandhar et al. 1998; Kazakov and Manandhar 2001; Oflazer et al. 2001; Zajac
2001; Plisson et al. 2004; Wicentowski 2004; Stroppa and Yvon 2005; Carlson 2005;
Shalonova and Flach 2007; Dreyer et al. 2008). Like single-inflection learners, these
systems assume knowledge of the base and the pairing of words with the base.

Footnote 2 continued
4 hours of interaction per day, this amounts to approximately 2.5 million words a year. The corpora used in
this work are within this size.
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2.2 Unsupervised Models of Morphology Learning with Unrestricted Data Sets

Many unsupervised algorithms have been developed for inducing morphological struc-
ture from a raw corpus of words. While in theory unsupervised learning of morphology
encompasses the above inflection learning problems, in practice systems have con-
centrated on more basic tasks, such as discovering the morphemes within words,
organizing word components into a grammar, or discovering morphologically related
words. Below, we survey several classes of unsupervised systems; see Chan (2008)
for a comprehensive review.

2.2.1 Segmenting Words into Morphemes

Harris (1955, 1970) proposes that phoneme and morpheme boundaries can be deter-
mined through statistical information, by counting letter successors at each position
in a sequence. Harris’ technique has been adopted and refined by many researchers,
as early as Hafer and Weiss (1974), and as recently as Bordag (2007). Research has
also been conducted on segmenting words for agglutinative languages (Creutz 2003;
Creutz and Lagus 2004; Argamon et al. 2004; Hu et al. 2005a).

2.2.2 Discrete Grammars of Segmented Words

Goldsmith (2001, 2006) develops Linguistica, a system to acquire a set of signatures,
discrete paradigm-like data structures describing the morphological segmentation of
the words of a corpus. Linguistica begins with a signature for the vocabulary of the
input corpus. In an iterative process, improved grammars are proposed by various
heuristics that propose alternative segmentations, causing signatures to split or merge.
Grammars are assigned a numerical score according to a formula based on the Mini-
mum Description Length principle; the least costly grammar is chosen.

2.2.3 Probabilistic Grammars of Segmented Words

Bacchin et al. (2005) develops a probabilistic model and parameter estimation algo-
rithm for segmenting words into stems and affixes. Snover and Brent (2001), Snover
et al. (2002) formulate a Bayesian learning procedure for a probabilistic model con-
sisting of paradigmatic classes of stems and suffixes. Goldwater et al. (2006) employ
Gibbs sampling to estimate the parameters for a probabilistic model of morpheme seg-
mentation in which the data distributions are generated by a Pittman-Yor process. Poon
et al. (2009) learn log-linear models for segmentation through contrastive estimation
and Gibbs sampling.

2.2.4 Probabilistic Segmentation and Rewrite Rules

Naradowsky and Goldwater (2009) expand the algorithm of Goldwater et al. (2006) to
include context-dependent spelling change rules. Both of these algorithms were tested
on English verbs only, rather than all the words of a corpus.
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2.2.5 Discrete Rule-Like Representations

Several systems (Schone and Jurafsky 2000, 2001; Freitag 2005; Demberg 2007;
Plisson et al. 2004) acquire representations that account for wordform generation
through string rewriting rules, a more powerful process than concatenation. However,
these representations only state that pairs of words are morphologically related, and
do not interpret them as consisting of a base and a derived form, as is standard in
supervised rule learning. Without the concept of a base, it is difficult to interpret the
acquired representations as models for wordform generation.

2.3 Unsupervised Induction of Morphology and Part of Speech Classes

Most work in unsupervised induction of morphology utilizes the spelling and fre-
quency statistics of words to identify morpheme strings. Part of speech information
can also be useful, and algorithms have been developed for induction of distribu-
tional word classes through sentential contexts (Schütze 1993; Redington et al. 1998).
There have been efforts to combine morphology induction and distributional induction
of word classes (Parkes et al. 1998; Wicentowski 2002; Clark 2003; Higgins 2003;
Freitag 2004, 2005; Hu et al. 2005b; Biemann 2006; Dasgupta and Ng 2007; Can and
Manandhar 2009).

There are several potential contributions of word class induction to morphology
induction. One is to disambiguate syntactically ambiguous morpheme strings. For
example, the suffix -s occurs on both nouns and verbs in English. Another is to iden-
tify allomorphic variants of strings; for example, we would like to know that the
suffixes -s and -es in English orthography are both realizations of the same underlying
morpheme (either a plural noun or present tense verb suffix). However, it has yet to
be demonstrated that fine-grained morphological categories such as “second person
plural future tense verb” can be induced.

2.4 Towards Unsupervised Learning of Rules as a Cognitive Model

Previous work in unsupervised learning of morphology has been predominantly
focused upon developing computational techniques for inducing different aspects of
morphological structure from corpora, rather than cognitive modeling. Specific types
of algorithms are incompatible with our goal of modeling children’s monotonic acqui-
sition of morphology. For example, consider any algorithm that iteratively refines a
grammar for a corpus, whether by modifying the representations in discrete grammars
(such as in Linguistica), or re-estimating parameters in a probabilistic model. If taken
as a cognitive model, such an algorithm would incorrectly predict that children have
morphological grammars that fully cover the input data at any point in time, even in
the initial stages of acquisition.

It would be desirable to develop an unsupervised algorithm for learning a rule-
based model of morphology. One reason is that cognitive modeling of the monotonic
acquisition of inflections may be possible through such a representation. Another
reason is more practical: in finite-state systems for morphological generation and
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processing (Sproat 1992; Kaplan and Kay 1994; Beesley and Karttunen 2003), rules
are constructed by hand. While learning rules (or any other mechanism for map-
ping between forms) is straightforward in a supervised setting, the lack of annotated
resources makes partially or fully unsupervised learning an attractive alternative.

As an initial step towards an unsupervised rule learner, we simplify the definition of
the learning problem. Instead of learning rules that specify both morphosyntactic and
phonological features, we discover the morphological relationships among the words
of a corpus, in terms of which are base forms and which are derived forms. For exam-
ple, given the set of words walk, walked, walking, talk, talked, talking, we would like to
learn that walk and talk are base forms for {walked, walking} and {talked, talks}. The
relationships among these words can be represented by string rewrite rules indicating
“add -ed to the base” and “add -ing to the base”. In the following section, we develop a
formalism and algorithm for discovering these relationships in an unsupervised man-
ner. The identification of these string-level relationships in a rule-based model could
potentially assist in the induction of more abstract featural representations (person,
case, tense, etc.), which would ultimately be needed for a deeper linguistic analysis.

3 An Algorithm for the Unsupervised Learning of Rules

3.1 The Base and Transforms model

We now present a formalism for morphological derivations, called the Base and Trans-
forms model, and a matched algorithm for the unsupervised acquisition of transforms
and their associated word pairs. Both the model and algorithm were introduced by
Chan (2008). The Base and Transforms model allows the representation of morpho-
logically related words in a generative fashion by defining a base set of words and
a set of transforms that can change the base into its derived forms. Transforms are
acquired in a frequency-driven learning process, but the model itself is a discrete,
non-probabilistic representation.

3.1.1 Base and Derived Forms

A set of morphologically related words can be represented as a single base form and
one or more derived forms that can be created from the base through transforms. For
example, the word bake will be the base form for the derived forms baked, baking,
and bakes. We refer to any word produced by an inflectional or derivational morpho-
logical process as “derived.” The algorithm can learn transforms that correspond to
inflectional and derivational morphology, but it does not explicitly identify them as
such.

3.1.2 Transforms

A transform is a rewrite rule applied a base to create a derived form that can operate at
either the phonemic or the orthographic level. The current formulation of transforms is
restricted to affixal morphology. A transform is defined as two affixes (s1, s2), where
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Fig. 1 Generating a paradigm
of six forms through a base and
five transforms

s1 is removed from the base before concatenating s2. Thus to derive baking from bake
we apply the suffix transform (e, ing), removing -e from the base and then concate-
nating -ing. We represent a null affix as $, so that a purely additive affix is of the form
($, x) and a purely subtractive one is of the form (x, $), where x is not null.

A transform also has a corresponding word set, which is the set of base-derived
pairs that the transform accounts for. The bases of a transform are the words that the
transform can be applied to, and its derived words are the words created by applying
the transform to its set of bases. Figure 1 illustrates how a morphological paradigm of
six forms can be generated from a base and the application of five transforms to the
base.

3.2 An Algorithm for Discovering Transforms

We now present an unsupervised algorithm to discover the affixal morphology under-
lying the words of a corpus. It takes an unstructured set of words as input and returns
a representation of the morphological grammar of the input corpus as represented by
the Base and Transforms model.

The algorithm is an iterative, greedy procedure. In each iteration, it selects the
transform that models as many word types as possible while meeting constraints for
an acceptable transform. All word types in the corpus are placed in the Unmodeled
set at the start of the algorithm’s execution. As the algorithm acquires transforms, it
places words in the Base or Derived word sets based on the function they serve in the
learned transforms. The algorithm primarily uses the number of types that suffixes
and transforms represent; token frequencies of words are only used to break ties. The
operation of the algorithm requires several numerical parameters, including the max-
imum length of a suffix, the minimum size of a word after a suffix is removed, and
thresholds for the minimum number of word types a transform can represent. Values
for these parameters were set when developing the system on the Brown corpus.

An overview of the algorithm is given in Fig. 2. Each word in the corpus belongs
to one of three word sets at any point in execution: Base, Derived, or Unmodeled.
All words begin in the Unmodeled set and are moved into Base or Derived as trans-
forms are learned. The Base set contains the words that are used as bases of learned
transforms. Similarly, the Derived set contains words that are derived forms of learned
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1. Place all words in the corpus in the Unmodeled set

2. Until a stopping condition is met:

(a) Count suffixes in words of the Base and Unmodeled sets.

(b) Hypothesize transforms from words in the Base and Unmodeled sets to words in Unmodeled.

(c) Select the best transform.

(d) Move the bases used in the transform to the Base set and the derived forms used by the
transform to the Derived set.

Fig. 2 The learning algorithm

transforms. When proposing transforms, the algorithm creates word pairs whose bases
are in the Base or Unmodeled set and whose derived forms are in Unmodeled. This
results in a bootstrapping mechanism that encourages the reuse of existing bases for
new transforms. The grammar created by the learner consists of the transforms learned
and the base and derived words that they apply to.

We now present the learning loop of the algorithm in detail:

3.2.1 Count Suffixes

Iterate over the words in the Base and the Unmodeled sets and count all of the suffixes
of length 0-5 contained in each word, maintaining a separate count for the suffixes in
the Unmodeled set and for the union of the Base and Unmodeled sets. For example,
the word “hopeless” contains the suffixes (-$, -s, -ss, -ess, -less, -eless), and if it is
only in the Base set those affixes would be counted toward the Base ∪ Unmodeled
set’s affix counts, but not the Unmodeled set’s. A suffix is only counted if removing it
leaves a sufficiently long stem, in this case three characters long. This length limitation
exists to prevent the modeling of extremely short words that are likely closed-class
or morphologically irregular words. Affixes are ranked by the number of types they
appear in.

3.2.2 Hypothesize Transforms

Hypothesize transforms of all combinations of the top 50 affixes as s1 and s2 of a trans-
form. For example, from the common English suffixes -$, -s, and -ing the transforms
($, s), (s, $), ($, ing), (ing, $), (ing, s), (s, ing) are hypothesized. For each hypothesized
transform, check every word in the Base and Unmodeled sets that have the affix’s s1
and check whether the word that is the result of applying the transform to the word is in
the Unmodeled set. If it is, add the base-derived pair to the word set of this transform.
Transforms are ranked by the number of word pairs they account for, without regard
to the frequency of the words in those pairs.

3.2.3 Select a Transform

The highest ranked transform is selected, provided it meets the criteria for an accept-
able transform. A transform should be rejected if it appears to be modeling a relation-
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ship between two forms that should both be derived forms, rather than a relationship
between a base and a derived form. To reject these transforms, a transform must have
a sufficiently low overlap ratio. A transform’s overlap ratio is calculated as the ratio
of the stem overlap to base overlap, defined as follows:

Base overlap. The base overlap is the number of base forms in the proposed trans-
form that are base forms in the current grammar.

Stem overlap. The stem overlap is the number of base forms’ stems (computed as
the first four characters) in the proposed transform that are also stems of words in the
Base set. The stem overlap is an approximation of the lexical similarity between two
sets of words.

A high overlap ratio implies that the bases in the transform’s word set are very sim-
ilar to words in the Base set, but not members of it. The likely cause is that the bases
used in the transform are derived forms of words in the Base set, and thus accepting the
transform would cause the Base set to include multiple inflections of the same lexical
category. This is undesirable as it results in inconsistent base forms. For example, in
English the overlap ratio is used to reject the transforms (ing, ed) and (ed, ing) in the
second iteration when running on the Brown corpus. Later, the more desirable rules
($, ed) and ($, ing) are learned, which reflect the desired base-derived relationship.

If the first and second ranked transforms account for the same number of types
and are symmetric pairs, for example in English the transforms ($, s) and (s, $), a
tie-breaking procedure is invoked:

Tie-breaking. For each of the transforms, count the number of base-derived pairs in
which the base form is more frequent than the derived form. Choose the transform
with the greater number of higher-frequency bases.

This tie-breaking procedure is typically only needed in the first iteration where the
Base set is empty, as when the Base set is not empty, two symmetric transforms will
represent a different number of types based on the number of words in the Base set
that they are reusing.

3.2.4 Stopping Condition

If there are no possible transforms remaining that account for five or more base/derived
pairs, learning stops, as selection of any remaining transforms would only result in
over-fitting the corpus.

4 Results

4.1 Evaluating the Learner

In evaluating the output of the algorithm, we want to measure performance in
two dimensions: the correctness of the morphological relationships identified and
the proportion of morphological relationships in the language correctly identified.
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These measures translate to the traditional metrics of precision and recall. We com-
pute both of these metrics using the CELEX Lexical Database (Baayen et al. 1996) as
a gold standard.

Precision is computed as the proportion of base-derived pairs in the algorithm’s
output that are morphologically related in the gold standard. If a base-derived pair
contains a word not present in the gold standard, the pair is ignored for the purpose of
calculating precision. This affects some low frequency words that were not contained
in CELEX and thus cannot be evaluated. Precision can be computed for an individual
transform by considering its base-derived pairs or for the entire algorithm’s output by
considering the base-derived pairs of all transforms.

Recall is computed as the proportion of morphologically related word pairs iden-
tified in the gold standard that were identified as related in the algorithm’s output.
Two words (w1, w2) are related in the algorithm’s output if the algorithm outputs the
base-derived pair (w1, w2) or (w2, w1) or if the bases of w1 and w2 are the same. For
example, if the algorithm learns the transforms ($, s) and (e, ing) apply to bake, the
words in the pair (bakes, bake) are related because there is a base-derived pair (bake,
bakes), and the words in the pair (bakes, baking) are related because they share the
common base bake. The word pairs to be tested are created by generating all unor-
dered pairs of morphologically related words in the gold standard also present in the
corpus. For example, CELEX defines the following conflation set for the lemma run:
{run, runs, ran, running}. Thus we would test whether the following pairs of words
are connected in the algorithm’s output: (run, runs), (run, ran), (run, running), (runs,
ran), (runs, running), (ran, running). Each pair counts as a single hit regardless of the
number of word pairs in the conflation set; there is no normalization for the number
of words in a lemma.

4.2 Results on Child-Directed Speech

To evaluate the algorithm’s effectiveness as a model of language acquisition, we tested
the algorithm on CHILDES corpora of English child-directed speech transcriptions
(MacWhinney 2000). Six children were chosen: Adam, Eve, Naomi, Nina, Peter, and
Sarah. The corpora were pre-processed, removing any annotations and child utter-
ances. Pronunciation data for all words in the corpus were obtained from CMUdict
0.6 (Weide 1998), the Carnegie Mellon University Pronouncing Dictionary. If multiple
pronunciations were found for a word, the first pronunciation was selected. Words for
which no pronunciation could be found were removed from the corpus. The token and
type counts of the CHILDES corpora used are given in Table 1. As shown in Table 1,
the number of transforms learned in a corpus is directly proportional to the number of
types present in the corpus. We present the algorithm’s output when run on a corpus
that combines of all children’s data and on the individual corpus for each child.

4.2.1 Results on the Combined Corpus

The transforms learned when run on the combined corpus are given in Table 2 with
example word pairs (in orthography), annotations for the most common morphological
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Table 1 Token and type counts
for CHILDES corpora used,
ordered by type count

Corpus Types Tokens Trans. Learned

Combined 7,174 730,328 23

Sarah 4,407 182,030 14

Adam 3,437 117,022 14

Nina 3,123 184,042 13

Peter 2,829 136,714 13

Naomi 2,511 52,760 9

Eve 1,935 57,760 9

Table 2 Rules learned on English CHILDES data combined from six children

Iter. Transform Tokens Types Example Morpheme Precision (%)

1 ($, Z) 116591 518 trouble/troubles Noun plural, possessive, 3P Sg. 99.52

2 ($, IH.NG) 75830 284 land/landing Present progressive 100.00

3 ($, S) 105930 195 ant/ants Noun plural, Possessive, 3P Sg. 97.07

4 ($, IY) 21588 100 noise/noisy Adjective derivation, Diminutive 69.23

5 ($, D) 24151 95 open/opened Past tense 96.45

6 ($, T) 25720 89 step/stepped Past tense 87.20

7 ($, ER) 45854 76 sing/singer Agentive, Comparative 90.91

8 ($, AH.Z) 11501 58 fix/fixes Noun plural, Possessive, 3P Sg. 100.00

9 ($, AH.D) 34326 29 lift/lifted Past tense 98.21

10 ($, L.IY) 2836 20 bad/badly Adverb derivation 100.00

11 ($, AH.N) 6091 19 hid/hidden Past participle 72.73

12 ($, N) 1161 14 tore/torn Past participle 81.25

13 ($, AH.L) 44171 13 what/what’ll Contraction with “will” 47.37

14 ($, AH) 3485 12 floor/flora Spurious 0.00

15 (AH.N, $) 4325 8 garden/guard Spurious 33.33

16 ($, AH.S) 1116 7 fame/famous Adjective derivation 42.86

17 ($, AH.N.T) 18750 7 could/couldn’t Contraction with “not” 37.50

18 ($, AH.T) 202 6 wall/wallet Spurious 0.00

19 (AH.L, L.IY) 250 6 passable/passably Adverb derivation 100.00

20 ($, K) 8618 5 stay/steak Spurious 0.00

21 (IY, $) 1474 5 daddy/dad Adjective derivation, Diminutive 60.00

22 (AH.L, $) 2741 5 wiggle/wig Spurious 0.00

23 (T.IY, TH) 95 5 ninety/ninth Ordinal derivation 100.00

function, and type, token, and precision statistics for each transform. Each transform is
given using ARPABET transcriptions, as formed from the transcriptions of each word
returned by CMUdict. The algorithm ran for 23 iterations, achieving a cumulative
precision of 93.07% and a recall of 76.03%.
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The majority of the transforms correspond to common morphological rules in
English, as shown by the annotations in the “Morpheme” column. Because the algo-
rithm operates at a phonemic level, allomorphs for each morpheme such as /Z/S/AH.Z/
for the noun plural are learned in multiple transforms. Also, in cases where multiple
morphemes have the same phonemic representation, such as the plural and third person
singular, a single transform may represent multiple morphemes. The most common
regular verb inflections (plural, present progressive, past tense) are represented by
seven of the first nine transforms learned.

In general, initially acquired transforms are more likely to represent linguistically
reasonable morphological rules and attain a higher precision. Low type-frequency
transforms are more likely to be spurious. For example, the transform ($, K) is marked
“spurious” because none of its base-derived pairs (stay/steak, core/cork, stung/stunk,
ming/mink, poor/pork) contain morphologically related words. Spurious transforms
begin to be learned at iteration 14. The transform (AH.N, $) demonstrates the limits of
utilizing phonemic information without semantic information, containing word pairs
such as (garden/guard, kitten/kit, button/butt).

Some transforms connect morphologically-related words, but do so by forming rela-
tionships between two forms that would ideally each be modeled as derived words.
The transform (T.IY, TH)’s base-derived pairs (forty/fourth, fifty/fifth, sixty/sixth, sev-
enty/seventh, ninety/ninth) connect morphologically related words but connect two
forms that should each be derived from a common base. It would be more desirable
to have transforms ($, T.IY) to represent nine/ninety and ($, TH) for nine/ninth. A
similar phenomenon occurs for the derivational rule (AH.L, L.IY), where we would
prefer two derivational rules: ($, AH.B.AH.L) (pass/passable), and ($, AH.B.L.IY)
(pass/passably). We may attribute the lack of these preferred rules to composition of
the vocabulary of the small corpus.

The algorithm can also learn transforms that represent a base-derived relation-
ship in a direction opposite than expected. The transform (IY,$) is learned after the
more desirable ($, IY) because its base words (lady, monkey, daddy, lucky, puppy,
Jenny) have been placed in the Base set by other transforms (for example lady/ladies,
Jenny/Jenny’s) and thus cannot be derived by (IY,$). This problem can be avoided by
allowing words to move between the Base and Derived sets as the algorithm learns
more rules, a technique discussed in detail by Lignos et al. (2009).

4.2.2 Results on Individual Children’s Corpora

Table 3 shows the transforms learned when the algorithm was tested on corpora for
individual children. A transform is listed if it was learned from any of the six children’s
corpora. The order in which the transform was acquired is given for each corpus, along
with a mean and standard deviation for the transform across all corpora. If a rule was
not learned from a particular corpus, it is marked “NL,” and if a rule was not learned
from at least half of the corpora, its standard deviation is not given.

Whether a particular transform is learned from a particular corpus depends pri-
marily on the number of word pairs that the transform can be applied to, which is
largely determined by the number of word types in the corpus but is also affected by
the bootstrapping effects of previous rules. Because of varying sizes of the children’s
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Table 3 Order of rules on individual children’s corpora within CHILDES

Transform Adam Eve Naomi Nina Peter Sarah Mean S.D.

($, Z) 1 1 1 1 1 1 1 0.00

($, IH.NG) 2 2 2 2 2 2 2 0.00

($, S) 3 3 3 3 3 3 3 0.00

($, T) 4 5 4 4 4 5 4.33 0.47

($, IY) 6 4 5 7 6 6 5.67 0.94

($, D) 7 8 6 5 5 4 5.83 1.34

($, ER) 5 6 7 8 7 7 6.67 0.94

($, AH.Z) 8 7 8 NL 8 8 7.8 0.40

($, AH.D) 9 NL 9 10 9 10 9.4 0.49

(AH.N, $) NL NL NL 9 10 NL 9.5 N/A

($, AH.L) 12 9 NL NL 11 9 10.25 1.30

($, N) 10 NL NL 11 NL NL 10.5 N/A

($, AH.N) 11 NL NL NL NL 11 11 N/A

($, L.IY) 14 NL NL 12 NL 12 12.67 0.94

(AH.L, $) NL NL NL 13 NL NL 13 N/A

($, AH.N.T) 13 NL NL NL NL 13 13 N/A

($, K) NL NL NL NL NL 14 14 N/A

corpora, the number of transforms learned before stopping varied from 9 to 14 rules,
varying with the number of types in the corpus as shown in Table 1. Seven transforms
were learned across all of the children’s corpora: ($, Z), ($, IH.NG), ($, S), ($, T), ($,
IY), ($, D), ($, ER).

Because of varying corpus sizes, not all transforms are learned across all corpora.
In the smaller corpora rarer morphological patterns may be indistinguishable from
noise in the data. Thus in the early stages of acquisition, when the learner has only
been exposed to a relatively small amount of data, only a few rules can be learned. As
more words are observed, rarer morphological patterns can rise above the noise and
be learned, as shown by the larger number of rules learned in the combined corpus.

The relatively consistent order of rule learning between the children’s corpora sug-
gests that even on small, disjoint data sets the algorithm reliably produces similar
learning orders. As shown by the standard deviations in Table 3, the order is more
consistent for the higher frequency rules; the less frequent rules are affected more by
characteristics of individual corpora and data sparsity. In order to evaluate this con-
sistency, Spearman’s rank correlation was computed pair-wise between the learning
orders on individual children’s corpora. Because each rule must have a valid rank
in every corpus to compute the correlation, only the first seven rules, as ordered in
Table 3, could be used in the ranking for each corpus. Of the 15 correlations computed,
13 were significant (p ≤ .05), and two (Adam/Sarah, Eve/Sarah) were marginally sig-
nificant (p ≤ .07). The correlation coefficients for the 15 correlations ranged from
.75 to 1.
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Table 4 Brown (1973) English morpheme acquisition order and corresponding transforms

Morpheme Brown average rank Corresponding transforms Mean transform rank

Present progressive 2.33 ($, IH.NG) 2.00

Plural 3.00 ($, Z/S/AH.Z) 3.93

Possessive 6.33 ($, Z/S/AH.Z) 3.93

Past regular 9.00 ($, D/T/AH.D) 6.52

Third person regular 9.66 ($, Z/S/AH.Z) 3.93

Contractible copula 12.66 ($, Z/S) 2.0

Contractible auxiliary 14.00 ($, D/AH.L) 8.04

In addition to learning morphological rules in an consistent manner, an accurate
model of morphological acquisition would learn the rules of regular morphology in
an order similar to that of children. We compare our results to those of Brown (1973),
who manually analyzed child-directed speech transcripts for Adam, Eve, and Sarah. In
Table 4, we present the English acquisition sequence for regular, suffixal morphemes,
as analyzed by Brown (1973). For each morpheme, we list the corresponding trans-
forms that the algorithm learns. Because of phonological variation in many English
morphemes, multiple transforms are needed to represent a single morpheme, such as
the past tense, and in some cases each transform also can represent the surface form
of multiple morphemes, such as the transform ($, Z). For each transform, we give a
ranking corresponding to the order in which the transform was learned across the six
children’s corpora. When a morpheme corresponds to a single transform, the mean
rank of the transform as given in Table 3 is used. When multiple transforms map to a
particular morpheme, the mean of their mean ranks is given.

Although it is difficult to perform a direct comparison between the phonemic rules
the learner learns and the morphemes noted by Brown, it can be seen by using the
mean ranks of transforms the sequential order of acquisition of present progressive,
plural, possessive, and past regular is correctly predicted by the algorithm. The main
inconsistency between the algorithm and children’s order of acquisition is in the pres-
ent progressive, third person regular, and contractible copula. These are acquired in
three separate morphological rules by children, each of which has three surface phono-
logical forms. The algorithm, however, acquires them in three separate phonological
transforms, one for each phonological variant of the morpheme.

The transforms for /Z/, /S/, and /AH.Z/ are learned relatively early by the algorithm
(mean rank 3.93), whereas children acquire their corresponding inflections (plural,
possessive, past regular, and contractible copula) somewhat later (mean rank 10.55).
There is, however, a principled reason for this discrepancy. In addition to identifying
surface forms of morphemes, children are also acquiring the syntactic uses of mor-
phemes and determining allophones. It is known in the acquisition literature (Slobin
1973, 1985–1997) that acquisition of homophonous morphemes is delayed since a
child must sort out the different syntactic functions of morphemes, whereas acquisi-
tion of unambiguous morphemes is faster. The English allophone /Z/S/AH.Z/ is three
ways ambiguous with respect to underlying function, which is why it is not acquired
earlier as predicted by the algorithm. As the algorithm only looks at the frequencies of
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surface phonological forms, we should not expect the order of morpheme acquisition
to be the same as children for ambiguous morphemes.

The parallels in order of acquisition between children and the output of the algorithm
have several implications for our understanding of the processes behind children’s
acquisition. First, the existence of a monotonic order of acquisition of morphemes
may result from frequency-driven learning over rules, as modeled in the architecture
of the learning algorithm. Second, even though there is individual variation in lexical
content of what different children hear, there is enough statistical regularity in the
morphological distributions of the language for there to be consistencies in predicted
order of acquisition across children. Since there are also consistencies in order of
acquisition observed across children, it is possible that the discovery of rule-based lin-
guistic patterns across words constitutes a major component of children’s acquisition
mechanism.

4.3 Results on Written Text

Table 5 summarizes the algorithm’s output when run on the Brown corpus (Francis
and Kucera 1967), a diverse collection of American English written text. We present
these results to show that the algorithm performs well on larger orthographic cor-
pora in addition to smaller phonemic datasets of child-directed speech.3 Because the
number of word types in the Brown corpus (48,056) is much larger than even the com-
bined child-directed corpus (7,174), the minimum number of word pairs per transform
was raised to 25 to obtain a similar number of transforms as for the combined child-
directed corpus. The algorithm ran for 25 iterations, achieving a cumulative precision
of 97.39% and a recall of 80.78%.

As with the child-directed speech corpus, the algorithm succeeds in learning many
of English’s most salient inflectional and derivational rules. Because of the larger
number of derivational morphemes used in written text, more derivational transforms
are acquired from the Brown Corpus than from child-directed speech. As in the child-
directed corpus results, a number of derived-derived transforms are learned: (on, ve),
(ion, ed), (er,ing). Often these derived-derived transforms are learned because of a
missing or nonexistent common base, such as divise for division/divisive. They can
also result when the application of a transform results in orthographic changes that
the algorithm cannot model. For example, when -er or -ing are added to drum, there
is orthographic gemination of the m. As a result, the transform ($, ing) cannot model
drum/drumming, and similarly ($, er) cannot model drum/drummer. With many forms
like drummer and drumming still umodeled, the algorithm selects a rule to model them,
and since the orthographic gemination appears in both derived forms, (er, ing) can be
used to model the relationship. Building some “slack” into transform application can
allow these orthographic geminates to be handled along with non-geminate cases, and
this is explored by Lignos et al. (2009).

3 For a comparison of the algorithm’s performance on orthographic corpora against other unsupervised
techniques, see Kurimo et al. (2009).
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Table 5 Rules learned on the Brown corpus

Iter. Transform Tokens Types Example Morpheme Precision (%)

1 ($, s) 3387 249217 Size/sizes Noun plural, 3P Sg. 99.52

2 ($, ed) 1000 73238 Pitch/pitched Past tense 96.46

3 ($, ing) 796 57616 Tutor/tutoring Present progressive 97.04

4 ($, ’s) 715 87070 Sister/sister’s Possessive 100.00

5 ($, ly) 636 58025 Dead/deadly Adverb derivation 98.59

6 ($, d) 581 33074 Value/valued Past tense 99.40

7 (e, ing) 408 25385 Smoke/smoking Present progressive 99.36

8 (y, ies) 218 13020 Humanity/humanities Noun plural, 3P Sg. 100.00

9 ($, y) 159 86326 Snow/snowy Adjective derivation 89.16

10 ($, es) 137 8876 Match/matches Noun plural, 3P Sg. 94.33

11 ($, er) 111 18852 Strong/stronger Comparative, Agentive 91.30

12 ($, e) 80 21483 Cut/cute Spurious 14.29

13 (e, y) 76 3572 Stone/stony Adjective derivation 99.17

14 (e, ion) 71 1316 Estimate/estimation Noun derivation 97.27

15 (t, ce) 69 2313 Deviant/deviance Noun derivation 100.00

16 ($, al) 61 2786 Orbit/orbital Adjective derivation 85.90

17 (on, ve) 57 2134 Meditation/meditative Adjective derivation 97.18

18 ($, n) 56 81718 Grow/grown Past participle 75.00

19 ($, ic) 50 3464 Realist/realistic Adjective derivation 83.02

20 (ion, ed) 41 835 Elevation/elevated Adjective derivation 95.18

21 (r, d) 39 915 Muffler/muffled Adjective derivation 87.30

22 (t, $) 31 10541 Budget/budge Spurious 12.50

23 ($, r) 30 72560 True/truer Comparative, Agentive 97.87

24 (er, ing) 27 1584 Drummer/drumming Present progressive 91.84

25 ($, ion) 25 789 Extract/extraction Noun derivation 80.00

5 Consequences of Statistical Distributions in Morphology

Having described the learning algorithm and demonstrated that its order of acquisi-
tion of transforms is similar to children’s acquisition of morphology, we would like
to understand why it works. In this section we explore the statistical characteristics of
morphology in corpora, and consider their implications for learning linguistic repre-
sentations. Through a simplified version of the learning algorithm, we explain how
type-based computations and greedy acquisition of rules are especially well-suited for
Zipfian distributions in morphology.

A particularly important question is why we would choose a rule-based model of
morphology in the first place. Given the data statistics of a corpus, does the choice of
linguistic representation matter? We show that Zipfian distributions and sparse data in
morphology are highly compatible with a rule-based representation, from the point of
view of computational efficiency in learning.
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Fig. 3 Log token frequency of Spanish verbs, categorized by lemma and inflection

5.1 Statistical Characteristics of Morphology

Corpora of several languages were examined to look for cross-linguistic commonal-
ities in the statistical distribution of morphology in language usage. Every word in a
corpus was first converted to a common format of a lemma and inflection, as indicated
by a fine-grained morphosyntactic part-of-speech tag; for example, the word “slept”
would be represented as (sleep, verb-past-tense). This allowed us to abstract away
from processes in language (such as allomorphy, syncretism, and lexical ambiguity)
that obscure the underlying forms of words, and made it easier to compare different
languages. Lemmas and tags (which indicated inflectional morphology) were obtained
from corpus annotations or taggers.

Figure 3 illustrates the distribution of word frequencies according to lemma and
inflection for the verbs in a Spanish corpus. Lemma and inflection axes have been
sorted according to token frequency, such that the word in the most-frequent lemma
and most-frequent inflection appears in the top corner of the figure. By plotting word
frequencies in a log scale, it can be seen that the distributions of lemmas and inflections
are approximately Zipfian4 (Zipf 1935, 1949; Newman 2005), characterized by a small
number of highly frequent units, a larger number of moderately frequent units, and a
very large number of infrequent units. Zipfian distributions are familiar in language
from the frequency distributions of words and many other types of constructions.

Corpora of both text documents and child-directed speech transcriptions in dif-
ferent languages exhibit similar Zipf-like distributions of lemmas and inflections.
The combination of these distributions creates a sparse data problem in morphology:

4 It is atypical to describe the distribution of inflections as Zipfian, since they constitute a relatively small,
finite set. However, it is technically proper to do so by viewing Zipf’s law as a probability mass function

f (k; s, N ) = 1/ks
∑N

n=1(1/ns )
, where N is the (finite) number of elements in the distribution, k is the rank of

a particular element, and s is the constant term in Zipf’s law.
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Table 6 Sparseness of verb paradigms in corpora. Saturation is the percentage of forms accounted for by
the verb lemma with the most forms in a corpus

Language Millions of tokens # Total verb forms
in corpus

Max # verb forms
for any lemma

% Saturation

Czech 2.0 72 41 56.9

Greek 2.8 83 45 54.2

Hebrew 2.5 33 23 69.7

Slovene 2.4 32 24 75.0

Spanish 2.6 51 34 66.7

Swedish 1.0 21 14 66.7

Catalan 1.7 45 33 73.3

Italian 1.4 55 47 85.5

CHILDES Spanish 1.4 55 46 83.6

CHILDES Catalan 0.3 39 27 69.2

CHILDES Italian 0.3 49 31 63.3

in languages with more than a few inflections, for the set of lemmas in the corpus,
the vast majority of logically possible word forms will not be found in a corpus. This
leads to a challenging learning problem: how would it be possible to gain the ability
to have knowledge of all possible word forms? What kind of morphological grammar
could be efficiently learned given sparse, Zipfian-distributed data?

5.2 Morphology Learning given Sparse, Zipfian-distributed Data

Next, we consider the implications of statistical distributions of data for particular
linguistic formalisms and associated learning algorithms. We compare rule-based and
paradigm learning algorithms, and to simplify the problem somewhat, we restrict the
learning scenario to the inflections of one lexical category. It will be seen that learning
in the presence of Zipfian-distributed lemmas and inflections seems to favor rule-
based learning over paradigm-based learning algorithms, from the point of view of
computational efficiency. Then, we consider alternative hypothetical distributions in
which paradigms are favored over rules. This illustrates the relationship between data
statistics and theories of linguistic representation.

5.2.1 Learning through Paradigms

We first discuss the relevance of data distributions for paradigm learning algorithms.
As shown in Table 6, when there are sufficiently many inflections in a language, there
is never any lemma that appears in a full set of forms.5 This may be attributed to the

5 The following corpora were used for preparation of Table 6: Catalan: Màrquez et al. (2004));
CHILDES languages: MacWhinney (2000); Czech: Hajic (2006); Greek: Linguistic Data Consortium
(1994); Hebrew: Itai and Wintner (2008), made available by the Knowledge Center for Processing
Hebrew; Italian: Baroni and Ueyama (2006); Slovene: Erjavec (2006); Spanish: Graff and Gallogos (1999);
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Zipfian distribution of inflections, and the improbability of the joint occurrence of all
morphological forms for a particular lemma.

To illustrate the relevance of this for learning, consider a model of morphological
learning in which the possible forms of a lemma are determined by assigning the
lemma to its paradigmatic class. By identifying the most-frequent lemma, its set of
forms could serve as an “exemplar” that less-frequent lemmas would be associated
with. We should not expect this hypothetical algorithm to work in practice due to
the lack of full paradigms in real-world morphological data. The statistical distribu-
tion of morphological data thus makes it a nontrivial problem to learn a paradigmatic
representation. For a paradigm-based learning algorithm to work, more sophisticated
procedures would be needed; one example is Linguistica (Goldsmith 2001, 2006).

5.2.2 Learning through Rules

An alternative linguistic representation is a rule-based model of morphology, consist-
ing of a lexicon of base forms and a set of rules that can be applied to base forms to
generate full paradigms. In learning a rule to generate a single inflection, the acqui-
sition of each inflection may proceed independently of others given a base inflection,
as demonstrated by research in single-inflection learning (Sect. 2.1). The concept of
paradigms of forms does not play a role in rule learning, and therefore the lack of full
paradigms of forms in data is not an issue.

Given the Zipfian distribution of inflections, an efficient method for acquiring the set
of rules would be to take the most type-frequent inflection as the base, and learn rules
for the rest of the inflections in order of decreasing type frequency. This is a simplifi-
cation of the algorithm in Sect. 3, and is illustrated in Fig. 4. With this greedy learning
strategy, the set of rules acquired at any point would be the statistically best approx-
imation of the morphological system, by maximizing the amount of data accounted
for, given a specific number of rule structures.

5.3 Morphology Learning under Alternative Data Distributions

Above, we reasoned about how a rule-based model is more suitable than paradigm-
based models for morphological learning given Zipfian-distributed lemmas and inflec-
tions. It is also the case that some alternative statistical distributions of data would
favor entirely different representations and learning algorithms. For example, consider
a hypothetical situation with Zipfian-distributed lemmas and uniformly-distributed
inflections (Fig. 5). The rule-learning algorithm would fail, as it would not be able
to decide on a base, since all inflections are equally type-frequent. Paradigm learning
algorithms, however, could be quite appropriate, as the distribution of inflections would
cause there to be full paradigms for the high-frequency lemmas of the language. For

Footnote 5 continued
Swedish: Gustafson-Capkováand Hartmann (2006). The following taggers were used: Greek: Papageorgiou
et al. (2000); Hebrew: Segal (1999); adult Spanish, child-directed Spanish, Catalan, and Italian: Carreras
et al. (2004).
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Fig. 4 Acquiring a rule-based model from Zipfian-distributed lemmas and inflections, one inflection at a
time

Fig. 5 Zipfian distributed lemmas and uniformly distributed inflections. Frequencies are from the Spanish
corpus, and are averaged over lemmas

example, the previously described hypothetical algorithm for discovering an exemplar
paradigm would succeed in these circumstances.

As another example of the dependence between statistical distribution of data and
learning linguistic representations, consider a situation where lemmas and inflections
are both uniformly distributed. Assuming a fixed quantity of lemmas and a sufficiently
large corpus, every possible word form, each word having the same frequency. In this
case, the simplest learning algorithm for determining the full set of word forms would
be one that merely memorized each word in the input. It would not be necessary to
utilize more sophisticated representational mechanisms such as rules or paradigms.
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5.4 Data Distributions and the Development of Learning Algorithms

To conclude this section, the apparent dependence between statistical distributions
and linguistic representations suggests that it is important to investigate the proper-
ties of the input data in the task of designing a learning system. Knowledge of data
distributions can help one to select linguistic representations and formulate learning
algorithms over those representations. In terms of the learning algorithm of Sect. 3,
Zipfian distributions in language provide a principled explanation of why it should
be able to acquire a reasonable morphological grammar from a corpus of words: the
construction and monotonic selection of rule-like structures through type-based com-
putations is a computationally efficient algorithm for approximating the morphology
of a language, given Zipfian-distributed lemmas and inflections. That is, the algorithm
has an implicit assumption that the input data is Zipfian-distributed in the first place.

6 Discussion

We began with the goal of developing an unsupervised algorithm for morphology
learning as a model of children’s acquisition of inflectional morphology. The resulting
system is significant not only for how it specifically models children’s monotonic
acquisition of morphological inflections, but also with respect to other larger issues.
In this section we discuss implications of the learning model for cognitive process-
ing of language, design methodology for unsupervised learning, and the relationship
between language, data statistics, and computation. We then discuss limitations of the
model, and consider ways in which it could be improved.

6.1 Implications for Cognitive Processing in Language Acquisition

The monotonic acquisition of inflections by children is a phenomenon that has been
mostly unexplained in the language acquisition literature. Slobin (1973) proposes that
general patterns of behavior in the course of language acquisition are due to cognitive
learning biases or “operating principles”, and describes a number of heuristics that
are relevant to morphology (such as “pay attention to the ends of words”). While we
agree with this view, a proper explanation of language acquisition in terms of learning
principles requires an algorithmically formulated model.

The ability of our algorithm to acquire transforms one at a time is consistent with
children’s behavior, and experiments on child-directed speech show that the algorithm
is predictive of the particular order of acquisition, to a certain degree. These results
support the hypothesis that children’s behavior in language acquisition is likely to be
due to a computational process. The specific details of the algorithm, as a solution
to the abstract computational problem, help us understand the types of cognitive pro-
cesses that may be involved in morphology acquisition. Children may be employing
greedy learning and type frequency-based computations in morphology acquisition,
which in our experiments leads to a linguistically reasonable morphological gram-
mar for languages with simple morphological systems, due to Zipfian distributions in
language.
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Laboratory experiments have shown evidence that children are capable of
performing type-based computations (Gerken 2006; Gerken and Bollt 2008). This
kind of conclusion, however, does not show how such information can be used in the
acquisition of an entire language. For such a task, a corpus-based computational model
can be a beneficial method of investigation. Corpus-based computation modeling can
test whether a learning procedure works in the presence of actual linguistic data, which
is Zipfian-distributed and sparse; direct experimentation, on the other hand, typically
involves small sets of artificial linguistic stimuli. In this way, computational modeling
can make unique contributions to our understanding of linguistic psychology, despite
being indirect evidence of humans’ abilities.

An alternative to type-based learning is found in usage- or item-based theo-
ries of language acquisition (e.g. Goldberg 1995; Tomasello 2003; Ninio 2006). In
such approaches, children are theorized to learn languages through the acquisition
of individual highly-frequent words or constructions. Processes of analogy relate
less-frequent items to more frequent ones. Type-based learning, in comparison, is
much more computationally efficient, by forming generalizations from the input. The
implementation of a type-based learning model for morphology, along with the afore-
mentioned experiments demonstrating the ability of children to make type-based gen-
eralizations, together provide converging evidence that children acquire language by
computing abstract linguistic properties of the input.

6.2 Implications for Theories of Linguistic Representation

One of the fundamental questions in linguistics and cognitive science is the nature
of the mental representation of language. For morphology, a multitude of formalisms
have been employed in systems for computational processing: stem-suffix represen-
tations in unsupervised learning, rule-based finite-state models (Sproat 1992; Kaplan
and Kay 1994; Beesley and Karttunen 2003), paradigm-based models (Corbett 1993;
Forsberg and Ranta 2004), and connectionist models (Rumelhart and McClelland
1986), for example. Many of these formalisms have parallels in linguistics, such as
Item-and-Arrangement (Hockett 1954), rule-based (Chomsky and Halle 1968; Halle
1973), and paradigm-based (Stump 2001) theories of morphology.

Given the wide range of linguistic and computational theories of morphology, which
one of these is to be preferred as a theory of mental processes? More precisely, which
representation (with associated learning and processing algorithms) is an adequate
high-level description of the neural processes underlying language? In some respects
one might think that this question does not matter, since it is often the case that one
formalism can be represented in terms of another. For example, Karttunen (1998)
shows how Optimality Theory (Prince and Smolensky 1993) with a finite number of
constraint violations can be translated to a finite-state model, and Karttunen (2003)
makes a similar statement for Stump’s Realizational Morphology (Stump 2001).

While different formalisms may be equivalent in generative capacity, it is not nec-
essarily the case that they would perform equally well in a learning scenario. The
embedding of a linguistic formalism within the larger context of a learning algorithm
and real-world data places restrictions on which formalisms could be employed for
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computationally efficient learning and modeling of human behavior. A formalism that
is overly complex may suffer from sparse data, as was shown with full paradigmatic
tables of words. In contrast, in our algorithm for morphology learning, the transform
(a simplified version of a morphophonological rewrite rule) is a suitable representation
for learning under sparse data conditions, since it allows for the exploitation of Zipfian
distributions in morphology through type-based computations. For morphology, then,
there is a close relationship between the structural and statistical aspects of language
acquisition that seems to favor a rule-based theory.

6.3 Implications for Unsupervised Learning of Natural Language

In addition to modeling human morphology acquisition, the cognitive orientation of
this work has led to innovations in computational techniques for unsupervised learning.
The most notable feature of our approach is the role of the statistical characteristics
of morphology in the design of the algorithm. The main procedure of the learning
algorithm is greedy acquisition of discrete structural representations. The ability of
the algorithm to acquire transforms that are linguistically reasonable is due to Zipfian
distributions in morphological data. Stated differently, the algorithm has an implicit
bias for Zipfian-distributed data.

Investigation of statistical distributions of data is important in order to determine
the optimality of an algorithm, given the input. A thorough understanding of the input
data could also lead to the development of simpler algorithms. Zipfian distributions
in language, while well-known in computational linguistics, do not often play a large
role in the design of algorithms. Certainly, previous work in morphology learning has
included heuristics that would be expected to succeed due to Zipfian distributions;
for example, Schone and Jurafsky (2001) and Demberg (2007) select rule-like struc-
tures according to high type frequency, and Yarowsky and Wicentowski (2000) and
Wicentowski (2002) utilize the difference in relative frequency between inflections.
Our work, however, exploits statistical distributions much further; Zipfian distribu-
tions are a principal factor in the selection of the linguistic representation and design
of the learning algorithm.

A different approach to the use of data statistics in unsupervised learning is exem-
plified by Goldwater et al. (2006) and Naradowsky and Goldwater (2009). In these
works, there is an explicit model for the generation of Zipfian-like statistical distri-
butions through a Pitman-Yor process. The parameters of the statistical model are
estimated as part of a procedure that learns a probabilistic model of morphological
structure. In comparison, in our work, we have designed the learning model around
the fact that linguistic data is Zipfian-distributed; it was not necessary to explicitly
include a mathematical model of the data distribution. An implicit statistical bias of
this sort therefore can allow for a system that is more parsimonious in its architecture.

One of the common techniques in unsupervised learning is iterative optimization
of a grammar. For example, Linguistica (Goldsmith 2001, 2006) constructs a series of
discrete grammars over a number of iterations. The grammar that is selected for the
next iteration is the one that decreases description length as much as possible. Itera-
tive methods are also employed in probabilistic models for numerical optimization of
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parameters (Snover and Brent 2001; Snover et al. 2002; Bacchin et al. 2005; Goldwater
et al. 2006; Naradowsky and Goldwater 2009; Poon et al. 2009). Greedy selection of the
structures of a grammar (as in our algorithm) has a computational advantage over itera-
tive optimization techniques. The search space of grammars is vastly reduced: a greedy
learning procedure can acquire the structures of a grammar one at a time. This may be
compared with searching over the sets of structures and parameters that comprise a full
grammar of a language, a process that is sensitive to local maxima in the search space.

6.4 Model Limitations and Future Work

The morphology learning algorithm presented here could be improved in a number of
ways. First, the learning model could be enhanced to identify strings corresponding a
wider range of morphological phenomena besides suffixation. Several extensions to
the basic learning model have already been developed in Lignos et al. (2009) for iden-
tifying prefixes and multi-step derivational morphology (such as bankers = bank + er
+ s). Detection of rules for English irregular verbs would require the ability to detect
vowel changes in addition to suffixation. While it may seem undesirable to develop
specific procedures for specific types of morphology, it is not possible to implement
a truly “knowledge-free” system, due to the exponential number of possible string
relationships; some linguistically-motivated learning bias is necessary (Gildea and
Jurafsky 1996).

Second, a more linguistically accurate rule-based model of morphology would
include phonologically conditioned rules and abstract morphosyntactic categories.
For example, we would like to know that a transform ($, s) refers to the concept of
“plural noun” (in one case) and occurs on base forms ending in a voiceless consonant.
The induction of abstract features for morpheme strings is a very challenging problem,
as discussed in Sect. 2.3. If words could be assigned to morphosyntactic categories, it
would be possible to induce phonological contexts of rule application (as in previous
work in supervised rule learning), so that rules for phonologically-conditioned change
could be separated from rules for morphological affixation.

Third, additional techniques could be employed for learning morphology. Children
have access to syntax, semantics, the visual scene, etc., and computational procedures
approximating such information could potentially be incorporated into the learning
model. In the current experiments, though, we have sought to restrict the computa-
tional procedures employed, in order to analyze the contribution of limited information
sources in greater detail. We would not expect that the main techniques employed for
learning inflectional morphology (i.e., type-based computation of rules and greedy
selection) would be applicable to all additional types of morphological phenomena.
Statistical analysis may help to reveal what other computational procedures would be
needed.

7 Conclusion

In this paper we have presented an unsupervised algorithm for morphology induc-
tion as a cognitive model of language acquisition. The specific phenomenon that we

123



E. Chan, C. Lignos

sought to model is the observation that children acquire the morphological inflections
of their language monotonically. The algorithm accomplished this through greedy,
bootstrapped learning of transforms in a base-and-transforms formalism for morphol-
ogy, a rule-based form of representation. When tested on child-directed corpora of
English, the algorithm approximately predicted the order of acquisition of inflections
in children.

Investigations of frequency distributions of morphology in corpora led to an under-
standing of the relationship between linguistic representation and input data statistics.
A rule-based representation supplemented with type-based computations and greedy
search make it possible to exploit Zipfian distributions of lemmas and inflections
for computationally efficient learning. This is more difficult with representations that
make incorrect statistical assumptions, such as full paradigms of forms. Children’s
monotonic acquisition of inflections may thus be explained as being a result of sta-
tistically optimal approximation of the input in learning, given a predisposition for a
rule-based model of linguistic representation.

In conclusion, the goal of modeling human language acquisition through a compu-
tational model has led not only to a precise explanation for a behavioral phenomenon
in children’s acquisition, but also to a deeper understanding of the relationship between
linguistic representation, input data statistics, and computational principles of learning.
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