WordSleuth:
Deducing Social Connotations from Syntactic Clues

Shannon Stanton
UROP May 14, 2011
Plan

I. Research Question

II. WordSleuth
 A. Game-play
 B. Taboo list

III. Machine Learning
 A. Data representation
 B. Classification Algorithms

IV. Future Possibilities

V. Question and Answer
I. Question

Can humans derive complex social ideas from simple text?
- intention: deception, persuasion
- attitude: formality, politeness, rudeness
- emotion: embarrassment, confidence

57%-71% (Pearl and Steyvers 2010)

...Can computers?
Social connotations include:

<table>
<thead>
<tr>
<th>confidence</th>
<th>deception</th>
</tr>
</thead>
<tbody>
<tr>
<td>disbelief</td>
<td>embarrassment</td>
</tr>
<tr>
<td>persuading</td>
<td>politeness</td>
</tr>
<tr>
<td>rudeness</td>
<td>formality</td>
</tr>
</tbody>
</table>

Example Text Input:

“I don't care if Nancy laughs at my outfit – I think I look good!”
II. WordSleuth

Problem: Where to get the data?

Solution: Create WordSleuth, a Game-With-A-Purpose (GWAP) to encourage people to annotate data.

GWAP: Game created specifically to obtain data related to a particular research area.

(von Ahn 2006)
II. WordSleuth: My Role

To make improvements to the game:

A. Enable online functionality
B. Taboo-list functionality
The message was: You know that the new findings at the symposium prove my theory and I can list at least 20 papers to disprove you before you even finish reading the titles.

You guessed: confidence
The answer: persuading
II. A. The Online Game Application

Completing the web application of the game

Currently **2,185** Annotated Messages with **8,941** annotations,

Up from **1,167** Annotated Messages with **3,198** annotations

→ **187%** increase in messages, **280%** increase in annotations
II. B. Online Game App

Are people any good at it? Yes!

<table>
<thead>
<tr>
<th>target</th>
<th>confidence</th>
<th>deception</th>
<th>disbelief</th>
<th>embarrassment</th>
<th>formality</th>
<th>persuading</th>
<th>politeness</th>
<th>rudeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>confidence</td>
<td>84.4</td>
<td>2.0</td>
<td>2.0</td>
<td>0.8</td>
<td>1.0</td>
<td>6.1</td>
<td>2.3</td>
<td>1.3</td>
</tr>
<tr>
<td>deception</td>
<td>4.5</td>
<td>74.3</td>
<td>4.3</td>
<td>2.4</td>
<td>1.1</td>
<td>7.8</td>
<td>3.2</td>
<td>2.4</td>
</tr>
<tr>
<td>disbelief</td>
<td>2.7</td>
<td>4.1</td>
<td>80.7</td>
<td>3.3</td>
<td>1.3</td>
<td>1.9</td>
<td>2.7</td>
<td>3.3</td>
</tr>
<tr>
<td>embarrassment</td>
<td>0.4</td>
<td>3.0</td>
<td>5.6</td>
<td>83.0</td>
<td>2.1</td>
<td>1.1</td>
<td>2.7</td>
<td>2.1</td>
</tr>
<tr>
<td>formality</td>
<td>1.4</td>
<td>0.0</td>
<td>0.7</td>
<td>1.0</td>
<td>70.5</td>
<td>2.4</td>
<td>22.4</td>
<td>1.7</td>
</tr>
<tr>
<td>persuading</td>
<td>6.1</td>
<td>5.1</td>
<td>0.8</td>
<td>0.6</td>
<td>3.0</td>
<td>80.2</td>
<td>3.0</td>
<td>1.2</td>
</tr>
<tr>
<td>politeness</td>
<td>1.6</td>
<td>2.2</td>
<td>0.6</td>
<td>1.8</td>
<td>13.8</td>
<td>3.4</td>
<td>75.4</td>
<td>1.2</td>
</tr>
<tr>
<td>rudeness</td>
<td>2.1</td>
<td>1.2</td>
<td>3.1</td>
<td>1.9</td>
<td>1.6</td>
<td>2.9</td>
<td>1.0</td>
<td>86.1</td>
</tr>
</tbody>
</table>

Baseline: 1/8 = 12.5%
Average: 80.4%
II. B. Taboo List

You are playing on medium difficulty. You will earn 2x the base number of points.

Express this:
persuading

Don't use any of these taboo words: persuade, persuading, persuasion, persuades, persuaded, opening, learned, million

My message is complete!
II. B. Taboo List

- By discouraging use of words already well-represented in the data, we encourage breadth and variety of data.

- Makes the game a bit more challenging for players.

- Makes the job of the classifier algorithms harder, as unigrams will have less direct correlation with class.
II. B. Taboo List

- “Taboo Words” calculated using Mutual Information
- Mutual Information: A measure of correlation

Example:
If category “confidence” has 10 instances of “Nancy”, and no other category does, the mutual information will be high.

If all categories have the same number of a common word (such as “the”) the mutual information will be low.
Results II. B: Taboo List

- **rudeness**: popped, unprofessional, spotty
- **disbelief**: jumped, megaphone, twenty
- **persuading**: fast, alcohol, pay
- **deception**: still, blonde, reality
- **embarrassment**: accidentally, deodorant, surprising
- **formality**: abuse, calm, soldier
- **politeness**: yelled, scores, nices
- **confidence**: nancy, modest, respectable
How to make use of the data? We can't just feed strings of English directly to the learning algorithms.

Message ID : MessageText : Target Cue: Creator : Guesses/Category
1049 This is a very nice house you have here, Mrs. Smith, and such good coffee. formality labsubjectcl0 1 1 0 0 0 0 4 0 0 0 0
III. Machine Learning
A. Data Representation

So what features do we use anyway?

Originally:
- Vocabulary (that appears more than once in the data)
- Bigrams/Trigrams (word sequences)
- punctuation count
- types:tokens ratio (unique words : total words)

Added:
- interrobrangs ?!
- ! : ? ratio
- sub clause analysis

...Over 4000 features and counting!
III. Machine Learning: A. Data Representation

Solution: Feature Extraction

Represent data as a list of ordered triples with a category

\[(\text{MessageID} : \text{FeatureID} : \text{Feature Value}) \rightarrow \text{Target Cue}\]

Sparsity: Allows us to ignore features not present for a given example.
III. Machine Learning

What do we do with all that data anyway?

Detective Data
III. Machine Learning

B. Classification Algorithms

- Previously used: SMLR (Sparse Multinominal Logistic Regression): 59% (Pearl and Steyvers 2010)

- KNN (K Nearest Neighbors)

- Transductive Clustering
III. Machine Learning

B. Classification Algorithms

10-fold-cross-validation:
- Train/Transduce algorithm on 90% of the data, test it on 10%

Base line for Machine Learners: 13.5%
(most common category)
III. Machine Learning

B. Classification Algorithms

KNN – K nearest neighbors:

Preliminary Success: 75.7% test accuracy

Blue or yellow?
III. Machine Learning
B. Classification Algorithms

Transductive Clustering vs KNN

Blue or yellow?

Intuition: ?

KNN: blue
Clustering: yellow
Transductive Agglomerative Clustering

Blue or yellow?
III. B. Agglomerative Clustering

Mean accuracy: 12.99% (deviation 0.00618)

... remember, baseline is 13.5%

Why so poor?

“Unlabeled patterns take the label of the cluster with which they are joined. It never joins clusters with different labels.”

Thus, very near clusters and imperfect clusters become problems.
III. Machine Learning

B. Classification Algorithms

Transductive Clustering: Graph Cutter

Blue or yellow?
Mean Accuracy: 97.8%

But, possibly over-fitting
III. Machine Learning

B. Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMLR</td>
<td>59%</td>
</tr>
<tr>
<td>KNN</td>
<td>75.7%</td>
</tr>
<tr>
<td>Transductive Agglomerative</td>
<td>12.99%</td>
</tr>
<tr>
<td>Transductive Graph Cutting</td>
<td>97.8%</td>
</tr>
</tbody>
</table>
Machine Learning Approaches:
Additional Classification algorithms
- Bagging the good ones
- Encode the underlying assumption that each data entry of same ID should be classified the same.

Applications:
- In the way of a spell checker, an “attitude checker”
- Computational modeling of human cognition
Summary

I. Can computers learning social ques in text? **Yes**!

II. How do we obtain data? **WordSleuth**
 a. Lots of data? **WordSleuth online**
 b. Good data? **Taboo list**

III. How does a machine learn?
 KNN, Transduction

IV. What's left to do
 approaches and applications
References and Acknowledgments

Waffles code repository: http://waffles.sourceforge.net
Questions?
Mutual Information

Mutual Information = \log \left(\frac{p(x|y)}{p(x)} \right)

For each word in the dataset

\(p(x) = \) the frequency of word \(x \) (in the data set)

\(p(y) = \) the frequency of social category \(y \) (in the dataset)

\(p(x|y) = \) the frequency of \(x \) in \(y \)