WordSleuth:

Deducing Social Connotations from Syntactic Clues

Shannon Stanton

UROP May 14, 2011

Plan

I. Research Question
II. WordSleuth
A. Game-play
B. Taboo list
III. Machine Learning
A. Data representation
B. Classification Algorithms
IV. Future Possibilities
V. Question and Answer

I. Question

Can humans derive complex social ideas from simple text?

- intention: deception, persuasion
- attitude: formality, politeness, rudeness
- emotion: embarrassment, confidence

57\%-71\% (Pearl and Steyvers 2010)
...Can computers?

Example

Social connotations include:

confidence deception disbelief embarrassment
 persuading politeness
 rudeness formality

Example Text Input:
"I don't care if Nancy laughs at my outfit - I think I look good!"

II. WordSleuth

Problem: Where to get the data?

Solution: Create WordSleuth, a Game-With-A-Purpose (GWAP) to encourage people to annotate data.

GWAP: Game created specifically to obtain data related to a particular research area.
(von Ahn 2006)

II. WordSleuth: My Role

To make improvements to the game:
A. Enable online functionality
B. Taboo-list functionality

Result II. A: Online Game App

www.gwap.ss.uci.edu

Word Sleuth

Test your social language intelligence

The message was: You know that the new findings at the symposium prove my theory and I can list at least 20 papers to disprove you before you even finish reading the titles.

You guessed: confidence The answer: persuading

II. A. The Online Game Application

Completing the web application of the game
Currently 2,185 Annotated Messages with 8,941 annotations,
Up from 1,167 Annotated Messages with 3,198 annotations
$\rightarrow \mathbf{1 8 7 \%}$ increase in messages, $\mathbf{2 8 0 \%}$ increase in annotations

II. B. Online Game App

Are people any good at it? Yes!
target

confidence
deception
disbelief
embarrassment

84.4	2.0	2.0	0.8	1.0	6.1	2.3	1.3

4.5	74.3	4.3	2.4	1.1	7.8	3.2	2.4

$\begin{array}{llllllll}2.7 & 4.1 & 80.7 & 3.3 & 1.3 & 1.9 & 2.7 & 3.3\end{array}$
$\begin{array}{llllllll}0.4 & 3.0 & 5.6 & 83.0 & 2.1 & 1.1 & 2.7 & 2.1\end{array}$
$\begin{array}{llllllll}1.4 & 0.0 & 0.7 & 1.0 & 70.5 & 2.4 & 22.4 & 1.7\end{array}$
$\begin{array}{llllllll}6.1 & 5.1 & 0.8 & 0.6 & 3.0 & 80.2 & 3.0 & 1.2\end{array}$
$\begin{array}{llllllll}1.6 & 2.2 & 0.6 & 1.8 & 13.8 & 3.4 & 75.4 & 1.2\end{array}$
$\begin{array}{llllllll}2.1 & 1.2 & 3.1 & 1.9 & 1.6 & 2.9 & 1.0 & 86.1\end{array}$
guesses

Baseline: $1 / 8=12.5 \%$
Average: 80.4\%

II. B. Taboo List

II. B. Taboo List

- By discouraging use of words already wellrepresented in the data, we encourage breadth and variety of data.
- Makes the game a bit more challenging for players.
- Makes the job of the classifier algorithms harder, as unigrams will have less direct correlation with class.

II. B. Taboo List

- "Taboo Words" calculated using Mutual Information
- Mutual Information: A measure of correlation

Example:

If category "confidence" has 10 instances of "Nancy", and no other category does, the mutual information will be high
If all categories have the same number of a common word (such as "the") the mutual information will be low.

Results II. B: Taboo List

> rudeness: popped, unprofessional, spotty
> disbelief: jumped, megaphone, twenty
> persuading: fast, alcohol, pay
> deception: still, blonde, reality
> embarrassment: accidentally, deodorant, surprising
> formality: abuse, calm, soldier
> politeness: yelled, scores, nices
> confidence: nancy, modest, respectable

III. Machine Learning: A. Data Representation

How to make use of the data? We can't just feed strings of English directly to the learning algorithms.

Message ID : MessageText : Target Cue: Creator : Guesses/Category

```
1049 This is a very nice house you have here, Mrs.
Smith, and such good coffee. formality
labsubjectcl0 1 1 0 0 0 0 4 0 0 0
```


III. Machine Learning A. Data Representation

So what features do we use anyway?
Originally:

- Vocabulary (that appears more than once in the data)
- Bigrams/Trigrams (word sequences)
- punctuation count
- types:tokens ratio (unique words : total words)

Added:

- interrobangs?!
- ! : ? ratio
...Over 4000 features and counting!
- sub clause analysis

III. Machine Learning: A. Data Representation

Solution: Feature Extraction
Represent data as a list of ordered triples with a category
(MessageID : FeatureID : Feature Value) \rightarrow Target Cue

Sparsity: Allows us to ignore features not present for a given example.

III. Machine Learning

What do we do with all that data anyway?

Detective Data

III. Machine Learning B. Classification Algorithms

- Previously used: SMLR (Sparse Multinomial Logistic Regression): 59\% (Pearl and Steyvers 2010)
- KNN (K Nearest Neighbors)
- Transductive Clustering

III. Machine Learning B. Classification Algorithms

10-fold-cross-validation:

- Train/Transduce algorithm on 90\% of the data, test it on 10\%

Base line for Machine Learners: 13.5\% (most common category)

III. Machine Learning B. Classification Algorithms

KNN - K nearest neighbors:

Preliminary Success: 75.7\% test accuracy

III. Machine Learning B. Classification Algorithms

Transductive Clustering vs KNN

Intuition: ?
KNN: blue
Clustering: yellow

III. Machine Learning B. Classification Algorithms

Transductive Agglomerative Clustering

III. B. Agglomerative Clustering

Mean accuracy: 12.99\% (deviation 0.00618)
... remember, baseline is 13.5%
Why so poor?
"Unlabeled patterns take the label of the cluster with which they are joined. It never joins clusters with different labels."

Thus, very near clusters and imperfect clusters become problems.

III. Machine Learning B. Classification Algorithms

Transductive Clustering: Graph Cutter

III. B. Transductive Graph Cutter

Mean Accuracy: 97.8\%

But, possibly over-fitting

III. Machine Learning B. Summary

Algorithm	Success
SMLR	59%
KNN	75.7%
Transductive Agglomerative	$\mathbf{1 2 . 9 9 \%}$
Transductive Graph Cutting	97.8%

IV. Future Extensions

Machine Learning Approaches:
Additional Classification algorithms

- Bagging the good ones
- Encode the underlying assumption that each data entry of same ID should be classified the same.

Applications:

- In the way of a spell checker, an "attitude checker"
- Computational modeling of human cognition

Summary

I. Can computers learning social ques in text? Yes!
II. How do we obtain data? WordSleuth
a. Lots of data? WordSleuth online
b. Good data? Taboo list
III. How does a machine learn?

KNN, Transduction
IV. What's left to do
approaches and applications

References and Acknowledgments

Pearl, L. \& Steyvers, M. (2010). Identifying Emotions, Intentions, \& Attitudes in Text Using a Game with a Purpose. Proceedings of NAACL-HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text. Los Angeles, CA: NAACL.
von Ahn, L. 2006. Games With A Purpose. IEEE Computer Magazine, June 2006: 96-98.

Waffles code repository: http://waffles.sourceforge.net

Questions?

Mutual Information

Mutual Information $=\log (p(x \mid y) / p(x))$

For each word in the dataset
$\mathbf{p}(\mathbf{x})=$ the frequency of word \mathbf{x} (in the data set)
$p(y)=$ the frequency of social category y (in the dataset) $p(\mathbf{x} \mid \mathbf{y})=$ the frequency of \mathbf{x} in \mathbf{y}

