Automatic Tone Detection Using Improved Linguistic and Machine Learning Methods

IGII ENVERGA
PROFESSOR PEARL
COMPUTATION OF LANGUAGE LAB
OCTOBER 18, 2013

Introduction

- information extraction research
- surface-level semantic content
- subtle informationsentiments and intentions
- mental state expression
- wider net
- textual cues
- humans computers

Mental State Deception Politeness Rudeness **Embarrassment Confidence Disbelief Formality Persuading**

Related Work

- mental states in comparison to moods and emotions
- Mishne et al (2005)
 - Experiments with Mood Classification in Blog Posts
- Keshtkar et al (2009)
 - Using Sentiment
 Orientation Features for Mood Classification in Blogs
- machine learning improvements

Related Work

Stack**Exchange**

- linguistically informed features
- Danescu et al (2013)
 - A Computational
 Approach to Politeness
 with Application to Social
 Factors
- Pearl & Steyvers (2013)
 - Automatic Identification of Tone from Language Text
- basic content + semantic, syntactic, and valence components

Semantic Collapse

- WordNet
 - o collapse words to their hypernyms
- apple -> edible fruit

normal message	level	collapsed message		
I think you look really nice in green.	1	I evaluate you look really nice in chromaticcolor.		
	2	I think you look really nice in color.		
	3	I think you look really nice in visualproperty.		

Syntactic Collapse

- Stanford's Part of Speech Tagger
 - o collapses words into their part of speech
- car -> NN

normal message	type of collapse	collapsed message		
Dude she would totally go to prom with me.	all	NNP PRP MD RB VB TO VB IN NN.		
	content words	NNP she would RB VB to VB with NN.		
	non-content words	Dude PRP MD totally go TO prom IN me		

Valence Collapse

- Affective Ratings from Kuperman et al (2013) 8 positive
 - o collapses words into their valence
- dirty -> negative

o - negative

normal message	type of collapse	collapsed message		
Suck my big toe, you jerk.	all words	negative my positive positive, you negative		
	all w/ part of speech	negverb my posadj posnoun, you negnoun.		
	most words	negative my big toe, you negative.		
	most w/ part of speech	negverb my big toe, you negnoun.		

GWAP

natural ability of humans to determine tone

high scores and levels

player rewards

creating messages

labeling messages

8 tones

Test your social language intelligence Log in to Word Sleuth: Username Password I forgot my username and/or password! :{ Welcome to Word Sleuth! Word Sleuth is a game with a purpose, or GWAP, that uses your knowledge to gather data about how people use language. How it works: (1) You play Word Sleuth... (2) Computers learn from your answers... (3) The science of natural language processing advances! If you've never played before, you'll need to register so I need to register!

Word Sleuth >

Word Sleuth

that you have a username and password.

Expressor Gameplay

Word Sleuth Gameplay

Our Data

mental state	sample bad message		
formality	I have to eat you now.		
deception	I love the cake you made.		

Features

- number of word types
- number of word tokens
- number of sentences
- number of punctuation marks
- average sentence and word length
- word type to word token ratio
- average word log frequency for common words
- valence score

Features

o separate ones for semantic, syntactic, and valence collapses

	unigram	bigram	trigram	
normal	apple	good+day	I+love+you	
semantic	ediblefruit	good+timeunit	I+love+you	
syntactic	NN	JJ+NN	I+VBP+you	
valence	positive	positive+positive	I+positive+you	

Classifier

- Krishnapuram (2005)
 - Sparse Multinomial
 Logistic Regression: Fast
 Algorithms and
 Generalization Bounds
- Sparse Multinomial Logistic Regression (SMLR)
- upweights the useful features that do the work
- zeroes the less useful features

Recall and Precision

• Probability that someone guesses that a message is deceptive given that the message is actually deceptive.

	Decep	Polit	Ruden	Embar	Confi	Disbe	Forma	Persu
Deception	31	11	6	15	23	7	5	27

• Precision P (it is deceptive | labeled deceptive)

 Probability that a message is actually deceptive given that someone guesses that the message is deceptive.

	Deception
Deception	31
Politeness	1
Rudeness	0
Embarrassment	0
Confidence	2
Disbelief	0
Formality	1
Persuasion	0

F-Score

• F-Score

- Combines both scores to give just one number that can easily be compared.
- F1 = 2 * (precision * recall)
 precision + recall

Classifier Performance

Formality

- better than humans
- accentuate the formal features
- "Good morning, Mr. Smith."
 - o good+morning
 - o mr

Deception

- worse than humans
- what does a deceptive feature look like
- "I'm at the store right now."
- "I am an apple."
- not about the content

•	_
7	4
	ರ
•	_
•	Ξ
•	_
	≺
-	_
\vdash	_

ted	eľ
en	ij
gm	ass
3nv	Ü

	1		1	1				
Recall	Dec	Pol	Rud	Emb	Con	Dis	For	Dor
Deception	0.76	0.02	0.04	0.02	0.03	0.03	0.02	0.08
Politeness	0.01	0.81	0.01	0.01	0.02	0.01	0.09	0.03
Rudeness	0.01	0.61	0.90	0.02	0.01	0.02	0.01	0.02
Embarrassment	0.02	0.02	0.62	0.85	0.01	0.06	0.01	0.01
Confidence	0.02	0.02	0.01	0.01	0.88	0.01	0.01	0. <mark></mark> 05
Disbelief	0.02	0.02	0.04	0.02	0.02	0.87	6.01	0.01
Formality	0.01	(0.19)	0.01	0.01	0.02	0.01	0.71	0. <mark>94</mark>
Persuasion	0.04	0.03	0.02	0. <mark>00</mark>	0.04	0.01	0.02	0.84

Recall	Dec	Pol	Ru <mark>d</mark>	Er <mark>nb</mark>	Can	[is	Fo.	Per
Deception	0.54	0.01	0.06	0. <mark>08</mark>	0.12	0.07	0.01	0.09
Politeness	0.01	0.81	8.45	0.02	0.02	0 02	(0.05)	0.03
Rudeness	0.03	0.57	0.71	8.04	0.05	0.05	0.01	0.03
Embarrassment	0.07	0.01	0.04	0.81	6.02	0 04	0.01	0.01
Confidence	0.05	0.03	0.01	0.03	0.84	0.01	0.01	0.03
Disbelief	0.03	0.03	0.01	0.03	0.01	0.86	0.91	0.01
Formality	0.04	0.11	0.02	0.03	0.04	0.04	0.67	0.05
Persuasion	0.02	0.05	0.03	0.01	0.03	0.01	0.04	0.82

Conclusion

- adding semantic, syntactic, and valence features helped
- some of these features were more helpful than others
- performance now much closer to humans

Future Work

- domain-specific knowledge of the mental states
- finding classes of words
- branching out to a different data set
 - Live Journal