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1 Introduction 

Language acquisition presents a very interesting problem from a human learning standpoint. Few 

human-created systems are quite as complex, nor as easily and rapidly acquired as one’s native 

language. Over the course of a  child’s first few years of life, quite a number of linguistic 

problems must be met and conquered, including (i) learning a sound inventory (phoneme 

identification), (ii) learning word boundaries (word segmentation), (iii) word-meaning mapping 

(word learning), and (iv) learning how words combine to produce utterances (syntax learning). 

Before a child can tie his or her own shoes, all of these tasks are achieved with somewhat 

startling constraints on the learning process. First, children rarely receive explicit instruction for 

these tasks.  Second, they rarely receive direct negative evidence, which would indicate which 

hypotheses about language are incorrect. Third, they learn so rapidly without the luxury of a 

fully-developed brain. 

These facts pose unique challenges to cognitive scientists attempting to make sense of 

language acquisition. What prior knowledge about language, if any, do infants bring to the 

language learning problem? For example, we know that even very young infants are sensitive to 

probabilistic information (Saffran et al. 1996, Xu & Garcia 2008, Xu & Denison 2009), but to 

what extent can this information inform language learning? Furthermore, any model of language 

learning needs to explain why language acquisition proceeds so easily for children while 

acquiring a language as an adult (second language acquisition) proves to be a difficult 

experience for most adults. 

Computational modeling is a tool we can use to shed light on these issues. Computational 

models require us to make specific commitments about the nature of language acquisition before 

we can implement the models, and then a given model can serve as an explicit instantiation of a 

particular learning strategy. If a particular model then fails, this tells us that children must be 

learning in some manner which is different from the strategy implemented in that model. 

Although a successful model does not necessitate that children’s  learning occurs in a similar 

fashion, it does serve as an existence proof that language learning could proceed that way. 

Moreover, because language learning is so difficult, a model completely without merit is 

unlikely to pass (Hoff 2008). 



Bayesian inference models have been increasing in popularity within cognitive science 

and especially within language acquisition research (Xu & Tenenbaum 2007, Griffiths & Kalish 

2007, Perfors et al. 2011, Goldwater et al. 2011). One advantage of these models is they allow us 

to explicitly divide particular aspects of the learning process into specific parts of the model. For 

instance, any Bayesian model is split between its prior, which encodes  the  learner’s  beliefs  over  

a set of possible hypotheses about the language, and the likelihood, which encodes the child’s  

perception of the match between a given hypothesis and the observable data. Further, the 

particular way in which the inference, which combines the prior and likelihood, occurs can be 

made more realistic by incorporating cognitive constraints that reflect the limitations human 

learners have (Phillips & Pearl 2012). 

At the same time, a potential downside of computational modeling is that explanatory 

power of a model is often directly related to how realistic the model is. Therefore, it is very 

important to both accurately frame the learning problem and also implement learning in a 

cognitively plausible way. While there are  many  ways  to  interpret  “cognitive  plausibility”,  I  

suggest that the following are reasonable aims for a cognitively plausible model: (i) learning 

should occur incrementally, (ii) the model should incorporate knowledge that learners of the 

appropriate age have access to, and (iii) the model should incorporate processing constraints 

which human learners of the appropriate age are likely to possess. What all of these things have 

in common is that they aim to make a computational model implement more a “realistic”  

learning process. 

2 Realistic learning 

Many problems in cognitive science, including language acquisition, can be tackled from 

multiple directions simultaneously. The problem of realistic computational modeling can be seen 

as separate problems at  two  of  Marr’s  levels  of explanation (Marr 1983). At the computational 

level, it is important to describe the problem in a way that realistically represents the problem 

children are actually solving. Only by making the model realistic can we draw inferences as to 

which strategies children could possibly pursue. At the algorithmic level, if we take our model to 

represent in some fashion the process occurring in human learners, then it is clearly important 

that this learning algorithm be realistic. The question is not whether learning can (or cannot) 

occur, but whether this learning can occur given the constraints which human learners have. 



2.1 Computational-level approaches to language acquisition 

Most computational models of language learning exist on the computational level. They make no 

direct claims that humans learn in such a manner, but rather argue only that a strategy 

incorporating particular representations or particular learning assumptions can in principle solve 

the learning problem. Thus, these representations or assumptions may be something incorporated 

by human learners. These kinds of studies have covered many aspects of language learning, 

including phonology (Feldman et al. 2009, Dillon et al. 2011), word segmentation (Johnson & 

Goldwater 2009, Goldwater et al. 2009), word learning (Xu & Tenenbaum 2007, Frank et al. 

2009) and syntax (Perfors et al. 2011). This type of work has made many contributions to the 

field of language acquisition, proposing novel solutions to problems for which no 

mathematically coherent method of learning previously existed. They all possess, however, a 

number of implicit assumptions which call into question the claims they make about the success 

of the implemented learning strategies. 

 In order to create a mathematical model of language learning, a number of assumptions 

must be built into the model. One type of assumption which is often taken for granted has to do 

not with the mathematics of the model, but with the domain in which it operates. For instance, 

the assumed units of representation play a crucial role in defining the space in which learning 

occurs. Models of phone identification almost always assume that learning occurs separately for 

different types of sounds (de Boer & Kuhl 2003, McMurray et al. 2009, Feldman et al. 2009). 

This has led to the fact that learning models exist for vowels and for stop consonants, but are 

nonexistent for all other sounds. This problem arises out of the fact that learning has to operate 

over some continuous acoustic unit. Phoneticians have long proposed relevant acoustic units 

such as formant frequencies and voice-onset time to describe the acoustic differences between 

contrasting phones. These units, however, tend to be relevant or defined only for a particular set 

of sounds. This creates a situation where learning models that utilize phonetically relevant 

measures  are  unable  to  be  applied  beyond  a  particular  subset  of  a  language’s  phonetic  inventory. 

This makes it less obvious that the learning strategy proposed can generalize beyond the 

particular subset of sounds the strategy is implemented for. Also, as these have been 

computational-level models, it is unclear whether or not sound identification proceeds in such a 

manner.  



In the case of word segmentation, the ability to access a particular unit of representation 

plays a similarly crucial role in defining the learning problem. Conversational speech proceeds 

fluidly without punctuation or clear acoustic markers of word boundaries. Even where potential 

markers do exist, they are highly language-dependent and therefore must be learned for the 

particular language being segmented. Therefore, it has been proposed that the earliest stages of 

word segmentation proceed via statistical learning (Thiessen & Saffran 2003). Experimental 

evidence shows that infants are able to track transitional probabilities (TPs; Saffran et al. 1996) 

which lends credence to this hypothesis. Interestingly, word segmentation models have typically 

used phonemes as the unit of representation (Brent 1999, Blanchard & Heinz 2008, Goldwater et 

al. 2009) - despite the fact that word segmentation begins as early as 6 months (Bortfeld et al. 

2005; 7 months Jusczyk et al. 1993a, Jusczyk & Aslin 1995, Echols et al. 1997) while phone 

identification often does not fully occur until 10-12 months (Werker & Tees 1984). By defining 

the word segmentation problem in this way, it is unclear that previous models could be extended 

to the actual task which infants face, which likely first occurs without reference to phonemes. 

 Another way in which computational-level analyses can be made more realistic is 

through the incorporation of multiple problems into a single learning model (Johnson & 

Goldwater 2009, Blanchard et al. 2009, Feldman et al. 2009). This has become a relatively 

popular approach in language acquisition because infants often learn about multiple levels of 

language simultaneously. For example, as mentioned above, word segmentation is likely 

occurring at the same time as phoneme identification. While solving two problems 

simultaneously might seem like a harder task than solving the problems individually, recent 

computational-level modeling research has suggested that this may actually be easier than 

solving the problems separately. These synergies between the statistical information relevant for 

each problem can then be leveraged for solving the other. 

2.2 Algorithmic-level approaches to language acquisition 

Ideally, however, our models are not only computational analyses of the utility of particular 

representations or assumptions in language learning. Instead, models can also show the 

plausibility of a particular learning strategy, given the cognitive limitations of human learners. 

Simply put, it is only a first step to show that the learning problem can be solved with statistical 

learning (for example); it must then be shown that the learning problem can be solved with 



statistical learning as implemented by a human learner. Increasingly, statistical learning models 

have been attempting to bridge this gap and show that they are plausible models of learning, 

given what we know about the cognitive limitations of human learners (Wang & Mintz 2007, 

Pearl et al. 2011, Lignos 2011). 

 Just as with computational level approaches, there are many ways in which one might 

investigate an algorithmic-level analysis. Whereas the computational level deals primarily with 

the specifics of the model, its prior, likelihood function, and input, the algorithmic level deals 

with the step-by-step process of how learning occurs for that system. For example, a typical 

method for learning within Bayesian models is called batch learning. This requires that all data 

be evaluated simultaneously. While this shows that a problem can be solved, it does not show 

that the problem could plausibly be solved by human learners, as it is unlikely humans are 

implementing these resource-intensive, iterative ways of selecting the hypothesis with the 

highest posterior. 

 A very basic change to the learning algorithm which can be made is to create a model 

which learns incrementally, as the data come in. It seems clear that infants learn in this way, 

paying attention to information as it appears and integrating it into their existing hypotheses 

about language, rather than waiting some pre-appointed amount of time before making decisions. 

This online learning approach therefore seems much closer to the learning process occurring in 

human learners, and has seen increased use in past years (Wang & Mintz 2007, Pearl et al. 2011, 

Phillips & Pearl 2012). 

 Besides the time course of learning, human learners also have constraints on the cognitive 

resources that they bring to the language acquisition task. While it is clear that children (and 

especially infants) have fewer cognitive resources than adults, one might reasonably wonder 

whether these differences impact statistical learning and language acquisition more generally. 

Longitudinal studies investigating  children’s  abilities  make it clear that differences on cognitive 

measures correlate with current language ability and predict future language growth (Rose et al. 

2009). A striking difference between adults and children relates to how they deal with 

inconsistent input. Adults tend to probability match the inconsistencies they encounter, while 

children create generalizations about what structures to use (Hudson Kam & Newport 2005, 

Hudson Kam & Chang 2009). Experimental evidence suggests that this behavior arises from 



children’s  difficulties  with  memory  retrieval  (Hudson Kam & Chang 2009). When adults are 

tested in conditions that tax their memory retrieval abilities, they perform quite similarly to 

children, relying on productive forms rather than probability matching the input. 

 In order to accurately model language acquisition from the perspective of a young human 

learner, we would ideally like to incorporate the appropriate cognitive abilities which these 

learners possess. Of course, this can difficult to determine. The brain, even at a young age, is 

capable of making complex inferences through processes which currently are unclear. That said, 

it is possible for models to incorporate constraints that we have reason to believe are more 

cognitively plausible such as (i) online processing, (ii) sub-optimal decision making 

(Börschinger & Johnson 2011, Pearl et al. 2011), (iii) a preference for frequent information 

(Mintz 2003, Wang & Mintz 2007), and (iv) memory constraints (Pearl et al. 2011). 

 I will now discuss investigations that are underway for two language learning problems 

children solve when they are very young: word segmentation and phone identification. In each 

case, computational modeling is used to show the importance of utilizing statistical information 

to infer linguistic structure. In the case of word segmentation, this work involves translating a 

computational-level approach to the algorithmic-level. Doing so uncovers surprising behavior 

that fits a perspective about language acquisition  called  the  “Less  is  More”  hypothesis.  For  

phone identification, this involves reframing the problem at a computational-level in order to 

unify all phone learning under a single model, the infinite hidden Markov model. 

 

3 Investigation 1: Word segmentation 

3.1 Introduction 

3.1.1  “Less  is  More”   
 “Less  is  More”  (LiM)  (Newport  1990)  is  a  somewhat  counterintuitive  hypothesis  that  posits  that  

cognitive limitations may help, rather than hinder, children acquiring their native language. It is 

typically used when explaining why children are so good at learning language while adults often 

struggle to achieve native-level competency in a non-native language. The original LiM proposal 

suggests that a trade-off exists between rote memorization and abstract generalization. An 

example of this can be seen in the form of English past tense verbs, which either take non-



productive memorized forms (e.g., go~went, run~ran), or instead follow a linguistic rule such as 

“add  -ed”  (i.e.,  laugh~laughed, talk~talked). The intuition is that if children had unlimited 

cognitive resources, they could memorize everything without the need for generalization; 

however, since cognitive resources are limited, they are forced to make (ultimately helpful) 

generalizations. The reflections  of  this  process  are  seen  in  children’s  productions  of  English  past  

tense forms, which form a U-shaped performance trajectory (Brown 1973, Kuczaj 1977):  

 (i) good initial performance: Children initially memorize past tense forms, both regular 

and irregular, and produce them correctly (e.g., production: go~went, laugh~laughed).  

 (ii)  poor  intermediate  performance:  Children  generalize  the  “add  -ed”  rule  due  to  their  

cognitive limitations and increasing verb vocabulary, and end up over-generalizing its use to 

irregular verbs (e.g., production: go~goed, laugh~laughed). 

 (iii) good final performance: Children eventually learn the balance between 

generalization  and  memorization,  and  only  generalize  the  “add  –ed”  rule  to  regular  verbs  (e.g.,  

production: go~went, laugh~laughed). 

 According to this instantiation of the LiM hypothesis, the failure of adult language 

acquisition stems from having too much memory – adult learners memorize too much, and fail to 

generalize the way that children do. Experimental evidence supports the idea that children 

generalize in different ways than adults – for example, children generalize more frequently and 

easily than adults both in morphological (Hudson Kam & Newport 2005) and syntactic 

acquisition (Hudson Kam & Chang 2009). Nevertheless, these studies do not pinpoint memory 

as the unique factor producing these generalization differences. However, computational work 

by Elman (1993) has suggested that memory constraints can be helpful, as language learning in 

artificial neural networks often benefits from starting with explicit memory constraints that are 

gradually relaxed over time. Additionally, Bayesian modeling work by Perfors (2011) has shown 

that (over)regularization can result from a combination of memory limitations and a bias towards 

generalization, though it is unlikely to occur from memory limitations alone. 

3.1.2  “Less  is  More”  in  word  segmentation 



Though LiM is most often thought of as an explanation for morphological or syntactic 

acquisition,  it  is  in  principle  a  more  general  hypothesis  about  the  source  of  children’s  

exceptional language acquisition abilities. Here I examine potential LiM effects in the process of 

word segmentation, where children must learn to identify word forms in fluent speech, which is 

a foundation for much linguistic knowledge. This process is thought to begin around 6 months 

(Bortfeld et al. 2005) and is certainly in place by around 7.5 months (Jusczyk et al. 1993a, 

Jusczyk & Aslin 1995, Echols et al. 1997), when infants presumably would have much more 

limited cognitive resources than adults. One current idea for the learning strategies active at this 

stage is that infants are leveraging purely distributional information, i.e., statistical cues. This 

is due in part to the lack of universal cues to word segmentation. In particular, many helpful 

cues are language-specific, such as phonotactics (Mattys et al. 1999), allophonic variation 

(Jusczyk et al. 1999a), metrical stress patterns (Morgan et al. 1995, Jusczyk et al. 1999b) and 

coarticulation effects (Johnson & Jusczyk 2001). Using these cues thus requires infants to 

already know some words in the language in order to identify the language-specific 

instantiation of the cue (e.g., stress-initial for the metrical stress pattern cue). Therefore, they 

are unlikely to be helpful in the initial stage of word segmentation, when infants do not know 

many words. In contrast, statistical cues can be used initially, before any words are known. The 

idea that infants are sensitive to statistical cues is bolstered by findings that infants track 

statistical regularities in speech (Saffran et al. 1996) and in other domains (Xu & Garcia 2008, 

Xu & Denison  2009).  

One very successful purely distributional learning strategy for word segmentation 

involves Bayesian inference (Goldwater, Griffith & Johnson 2009 (henceforth GGJ), Pearl, 

Goldwater & Steyvers 2011 (henceforth PGS)). To investigate LiM, I compare ideal Bayesian 

word segmentation models that have performed quite well (GGJ) to more cognitively plausible 

models that (i) do not have unlimited processing resources and (ii) incorporate memory 

restrictions (PGS). Although word segmentation lacks the instance- versus rule-learning trade-

off which characterizes traditional LiM phenomena, the study by PGS nonetheless showed a 

limited LiM effect. The existence of a LiM effect in word segmentation implies that the effect is 

broader than previously characterized and the exact nature of the effect in word segmentation 

may have implications for how to understand the causes of LiM more generally. We investigate 

this effect further here and suggest that limited cognitive resources help push language learners 



away from naïve assumptions about language. For word segmentation, this leads to more 

cognitively limited learners discovering the useful units of language, i.e., the word forms that 

will be assigned meaning in the developing lexicon. 

3.1.3 Psychological plausibility in cognitive modeling 

 I am also interested in investigating learning models that are more faithful to what is 

currently known about infant learning. While incorporating limitations on processing resources 

and memory, as PGS did, is quite important in terms of psychological plausibility, I further 

investigate assumptions about the basic unit of representation for word segmentation. Previous 

Bayesian modeling studies assumed the basic representational unit for word segmentation was 

the phoneme (GGJ, PGS). However, experimental evidence from Werker & Tees (1984) 

suggests that infants are unlikely to recognize and use phonemes until at least 10 months. At the 

initial stages of word segmentation (i.e., 6 months: Bortfeld et al. 2005), syllables may be a more 

plausible representational unit, given evidence of categorical perception among syllables (Eimas 

1999) as well as infant abilities to use statistical cues defined over syllables (Saffran et al. 1996). 

By combining a more realistic unit of representation with more psychologically faithful learning 

models, I find a significant, robust LiM effect in which cognitively constrained learners out-

perform their idealized counterparts. 

This somewhat surprising result is in line with a broader view of LiM, where limited 

memory is believed to help learning. Notably however, it is not consistent with the traditional 

view of LiM coming from morphology that believes the underlying cause of LiM is due to a 

balance between memorization and generalization. In word segmentation, it is unclear how 

large a role memorization and generalization could play (though there is still a trade-off 

between the number and length of word forms in the developing lexicon, as discussed below in 

section 3.3.1). Given this, I propose a secondary explanation for LiM phenomena: Learners 

with a naïve model of language are biased by their cognitive limitations into discovering more 

regular and frequent structures that aid later learning - such as word forms, morphemes, or 

syntactic units - by updating a very naïve model of the language system. Under this 

interpretation, the LiM effect arises from a learning bias towards analyzing particularly 

frequent structures which give the learner a better starting point from which to generalize the 

language’s  inherent  structure. 



 

3.2 Designing psychologically faithful Bayesian learning models of word segmentation 

 The goal of cognitive modeling is not just to create an algorithm which solves a task, but 

rather to create a learning model that helps us understand how humans solve the same task. We can 

therefore break our modeled learners into two groups: ideal learners and constrained learners. The 

goal of an ideal learner (such as those in GGJ) is to investigate the utility of a particular learning 

strategy. For example, GGJ showed that an ideal Bayesian learner with a naïve language model 

could succeed at word segmentation without relying on any language-specific cues. This style of 

investigation corresponds to a computational-level analysis (Marr 1982): It defines the problem 

(often as a specific computation to be done) and asks if this problem is solvable with a learning 

strategy that incorporates specific learning biases or assumptions, irrespective of the actual 

algorithm that carries out the computation. The goal of a constrained learner (such as those in PGS) 

aligns more closely with the algorithmic-level: Is the learning strategy in question useable by 

humans? To do this, the learner must employ a psychologically faithful and plausible learning 

algorithm when using that learning strategy to solve the task. 

 Here I investigate whether Bayesian inference is a good potential learning strategy for the 

initial stages of word segmentation, focusing on the algorithmic level. Bayesian inference is a 

strategy that is useful in many domains of language learning, both at the ideal learner level 

(Foraker et al. 2009, Feldman et al. 2009, Frank, Goodman, & Tenenbaum 2009, Perfors et al. 

2011, Dunbar et al. forthcoming) and at the constrained learner level (Regier & Gahl 2004, Xu & 

Tenenbaum 2007, Pearl & Lidz 2009, Pearl & Mis 2011, Pearl & Mis 2012, Gagliardi et al 2012). 

Although constrained learners are most useful for investigating the algorithmic level, I implement 

GGJ’s  ideal  learner  as  well  for  comparison.  By  implementing  an  ideal  learner  as  well  as  several  

constrained learners that use the same underlying learning strategy, I am able to investigate how 

specific cognitive constraints affect learning with that strategy. 

3.2.1 Implementing constraints on cognitive resources 

 Since I am interested in investigating the effects of learning models that are more faithful 

to what we know about infant learning, it is important to consider learning algorithms that place 

constraints on cognitive resources. To this end, I draw on three basic facts about human learning 



when constructing the constrained Bayesian learners. First, humans – both adults and infants – 

are likely to analyze information as it comes to them, rather than waiting a predetermined 

amount of time before analyzing what they have encountered. This leads us to create online 

learners, who process information from data as the data are encountered (as opposed to batch 

learners, who wait a predetermined time before analyzing the data). Second, humans are not 

completely optimal learners (Tversky & Kahneman 1974, Cascells et al. 1978). This leads to 

creating learners who may make sub-optimal decisions given the information available (similar 

to the learners in Borschinger & Johnson 2011). Third, humans have memory limitations, some 

of which concentrate resources on recent events, often creating a recency effect (Ebbinghaus 

1902). This leads to creating a learner that replicates this memory effect (described in more 

detail in section 3.3.2). 

3.2.2 Using syllables as a representational unit 

 There has been considerable debate regarding the basic unit of representation both within 

infant learning and in adult speech perception and production. While knowledge of phonemes is 

generally assumed to be a part of adult-level linguistic knowledge (though see Liberman et al. 

(1967) and Massaro (1974) for arguments against the phoneme as a basic unit of adult speech 

perception), I pursue the idea that the syllable (or a syllable-like unit) may be the basic 

representation for infant speech perception. 

The first evidence that infants possess categorical representations of syllabic units 

appears at 3 months (Eimas 1999), where infants have categorical representations of word-initial 

syllables (e.g., /be/ in baby, and /ba/ in bottle). Notably, infants at this age have no categorical 

representation of phonemes (e.g., they would not recognize the that two syllables /be/ and /ba/ 

are similar by both beginning with the phoneme /b/). Since word segmentation first occurs 

around 6 months (Bortfeld et al. 2005), it is likely that infants have robust access to syllables at 

this age. In contrast, knowledge of phonemes does not occur until approximately 10 months 

(Werker & Tees 1984) with infants showing evidence of vowel discrimination generally before 

consonants (Polka & Werker, 1994). This scenario makes it unlikely the learner has full, adult 

knowledge of the native language phonemes during the initial stages of word segmentation. 

Although it is possible that word segmentation and phoneme learning bootstrap from one 

another, I consider the situation where infants only have access to syllabic information. 



Further evidence for the syllable as a basic unit of representation comes from acoustic 

properties of the data. While vowels, which are usually the center of syllables, may fit the 

acoustic properties necessary for perceptual units – namely, relatively invariant sound patterns in 

different contexts (although see Raphael, 1972) - many consonants do not (Delattre et al. 1955). 

In addition, stop consonants in CV syllables (e.g., /da/ or /di/) are unable to be identified by 

adults before the following vowel has also been identified (Massaro 1974, 1975), which would 

not be expected if phonemes were the basic unit of perception, given the linear nature of auditory 

perception. Thus, it may be that syllables are a potential basic perceptual unit from which 

phonemes are then recovered. For example, backward recognition masking experiments suggest 

that recognition first occurs over complete CV or VC units and individual phonemes are only 

recovered afterwards (Massaro 1974, 1975). 

While the success of previous Bayesian word segmentation models is heartening for the 

Bayesian inference learning strategy, how dependent is their success – and the limited LiM effect 

found - on the assumption of the phoneme as a representational unit? With this question in mind, 

I modify existing phoneme-based Bayesian models of word segmentation (GGJ, PGS) to operate 

over syllables. All the modified Bayesian learners treat syllables as atomic units. This mimics the 

performance of infants who are able to discriminate between syllables such as /ba/, /bu/, and /lu/, 

but who are unable to recognize the phonemic similarity between /ba/ and /bu/ that does not exist 

between /ba/ and /lu/ (Jusczyk & Derrah 1987). 

Utilizing syllables as the basic unit of representation has both benefits and drawbacks for 

word segmentation. On the one hand, it alleviates the learning problem somewhat because it 

reduces the number of potential word boundary positions. For example, pretty baby (/pɹɪɾi  bebi/)  

has  four  syllables  (pɹɪ,  ɾi,  be,  bi) but  nine  phonemes  (p,  ɹ,  ɪ,  ɾ,  i,  b,  e,  b,  i),  yielding  three  potential  

word boundary positions for a syllable-based learner but eight potential word boundary positions 

for a phoneme-based learner. Thus, the syllable-based  learner’s  job  is  considerably  easier,  since  

there are only three decisions to make (i.e., yes or no for a boundary in each position), as 

compared to eight for the phoneme-based learner. 

On the other hand, a potential sparse data problem surfaces for a syllable-based learner. A 

model operating over English phonemes must track statistics over approximately 40 units; a 

model operating over a corpus of English syllables must track statistics over approximately 2500 

units, while using less data per unit than a phoneme-based model since there are fewer syllable 



tokens than phoneme tokens in any given corpus. This increases the statistical difficulty of the 

task tremendously. Additionally, because syllables are treated as atomic units, all phonotactic 

information about English is lost in the model as there is no representation of phonemes (or 

phoneme sequences).  

Previous work on syllable-based word segmentation strategies (e.g. Yang 2004, Gambell 

& Yang 2006, Lignos 2011) has demonstrated that heuristic syllable-based learning strategies 

can perform quite well when segmenting English child-directed speech data. Still, due to the 

trade-offs discussed, it is unclear a priori whether a syllable-based or phoneme-based Bayesian 

learner will demonstrate better word segmentation performance. 
 

3.3 Bayesian word segmentation 

3.3.1 The Bayesian learning model 

Bayesian models are well suited to questions of language acquisition because they explicitly 

distinguish  between  the  learner’s  pre-existing beliefs (the prior) and how the learner evaluates 

incoming data (the likelihood).  This  information  is  combined  using  Bayes’  theorem  (1) to 

generate the updated beliefs of the learner (the posterior). Bayesian models take advantage of the 

distinction between likelihood and prior in order to make a trade-off between model fit to the 

data and knowledge generalizability (Perfors et al. 2011). 

 

(1)  𝑃(ℎ|𝑑) ∝ 𝑃(𝑑|ℎ)𝑃(ℎ) 

 

The underlying Bayesian models for all of our learners are taken from GGJ. These Bayesian 

models infer a lexicon of word forms from which the observable data are drawn. These models 

incorporate  a  prior  over  hypotheses  which  favor  “simpler”  hypotheses,  where  simpler  translates  

to two distinct biases: prefer (i) a smaller lexicon and (ii) shorter words in that lexicon. These 

models are also generative, meaning that they predict how the words and utterances of the 

observable data are generated. This requires that the learner have some idea of how sentences are 



generated. Given the limited knowledge of language structure which infants may possess at this 

age, GGJ posit two simple generative models. 

The first model assumes independence between words (a unigram assumption) – the 

learner effectively believes word forms are randomly generated with no relation to each other. 

To encode this assumption in the model, GGJ use a Dirichlet Process (Ferguson 1973), which 

supposes that the observed sequence of words w1 …  wn is generated sequentially using a 

probabilistic generative process. In the unigram case, the identity of the ith word is chosen 

according to (2): 

 

(2)𝑃(𝑤 = 𝑤|𝑤 …𝑤 ) = ( ) ( )  

 

where ni-1(w) is the number of times w appears in the previous i – 1  words,  α  is  a  free  parameter  

of the model which encodes how likely the learner is to encounter a novel word, and P0 is a base 

distribution (3) specifying the probability that a novel word will consist of particular units (e.g., 

phonemes or syllables) x1 …  xm. P0 can be interpreted as a parsimony bias, giving the model a 

preference for shorter words, since the more units that comprise a word, the smaller the 

probability of that word is - thus, shorter words  are  favored.  α  can  be  interpreted  as  controlling  

the  bias  for  the  number  of  unique  lexical  items  in  the  corpus,  since  α  controls  the  probability  of  

creating  a  new  word  in  the  lexicon.    For  example,  when  α  is  small,  the  learner  is  less  likely  to  

hypothesize new words to explain the observable corpus data, and so prefers fewer unique items 

in the lexicon. 

 

(3)𝑃 (𝑤 = 𝑥 …𝑥 ) = ∏ 𝑃 𝑥   

 

 The second model makes a slightly more sophisticated assumption about the relationship 

between words. A learner using this model believes a word is related to the previous word – i.e., 



a word is generated based on the identity of the word that immediately precedes it. GGJ call this 

a bigram assumption. To encode this assumption, GGJ use a hierarchical Dirichlet Process (Teh 

et al. 2006). This model additionally tracks the frequencies of two-word sequences and is defined 

as in (4-5): 

 

(4)𝑃(𝑤 = 𝑤|𝑤 = 𝑤 ,𝑤 …𝑤 ) = , ( )
( )   

 

(5)𝑃 (𝑤 = 𝑤) = ( ) ( )  

 

where ni-1(w’,w) is the number of times the bigram (w’,w) has occurred in the first i – 1 words, bi-

1(w) is the number of times w has occurred as the second word of a bigram, bi-1 is the total 

number of bigrams, and β  and γ are free model parameters. Both the β and γ  parameters, similar 

to  the  α  parameter  described  above,  control  the  bias  towards  fewer  unique  bigrams  (β) and 

towards fewer unique lexical items (γ). 

Both unigram and bigram generative models implicitly incorporate preferences for 

smaller lexicons by preferring words that appear frequently (due to (2) and (4)) as well as shorter 

words in the lexicon (due to (3) and (5)). A Bayesian learner using either model must then infer, 

based on the data, which lexicon items appear in the corpus (word types) as well as how often 

and where precisely they appear (word tokens in utterances).  

3.3.2 Bayesian inference 

To  use  these  Bayesian  models  to  make  the  inferences  about  the  words  in  the  input,  GGJ’s  

ideal learner used an algorithm called Gibbs sampling (Geman & Geman 1984), iterating over 

the entire corpus and sampling every potential word boundary every iteration. Gibbs samplers 

are guaranteed to converge, which makes these samplers popular for ideal learner problems, 

since it means that the true posterior of the model can be examined without the effects of 

additional constraints imposed by the learning algorithm (PGS). Notably, it often takes many 



iterations to converge on a reliable answer – for example, GGJ used 20,000 iterations for their 

ideal learners, meaning every potential boundary was sampled 20,000 times. This is clearly an 

idealization of the learning process as humans are unlikely to remember a large batch of input 

data with the precise detail required to conduct this kind of iterative learning process. 

Nonetheless,  it  addresses  the  impact  of  the  Bayesian  model’s  assumptions  on  word  segmentation,  

assuming Bayesian inference can be carried out somehow (most likely by some kind of heuristic 

approximation, e.g., see Shi et al. 2010). Because this is a batch learner that finds what it 

considers the optimal segmentation, I will refer to it as the BatchOpt learner. 

GGJ found that their bigram BatchOpt learner performed better than their unigram 

BatchOpt learner, meaning the assumption that words are dependent on previous words was a 

useful one when Bayesian inference can be carried out perfectly and the basic unit of 

representation is the phoneme. Given this, I examine this distinction in the syllable-based 

Bayesian learners. While I can implement the same ideal learning algorithm GGJ used to carry 

out Bayesian inference, I will also consider the constrained learners that PGS investigated, which 

incorporate processing and memory constraints into the Bayesian inference process. 

The Online Optimal (OnlineOpt) learner incorporates a basic processing limitation: 

Linguistic processing occurs online rather than in a batch after a period of data collection. Thus, 

the OnlineOpt learner processes one utterance at a time, rather than processing the entire corpus 

at once. This learner uses a dynamic programming algorithm called the Viterbi algorithm 

(Viterbi 1967) to converge on the optimal (maximal probability) word segmentation for the 

current utterance, conditioned on the utterances seen so far. In all other aspects, the OnlineOpt 

learner is essentially identical to the BatchOpt learner: It has perfect memory for previous 

utterances and unlimited processing resources. 

The Online Sub-Optimal (OnlineSubOpt) learner is similar to the OnlineOpt learner in 

processing utterances incrementally and using a dynamic programming algorithm to estimate 

segmentation probabilities and select a segmentation (specifically, a forward pass of the forward-

backward algorithm (Jurafsky & Martin 2000) to compute all possible segmentations, and then a 

backward pass to sample from the distribution over segmentations). However, it is additionally 

motivated by the idea that infants, and human beings in general, may not always make optimal 

choices. For word segmentation, this could mean that infants do not always select the best 



segmentation. Instead, infants could select segmentations probabilistically, based on how likely 

each segmentation is – that is, the learners sample potential segmentations. So, learners will 

often choose the best segmentation, but will occasionally choose less likely alternatives, based 

on the probabilities of the various segmentation alternatives.  

The Online Memory learner (OnlineMem) also processes data incrementally, but uses a 

Decayed Markov Chain Monte Carlo algorithm (Marthi et al. 2002) to implement a kind of 

working memory. This learner is similar to the original GGJ ideal learner in that it uses Gibbs 

sampling. However, the OnlineMem learner does not sample all boundaries; instead, it samples 

some number (s = 20000) of previous boundaries for every utterance processed.1 The probability 

of sampling a boundary b is proportional to the decayed function ba
-d, where ba is the number of 

potential boundary locations between b and  the  end  of  the  current  utterance  (“how  many  

boundaries away  from  the  end”)  and  d is the decay rate. Thus, the further b is from the end of the 

current utterance, the less likely it is to be sampled. Additionally, larger values of d indicate a 

stricter memory constraint. For example, PGS estimate that the probability of sampling a 

boundary in the current utterance for a phoneme learner is 0.942 for a learner with d=2, while the 

probability is 0.323 for a learner with d=1. In this experiment, a set, non-optimized value of 

d=1.5 was utilized to implement a heavy memory constraint. This resulted in a probability of 

0.836 for sampling within the current utterance and a probability of 0.954 for sampling within 

the current or immediately previous utterance. Having sampled a set of boundaries, the 

OnlineMem learner can then update its beliefs about those boundaries and subsequently update 

its lexicon. Because  of  the  decay  function,  the  OnlineMem  learner’s  sampling  is  heavily  biased  

towards boundaries in recently seen utterances and thus the OnlineMem learner implements a 

kind of recency effect, where recently seen items receive more processing resources than more 

distant items. This process crudely mimics the human system of working memory. One can think 

of this effect as though the learner considers every potential boundary in its limited memory, 

samples from those boundaries, and changes its mind about boundary decisions only while those 

items remain in memory; it then moves on to the next utterance. 

                                                           
1 According to PGS, this works out to approximately 89% less processing than the original ideal (BatchOpt) 

phoneme-based learner in GGJ, which samples every boundary 20,000 times. For the syllable-based learners, this 
will work out to approximately 74% less processing than the ideal (BatchOpt) syllable-based learner. 



Table 1 summarizes the different learning algorithms used for word segmentation by the 

Bayesian learners. 

 

Learning 
algorithm 

Parameters Learning assumptions encoded 

online processing sub-optimal 
decisions 

recency 
effect 

BatchOpt (i) iterations i=20,000 - - - 

OnlineOpt N/A + - - 

OnlineSubOpt N/A + + - 

OnlineMem (i) samples per utterance  

s=20,000 

(ii) decay rate d=1.5 

+ - + 

Table 1. Summary of learning algorithms used for word segmentation. 

 

3.4. Empirical grounding of the input 

 I test the syllable-based models using English child-directed speech from the Pearl-Brent 

derived corpus (PGS) from CHILDES (MacWhinney 2000). This modification of the Brent 

corpus (Brent & Siskind 2001) contains 100 hours of child-directed speech from 16 mother-child 

pairs. Because I am investigating word segmentation, I restrict the input to child-directed 

utterances before 9 months of age, leaving 28,391 utterances (average: 3.4 words per utterance, 

10.4 phonemes per utterance, 4.2 syllables per utterance). This subset of the Pearl-Brent derived 

corpus contained a total of 96,723 word tokens of 3,221 individual word types. 

While there are many ways to syllabify a corpus automatically, I opted for a two-pronged 

approach. I used human judgments of syllabification from the MRC Psycholinguistic Database 

(Wilson 1988) when available. When human judgments were not available (often due to 

nonsense words like badido and awfuls or proper names like Brenda’s or Cindy), I automatically 



syllabified the corpus in a language-independent way using the Maximum-Onset Principle 

(Selkirk 1981). This principle states that the onset of any syllable should be as large as possible 

while still remaining a valid word-initial cluster. We use this principle out of convenience for the 

kind of syllabification that infants might possess.2 Approximately 25% of lexical items were 

syllabified automatically and only 3.6% of our human judgments differ from automatic 

syllabification3. Each unique syllable is then treated as a single, indivisible unit losing all sub-

syllabic phonetic (and phonotactic) information. 

3.5 Results 

I assess the learners in terms of precision (6), recall (7) and F-score (8), where F-score is the 

harmonic mean of precision and recall (8): 

 

(6)  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = #  
#  

      

 

(7)𝑅𝑒𝑐𝑎𝑙𝑙 = #  
#  

      

 

(8)𝐹 − 𝑠𝑐𝑜𝑟𝑒 = ∗ ∗     

 

Precision and recall are considered jointly through the harmonic mean because it is possible for 

learners to succeed on one measure while failing on the other. For instance, a learner that posits 

only a single boundary scores 100% on boundary precision if that boundary is correct. In 

comparison, the same learner will have just over 0% boundary recall. Similarly, a learner could 

posit boundaries at every position, producing 100% boundary recall with very low precision 

because many of the boundaries were false. As the F-score balances these two measures, a high 
                                                           

2 Of course, since there is a lack of experimental evidence as to the exact nature of infant syllabification, I take 
this representation as only an approximation. 

3 Differing segmentations consist primarily of examples such as these: pos/ter vs. po/ster, sib/ling vs. si/bling, 
es/cape vs. e/scape. 



F-score indicates the learner is succeeding at both precision and recall. These measurements can 

be made over individual word tokens (the penguin eats the fish = 5 {the, penguin, eats, the, 

fish}), word boundaries (the penguin eats the fish = 4 {the|penguin, penguin|eats, eats|the, 

the|fish}), and lexical items (the penguin eats the fish = 4 {the, penguin, eats, fish}). 

Additionally, I also consider the log posterior scores for each learner (9-10), which can be 

interpreted as the fit between the underlying statistical model (i.e. the unigram or bigram 

language  model)  and  the  learner’s  output. 

 

(9) log(𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟) ∝ log  (Prior ∗ Likelihood)   

(10)  log  (𝑃(𝜃|𝑋) ∝ log 𝑃(𝜃) ∗ 𝑃(𝑋|𝜃) )   

 

In order to prevent overfitting and to ensure that each model is not unfairly judged based 

on vagaries of the particular data sets chosen as training and test sets, I created five different 

training and test sets, where the training set consists of 90% of the corpus, which the learner 

trained on, and the test set consists of the remaining 10%, which the learner was tested on. Each 

training-test set pair was a random split of the subset of the Pearl-Brent corpus described in 

section 3.4. All results presented here are averaged over the results of the five input sets, with 

standard deviations given in parentheses. 

To investigate LiM, I compare ideal learners (BatchOpt) against constrained learners 

(OnlineOpt, OnlineSubOpt, OnlineMem) for both syllable-based and phoneme-based Bayesian 

learners. To investigate the effect of using the syllable as the basic unit of representation, I 

compare syllable-based learners against phoneme-based learners. To investigate the utility of 

Bayesian inference as a learning strategy, I also compare the Bayesian learners against other 

learners using simpler strategies that could be viewed as reasonable baselines. 

 

3.5.1 Less is More (LiM): Overview 



 Table 2 shows the word token F-scores for ideal and constrained learners using different 

assumptions: (1) a unigram or bigram generative language model, and (2) syllables or phonemes 

as the basic unit of representation.  

 Syl-U Pho-U Syl-B Pho-B 

BatchOpt 53.1  54.8  77.1  71.5  

OnlineOpt 58.8  65.9  75.1  69.4  

OnlineSubOpt 63.7  58.5  77.8  39.8  

OnlineMem 55.1  67.8  86.3  73.0  

 

Table 2. Word token F-scores for syllable-based (Syl) vs. phoneme-based (Pho) models, 

comparing unigram (U) and bigram (B) learners. Bold scores indicate that the constrained learner 

significantly out-performs the ideal learner (p < 0.05).  

 

For Bayesian learners using a unigram language model, I find a strong LiM effect: All 

constrained learners (OnlineOpt, OnlineSubOpt, OnlineMem) significantly out-perform the ideal 

(BatchOpt) learner, irrespective of the unit of representation. In contrast, learners using a bigram 

language model only show this effect for the OnlineMem constrained learners that are syllable-

based. While online learners occasionally have certain benefits over ideal learners, such as faster 

convergence and the ability to avoid local minima (Liang & Klein 2009), decreased performance 

for most constrained learners is probably not unexpected since the constrained learner simply has 

less data (and so less information) to work with than the ideal learner when making its 

inferences. The surprising effect is when the constrained learners do better. In particular, the 

OnlineMem syllable-based learner does show the LiM effect, and a fairly strong one at that 

(OnlineMem: 86.3 vs. BatchOpt: 77.1). Interestingly, the OnlineMem learner is one of the more 

constrained learners investigated, as it includes two limiting assumptions: (i) learning is 

incremental and, (ii) a limited working memory exists. So, the fact that this learner shows a LiM 



effect is encouraging both for the general hypothesis that cognitive limitations have a beneficial 

impact on learning and also for the idea that cognitive plausibility, in the form of a modeled 

working  memory,  is  equally  useful  for  understanding  children’s  language  learning  abilities. 

 More generally, these results suggest that constrained learning is more likely to be 

beneficial if words are assumed to be independent of other words (a unigram model), as PGS 

found for a phoneme-based learner and I have shown is true for a syllable-based learner. 

Nonetheless, even if a more sophisticated language model is used where words predict the words 

that follow them (a bigram model), a LiM effect still arises in syllable-based learner (Syl-B), 

though only for the potentially more plausible OnlineMem learner. This differs from the 

phoneme-based learners, which did not show a LiM effect when a bigram language model is 

used (as PGS found). I discuss these results in more detail in the next section. 

3.5.1.1 The effect of cognitive limitations 

Focusing first on the unigram learners, we can see a strong and robust LiM effect with 

both syllable and phoneme-based models. Starting with an ideal, BatchOpt, learner (Syl: 53.1, 

Pho: 54.8), adding a constraint to process data incrementally (OnlineOpt) increases performance 

somewhat (Syl: 58.8, Pho: 65.9). Adding a sub-optimal decision making strategy 

(OnlineSubOpt) also increases performance above the BatchOpt baseline (Syl: 63.7, Pho: 58.5). 

Finally, when I implement a learner with short-term memory (OnlineMem), I again see a boost 

in performance compared to the BatchOpt ideal learner (Syl: 55.1, Pho: 67.8).  

For the phoneme-based learners, an analysis of the error patterns follows what PGS 

found: Because the unigram model is unable to account for frequently co-occurring words other 

than by assuming they are part of the same word, phoneme-based learners tend to undersegment 

frequent bigrams (e.g., at the segmented as atthe). The constrained learners appear to avoid this 

pattern early in the corpus because they have no knowledge of which bigrams are frequent. In 

this way, the constrained learners tend to segment correctly early on, adding true words into the 

lexicon which can then be leveraged to avoid undersegmentation later in the corpus.  

For syllable-based learners, I find a similar pattern where constrained learners outperform 

the ideal (BatchOpt) learner when using a unigram assumption. However, an explanation based 

on the misanalysis of frequent co-occurring words does not account for the syllable-based output. 



All syllable-based learners make roughly the same number of mistakes on these kind of frequent 

bigrams. For instance, on the frequent bigram come here, every unigram learner makes the same 

number of mistakes (22.8 mistakes per run). Current analysis is ongoing to determine the source 

of the increased performance. For example, it is possible that other kinds of errors are being 

made by the ideal learner but avoided by the constrained learners. 

Turning now to the bigram learners, I find that cognitive limitations do not appear to 

significantly aid a phoneme-based learner (BatchOpt: 71.5 vs. OnlineOpt: 69.4, OnlineSubOpt: 

39.8, OnlineMem: 73.0). However, it is notable that combining online learning with a recency 

effect (OnlineMem) does not appear to hurt learning, and indeed seems to add somewhat to 

learning, although not significantly. While this is not quite a LiM effect (since performance did 

not significantly improve when cognitive limitations were added), it may be viewed as trending 

towards such an effect since cognitive limitations are not harmful to learning, even though they 

do not specifically aid learning either.  

The syllable-based learner has a different pattern of behavior and shows the LiM effect 

quite strongly. Adding in sub-optimal segmentations to an online learner (OnlineOpt vs. 

OnlineSubOpt) increases performance (OnlineOpt: 75.1, OnlineSubOpt: 77.8). This implies that 

segmentations  with  lower  weights,  given  the  model’s  naïve  assumptions  about  language  

structure, may actually be useful sometimes. Combining a recency constraint with online 

learning yields the best performance of all (OnlineMem: 86.3), and is the most striking example 

of the LiM effect. Frequency analysis suggests that the OnlineMem learner is identifying slightly 

more frequent words than the BatchOpt learner (mean frequency = 0.00319 (OnlineMem) vs. 

0.00250 (BatchOpt)). To further understand why this LiM effect occurs, I examine the log 

posterior scores for each of the constrained learners (Table 3), which measure how well the 

segmented  output  matches  the  generative  model’s  assumptions.  Because  log  posteriors  range  

between 0 and negative infinity, scores closer  to  0  indicate  a  better  fit  to  the  model’s  underlying  

language model.  

 

 



 Token F-score Log Posterior 

BatchOpt 77.1 -552732 

OnlineOpt 75.1 -623216 

OnlineSubOpt 77.8 -631540 

OnlineMem 86.3 -577879 

 

Table 3: Bigram syllable-based log posterior and token F-scores for each learner averaged over 

five data sets. Higher F-scores indicate better word segmentation and log posteriors closer to 

zero  indicate  a  better  fit  with  the  model’s  underlying  assumptions  about  how  the  corpus  data  

were generated. 

 

Table 3 is useful in that it allows us to compare how each individual learner performs not 

just in relation to the (adult) gold standard of perfect word segmentation, but importantly how it 

performs according to the underlying naïve language model (unigram or bigram). As one might 

expect, the BatchOpt learner brings the data closest to its naïve model, which is apparent by it 

having the smallest log posterior (-552732). When the corpus is processed incrementally, we see 

a much larger deviation from the underlying model (OnlineOpt: -623216) and segmenting sub-

optimally causes an additional slight decrease in the log posterior (OnlineSubOpt: -631540). The 

OnlineMem learner, however, is further from the underlying language model than the BatchOpt 

model (OnlineMem: -577879), but closer than either of the other constrained learners. 

Nonetheless, it is the OnlineMem learner that shows the LiM effect. This suggests two things. 

First, segmenting the corpus to match an underlying unigram or bigram model does not 

necessarily result in increased segmentation performance as compared to the gold standard 

(BatchOpt vs OnlineSubOpt and OnlineMem). This is not surprising in that we know that 

language is generated by a process much more complex than a simple n-gram model. Thus, there 

may be great utility for infant learners in possessing cognitive limitations which keep those 

learners from segmenting the speech they hear in accordance with a naïve language model. 

Second, it is more important to be pushed in the right direction than simply to be pushed away 



from the naïve language model. This is apparent from the OnlineMem learner – while it was not 

pushed as far from the underlying bigram model as the other constrained learners, it nonetheless 

seems to be pushed in a better direction since its overall segmentation performance is higher. 

Both these effects may play a large role in the LiM phenomenon. In particular, if infants begin 

with naïve assumptions about the language they hear, they must be pushed towards the correct 

underlying model somehow. These results show that learners using certain cognitively-inspired 

learning algorithms can not only be pushed away from a naïve language model, but can also be 

pushed in the right direction. Importantly for the idea that cognitive realism is helpful in 

computational modeling, the closer our model mimics actual cognitive processes, the better the 

model performs. 

   

3.5.1.2 The benefit of cognitive limitations 

In order to help explain the LiM behavior of our constrained learners, and in particular 

the OnlineMem learner, I examine the types of words which each learner identifies. One possible 

explanation for the increased performance of the OnlineMem learner, especially in the bigram 

case, is that its limited working memory focuses its attention on more frequently occurring units. 

If  this  is  the  case,  then  these  frequent  items  may  account  for  some  of  the  learner’s  increased  

performance, when compared to the ideal (BatchOpt) learner. I determined this to be the case 

both qualitative and quantitatively. I find (see Table 4) that our BatchOpt learners have higher 

lexicon recall scores than their OnlineMem equivalents. In contrast, the BatchOpt learners have 

lower token recall scores. This pattern of results indicates that although the OnlineMem learner 

is picking out fewer correct word types, these words must be more frequent in order for the 

OnlineMem learner to have a higher token recall score. Quantitatively, we can measure the 

frequency of each word within our corpus and determine the average frequency for the correctly 

identified words from each learner.  A 2-tailed, paired t-test shows that the OnlineMem learner 

does identify true words that are on average more frequent than the BatchOpt learner (p < .0001) 

(BatchOpt: -5.99, OnlineMem: -5.74). This supports the hypothesis that one useful aspect of 

having a learner with working memory limitations is that it forces the learner to focus on more 

frequent - and hence more useful - items. 



 

 BatchOpt(U) OnlineMem(U) BatchOpt(B) OnlineMem(B) 

Token Recall 45.0 48.1 72.5 85.4 

Lexicon Recall 73.4 68.9 79.7 76.8 

Table 4: Unigram and bigram token recall and lexicon recall results for syllable-based learners. 

Because fewer types were correctly identified by the OnlineMem learners, yet more tokens were 

correctly identified, this indicates that the OnlineMem learner identifies more frequent words. 

Bold values indicate which learner had higher token or lexicon recall. 

 

3.5.2 Syllables vs. phonemes 

 Clearly our syllable-based learners perform well, but are syllables a better unit of 

representation than phonemes for word segmentation? Looking again to Table 2, we see that in 

the unigram case, phoneme-based learners (Pho-U) outperform their syllable-based counterparts 

(Syl-U), except in the case of the OnlineSubOpt learner. In contrast, in the bigram case, all 

syllable-based models (Syl-B) outperform their phoneme-based equivalents (Pho-B). This 

suggests that the bigram assumption is consistently helpful to a syllable-based learner. It may be 

that this is due to an additional source of information that the bigram learner has access to. In 

particular, because the unigram learner assumes that words are independent of one another, the 

transitional probabilities (TPs) between syllables are the only source of boundary information. 

Because there are roughly 2500 unique syllables, there will often be cases where a sparse data 

problem arises. In contrast, the bigram learner has access to the boundary information inherent in 

word bigrams, in addition to TPs. These word bigrams may help supplement the sparseness of 

the syllable TP data. 

3.5.3 The utility of Bayesian inference as a learning strategy 

Table 5 shows the F-scores for word tokens over all the syllable-based and phoneme-

based learners, including two additional strategies that can be used as a baseline, the TP-minima 

learner and the PerceptUnit=Word learner. The first baseline is the Transitional Probability (TP) 



model, based  on  Gambell  &  Yang’s  (2006)  investigation  and  grounded  in  empirical  infant  

studies by Saffran and colleagues (Saffran et al. 1996, Aslin et al. 1998). This strategy calculates 

TPs over perceptual units (like syllables or phonemes) and places boundaries at all local minima. 

This strategy leverages the observation that TPs tend to be lower between words than within 

words. Our second baseline is a learner that assumes each basic perceptual unit (e.g., each 

syllable or each phoneme) is a word (PerceptUnit=Word), a strategy investigated by Lignos 

(2011). When the perceptual unit is a syllable, this is a strategy that can be very useful in 

languages containing many monosyllabic words, like English (e.g., the Pearl-Brent corpus 

averages 1.22 syllables per word). 

Notably, all the Bayesian learners out-perform the TP-minima baseline strategy (Syl = 

44.0, Pho = 37.4), irrespective of perceptual unit, demonstrating the utility of the Bayesian 

learning strategy over this more simplistic statistical learning strategy. Clearly, the way in which 

a statistic, such as TP, is used makes a large difference in terms of outcome, since both the TP-

minima learner and the Bayesian learners rely up on TP, but yield markedly different results. 

Turning to the PerceptUnit=Word strategy, this strategy is clearly a terrible one for a phoneme-

based learner, since words are typically comprised of more than one phoneme.  And indeed, all 

phoneme-based learners achieve a better score than the PerceptUnit=Word learner (Pho = 2.2).  

However, we note again that this strategy is useful for the syllable-based learner because English 

child-directed speech tends to contain many monosyllabic words (e.g., the Pearl-Brent corpus 

averages 1.22 syllables per word). Though this may not be a useful strategy cross-linguistically 

for languages that typically have more syllables per word (e.g., German: 1.60, Japanese: 1.74, 

Spanish: 1.75, Hungarian: 1.97), it is quite effective for English, achieving an F-score of 72.4. 

Nonetheless, all the Bayesian syllable-based bigram learners out-perform PerceptUnit=Word, 

though the unigram learners do not. This provides additional support that the bigram assumption 

is helpful for syllable-based learners. 

 

 

 

 



 Syl-U Syl-B Pho-U Pho-B 
BatchOpt 53.1  77.1 54.8   71.5 
OnlineOpt 58.8  75.1 65.9  69.4 

OnlineSubOpt 63.7  77.8 58.5  39.8 
OnlineMem 55.1 86.3  67.8 73.0 
TP-minima 44.0 37.4 

PerceptUnit=Word 72.4 2.2 
Table 5. Word token F-scores across all learning models, including syllable-based (Syl) vs. 

phoneme-based (Pho) models, unigram (U) vs. bigram (B) models, and the baseline models.  

 

3.5.5 Summary of results 

There are four main results of this study. First, I have shown a LiM effect in the task of word 

segmentation, particularly for Bayesian learners that (i) use a more sophisticated – though still 

naïve - model of language (a bigram assumption) and (ii) perceive syllables as the basic unit. The 

fact that this effect was found for bigram learners in particular is new, as previous results 

suggested a LiM effect arises only for learners using a less sophisticated language model (a 

unigram assumption).  Second, I have demonstrated that syllables are a useful unit for word 

segmentation. Not only are syllables more psychologically faithful, given what we know about 

infant speech perception, but learners using them do two useful things:  (i) these learners 

generate more robust LiM effects and (ii) these learners provide support for the utility of the 

bigram assumption during word segmentation. Third, I find that Bayesian inference is both a 

useful and useable learning strategy for word segmentation, even if the units of perception are 

syllables, rather than phonemes. This provides additional support for the viability of Bayesian 

inference as a learning strategy infants could use. 

 

3.6. Discussion 

My results support two broad findings. First, I find that memory-constrained learners outperform 

their ideal equivalents, which I take as support  for  the  “Less  is  More”  (LiM)  hypothesis  

(Newport 1990). In particular, limited cognitive resources, rather than hurting learner, seem to 

aid word segmentation. Second, the impact of modeling assumptions is clear, as the LiM effect 

was obscured in phoneme-based learners but appeared more robustly in syllable-based learners. 



This serves to demonstrate that making more cognitively plausible assumptions in computational 

models of language acquisition may yield answers that do not come from more idealized learning 

models. 

But what exactly is causing the LiM effect here, particularly in the syllable-based bigram 

learner? PGS found an LiM effect for their phoneme-based learners, but only for learners using a 

unigram assumption – not for learners using a bigram assumption.  One idea is that this is due to 

the properties of online vs. batch unsupervised probabilistic learning algorithms. Liang & Klein 

(2009) show that for unsupervised models using Expectation-Maximization, online models not 

only converge more quickly than batch models, but, also in cases as varied as word 

segmentation, part-of-speech induction, and document classification, online models can actually 

outperform their batch equivalents. However, this explanation fails to account for my results in 

two ways: (a) the most direct online equivalent of the ideal syllable-based learner (the OnlineOpt 

learner) actually performs worse than the ideal syllable-based learner (the BatchOpt learner), and 

(b) this does not explain the performance boost caused by sub-optimal decision-making (the 

OnlineSubOpt learner). 

Another idea is that the answer lies in the kinds of words these models identify. I find 

(see Table 4) that the ideal bigram learner correctly segments 72.5% of the words in the input, 

building a lexicon that contains 79.7% of the actual word-types it encounters. Yet I find that a 

learner with memory constraints (the OnlineMem learner) can successfully segment 85.4% of the 

words in the input, although this makes up only 76.8% of the word-types encountered. This 

suggests that while an ideal learner identifies more lexical items, the memory-constrained learner 

identifies more frequent lexical items. Not only is this true in both the unigram and bigram 

syllable-based learners, but it is also true of the equivalent phoneme-based learners of PGS. The 

robustness of this phenomenon suggests that, irrespective of the representational unit, memory-

constrained learners are biased towards identifying more commonly occurring units, a potentially 

useful bias in language acquisition. In effect, this strategy in word segmentation can be thought 

of  as  helping  to  learn  the  “important”  things.  One  can  think  of  this  memory-constrained learner 

as one which can retrieve recent knowledge from its memory buffer for later analysis. These 

processes of retrieval and working memory have been shown to play a crucial role both in 

language development (Rose et al. 2009) as well as in the way adults regularize input (Hudson 



Kam & Chang 2009). Although this has been hypothesized by the literature on LiM in artificial 

language learning (Kersten & Earles 2001, Cochran et al. 1999), I am unaware of computational 

support for why constrained processing helps in realistic language acquisition without the 

presence of an additional bias towards correct generalization (e.g., see Perfors 2011, in press). 

The fact that this study can help to explain the factors underlying the LiM effect highlights a 

very major contribution computational modeling can make to developmental research more 

generally. 

For the claim regarding the impact of the unit of representation, I can compare the 

syllable-based learner results with those of phoneme-based learners. I found a number of crucial 

distinctions (see Table 2). First, and most basically, syllable-based learners perform well, and in 

the bigram case, better than phoneme-based learners. This suggests that the tradeoff between the 

number of potential boundaries and number of potential transitional probabilities works out in 

favor of the syllable-based learner. This underscores the utility of a Bayesian inference strategy 

for the initial stages of word segmentation – without access to phonotactics, stress, acoustic cues, 

or innate linguistic knowledge, a learner can be very successful at segmenting words from fluent 

speech. 

Still, I find that a learner using a bigram assumption can have very divergent behavior, 

depending on the unit of representation. There is a major difference in the performance of the 

sub-optimal (OnlineSubOpt) learner: The syllable-based OnlineSubOpt learner has comparable 

performance to the ideal BatchOpt learner (OnlineSubOpt=77.8, BatchOpt=77.1) while its 

phoneme-based equivalent suffers greatly in comparison with the ideal learner 

(OnlineSubOpt=39.8, BatchOpt=71.5). I speculate that this is due to the number of potential 

segmentations the phoneme-based learner considers, compared to the syllable-based learner. In 

particular, since the OnlineSubOpt learner chooses a segmentation probabilistically, the 

phoneme-based learner may be more easily led astray in the initial stages of segmentation, and 

never recover. In addition, I also notice a strong LiM effect in the syllable-based learner that is 

not present in its phoneme-based counterpart (Syl: BatchOpt=77.1, OnlineMem=86.3; Pho: 

BatchOpt=71.5, OnlineMem=73.0). More generally, by making more realistic assumptions about 

the  learner’s  unit  of  representation,  I can create a learner that exhibits the kind of behavior that 



infants show. This highlights one benefit of pursuing more cognitively plausible computational 

models, as opposed to models that are more idealized. 

In that vein, there are a number of areas where I could improve the existing syllable-

based Bayesian learners. First, some segmental cue information is likely available to infants, 

such as phonotactic or articulatory cues. Similarly, suprasegmental cues such as primary stress 

are known to affect infant word segmentation (Jusczyk et al. 1999b, Thiessen & Saffran 2007) 

and there is evidence that stressed and unstressed syllables are represented separately in infant 

memory (Pelucchi, Hay, & Saffran 2009). Finally, the exact form which infants use to represent 

syllables is unclear. While syllabification must occur, it is unclear precisely how it occurs. When 

one looks cross-linguistically, languages treat syllabification in very different ways. For instance, 

it is well documented that in Spanish, syllabification occurs without respect to word boundaries, 

with any particular syllable potentially containing phonemes from multiple words (Harris 1982). 

German, on the other hand, tends to avoid these post-lexical resyllabifications (Hall 1992). In 

addition, languages vary significantly on the number of syllable types they have – languages 

such as English number their unique syllables in the thousands, while some languages, like 

Japanese, have very few unique syllables. To ensure that this pattern of results is truly 

representative of word segmentation generally and not just in English, syllable-based word 

segmentation models must be tested on data from multiple languages. I am currently 

investigating these ideal and constrained models of word segmentation in a variety of languages 

with data available in the CHILDES database (MacWhinney 2000), including German, Spanish, 

Italian, Japanese, Hungarian, and Farsi. 

 

3.7. Conclusion 

This study highlights the benefits of using empirical research from psychology to inform 

decisions about modeling language acquisition. By combining cognitive limitations with a more 

realistic unit of representation, I find more robust support for the somewhat counterintuitive 

“Less  is  More”  (LiM)  hypothesis  that  states  cognitive  limitations  can  aid,  rather  than harm, 

learning. This demonstrates the utility of adding cognitive plausibility to idealized models of 

language acquisition. More broadly, this type of research can aid the discovery of language 



learning strategies that are both useful (which a computational-level modeling approach can 

identify) and useable (which an algorithmic-level modeling approach can identify). By looking at 

both types of learning models, I find additional support for Bayesian inference as a learning 

strategy children may use during language acquisition. Additionally, I have shown computational 

support for the existence of LiM phenomena outside the traditional realms of morphology and 

syntax. Because of the computational model, I can not only generate LiM effects, but investigate 

why these effects occur. In this case, it may be that cognitive limitations push learners towards 

more frequent structures from which later linguistic knowledge may be bootstrapped. More 

generally, this style of computational work allows us to not only identify the strategies that are 

likely to be used by children, but also to discover potential explanations for existing, sometimes 

puzzling, observations about child language acquisition, as with the  “Less  is  More”  hypothesis.   

 

4 Investigation 2: Phone learning 

4.1 Introduction 

At the same time that infants are beginning to segment words out of the fluent speech stream, 

they are also faced with the task of splitting these words into their constituent units, syllables and 

phonemes. While syllables may be a natural perceptual unit for infants (Massaro 1974, 1975), 

phonemes are a representation that must be constructed from the acoustic data. To make things 

trickier, any given phoneme can have multiple phonetic realizations (for example, the phoneme 

“t”  in  top [t]  is  pronounced  differently  than  the  “t”  in  stop [th] – the latter has a small puff of air 

accompanying it, called aspiration). These phonetic outputs are called phones and represent the 

basic inventory of sounds in a language (Chomsky & Halle 1968). The relationship between 

phonemes and phones is further complicated because any given phone may correspond to 

multiple phonemes, depending on its context (for  example,  ….[something with the flap sound? 

water /t/ vs. muddy /d/]). Still, infants begin learning this phonetic inventory around 6 months 

(Polka & Werker 1994), have correctly identified most sounds – both phones and phonemes – in 

their native language by 12 months (Werker & Tees 1984). 

 As the identification of phones is often assumed to be a precursor to identifying the 

mapping between phones and phonemes (though see Dillon et al. 2011), we can reasonably 



wonder how the inventory of phones is first discovered. One popular explanation in recent years 

has been that infants use distributional learning. Much research has begun to show that infants 

are aware of the distributional information around them and that they are capable of using that 

information to make decisions (Saffran et al. 1996, Xu & Garcia 2008, Xu & Denison 2009). 

Given that infants might have access to this kind of information, they might naturally rely on it 

when trying to solve the task of phone and phoneme identification. Recent research has 

investigated Gaussian Mixture Models (GMMs) as a representation of the learning process 

(Feldman et al. 2009, Vallabha et al. 2007, Dillon et al. 2011). This type of model assumes that 

there are a set number of phonetic items to be learned, and learning consists of discovering the 

parameters of a multi-dimensional Gaussian which represents the acoustic realization of that 

phone. This type of strategy is known to work well for categories with only slight overlap, but 

has had mixed success with vowels, where categories often overlap heavily (Feldman et al. 2009, 

Dillon et al. 2011). To combat the failure of the GMM for vowels, Feldman et al. (2009) create a 

GMM which incorporates information at the word level, simultaneously and successfully 

learning a lexicon of invariant word forms as well as the phonetic categories that comprise these 

word forms. 

 However, an issue with this approach concerns how to represent acoustic data used as 

input. Typically, measures used by phoneticians such as voice-onset time and formant 

frequencies are utilized, based on the availability of software to determine such values from the 

acoustic data and these  properties’ apparent linguistic relevance. It remains an open question as 

to how infants know (or learn) to pay attention to such acoustic properties, among all the 

properties available. Further, by focusing on these kind of measures, there is no way to model the 

learning of all phonetic categories. For example, vowels are typified by their formant 

frequencies, yet most consonants have no formants which can be measured or which are relevant 

to the identity of the consonant. It is also unclear how consonants such as nasals, glides, liquids 

or fricatives could be quantified through similar acoustic measures. 

 In order to address this problem, we need some acoustic measure which applies to all 

phones but which is also more compact (and abstract) than the raw acoustic signal. One measure 

which has gained wide acceptance within the machine learning community for these kinds of 

acoustic identification problems is based on the mel-frequency cepstrum (Imai 1983). This 



cepstrum is the discrete cosine transform of the log Fourier transform of an acoustic signal. 

Additionally, all of this is calculated on the mel-frequency scale, which is based on the 

subjective perceptual abilities of humans which is a log function of objective pitch (Stevens et al. 

1937). The cepstrum can then be quantified through the set of mel-frequency cepstral 

coefficients (MFCCs) which collectively define the cepstrum. Some subset of these MFCCs are 

then used as the basis for learning, having been applied to speech recognition (Viikki & Laurila 

1998), speaker identification (Reynolds 1994), and information retrieval concerning music 

(Logan 2000). MFCCs are based on a perceptual scale which mirrors human abilities, but it is 

unknown what specific transforms are calculated within the auditory cortex. Nevertheless, one 

can use MFCCs as a potential stand-in, with the idea that similar methods might also reasonably 

be employed by the infant brain. 

 An additional concern with many current models is that they have yet to be tested on 

realistic data. Because formants and voice-onset time are difficult to measure in fluent speech, 

most models are tested on acoustic data from experiments (Feldman et al. 2009) or on generated 

data from Gaussians derived from child-directed speech (Vallabha et al. 2007). These 

experiments typically include a small number of speakers, potentially only of one gender, 

producing a small set of words in isolation. This raises the question not only of whether the 

acoustic patterns of these measures differ in the real world, but also of whether these statistical 

learning methods are capable of handling the noise which comes from learning in the real world. 

4.2 Modeling language learning with infinite Hidden Markov Models 

 Once a measure is defined to summarize the acoustic input, we can then ask how to 

model the linguistic system and how to use that model to learn from the input. Because language 

is in one sense a signal broadcast over time, it often makes sense to model it as a simple hidden 

Markov model (HMM; Rabiner 1989). HMMs build off of the basic assumption of a Markov 

chain. The state of any Markov chain is necessarily dependent only on the immediately 

preceding state. The Markov chain is built off a hidden state sequence, Z = (z1, z2,  …,  zN). Each 

value of Zi corresponds  to  a  particular  hidden  state  {1  …  K}  where  K  is  some  finite  integer.  

Every hidden state is associated with an observed variable in the sequence, Y = (y1, y2,  …,  yN). 

The HMM is parameterized through a transition matrix which captures the dependency between 

any two hidden states Zi and Zj, where Tij = p(Zn = i | Zn-1 = j).The initial state probability is 



parameterized  as  πi = p(Z1 = i). Additionally, for every hidden state Zi there is some emission 

probability, parameterized  by  φZt = p(Yt | Zt). We can therefore write the joint distribution over 

hidden states Z and observed variables Y as: 

(11)  𝑝(𝑍, 𝑌|𝜋, 𝑇, 𝜑, 𝐾) =   ∏ 𝑝(𝑍 |𝑍 )𝑝(𝑌 |𝑍 ) 

In order to do Bayesian inference over this model, we must first describe the model priors. The 

observation  paramaters  φ  are  drawn  from  the  arbitrary  prior  distribution  H.  Typically,  priors  for  

T  and  π  are  set  as  symmetric  Dirichlet  distributions, given that we have no additional information 

about what form these parameters might take. 

 One issue with this type of model is that it assumes that the number of possible hidden 

states is known a priori. This cannot be true for phone learning as languages vary widely in the 

number of phones that they possess and the size of the phonetic inventory is something infants 

must learn on their own. Therefore, it is more appropriate to let the model determine an 

appropriate number of states in an unsupervised fashion. The infinite HMM (iHMM) represents a 

nonparametric version of the standard HMM where the value of K allows for a countably infinite 

number of hidden state values. Such a system could be implemented in many different ways. 

One  attempt  might  be  to  take  K  →∞.  Such  an  attempt  fails  in  the  context  of  an HMM because 

there is no coupling between the transitional probabilities between different states – this is due to 

the independent priors they are given (Beal et al. 2002). This problem can be solved through a 

hierarchical Dirichlet process (Teh et al., 2006). We can introduce a coupling between different 

hidden states by assigning Dirichlet priors with shared parameters: 

(12)  𝑇 ~  𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼𝛽) 

(13)  𝛽  ~  𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡( … ) 

As K →∞  this  approach  begins  to  approximate  the  hierarchical  Dirichlet  process  (HDP).  The  

true HDP is a set of Dirichlet processes (DPs) coupled through a base measure which is shared 

by all DPs and which is itself drawn out of a DP (Teh et al. 2006). That is, each DP is distributed 

as Gk ~  DP(α,G0) where G0 is a shared base measure. One can understand G0 as the mean of Gk 

while  α  >  0  controls  the  variability  around  G0 (sometimes called its concentration), with smaller 



values  of  α  leading  to  larger  variability.  G0 is also drawn from a DP, G0 ~  DP(γ,  H)  where  H  is  

again a global base measure for the entire system. 

 Through the stick-breaking construction for HDPs (Teh et al. 2006), we can identify that 

Gk describes  the  transition  probabilities  between  states  k  and  k’  as  well  as  the  emission  

probabilities,  φk’.  This  allows  us  to  define  the  iHMM  as  such: 

(14)  𝛽  ~  𝐺𝐸𝑀(𝛾),              𝑇 |𝛽  ~  𝐷𝑃(𝛼, 𝛽),            𝜑 ~  𝐻 

(15)  𝑍 𝑍 ~  𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑇 ,            𝑌 𝑍 ~  𝐹 𝜑    

Here  GEM(γ)  is  the  stick-breaking construction for DPs (Sethuraman, 1994). Figure 1 captures 

the graphical model structure of this hierarchical formalism. We can recapture the original HMM 

structure  simply  by  setting  β  =  (1/K  …  1/K,  0,  0  …)  where  β  is  non-zero for only the first K 

entries.  Given  that  we  are  uncertain  about  the  particular  values  of  α  and  γ, we place gamma 

hyperpriors on these variables  such  that  α  ~  Gamma(aα, bα)  and  γ  ~  Gamma(aγ, bγ). 

 

Figure 1. Graphical model implementation of iHMM 

 

4.3 Planned work and discussion 

The first question is whether this model is capable of identifying the correct phones (and their 

acoustic distributions) from acoustic data. If it can, this provides a computational-level existence 

proof of the viability of such a statistical learning strategy. However, this type of model clearly 



possesses many abilities which infants lack. To begin with, the data are analyzed all at once 

(batch learning), rather than in an incremental fashion (online learning). Also, this approach uses 

an idealized learning algorithm for making the inference about the number and distribution of 

phones in the language, and so does not include the kind of cognitive constraints infants possess. 

It may therefore be useful to investigate constrained learning algorithms that implement this 

statistical learning strategy if it does indeed succeed with an unconstrained learning algorithm. 

In addition, there may well be an interaction between phone learning, word segmentation, and 

lexical development as suggested in Feldman et al. (2009). Experimental evidence suggests that 

these learning tasks are solved somewhat simultaneously, and it may be that information from 

one task may usefully inform the other tasks. 

 

5. Conclusion 

Any model of language acquisition, whether computational-level or algorithmic-level, is only as 

worthwhile as the assumptions that it makes about the learning problems children face. I 

investigate two learning problems infants solve in their first year of life, word segmentation and 

phone learning, incorporating more realistic assumptions into computational models of these 

processes. This affects both the framing of the general learning problem as well as the 

implementation of the learning process itself. The field of language acquisition modeling has 

seen a growing shift towards this viewpoint, but it is still gaining momentum. 

 A number of previous studies have shown that modeling more realistic learning is not 

only possible, but often changes qualitative trends which had previously been seen in other more 

idealized models; for example, studies of phone identification (Feldman et al. 2009), word 

segmentation (Pearl et al. 2011, Phillips & Pearl 2012), word learning (Frank et al. 2007), and 

syntax (Pearl & Sprouse 2012). These results should be taken seriously because these models 

inform how we understand infant learning generally. More broadly, this can impact the debate 

about the role of statistical learning in early language development, and the trade-off with innate 

knowledge of the hypothesis space for solving the language acquisition problem. 
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