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PERSPECTIVES

No integration without structured representations:
Response to Pater 

IRIS BERENT GARY MARCUS

Northeastern College of Science New York University
Pater’s (2019) expansive review is a significant contribution toward bridging the disconnect of

generative linguistics with connectionism, and as such, it is an important service to the field. But
Pater’s efforts for inclusion and reconciliation obscure crucial substantive disagreements on foun-
dational matters. Most connectionist models are antithetical to the algebraic hypothesis that has
guided generative linguistics from its inception. They eschew the notions that mental representa-
tions have formal constituent structure and that mental operations are structure-sensitive. These
representational commitments critically limit the scope of learning and productivity in connec-
tionist models. Moving forward, we see only two options: either those connectionist models are
right, and generative linguistics must be radically revised, or they must be replaced by alternatives
that are compatible with the algebraic hypothesis. There can be no integration without structured
representations.*
Keywords: algebraic rules, structured representation, connectionism, associationism, the computa-
tional theory of mind

1. Introduction. The rise of connectionism in the mid-1980s (Rumelhart et al.
1986) has sparked a debate that has been raging for three decades, continuing to this
day (e.g. Fodor & Pylyshyn 1988, Pinker & Prince 1988, Elman et al. 1996, Marcus
2001, 2018, Berent 2013, Frank et al. 2013). It is difficult to understate the urgency of
those exchanges; indeed, the stakes could not be higher. Connectionism has challenged
the very foundation of cognitive science—what are mental representations, how do they
support productivity, and how is knowledge acquired. 

Language has been right at the heart of those discussions. Yet, surprisingly, this con-
troversy has had only limited impact on linguistics. Connectionism has contributed to
optimality theory (Prince & Smolensky 2004 [1993]) and inspired analogical mod-
els of language (Pierrehumbert 2001, Bybee & McClelland 2005). But many linguists
rarely consider the connectionist debate and how it speaks to the fundamental theoreti-
cal tenets that shape their daily research practices.

Pater’s (2019) expansive review is a significant step toward bridging the disconnect
with connectionism, and as such, it is an important service to the field. Pater concludes
his piece with a call for integration, collaboration, and fusion, and the appeasing tone is
certainly welcome. Still, in our view, Pater’s efforts for inclusion and reconciliation
may have gone too far, inasmuch as they have obscured crucial substantive disagree-
ments. The gist of Pater’s article seems to be that the disagreements between connec-
tionism and generative linguistics are more apparent than real. Pater asserts that the two
traditions emerging from the generative work of Chomsky (1957) and the neural net-
work approach of Rosenblatt (1957) are distinct, and yet, when he is through, it is hard
to see exactly where he thinks the difference lies. Evidence to the contrary, as in the
work of Pinker and colleagues (Pinker & Prince 1988, Prasada & Pinker 1993, Kim et
al. 1994, Marcus et al. 1995, Berent et al. 1999, Pinker 1999, Pinker & Ullman 2002) is
brushed aside as one that is ‘not inherent to a generative analysis’ (p. e53), as if differ-
ences in opinion are matters of emphasis, not substance.
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In our view, the differences are real and cannot be effectively bridged unless they are
first understood and acknowledged. Of course, we certainly agree with Pater’s view that
both Chomsky and Rosenblatt are ultimately concerned with the same thing: how com-
plex behavior emerges from bounded computational systems. But sharing that premise
does not mean the two approaches are aligned in their details. 

One way in which the two approaches apparently differ is a red herring; ostensibly,
Rosenblatt’s tradition is more concerned with the neural substrates of cognition. So-
called neural networks are often described as being inspired by the brain, while Chom-
sky and researchers in his tradition often make no such claims (other than to note that all
linguistic behavior originates in the brain). But here the difference really is more appar-
ent than real; as Francis Crick pointed out long ago, most neural networks are not all that
neural (Crick 1989). There is a school of researchers who try to build models of neural
responses that are deeply rooted in details about neurotransmitters and brain wiring, but
the ‘neural networks’ that try to capture linguistic phenomena do nothing of the sort. No-
body has (yet) proposed a detailed brain simulation that bridges between, say, syntactic
representations and the detailed mechanisms of synaptic potentiation. It may be an ad-
vance when that happens, but that is not what is on the table. The real differences, we be-
lieve, lie elsewhere, in foundational matters related to the representational commitments
made by the two approaches. Here, we articulate these notions and demonstrate their far-
reaching consequences with respect to learning and generalization. 

2. Representational commitments. Researchers on both sides of the divide will
agree that speakers readily generalize their knowledge to novel forms—I say blix, you
pluralize it as blixes; I go gaga, tomorrow you’ll invent dada. The two approaches dif-
fer sharply in how they account for such generalizations. It is worth exploring at some
length how the two approaches account for language, given how much is at stake.

The algebraic approach (Chomsky & Schützenberger 1963, Fodor & Pylyshyn
1988, Pinker & Prince 1988, Pinker 1991, Marcus 2001) attributes such generalizations
to operation on abstract categories, such as ‘Noun’ and ‘X’ (‘any syllable’).

The associationist approach, realized in many neural networks, denies that such cate-
gories play a causal role in cognition and that abstract operations over those categories
(rules) play a role in language. Instead, the associationist approach asserts that learners
induce only associations between specific lexical instances and their features—those
of dada and blix, for instance (Rumelhart & McClelland 1986, Plunkett & Juola 1999,
Ramscar 2002, Bybee & McClelland 2005). 

Each of these proposals assumes that regularities are partly learned from experience,
and as Pater points out, each form of learning also commences with some innate en-
dowment and generates some abstract structure. There are nonetheless substantive dif-
ferences in what type of structure is given, what is learned, and how far knowledge
generalizes (discussed in detail in Marcus 2001). 

2.1. The algebraic hypothesis. The algebraic account assumes that the capacity
to operate on abstract categories is available innately. This does not necessarily mean
that specific categories and principles (Noun, the head parameter) are innate. Rather, it
means that learning mechanisms that operate algebraically, over abstract rules, are pres-
ent in advance of learning. These algebraic mechanisms chiefly include the capacity to
form equivalence classes—abstract categories that treat all of their members alike—
and to operate over such classes using variables. 

In this view, algebraic mechanisms are critical for generalization. A noun is a noun is
a noun, no matter whether it is familiar or novel (e.g. dog vs. blix), and indeed, even if
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some of its elements are entirely nonnative to the language (e.g. Bach). Because the
regularities extracted by the learner concern such abstract equivalence classes, not lexi-
cal instances, they are bound to generalize across the board, to any potential member
of the class. 

Algebraic operations over variables also provide the means to combine these classes
to form a hierarchical structure that maintains two lawful relations to its components.
One relation is systematicity. If you know about blue dogs and daxes, you can readily
understand alternatives built on similar bedrock, such as blue daxes; likewise, knowl-
edge about the well-formedness of baba and dada will readily allow you to form gaga.
In each case, you extract a formal structure (Adjective + Noun; XX) which you can
apply to novel instances. Furthermore, knowledge of these complex forms entails
knowledge of their components. Knowledge of blue dogs entails knowledge of dogs,
and if a language allows the geminate in agga, it must also allow the singleton g (Berent
2013). This relation between complex forms and their parts reflects compositionality.

Across-the-board generalizations, systematicity, and compositionality are three of
the main hallmarks of algebraic systems. In a seminal paper, Fodor and Pylyshyn
(1988) show how these properties follow from the structure of mental representations
and the operations that manipulate them. 

First, representations are discrete symbols, inasmuch as they link form and meaning,
akin to the Saussurean notions of a signifier and a signified—the meaning of DOG is ‘ca-
nine’, whereas the meaning of a phoneme (/g/) is the information it conveys within the
phonological system. Second, Fodor and Pylyshyn contrast between atomic and complex
representations. The concept of a blue dog, for instance, has complex meaning that is
composed of two semantic atoms—for blue and dog, respectively. Each such semantic
value, in turn, is expressed by a signifier—simple or complex. A geminate /gg/ is like-
wise semantically complex, distinct from the atomic /g/, akin to the relation between the
complex plural blixes and the simplex base blix. Third, and crucially, the meaning of
complex representations is lawfully linked to its syntactic form. So if we assume that blue
dog has a complex meaning, its form must be likewise complex, rather than atomic; and
if the notion blue is atomic, its form must be atomic as well. The converse—complex
meaning expressed by atomic form, or atomic form expressing complex meaning—are
typically avoided. Finally, mental operations are structure-sensitive—they operate
only on the form of representations and ignore their meaning. 

In light of these assumptions about structure-sensitive operations, systematicity,
compositionality, and unbounded generalizations follow automaticity. Knowledge of
the semantically complex blue dog entails knowledge of the atomic dog (and blue) be-
cause the latter is literally part and parcel of the former. And because brown dog and
blue dog have identical structures, and it is this structure that determines their semantic
interpretation, knowledge of brown dog will automatically allow you to envision what
the novel blue dog means. The same holds for gaga and blixes—each is a symbol with
a complex meaning and a complex form (XX, and Noun+Splural), respectively, and for
this reason, knowledge of the complex form entails knowledge of its constituents. In
fact, this consequence is guaranteed—it follows mechanically from the structure of
the representations. In other words, the structure of representations plays a causal role
in computations.

Linguists readily recognize many of these assumptions in their own work: the con-
stituent structure of representation matters precisely because it is the putative cause of
linguistic processes. And it is for this reason that linguists carefully attend to the formal
structure of their accounts. Fodor and Pylyshyn articulate why structure is necessary:



form ensures that semantic relations between mental representations are preserved by the
brain—a physical machine. How the brain encodes form (or meaning, for that matter) is
unknown (Gallistel 2017), but it is not unreasonable to assume that the brain represents
formal structure (for specific proposals, see Marcus 2001). And if these categories are
open-ended, then this machinery also ensures productivity. So if linguistic operations 
are sensitive to the constituent structure of forms, then it is possible to envision how, in
principle, the brain could give rise to linguistic productivity, systematicity, and compo-
sitionality. It is this innate capacity to exhibit structure-sensitive operations over equiva-
lence classes that we refer to as algebraic, following Marcus (2001). The view is
distilled in 1.

(1) The algebraic hypothesis
a. Structured representations

ii(i) Categories (e.g. Noun) form equivalence classes, distinct from their
members (e.g. dog).

i(ii) Mental representations are symbols (either simple or complex).
(iii) The meaning of complex representations depends on the syntactic

structure of their form and the meaning of their simple constituents. 
b. Structure-sensitive processes

ii(i) Mental processes manipulate the syntactic form of representations in
a manner that is blind to their semantic content. 

i(ii) Mental processes operate on variables. 
Notice that the notion of algebraic operations (or algebraic rules) is broader than the
standard notion of ‘rules’ in linguistics. While linguists typically use ‘rules’ to refer to
‘recipes’ for mapping inputs (a head and a complement) onto outputs (an X-bar), alge-
braic rules also encompass structure-sensitive constraints on outputs (‘A projection has
a head’). Both views commonly assume equivalence classes, structured representations,
and structure-sensitive operations, as summarized in 1.

2.2. Associationism. Associationism outright rejects each of the foundational as-
sumptions in 1. For example, in Rumelhart and McClelland’s past-tense model, learn-
ing begins with two arrays of feature-triplets, one serving as input and one serving as
output, and a set of connections between the input and output layers. By design, as part
of the challenge to classical approaches, there are no systematic links between the
forms of representations and their meanings: the form of liked (semantically complex)
is no different from the form of like (simple) or the irregular went—so called because,
in the algebraic account, the meaning of went is complex, but its form is not. In the as-
sociationist hypothesis, distilled in 2, these representations do not differ in kind.

(2) The associationist hypothesis
a. Mental operations consist of associations between inputs and outputs, in-

duced by experience.
b. There are no abstract categories distinct from their instances. 
c. There are no systematic links between the structure of mental representa-

tions and their meaning.
This is not to say that associationism single-handedly rejects all forms of ‘abstraction’
and ‘structure’. As Pater points out, the past-tense model includes abstract features (not
sensory impressions or motor commands), and the model also has some measure of struc-
ture (e.g. the triplet structure of its representation, and the learned associations between
inputs and outputs). What is critically eliminated from this account is the systematic link
between syntactic form and meaning, along with structure-sensitive operations. 
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Additionally, not all forms of connectionism subscribe to associationism, just like not
all ‘generativist’ models are algebraic. Outside of neural networks, associationism has in-
spired linguists to explore other computational approaches that seek to induce knowledge
of language by relying on minimal innate structure. For example, Hayes and Wilson’s
2008 maximum entropy (MaxEnt) model induces phonological constraints from strings
of feature matrices; there are otherwise no innately structured representations or opera-
tions over variables. But despite the elimination of algebraic mechanisms, these associ-
ationist networks (connectionist or otherwise) have been shown to learn and generalize. 

How is this possible? How could minimalist representations give rise to such power-
ful learning outcomes? Rumelhart and McClelland believe that the answer lies in the
richness of linguistic experience—a claim that deliberately challenges Chomsky’s as-
sertions about the poverty of the input. Indeed, Rumelhart and McClelland envision 
that their research program will ultimately eliminate any innate linguistic knowledge 
altogether:

We chose the study of acquisition of past tense in part because the phenomenon of regularization is 
an example often cited in support of the view that children do respond according to general rules of 
language. Why otherwise, it is sometimes asked, should they generate forms that they have never 
heard? The answer we offer is that they do so because the past tenses of similar verbs they are learning
show such a consistent pattern that the generalization from these similar verbs outweighs the relatively
small amount of learning that has occurred on the irregular verb in question. We suspect that essentially
similar ideas will prove useful in accounting for other aspects of language acquisition. We view this
work on past-tense morphology as a step toward a revised understanding of language knowledge, lan-
guage acquisition, and linguistic information processing in general. (Rumelhart & McClelland 1986:
267–68)

The apparent success of connectionist models should give linguists reasons to pause
and ponder. If a model that eschews the algebraic machinery standard to generative
models can learn and generalize, then perhaps there are no structured representations—
syntactic constituents, syllables, or morphemes—and no rules or constraints. And if
such structural representations are eliminated from the initial state of learning, then
learners obviously could not encode innate universal constraints on language structure
either. Associationism would thus deny the learner the representational mechanisms
necessary to represent universal grammar. On this view, the entire research program
of generative linguistics is seriously off track. 

3. Is associationism a mere notational variant of algebraic rules? Although
people have often imagined that the algebraic and associationist hypotheses are mutu-
ally incompatible, Pater seems to believe that the distance between the generative and
connectionist traditions is not as large. Referring to Elman’s (1991) associationist re-
current neural network model of syntax, Pater notes that:

A hidden layer can form abstract representations of the data, and there are some hints in Elman’s results
that those representations may do the work of explicit categories and constituent structure, but much re-
search remains to be done, even today, to determine the extent to which they can. (p. e60) 

The key to bridging the gulf separating the two traditions is presented by the promise of
‘emergentism’. On this view, the initial state of learning does not encode structured rep-
resentations and rules. Thus, as an account of the initial state of learning, this view sides
with associationism and sharply differs from the algebraic hypothesis. But this may not
be the case for the final state. On Pater’s formulation, as we understand it, algebraic
mechanisms might spontaneously emerge. 

It is for this reason that Pater presents the contrast between ‘innatism’ (in the alge-
braic hypothesis) and ‘emergentism’ (in ‘associationism’) as a false dichotomy. And if
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algebraic mechanisms can spontaneously arise, then the two hypotheses—algebraic and
associationist—would not only be compatible and complementary; they would also be
essentially isomorphic. Pater, then, would certainly be right to encourage the fusion of
the two traditions. As an account of the final state, associationism would be merely a
notational variant of algebraic rules. 

But as we show here, the promise of ‘emergentism’ does not seem to materialize, and
associationism does not beget rules. When one looks carefully at the nature of linguis-
tic generalizations, it becomes apparent that associationist networks systematically fail
to capture the empirical facts. 

4. The scope of linguistic generalizations. Generalization presents the quintes-
sential test of learning, and it initially appeared that associationist models passed it with
flying colors. When Rumelhart and McClelland first presented their model with mate—
a regular verb that the model had not previously encountered—the model’s most fre-
quent response was mated—generalization without algebraic representation. And as
Pater points out, subsequent models with improved (more realistic) phonological repre-
sentations produced even better outcomes. These results would seem to suggest that an
algebraic machinery ‘emerges’ during the learning process. But a closer inspection sug-
gests that this conclusion was premature. 

The hallmark of algebraic rules is not simply the capacity to generalize. Rules gener-
alize across the board. They can extend generalizations to any member of a category,
irrespective of its similarity to training items, and they obey systematicity and composi-
tionality. For example, a model trained on the English past tense should be able to gen-
eralize regular inflection not only to jake (similar to the regular verbs bake, fake) but
also to [x]ake (with a nonnative English phoneme)—an exemplar that is dissimilar to
English verbs. Similarly, a reduplication model trained on [ba] ([ba] → [baba]) will
generalize [xa] to [xaxa]. 

Why are algebraic rules so powerful? The reason is simple, and, as noted earlier, it
follows directly from the representational commitments of algebraic models. Because
algebraic representations are systematically structured (e.g. baked and [x]aked share the
same syntactic form, Verb+suffix) and compositional (the -ed suffix makes the same
contribution to baked and [x]aked ), and because mental operations are structure-sensi-
tive, generalizations depend only on the structure of mental representations; they are
literally blind to the idiosyncrasies of bake and [x]ake. Across-the-board generaliza-
tions, then, are the inevitable reflex of algebraic machinery. 

Generalizations, then, offer a concrete litmus test for computational properties of a
model. If algebraic machinery could ‘emerge’ spontaneously in connectionist models,
then such models should not merely generalize; they should generalize across the
board, irrespective of whether test items are similar or dissimilar to training items, and
these generalizations should respect systematicity and compositionality. But if these
models track the statistical structure of specific instances (in line with associationism),
then generalizations should depend on the similarity of test items to training items. 

Before we proceed to evaluate this prediction, however, we need a more precise def-
inition of ‘similarity’. And indeed, what counts as ‘similar’ critically depends on the
phonological representation employed by the model and the properties of the training
and test items. To see this, compare the generalization of the reduplication function to
two novel test items: [pa] and [xa] in two conditions. In both conditions, the model is
trained on the same two items, [ba] and [ta]. But in one condition, these items are rep-
resented using segments, whereas in the other, the representation encodes features (for
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simplicity, we consider only a small subset of the consonantal features). The potential
challenge to the learner in the two cases is vastly different.

PERSPECTIVES e81

For the algebraic hypothesis, the notion of the training space is irrelevant—general-
ization depends only on whether the test item belongs to the relevant class (X = sylla-
ble), and the answer, in both cases, is decidedly ‘yes’. But if the model only extracts the
statistical cooccurrence between the features encountered during training, then per-
formance in the cases should differ. An associationist model should be able to general-
ize within the training space, but fail to extend the generalization to test items that fall
outside it. And these contrasting predictions allow us to determine whether algebraic
rules can emerge in the course of learning.

Marcus (1998, 2001) systematically evaluated this question in various associationist
connectionist models (a feedforward network and a simple recurrent network) using
two distinct functions: reduplication and the past tense. Recent research by Loula, Ba-
roni, and Lake (Lake & Baroni 2017, Loula, Baroni, & Lake 2018) extended this inves-
tigation to explore the capacity of various recurrent connectionist networks to exhibit
systematicity and compositionality. One set of simulations examined whether a net-
work trained on jump twice and sing twice will systematically generalize to dax twice
(Lake & Baroni 2017). Another set of experiments examined whether knowledge of
complex forms, such as jump around right, entails knowledge of its component jump
right (Loula et al. 2018).

The results across these distinct models and numerous case studies were quite clear.
Associationist models were able to generalize within the training space, but consis-
tently failed to systematically generalize to items that fell beyond it. For example, in the
Loula, Baroni, & Lake 2018 study, a network trained on jump around left, jump left, and
walk around right readily generalized to jump around right. This is only expected,

b t p x
train [ba] +

[ta] +
test [pa] 0

[xa] 0

Table 1. Generalization based on segmental representations.

When the representation is segmental, [pa] and [xa] are equally similar to training
items (as seen in Table 1); this is evident from the overlap between test items and train-
ing items (shared elements are indicated by a plus sign; elements that are not shared are
marked by 0). The potential challenge to the learner changes drastically if the same
items are encoded using features (as seen in Table 2). Now, [pa] can be exhaustively
 described by features that have all been trained on, so this item is quite similar to the
training items. In contrast, [xa] includes features that were never encountered during
training, so this test item is far less similar to the training set. Marcus (1998, 2001)
refers to the former test item ([pa]) as one that is situated within the training space,
whereas the latter ([xa]) falls outside the training space. 

labial coronal velar fricative
train [ba] +

[ta] +
test [pa] +

[xa] 0 0

Table 2. Generalization based on featural representations.



given that all components of the test item (e.g. __ around right) formed part of the train-
ing set. But when this specific bit of information was withheld (e.g. when trained on
jump left, jump around left, walk right), generalization accuracy (to jump around right)
dropped to 2.46%. It thus appears that these models have not induced an algebraic rule.
When test items differ markedly from the training items, generalization fails.

As Pater correctly reminds us, connectionist networks are certainly able to imple-
ment algebraic mechanisms that are hardwired in the model ‘innately’, in advance of
learning. For example, Smolensky (2006) has shown how the tensor product could be
used to represent syllable structure in a connectionist model. Models equipped with op-
erations over variables are demonstrably able to extend generalizations beyond the
training space (Marcus 2001). However, associationist models that are not connection-
ist are not guaranteed to succeed. For example, the original MaxEnt model (Hayes &
Wilson 2008) lacked the capacity to operate over variables, and for this reason, it failed
to extend generalizations across the board. Once this capacity was added to the model,
across-the-board generalizations followed (Berent et al. 2012). 

Summarizing then, generalizations are not all alike. While test items that fall within
the training space can be readily mastered by associationist models, generalizations out-
side the training space present a serious challenge for such models. 

5. Moving forward. Pater’s (2019) article calls for a fusion of generative linguistics
with connectionism. He believes that the historic tensions between these two research
traditions reflect mere differences in focus (on structured representations vs. learning,
respectively), that the two perspectives are complementary, and that their integration
could be fruitful. 

In our view, these two approaches are largely antithetical. Most current connectionist
models reject the fundamental representational commitments of generative linguistics.
They eschew the notions that mental representations have formal constituent structure
and that mental operations are structure-sensitive. These assumptions concerning the
initial state shape the scope of learning. There is no hierarchical organization of sen-
tences, morphemes, or syllables; such formal constituents play no causal role in mental
processes. Instead, learners only extract the statistical structure of the lexicon. Produc-
tivity, then, is limited to lexical analogies; no linguistic generalizations can extend
across the board. It is difficult to see how such mutually exclusive perspectives could 
be integrated.

Moving forward, we see only two options: either associationism (in the strong sense
of an alternative to algebraic rules) is right and generative linguistics must be radically
revised, or the strong associationism hypothesis must be replaced by a weaker version
that is compatible with the algebraic hypothesis that has guided the generativist tradi-
tion. To adjudicate between these possibilities, there is a need for both computational
and empirical research effort.

At the computational level, we need a more targeted investigation of generalization.
Most researchers still evaluate their models by examining whether they can general-
ize to new test items, rather than examining in detail which generalizations are and are
not made. The results of Marcus (1998, 2001) and his followers (Berent et al. 2012,
Lake & Baroni 2017, Loula et al. 2018) suggest that this is too coarse of a test. Gener-
alizations falling within the training space are no guarantee that a model can freely gen-
eralize. So to evaluate the algebraic hypothesis, the scope of generalizations is
paramount, and so is the investigation of systematicity and compositionality. It is
only through such a targeted research program that one could determine whether alge-
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braic machinery is emergent (as implied by Pater) or whether it must be hardwired in
the model innately, in advance of learning (as suggested by Marcus). 

Equally important is the evaluation of generalizations in human learners. Informed
by their own intuitions, generativist linguists have assumed that humans can generalize
freely, beyond the training space. But analytical judgments obtained leisurely, off-line,
hardly demonstrate that people can extend such generalizations systematically in on-
line language processing. While there are a handful of results that are consistent with
this possibility (Berent, Marcus, et al. 2002, Berent et al. 2014, Berent & Dupuis 2018),
the scope of linguistic generalizations is rarely considered. This remains an urgent
question for further empirical evaluation. 

Before closing, we wish to briefly touch on innateness. Pater seems to brush the in-
nateness question aside, suggesting that all models assume some measure of innateness,
and in a sense, he is of course right. But this truism does not mean that the innateness
question is inconsequential; what is innate matters. Associationist systems typically as-
sume only some intrinsic phonological features along with machinery for analyzing
correlation, and they wind up being unable to capture the richness of compositionality;
generative approaches typically presume that, at the very minimum, the machinery of
compositionality is innate, and they seek to understand nuanced linguistic relationships
as a function of such machinery.

Where the associationist approach has yielded relatively little in the way of specific
characterizations of the sort of linguistic phenomena that are the bread and butter of
generative linguistics, one might well wonder where the attraction to the more impov-
erished associationist view lies; in our view, it lies in an oft-held allergy to nativism.
Researchers such as Elman et al. (1996), Evans (2014), and Everett (2016) often sug-
gest that innate ideas (of any kind) are biologically implausible, and so are innate lin-
guistic primitives and constraints. Associationism eliminates the tensions surrounding
innateness. If there are no rules, then there could be no innate universal rules either. And
although connectionist networks de facto encode linguistic knowledge, not brain activ-
ity, much of the excitement surrounding connectionism has to do with the hope of re-
ducing the cognitive (mentalistic) level of explanation to the body—either the brain or
sensory organs.

We do not believe that these concerns have any scientific merit. The notion of innate
ideas is perfectly compatible with modern biology (Marcus 2004), and it is in line with
the large literature on infant core cognition (Bloom 2004, Spelke & Kinzler 2007,
Bloom 2013). In fact, a recent line of research suggests that the resistance to innate
ideas could well be grounded in core cognition itself (Berent et al. 2019). To be clear,
this does not show that scientists are biased, and it certainly does not demonstrate that
language is innate. But these results do suggest that the promise of connectionism to
minimize innate knowledge and ground it in the body resonates with common biases
that lie deep within the human mind.

Finally, some words about integration. Our discussion so far has considered associa-
tionism—a view that, by definition, is incompatible with the algebraic hypothesis. But
a weaker claim that some linguistic generalizations are formed by associations could
certainly live side by side with the algebraic view—this is precisely the approach pre-
sented by Pinker and colleagues.

In our view, this integration is not only possible but also necessary. The large litera-
ture on statistical learning shows that humans (including young infants) can generalize
by relying on mechanisms that are clearly not algebraic (MacDonald et al. 1994, Saf-
fran et al. 1996). For example, people demonstrably generalize irregular inflection to
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novel forms (e.g. bouse–bice). As Pater notes, one could, of course, try to capture these
generalizations by rules (Chomsky & Halle 1968, Yang 2002, Albright & Hayes 2003),
but this move seems unmotivated. Irregular generalizations are exquisitely sensitive to
similarity—the greater the phonological and semantic similarity to mouse, the more
likely people are to choose bice (Prasada & Pinker 1993, Berent, Pinker, & Shimron
2002, Ramscar 2002). Such generalizations have all the hallmarks of an associative,
rather than an algebraic, process; the distinct neural underpinnings are also in line with
this view (Sahin et al. 2009). 

A full account of linguistic productivity would likely require the synthesis of asso-
ciative mechanisms along with algebraic rules. But this unification must maintain the
representational commitments of the algebraic hypothesis that have guided the genera-
tive tradition from its inception. Without such structured representations as a bedrock,
there can be no adequate integration.
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