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Abstract 
For early word segmentation, statistical learning strategies using Bayesian models have 
been offered as alternatives to strategies reliant on language-specific cues. Bayesian word 
segmentation strategies have been found to be successful for English (Goldwater et al. 
2009), but it remains to be seen if this persists in other languages. We evaluate this 
strategy on child-directed speech across Italian and Farsi to test its cross-linguistic 
validity. The results of the modeling suggest that this statistical learning strategy is a 
viable method of word segmentation that is robust cross-linguistically.  
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1. Introduction 

 Word segmentation, the process of identifying word forms in fluent speech, is 

important in language acquisition because it is a base from which later language learning 

can occur. Many aspects of language learning such as syntactic structure, grammatical 

categories, and phonological processes depend on knowledge of word forms.  

Experimental studies show that infants can begin to segment speech and identify 

word boundaries as early as six months (Bortfeld, H. et. al, 2005).  Multiple theories have 

been offered as possible ways children identify words, including phonotactics (Mattys et 

al. 1999), stress patterns (Morgan et al. 1995), and allophonic variation (Jusczyk at al. 

1999). However, these strategies rely on cues whose exact instantiation differs depending 

on the specific language being learned. For example, in English there is a particular stress 

pattern where most English words place stress on the first syllable (stress-initial: PI/rate). 

Other languages have various stress patterns; Polish, for example, has a penultimate 

stress pattern (stress-second to last syllable: uniwersyTEtu). This would imply a child 

would need to know the stress cue of the specific language to begin with before learning 

word segmentation, since a stressed syllable does not always indicate a word boundary. 

Statistical learning procedures have been offered as an alternative model as to how 

children identify words in fluent speech as it provides a language-independent method of 

learning word segmentation. This way a learner can use this method without any prior 

knowledge of the specific language.  

Experimental research has shown that infants can track statistical information in a 

number of different ways. As infants have been shown to keep track of conditional 

probabilities (Saffran et al. 1996, Smith & Yu, 2008) and appear capable of some type of 



Bayesian inference (Xu & Tenenbaum 2007, Dewar & Xu 2010), a statistical learning 

strategy that uses Bayesian inference provides a possible universal method of early word 

segmentation that does not require any previous knowledge of language. Therefore, a 

statistical approach is suitable for the initial stages of word segmentation when a child 

does not know many words or rules of the language. 

 One current Bayesian inference approach (Goldwater et al 2009, Pearl et al. 2011, 

Phillips & Pearl 2012) has done rather well with the English language, but it is still 

unclear how well it will do cross-linguistically. If it is intended as a universal 

segmentation strategy, it should work well for other languages besides English. This 

paper will examine performance on Italian and Farsi, languages which have significantly 

different linguistic qualities than English.  

 

2.1 Implementing Statistical Learning with Bayesian Inference 

 The underlying Bayesian generative model represents the assumptions the learner 

brings to the word segmentation problem. This model describes how the observable data 

are generated, from the learner’s perspective. There are two assumptions the model 

makes: a unigram assumption and a bigram assumption, each with its own set of 

equations.  

 The unigram model assumes independence between words – the learner supposes 

words are randomly generated and have no relation to each other. To encode this into the 

model, the unigram model uses a Dirichlet Process (Ferguson 1973), which assumes that 

an observed sequence of words w1 … wn is generated sequentially using a probabilistic 



generative process. In the unigram case, the identity of the ith word is chosen according 

to (1):  

(1)   

where ni-1(w) is the number of times w appears in the previous i – 1 words, α is a free 

parameter of the model which encodes how likely the learner is to encounter a novel 

word, and P0 is a base distribution (2) specifying the probability that a novel word 

consists of the particular units (in our case, syllables) that it does x1 … xm. P0 can be seen 

as a simplicity bias since the model has a preference for shorter words; the more units 

that comprise a word, the smaller the probability of that word is. α can be seen as 

influencing the bias for the number of unique lexical words in the corpus since α controls 

the probability of creating a new word in the lexicon. Therefore if α is small, the learner 

is less likely to hypothesize new words to explain observable data, and so the learner 

prefers fewer unique words in the lexicon.  

(2)   

 The bigram model makes a different, slightly more complex assumption about the 

relationship between words. Learners using this model believe a word is related to the 

previous word in an utterance – i.e. a word is generated based on the identity of the word 

immediately preceding it. To encode this assumption, the bigram model uses a 

hierarchical Dirichlet Process (Teh et al. 2006). This model tracks the frequencies of 

two-word sequences and is defined in (3-4): 

(3)   

(4)   



 where ni-1(w’,w) is the number of times the bigram (w’,w) has occurred in the first 

i – 1 words, bi-1(w) is the number of times w has occurred as the second word of a bigram, 

bi-1 is the total number of bigrams, P0 is defined as in (2), and β and γ are free model 

parameters. Both the β and γ parameters, similar to the α parameter described above, 

control the bias towards fewer unique bigrams (β) and towards fewer unique lexical 

words (γ). 

Both unigram and bigram generative models implicitly incorporate preferences 

for smaller lexicons by preferring words that appear frequently (due to (1), (3), and (4)) 

as well as shorter words in the lexicon (due to (2)). These assumptions are a greatly 

simplified view of how words are actually generated, but they provide reasonable 

uninformed hypothesis an infant learner may make.  

 Because Bayesian models often cannot be solved exactly, there are a number of 

different ways to perform learning. We separate our learners between “ideal” and 

“constrained” versions, where the constrained learners incorporate specific cognitive 

limitations into the learning procedure. Ideal learners operate with unlimited processing 

and memory resources. However, this is clearly not a realistic type of learner as people, 

in particular children, do not have such unlimited resources when learning a language. To 

mimic a more realistic learning method, the constrained learner operates with limited 

processing and memory resources, much like a child must learn language with limited 

cognitive processes. By creating different learners with different types of restrictions, 

multiple possibilities of word segmentation are tested which can then be compared to the 

correct adult word segmentation, otherwise known as the “gold standard.” Comparing 



these different learners provides a possible outlook of strategies children use when 

acquiring language and learning to segment words.   

 Of the different modeled learners, one is an ideal learner and the other three are  

constrained. These four learners are the batch optimal learner (BatchOpt), the online 

optimal learner (OnlineOpt), the online suboptimal (OnlineSubOpt), and the online 

memory learner (OnlineMem).  

As indicated by its name, the BatchOpt represents the “optimal” or ideal learner. 

The BatchOpt (Goldwater et al. 2009) makes decisions using Gibbs sampling, and is 

allowed unlimited computational resources to remember all the data seen previously. 

Gibbs sampling is a procedure that is guaranteed to converge on the optimal 

segmentation, therefore mimicking the ideal situation desired for the ideal learners. This 

particular algorithm operates by iterating through the corpus multiple times (as many as 

20,000 iterations), going through boundary by boundary and deciding based on other 

decisions it has made, whether or not there should be a boundary at that point the corpus. 

Gibbs sampling begins essentially as noise, but over time it bootstraps its decisions and 

eventually converges on the optimal segmentation. This is crucial for the BatchOpt 

learner as it receives the data all at once or in a “batch.” As noted previously, while 

optimal learners should outperform the constrained learners, they are not a realistic model 

for modeling children word segmentation as a child does not have unlimited cognitive 

resources. Liang & Klein (2009) also show that some online learners have properties 

which make them better suited to particular tasks. They can converge on the right answer 

more quickly and can have the ability to avoid local minima (a solution that’s much 



better than any solution near it but which isn’t better than all the solutions in the 

hypothesis space, which the BatchOpt learner might get “stuck” in.) 

The OnlineOpt learner, though not optimal like the BatchOpt, performs in a very 

similar manner but does not receive all the data in a batch; rather the learner receives data 

one utterance at a time. Using the Viterbi algorithm, the OnlineOpt learner computes an 

efficient segmentation of each utterance (Brent 1999). Once a decision is made, it 

continues to do so with each subsequent utterance, using previous decisions to aid its 

current decision. While it processes each utterance at a time, the OnlineOpt learner still 

performs much like the BatchOpt in that it selects what it perceives as the best 

segmentation. While the OnlineOpt learner uses optimal inference, the fact that it only 

does it over the local information it has makes it a constrained learner versus an ideal 

learner.  

 The OnlineSubOpt learner like the OnlineOpt learner operates on one utterance at 

a time. However, instead of continually opting for the  best segmentation, the 

OnlineSubOpt learner will choose the best segmentation for a majority of decisions, but 

will have a small chance of also choosing smaller probability segmentation possibilities 

(like a distribution). For example, a learner could be presented with the utterance 

goodbye. There would be two difference options of segmenting this word – either it is 

segmented as one full word, goodbye, or two words, good and bye. Now perhaps the 

boundary goodbye has a 75% chance of being true while the boundary good bye has a 

25% being true. Given this, the OnlineOpt learner would always choose the segmentation 

goodbye since it has the highest percent chance of being true while the OnlineSubOpt 



would have a 75% chance of choosing the segmentation goodbye and a 25% chance of 

choosing the segmentation good bye.  

The OnlineMem learner attempts to incorporate incremental processing as well as 

a form of short-term memory, pulling from its recent memory of past utterances to help 

current word segmentation decisions. The OnlineMem learner uses Gibbs sampling just 

as the BatchOpt learner does, but it performs differently in that it does not go through 

every boundary possibility as the BatchOpt does. Instead, the OnlineMem learner makes 

decisions on boundaries one utterance at a time and has the ability to change decisions on 

word boundaries from past utterances. Which boundaries are chosen to be updated is 

based on a decaying function, where boundaries further from the end of the current 

utterance are exponentially less likely to be chosen. This ensures that the vast majority of 

sampled boundaries are within the current or previous utterance. Limitations of the 

constrained learners create a much more realistic model for child language acquisition. 

These learners incorporate constraints much like a child would have when first learning a 

language.  

 

2.2 Previous Research  

 These different modeled Bayesian learners have been found to work fairly well 

for English, although the bigram model (Pearl et. al, 2011) typically outperforms the 

unigram model.  

 The Pearl et. al study (2011) along with most other previous studies focus on 

phonemes being the basic unit of input and learning, such that the learners receive a 

stream of phonemes as input and must decide word boundaries from that. However, 



evidence shows that syllables are a more likely basic unit as infants are aware of syllables 

as early as 3 months (Eimas, 1999) while they only become aware of a language’s full set 

of phonemes by around 10 months (Werker & Tees, 1984). Following research shifted to 

focus on syllables than phonemes as a result. Using the syllable as a basic unit, Phillips & 

Pearl (2012) found an even greater “less is more” effect (discussed in more detail below) 

than that found in some cases in the Pearl et al. study (2011), with constrained learners in 

both unigram and bigram models outperforming unconstrained learners.  

Table 1 provides a comparison between the resulting F-scores of phonemes versus 

those of syllables for English from Phillips & Pearl (2012). The F-score (F) is the 

harmonic mean of precision (p) and recall (r): 

F = 2pr/(p+r) 

Precision represents the percent of identified word tokens which were correct (# 

correct / # identified). Word tokens refer to distinct individual words that appear multiple 

times throughout the corpus. Recall, though similar, represents the percent of the true 

tokens in the corpus which were correctly identified (# correct / # true). For example, a 

learner that analyzes a corpus of 10 words may detect a total of 9 words. If the learner 

correctly identifies 7 words, it would have a precision of 7/9 and a recall of 7/10. The F-

score provides a way of presenting this accuracy with a single number, in which a higher 

number indicates greater segmentation accuracy. 

Table 1: F-scores of English results with phonemes as base unit vs syllables as base unit. 

Bolded scores indicate the higher score. 

  Phoneme Syllable 

 

Unigram 

Batch-Opt 54.8 53.12 

Online-Opt 65.9 58.76 



OnlineSub-Opt 58.5 63.68 

OnlineMem 67.8 55.12 

 

Bigram 

Batch-Opt 71.5 77.06 

Online-Opt 69.4 75.08 

OnlineSub-Opt 39.8 77.77 

OnlineMem 73.0 86.26 

 

A look at Table 1 shows using syllables as a basic unit of input instead of 

phonemes presents a slightly better result for the bigram learners. As seen in both the 

phoneme and syllable column, not only does the bigram model consistently outperform 

the unigram, but the constrained learners (especially the OnlineMem learner) typically 

perform better than the ideal. This suggests less knowledge and cognitive processing is 

more helpful in learning word segmentation.  

Limitations in cognitive processing found in both types of studies can help rather 

than impede language acquisition (Pearl et. al, 2011). The constrained learners 

outperforming the ideal learners (in the unigram) represent a similar effect to the “less is 

more” hypothesis (Newport, 1990). Newport argues that some cognitive limitations may 

explain why children are better at acquiring language than adults. Although the “less is 

more” hypothesis is traditionally thought of in terms of morphosyntax, that more 

constrained learners outperform their ideal counterparts fits with a general interpretation 

of the hypothesis, namely that some constraints help rather than hurt learning. This “less 

is more” effect was seen in the unigram models of the Pearl et al. study (2011) from the 

undersegmentation errors (explained at length later on) due to frequent sequences of 

words. Because ideal learners had an unlimited memory, common sequences of words 

such as “in the” would be mistaken as one word, “inthe”, and would be undersegmented 



as one word rather than segmented into two words. In contrast, constrained learners, with 

their restricted memory, did not have nearly as many undersegmentation errors as they 

did not leverage the frequency of a sequence of words as well as ideal learners.  

 

3.1 Cross-Linguistic Word Segmentation 

If this particular Bayesian inference strategy is a possible universal method of 

word segmentation, it must work across multiple languages. Therefore this strategy must 

be tested and shown to be successful on other languages besides English.    

Before testing other languages, an extensive look into the language’s grammar 

must be done first. Languages vary in terms of their morphological properties in ways 

that affect the word segmentation process. A morpheme is considered the smallest piece 

of a word that is meaningful; this includes root words, affixes, parts of speech, and so on. 

Some languages have rich morphology - such that a word might include many 

morphemes – and may be best segmented at the morphological rather than word level. It 

may be the case then that English is simply the type of language which this learning 

strategy is best used for and that other languages will see poorer performance because the 

model segments units smaller than words. In addition, function words vary across 

differently languages as well. For instance, Italian has many regular prepositions 

followed by determiner phrases. A reasonable learner might group these words together 

because they occur together so regularly while this may not happen with other languages 

due to different sentence structures. We attempt to identify errors that the modeled 

learners make and label them as “reasonable” if they meet certain standards. In order to 



do this, however, we need to create a list of common morphology and function words in 

each language. 

  

3.2 Reasonable Errors 

 Undersegmentation is a type of error the model makes when it does not segment a 

word where it should and therefore creates a word combining two words. For example, 

instead of segmenting properly into two words like “did you,” an undersegmentation 

errors would create “didyou.” Undersegmentation errors seem to be the most common 

type of error across all the different learners, though we will later see that 

undersegmentation errors are more evident in the English language in comparison to 

other languages.  

 Oversegmentation is a type of error the model makes when it segments a word 

more than it should, creating multiple words when it should just be one word. For 

example, instead of segmenting something into a whole word like “helpful,” the model 

might oversegment the word into “help” and “full.” We will see that oversegmentation 

errors are common with Italian and Farsi.  

 The other category consists of models that do not fit under undersegmentation or 

oversegmentation but instead segment words into other type of words. An example of this 

is when the model may segment “playful dog” into “play fuldog.” 

 One might think that with these three different reasonable errors that it is all too 

simple for the learners to perform well. However to prevent this from happening, some 

precautionary methods are taken. A common error the learners make regards prefixes and 

suffixes. For example, consider the morpheme re-. This particular morpheme is a prefix 



in the English language. Now suppose the learner hears very and segments it into ve 

and –ry.. Normally this would be counted as a reasonable error as re is indeed a 

morpheme. However, the way re is segmented in this particular situation segments it as a 

suffix instead of the prefix that it is. Instead of counting this as a reasonable error, we 

note this is incorrect word segmentation. In addition, we do not count errors as reasonable 

errors unless the learner has made it 10+ times. This way, we ensure we do not inflate the 

reasonable error F-scores of the learners by including nonsense words uttered only once 

or other accidental utterances.  

 But how do these different errors fit into a language’s morphemes and function 

words? As seen from the undersegmentation and oversegmentation error examples above, 

these errors sometimes produce real words. Knowing this, how many errors does the 

model make that are actually harmful and how many are actually reasonable errors that 

produce a true word or perhaps a morphological unit?  

Depending on the type of segmentation errors the learner makes, it can produce a 

real word, a morpheme, a function word, or a general mis-segmentation. For example, if 

the learner mis-segmented the utterance running into run and ing, this would count as 

both a real word reasonable error and a morpheme reasonable error. While the learner 

segmented incorrectly, it still produced a real word, run, and a morpheme, -ing. If a child 

were to segment “running” into “run” and “ing,” it would not be too harmful an error 

given that –ing is an important morphological unit in the English language.  

Function words, in particular, are important for errors when function words are 

combined together. A function word mis-segmentation may segment at the into atthe 

instead since many function words appear in the same order often and the learner may 



assume it is one word instead of two. These “stock phrases” of combined function words 

are common mistakes children make when learning to segment words. These errors also 

seem reasonable because they are useful, regular units in the language. Therefore to have 

a complete cross-linguistic analysis, the morphemes and function words of other 

languages needs to be known in order to account for these reasonable errors.  

 

3.3 Italian and Farsi 

 The Italian and Farsi language vary in multiple ways compared to the English 

language. Besides a difference in phonetics and syntax, these two languages vary in 

morphology. In the spectrum of types of languages, language be analytic, synthetic, or 

polysynthetic. On one side of the spectrum are analytic languages like Chinese and 

English, in which one morpheme is typically one word. On the other side of the spectrum 

are polysynthetic languages like Inuit languages in which there is a high ratio of 

morphemes per word. Synthetic languages have a lower ratio of morphemes per word 

than polysynthetic languages but more than that of analytic languages. Both Italian and 

Farsi fall under the synthetic language category.  

 The Italian language falls under a sub-category of synthetic languages known as 

fusional or inflectional languages. These languages have a greater morpheme to word 

ratio than analytic languages but many morphemes have multiple meanings. For example, 

the morpheme –i in Italian can serve as a plural morpheme, a gender indicator, or a tense 

indicator. Farsi, in comparison to Italian, falls under a sub-category of synthetic 

languages known as agglutinative languages. These languages have more regular 

morphology, which would be identified by the model more easily than the less regular 



morphology of Italian and English. This will likely lead to more reasonable morpheme 

errors for Farsi.  

 Italian and Farsi also differ from English in regards to average word length. 

English has an average word length of 4.16 syllables, Farsi of 6.98 syllables, and Italian 

of 8.78 syllables. Both Farsi and Italian have a longer average word length than English, 

allowing for greater room for error with ways to mis-segment utterances.  

 Cross-linguistically, English has been shown to be consistently easier to segment 

than other languages. A possible explanation for this is the ambiguity of the languages 

(Fourtassi et. al, 2013). Given that a learner knows all of the words of a language and 

how many times a word appears in a corpus, a learner should be able to identify and 

segment words easily. However, there is some ambiguity in a language that may still 

cause some errors despite this. For example, in English, a learner may segment goodbye 

to good and bye. Both good and bye are real words though it would still be an error as 

goodbye was incorrectly segmented. English has been found to be a less ambiguous 

language than other languages such as Japanese. Though no comparison has been made 

between English and Italian and Farsi, it still provides an additional explanation of 

different results between English and Italian and Farsi.  

   

3.4 Italian and Farsi Results 

 Table 2 shows a comparison between the F-score of word tokens of English, 

Italian, and Farsi.  

Table 2: F-scores of different languages across the different learners including Italian 
and Farsi (with new F-scores taking reasonable errors into account in bold) 

  English Italian Farsi 
Unigram Batch-Opt 53.12 61.85 66.63 



55.70 70.48 72.48 
Online-Opt 58.76 

60.71 
59.94 
65.05 

67.77 
75.66 

Online-SubOpt 63.68 
65.76 

60.23 
66.48 

65.93 
74.89 

Online-Mem 55.12 
58.68 

58.58 
66.77 

59.57 
67.31 

Bigram 

Batch-Opt 77.06 
80.19 

71.25 
79.36 

69.63 
76.01 

Online-Opt 75.08 
78.09 

67.14 
75.78 

69.83 
79.23 

Online-SubOpt 77.77 
80.44 

61.25 
73.59 

55.34 
67.54 

Online-Mem 86.26 
89.58 

60.87 
74.08 

62.46 
73.98 

 

 In general, languages such as English perform well against the gold standard, or 

the standard of correct adult segmentation. However, Italian and Farsi perform noticeably 

less so. We have determined that an F-score of 70 or better is doing well for our learners, 

given previous segmentation results for this learning strategy (Goldwater et al. 2009, 

Pearl et al. 2011, Phillips & Pearl 2012). English achieves around 77, though Italian and 

Farsi fall short of the 70 mark. However, when taking reasonable errors into account, 

most of these languages receive a significant boost in regards to their F-score and all 

languages achieve better performance. Once reasonable errors are accounted for, Italian 

and Farsi do much better, receiving a 10 point boost in their F-score. In comparison, 

English received a maximum 4 point boost in its F-score when taking reasonable errors 

into account.   

 One major reason for the higher boost is a ceiling effect for the English language. 

English was already performing well without the reasonable error boost leaving less room 

for improvement in comparison to Italian and Farsi. This is also due to the 



undersegmentation bias of the English language versus the oversegmentation bias of 

Italian and Farsi. Given that English is more of a monosyllabic language, this leaves very 

little room for oversegmentation (since you can’t segment one syllable any further). As 

most common errors that get caught by the reasonable error analysis are 

oversegmentation errors, Italian and Farsi get a bigger boost in their F-score than English.  

As seen in Table 2, the constrained learners outperform the ideal learners in  

English, suggesting a “less is more” effect. This effect, however, does not appear in 

Italian and Farsi. As seen in Table 2, the ideal learner of Italian and Farsi continually has 

a higher F-score, although it is important to note that it is not that much higher than the 

F-score of the constrained learners. This suggests that the Bayesian strategy does not 

necessarily produce a “less is more effect” cross-linguistically, but including cognitive 

constraints also does not significantly decrease performance.  

Table 3 provides a closer look at the specific types of errors the modeled learners 

made with Italian and Farsi. As mentioned previously, the types of segmentation errors 

the learner can make include a real word, a morpheme, a function word, or a general mis-

segmentation word. Of course, the learner may just segment an utterance into a complete 

nonsensical word such as segmenting pirateking into pir ateking.  

Table 3: % of types of words produced during mis-segmentation out of total errors 

made – real words, morphemes, and function words 

 Unigram Bigram 

Batch-

Opt 

Online-

Opt 

Online-

SubOpt 

Online-

Mem 

Batch-

Opt 

Online-

Opt 

Online-

SubOpt 

Online-

Mem 

 

English 

Real 0.77 2.39 3.42 2.31 4.52 7.31 9.63 16.91 

Morph 0.13 0.48 0.46 0.31 0.71 0.89 2.09 3.19 

Func 4.40 3.15 3.35 5.02 6.32 4.83 2.84 3.61 



 

Italian 

Real 16.18 22.69 23.16 17.18 19.99 28.24 30.52 26.87 

Morph 1.13 0.17 0.65 1.36 1.60 0.80 1.02 1.07 

Func 3.69 0.70 0.77 2.87 3.05 1.24 0.43 0.32 

 

Farsi 

Real 12.57 25.26 25.02 14.07 14.38 26.61 17.52 20.14 

Morph 1.58 4.23 2.78 2.26 2.92 3.82 4.89 5.06 

Func 2.24 0.22 0.10 1.36 1.80 0.07 0.10 0.05 

 

Table 4: Examples of reasonable errors in Italian and Farsi 
 True Word Model Output 

Real Word mano ma no 
‘hand’ Italian ‘but’ ‘no’ 
hala ‘ha’ ‘la’ 
‘now’ Farsi ‘ha’ ‘la’ 

Morphology devi dev i 
‘you must’ 
Italian 

‘must’ PL 

miduni mi dun i 
‘you know’ 
Farsi 

PRES ‘know’ 2 
Singular 

Function Word a me ame 
‘to me’ Italian ‘tome’ 
mæn    hæm mænhæm 
‘me too’ Farsi ‘metoo’ 

 

 As seen in Table 3, many of the types of words incorrectly segmented produced 

real words. These errors are most likely quite common as the model aims to segment 

words, with a preference for words it has already seen. This may not be true of English 

because English is monosyllabic and the learner cannot oversegment monosyllabic words. 

If a learner is segmenting bigger words, it’s less likely to produce a real word. Since 

Italian and Farsi learners oversegment, they’re going to produce real words more 



regularly. Italian and Farsi may oversegment more just because words are longer in those 

languages than in English.  

Of interest is Farsi’s more frequent mis-segmentation of morphemes than Italian. 

As mentioned earlier, Farsi falls under agglutinative synthetic languages while Italian 

falls under fusional synthetic languages. Since the perceptual unit of the Bayesian 

inference model is syllables, it picks up syllabic morphology which agglutinative 

languages such as Farsi have more of while Italian has relatively fewer errors in this 

category. Many of the most common Italian morphemes instead are sub-syllabic, which 

means the syllable-based learners here can’t identify them. 

 

4. Conclusion 

 While the modeled learner  perform differently on the languages examined here 

with respect to the types and frequency of errors made, many of those errors are due to 

specific properties of those languages, such as being a more syllabic language or a more 

morphologically rich language. The “less is more” effect was not found in other 

languages tested besides English, but it is still possible that this effect exists among 

languages with similar properties to that of English. Despite the tentative nature of the 

“less is more” effect, the Bayesian inference model performs well cross-linguistically and 

is a sound strategy for learning word segmentation in these languages once reasonable 

errors are counted as correct. This model provides a good foundation that children can 

later use as a base to learn other language-specific segmentation cues.  
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