Using Meaning Specificity
to Aid Negation Handling
in Sentiment Analysis

Doreen Hii
Computation of Language Laboratory, UCI

Abstract

Sentiment analysis is an automatic way of classifying emotion (positive,
negative or neutral) expressed in written texts. This project focuses on
one aspect of sentiment analysis — negation handling, which determines
the sentiment of an input with negation words such as “no,” “not,” and
“never.” I approached this challenge from the stage of negation resolution,
assuming the existence of a working negation scope detector. Negation
resolution is the stage where an algorithm decides and applies the adjustments
needed to account for the effect of negation. A novel strategy, meaning
specificity, was proposed, where components of meaning are incorporated
into negation handling. The value of the meaning specificity approach was
first validated via calculations of information gain and then compared with
previous methods of negation resolution in a sentiment analysis pipeline.
The meaning specificity approach offered higher information gain over non-
semantic approaches; at the same time, it achieved the highest performance
when tested on a selected hard subset of product reviews.

1 Introduction

Sentiment analysis is a technique to determine the sentiment (sometimes called
valence or polarity) of text (e.g., a phrase, sentence, paragraph, or document), based
on linguistic signals of that sentiment. For example, a company or a politician can
determine the overall customer satisfaction of a new product or a new policy by
classifying reviews into positive, negative, and neutral categories. The benefits of

performing sentiment analysis go beyond monitoring customer satisfaction; it also
serves as a foundation for realistic human-machine interaction generally.

One important aspect of sentiment analysis is negation handling, where nega-
tions (e.g., in English, words like “not,” “no,” “never,” and “neither”’) can dramati-
cally alter the affirmative expression, i.e., any expression that is not negated. For
example, “I am happy” is an affirmative expression with a positive sentiment score
while “I’m not happy” is a negated expression with a negative sentiment score.
This illustrates one of the many interpretations of negation: negation flips or inverts
positive sentiments to negative. Another interpretation of negation is that negation
diminishes an affirmative sentiment, as in the case “It’s not terrible,” where the
affirmative context “terrible” is diminished in negativity, though it remains negative
after negation is applied. Yet another possible effect of negation is shifting the
affirmative sentiment to neutral. For example, “This is bad” carries a negative
sentiment while “This is not bad” is somewhat neutral: it is not at negative as
before negation is applied but it is not positive enough to be deemed as a positive
expression. Notably, humans are extremely sensitive to the nuances of negation
and often arrive at the intended polarity. In fact, due to the sophistication of human
negation handling, improper machine negation handling stands out to human eyes
as quite noticeable.

Importantly, negation often disrupts state-of-the-art sentiment analysis. As an
example of this kind of mistake, Google’s sentiment analyzer categorized the fol-
lowing statement as a strongly positive message (score=+0.8, where -1<score<1):
“I didn’t think that the instructions provided were helpful to me.” To humans,
this sentence clearly expresses a negative sentiment. Given this, I focus here on
improving negation handling in sentiment analysis.!

Generally, there are two steps to negation handling in sentiment analysis: (1)
negation scope detection and (2) negation resolution. Negation scope detection is
first applied to determine the content to be negated, called the scope of negation, and
negation resolution adjusts the sentiment in the scope to reflect negation. To date,
different approaches to both negation scope detection and negation resolution have
been implemented to increase the accuracy of sentiment analysis when negation
is involved. My work centers on developing an accurate and lightweight negation
resolution algorithm, which would be applied at the second stage of negation
handling.

'Note that my work focuses on explicit designs of negation handling functions using a lexicon-
based approach, which is different than the implicit machine learning approach implemented by
Google’s sentiment analyzer. However, insights gained from this study can be incorporated into
future works in both lexicon-based and machine learning systems.

2

I propose a novel approach to negation resolution, one that incorporates compo-
nents of meaning in addition to sentiment value. In particular, I focus on one aspect
of meaning: specificity (the notion that “beautiful” is more specific than “nice”), as
one of the many cognitive ingredients utilized by humans during negation handling.
I refer to the novel method as the meaning specificity approach.

The paper is organized as follows: I first review previous approaches to nega-
tion resolution, and then both motivate and distinguish the meaning specificity
approach from other approaches. I then discuss measures that may correlate with
meaning specificity and how I calculate them automatically for any word or phrase.
Following that, I demonstrate the validity of the extracted meaning specificity com-
ponents by quantifying information gain as a reduction of entropy. I subsequently
discuss the incorporation of this approach into a full sentiment analysis pipeline
and its evaluation on a development corpus that contains many examples of negated
content. I then present the improvement achieved from implementing the meaning
specificity approach and highlight the domain in which its application leads to
better performance. Lastly, I discuss the limitations and motivate future research in
light of the current results.

2 Compilation of dictionaries for lexicon-based sen-
timent analysis

There are two main approaches to sentiment analysis: lexicon-based and machine-
learning-based. A lexicon-based system explicitly specifies the values of sentiment
as well as the rules to combine them; a machine learning system implicitly arrives at
its predictions after a training phase with lots of examples. In this study, I adopted a
lexicon-based approach due to the interpretability inherent to an explicit system and
the ability to make direct inferences about the contributions of a specific variable.
Using lexicon-based systems, I can isolate the benefits obtained from adding a
specific variable, in this case meaning specificity, in improving the performance
of a sentiment analyzer. The results of this study can be translated into machine-
learning based systems by including meaning specificity as a feature or using word
representations that captures the notion of specificity.

The starting point of a lexicon-based sentiment analysis system is their lexicon
or dictionary. A sentiment dictionary serves as a lookup table that associates small
tokens or building blocks of language (typically a word or a short phrase) with
its sentiment value. Sentiment analysis of larger inputs (sentences, paragraphs,

or documents) are realized by aggregating these tokens. Since all components of
lexicon-based sentiment analysis hinge on having a reliable and comprehensive
dictionary, I discuss in the following subsections strategies that I used to compile
my sentiment dictionary.

2.1 Areliable and comprehensive sentiment dictionary for lexicon-
based approaches

For a lexicon-based sentiment analysis, it is crucial to have a comprehensive
dictionary of sentiment scores for both individual words (e.g., “good”) and larger
idioimatic phrases (e.g., “good grief”). In an ideal case, a sentiment dictionary
would have sentiment values associated with every word that carries sentiment.
More importantly, each entry in the sentiment dictionary should be reliable, being
a close estimate of reality. In short, there are two crucial properties to a sentiment
lexicon: (1) reliability and (2) comprehensiveness.

The most reliable dictionaries publicly available are manually annotated ones
(Kiritchenko and Mohammad, 2016a,b). However, there is a trade-off between
reliability and comprehensiveness. Due to the cost of manual annotation, these
dictionaries are limited in size. In an attempt to create a comprehensive dictionary,
Kiritchenko et al. (2014) leveraged text from Twitter and automatically associated
the sentiment.

Since manually annotated and automatically generated dictionaries comple-
ment each other in comprehensiveness and reliability, I compiled both types of
dictionaries into a single dictionary. To limit the compromise on reliability, more
reliable (manually annotated) dictionaries were checked for a sentiment score
before less reliable (automatically generated) dictionaries, according to the priority
order in Table 2.1. Manually annotated dictionaries always ranked higher in priority
than automatically generated ones. I further determined the priority ordering of the
dictionaries by manually inspecting a random sample of entries and seeing if they
accorded with my intuitions about term sentiment scores. This allowed the most
reliable entries from the manually annotated lexica to be utilized, but also keep the
vast scope of entries available from automatically annotated lexica.

The compiled sentiment dictionary is composed of 248,646 entries of 75,959
unigrams and 172,687 bigrams. Of all entries combined, I compiled a total of
104,034 positive sentiment entries and 144,612 negative sentiment entries.

Table 1: Priority ordering of manually-created and automatically-generated senti-
ment dictionaries.

No. | Valence Dictionary Entries | Source
SemEval2015-English-Twitter- Kiritchenko et al.
1 . 1,500
= Lexicon (2014)
= Kiritchenko and
g i,
g 2 SCL-NMA 3,200 Mohammad (2016a)
Kiritchenko and
3 | SCL-OPP 12001\ fohammad (2016b)
NRC-Hashtag-Sentiment- Kiritchenko et al.
4 Lexicon-v1.0 370,660 (2014)
!5 NRC-Emoticon-Lexicon-v1.0 | 740,166 (Iégllt;';lenko etal
=
< 6 NRC-Hashtag-Sentiment- 997 303 Kiritchenko et al.
AffLexNeglex-v1.0 ’ (2014)
NRC-Emoticon- Kiritchenko et al.
7 AffLexNeglex-v1.0 329,315 (2014)

2.2 Constructing the gold standard with affirmative and negated
sentiment scores

I now describe the construction of the gold standard, i.e., a sample lexicon, with
examples of affirmative sentiment scores and their negated ones, that would serve
as training data to allow tuning of any model parameters. Affirmative sentiment
score is the shared starting point for all models, while the negated sentiment scores
are the known finishing points. Different models decide the importance of any
given feature based on its contribution in moving the model output towards the
final target.

I extracted 1631 words (unigrams only) with both affirmative (“happy”) and
negated (“not happy”’) sentiment scores from an automatically generated lexicon,
the NRC Hashtag Negated Context Sentiment Lexicon (NRC lexicon)? (Zhu et al.,
2014).

Since the lexicon was automatically generated from real-world tweets, it is
inherently noisy. To ensure the quality of my gold standard, I applied rigorous

2This lexicon was chosen as it is an updated version of Sentiment140 Lexicon (Mohammad
et al., 2013), the lexicon which inspired my hypothesis.

filters. As I am interested in words that carry sentiment, I greatly reduced the
number of entries for consideration by removing entries whose sentiment value
falls in the range -0.01 to +0.1 (close to neutral). I then removed entries where the
word is not found in my compiled dictionary from section 2.1. This removed novel
words, atypical typos, and entries that contained pure numbers or symbols. Then, I
compared the affirmative score from my dictionary with the negated score from
the NRC lexicon, and removed instances where the negated sentiment is not in the
opposite direction of its affirmative score. This removed random noise from the
lexica, e.g., “not great” being more positive than “great”, or “not terrible” being
more negative than “terrible.” To make sure the gold standard represents actual
usage of negation, I removed instances of words that are rarely used in negation.
This filter removes an entry if the word does not co-occur at least once with any
negation words in the 82.8-million Amazon review corpus (He and McAuley,
2016; McAuley et al., 2015). Note that negation is determined by the presence of
negation keywords provided in Table 2.

Table 2: Negation words as suggested by Carrillo-de Albornoz and Plaza (2013)

no not n’t
cannot never none
nothing neither nowhere
nobody

The total number of entries after the filtering was 232, with 134 nouns, 44
verbs, 33 adjectives and 9 adverbs. I then only included adjectives and adverbs in
my gold standard dictionary. Nouns and verbs were removed because negation of
these syntactic categories depends primarily on contextual information, which is
out of the scope of the current research. For example, for the noun “egg,” “no egg”
could carry a negative sentiment when discussing an egg sandwich order but would
carry positive sentiment for a vegan restaurant. Similarly, verbs such as “charged”
carry positive sentiment to electronic devices while being negative when used in
the context of bills.

Among the 42 entries of adjective and adverbs are 34 positive and 8 negative
entries. I note that the unbalanced nature of my gold standard is disadvantageous
for methods tuned by using the gold standard. One may tweak the filtering criteria
but I felt it necessary to apply strict filtering given the noisy data set I am dealing
with.

The resulting list of adjectives and adverbs were manually inspected to make
sure that they match my intuition of approximate sentiment. A complete list of

6

words included in the gold standard are in Appendix A. I acknowledge that it
is sub-optimal to regard an automatically generated lexicon as the gold standard.
However, as a preliminary check for the effect of including meaning specificity
in negation handling, I consider the current choice of lexicon reasonable (after
applying strict filters and inspecting the entries manually). Future research could
consider obtaining human data for a cleaner and more accurate representation of
human negation handling, removing pollution of undesirable noise sprinkled across
automatically generated datasets.

3 Previous negation resolution approaches and their
implementations

3.1 Prior approaches
3.1.1 Inverting

Inverting the sentiment score is the simplest and coarsest way to handle negation.
For example, the adjective “good” has a sentiment score of +0.66 and “terrible”
has a sentiment score of -0.70. While it seemed reasonable to invert a positive term,
1.e., assigning “not good” to have sentiment score of -0.66; inverting a negative
term is less intuitive. That is, using inversion to resolve the negated sentiment of
“not terrible” would lead to “not terrible” being more positive (0.70) than “good”
(0.66), which does not seem to be true.

This highlights one salient problem with using inversion to handle negation
resolution. In particular, negating negative valence items like “terrible” seems
to require a different process than negating positive valence items like “good”.
As Reitan et al. (2015) acknowledged, “just inverting the sentiment polarity of a
negated term is incorrect.” I used inversion as one of my baselines with respect to
handling negation resolution.

3.1.2 Asymmetrical shift

One response to the noted asymmetry when negating positive and negative terms
is to use an asymmetrical shift. In this approach, there are two sets of rules to
resolve negation, one for positive sentiment terms and one for negative sentiment
terms. Socher et al. (2013) implicitly implemented asymmetrical shift by learning

separate negation resolution rules for positive sentences and negative sentences,
and thereby increased sentiment accuracy.

I used explicit asymmetrical shift as a second baseline with respect to handling
negation resolution. To infer the negation handling rules that would apply to
positive versus negative sentiment terms, I used the lexicon from Section 2.2 of
42 adjectives and adverbs (8 negative and 34 positive) that was automatically
generated from Kiritchenko et al. (2014), which included sentiment scores for both
the word (e.g., “happy”) and its negated form (e.g., “not happy”). I then performed
a multiple regression on this lexicon, yielding the following rule:

(D Negated = —0.06592 — 0.3632 * Sentiment

Sentiment is the affirmative sentiment score for the original item (e.g., for
“happy” or “terrible”) while Negated is the score for the negated item (e.g., for
“not happy” or “not terrible”). So, this rule takes the original sentiment score,
diminishes it (scaling it by a value of 0.3632), inverts the diminished sentiment
score, and then shifts the final negated sentiment by a constant (-0.06592). Notably,
the constant (-0.06592) causes an asymmetry in positive vs. negative sentiment
terms. For example, an original score of 0.6 leads to a negated score of -0.28 (shift
amount: 0.88), while an original score of -0.6 leads to a negated score of 0.152 (shift
amount: 0.75). So, positive valence terms have a larger shift compared to negative
valence terms. This means negative terms are more likely to be less positive (and
possibly even remain negative) when negated, in line with Kiritchenko et al. (2014).
Using the equation, “not good” is assigned a negated sentiment score of -0.30 and
“not terrible” a negated sentiment of 0.19; so, this approach yields more intuitive
negated sentiment scores compared to inverting. However, the effectiveness of
applying the same equation to all negation instances is yet to be determined. With
an appropriate shifting equation, asymmetrical shift is a straightforward and simple
approach. Nevertheless, accuracy when applying a fixed rule to every negated term
is yet to be determined.

3.1.3 Antonym dictionary

Another approach is to use an antonym dictionary (Carrillo-de Albornoz and Plaza,
2013), which recognizes that a term’s sentiment score may not capture all the
components necessary to compute its negated sentiment score. An antonym dictio-
nary works by first replacing the to-be-negated word with its antonym (e.g., “not
good” replaced with “bad”). Then, the sentiment value of the antonym (e.g.,“bad”)

8

will be used as the negated sentiment for the original term (e.g., “good”). With
an antonym dictionary negation approach, “not good” would have a sentiment of
-0.5 (because “bad” has a sentiment score of -0.5) and “not terrible” would have a
sentiment of 0.66 (because “good” has a sentiment score of 0.66°). This approach
therefore requires an antonym dictionary in addition to a sentiment score dictionary.
However, to my knowledge, a robust antonym dictionary doesn’t yet exist and the
construction of one requires substantial work.

I used an antonym dictionary approach as a third baseline with respect to
negation resolution. As mentioned, one significant issue is reliably identifying
a word’s antonym. To identify antonyms for sentiment-bearing words, my im-
plementation attempts to extract antonym relationships from WordNet (Miller,
1995). If a target term’s antonym is not directly defined by WordNet, a sequence
of searches is performed before I conclude a word has no antonym. Take for
example the verb “recommend.” At first pass, there is no antonym directly defined
for “recommend” at WordNet. Therefore, I iterate through the target’s synonyms
to identify the first defined antonyms. Synonyms of “recommend” are “urge’
and “advocate.” However, those two words do not have direct antonyms either.
I proceed to check if any of the target term’s attributes have antonyms. In the
case of “recommend,” there is no attribute attached to it. Since that failed, I then
try the term’s derivationally-related forms (words that share the same root and
are semantically related (Miller, 1995)), which gives us “recommendation” and
“urgency,” both of which did not have antonyms associated. Lastly, I move to the
listed similar words, which unfortunately for “recommend,” is an empty list. Since
all searches failed to identify an antonym, I conclude that the word “recommend”
does not have an antonym. In the current implementation, I returned the original
sentiment score “recommend” if it exists in my sentiment dictionary, 0 otherwise.
Future research could explore diminishing the sentiment score of an antonym by a
constant before outputting the prediction (Carrillo-de Albornoz and Plaza, 2013).

b

3Note that the direct antonym of “terrible” is “unalarming.” However, because the term “un-
alarming” does not exist in my sentiment dictionary, the indirect antonym of “terrible” became
“good” via the closest related word “bad”.

4 Motivation: Consideration of content and context

4.1 Base sentiment score isn’t enough

With the exception of the antonym dictionary approach, lexicon-based strategies
often handle negation without considering the content being negated — instead,
only the original affirmative sentiment score is used to determine the negated
sentiment score. Yet, words within the same polarity (e.g., positive, like “nice” and
“beautiful”’) may shift towards the opposite polarity with different intensities (e.g.,
“not nice” seems much worse than “not beautiful”).

Kiritchenko et al. (2014) pointed out some intuitive examples of this kind,
shown in Table 3. In the extreme cases, words with similar sentiment scores (e.g.,
“beautiful” and “nice” have similar positive affirmative polarity around 1; “bad” and
“shame” have similar negative affirmative polarity around -1.3) had very different
negated sentiment scores. In this case, the negated sentiment score for “beautiful”
was 0.217 while the negated sentiment score for “nice” was -0.912; the negated
sentiment score for “shame” was -0.722 while the sentiment score for “bad” was
0.021.

Term Sentiment140 Lexicons
Affirmative Negated

Positive terms

great 1.273 -0.367
beautiful 1.112 0.217
nice 1.149 -0.912
good 1.167 -1.414
Negative terms

terrible -1.850 -0.890
shame -1.548 -0.722
bad -1.674 0.021
ugly -0.964 -0.772

Table 3: Cases where words with similar original sentiment scores received dissim-
ilar negated scores. Data from Table 3: Example sentiment scores from the Senti-
ment140 Base, Affirmative Context (Affirmative) and Negated Context (Negated)
Lexicons (Kiritchenko et al., 2014).

Neither inverting nor asymmetrical shift can handle this negation behavior, as
both would cause “beautiful” and “nice” to have similar negated scores, and “shame”

10

and “bad” to have similar negated scores. Antonym dictionaries are a step towards
including more than original sentiment score information, but are still imperfect.
In particular, one limitation of antonym dictionaries is how they deal with negative
sentiment words; for example, the phrase “not awful” is not equivalent to its
antonym “wonderful” (Ruytenbeek et al., 2017), though an antonym dictionary
would yield scores that assume this to be the case.

This motivates us to investigate a new method of negation handling, taking
inspiration from how humans seem to process negated sentiment. On the basis
of examples like those in Table 3, I considered what might distinguish “beautiful”
from “nice,” and “shame” from “bad.” It seemed to us that “beautiful” is more
specific than “nice,” and “shame” is more specific than “bad.” So, I hypothesized
that meaning specificity could impact negated sentiment. One way to concretely
think about meaning specificity is the range of contexts that a word may be used
in. More specific words, such as “beautiful” and “shame,” are appropriate in fewer
contexts while less specific words, such as “nice” and “bad,” can be used in many
more contexts. Based on the concrete examples I had available, it seemed that
negating words with a more specific meaning involves less shifting towards the
opposite sentiment direction (i.e., “not beautiful” is less negative than “not nice;’
“not a shame” is less positive than “not bad”). Therefore, taking into consideration
meaning specificity would allow the subtle differences when negating words with
similar affirmative sentiment to be captured.

’

4.2 How could we tell if meaning specificity was useful?

To assess whether a meaning specificity approach could be useful, it’s helpful to
consider negation resolution in information-theoretic terms, specifically informa-
tion gain, which can be interpreted as the increase in predictability of one random
variable by additionally observing another random variable. In this context, the
random variable of interest is the negated sentiment scores given the affirmative
scores V| A, and the observed random variable for potential information gain is the
meaning specificity values M. Intuitively, I expect to be more certain about the
negated sentiment of a word if both its affirmative and meaning specificity value
are known (i.e. V| A, M) than just knowing its affirmative value (i.e. N|A). If there
is information gain, then there is the potential for a negation resolution algorithm
to utilize meaning specificity in its prediction. If there is no information gain,
then any algorithm taking meaning specificity into account should not perform any
better than one that ignores it.

Information gain can be quantified precisely as follows. Consider the affirma-

11

tive sentiment score of a word a,,,.q € A, the negated sentiment score n,,,,q € IV,
and the word’s meaning specificity m..q € M. A naive negation resolution
attempts to predict the negated sentiment n,,,.; by computing its sentiment distri-
bution, given the affirmative sentiment score, P(N|ayorq)- If the word’s meaning
specificity my,rq provides relevant information for predicting the word’s negated
SCOre NMyords @ NON-zero mutual information [is expected between the two dis-
tributions. More generally, if the distribution over negated scores /N given the
affirmative scores A as well as meaning specificity M provides relevant informa-
tion for predicting the distribution over negated scores N given just the affirmative
scores A, then there should be non-zero mutual information between the distribu-
tion over meaning specificity M, and the distribution over negated scores given the
distribution over affirmative scores N|A. This mutual information is shown below
as I[M : N|A].

I[M : N|A] = H[N|A] — H[N|A, M]

More specifically, H[N|A] is the entropy of N while observing A, and H[N|A, M|
is the entropy of N while observing A and M together. Entropy — defined as the
average amount of information required to encode the values of a random variable
— can be thought of as information content. Low entropy is desirable because it
means that a random variable is more predictable, thus requiring less information
to encode. Information gain (or mutual information) I[M : N|A], defined as
the difference between H[N|A] and H[N|A, M], which can be understood as the
amount of relevant information provided in predicting NV given A when M is
also observed. Because any real signal can only increase certainty (i.e. decrease
entropy), it follows that H[N|A, M] < H[N|A]. If H[N|A, M| = H[N|A], then
mutual information between N|A and M is zero, and there is no relevant informa-
tion to be gained from M. We are interested in H[N|A, M| < H[N|A], meaning
that mutual information is non-zero and M is a real signal that provides relevant
information.

As an initial demonstration of concept, a toy lexicon of 10 words was con-
structed. The naive baseline approach takes the affirmative sentiment of a word
and tries to predict its negated sentiment. Affirmative sentiment scores are ex-
tracted from the compiled sentiment dictionary while the negated sentiment is
determined by the NRC lexicon with scores normalized (Zhu et al., 2014). For
illustrative purposes, both affirmative and negated sentiments are categorized
into three sentiment classes (positive, neutral, and negative). To evaluate the
benefits of including meaning specificity, each entry in the toy lexicon is also

12

assigned a specificity level (labeled as not specific, somewhat specific and very
specific) subjectively determined by the author. Calculation for information gain
I is performed, looking specifically for non-zero values H[N|A, M| < H[N|A].
I[M : N|A] = H[N|A] — H[N|A, M] is calculated as in 4 below.

HINA) = Bflog o]
1
PR
(2)
H[N|A, M] = Ellog W]

1
= Z p(n,a,m) - log——
neN,meM,acA p(n|a, m)

Each entropy term is the expectation of information content over its distribution
(logm and logm over N|A and N|A, M respectively). The probability
terms are calculated by counting the relative frequency of words with the particular
combination of n, a, and/or m categories.

As a sanity check, information gain values were calculated for a model observ-
ing meaning specificity values as random noise sampled from a uniform distribution
(not specific, somewhat specific, and very specific) on top of observing affirma-
tive values. This is asserting that the model of interest, i.e. model that takes in
affirmative values and real signal of meaning specificity, would still have higher
information gain compared to the sanity check model.

This seems to indeed be true: averaging over 1000 trials, the information gain
for this sanity check model (/[M’ : N|A] using random meaning specificity sam-
ples) is 0.36 bits. Information gain (I[M : N|A] using the subjectively determined
meaning specificity values is 0.50 bits. There is a 1.4 X increase in information gain
from using values of M over uniformly random values. So, meaning specificity
adds value by encoding more relevant information to aid prediction of negated sen-
timent scores. This motivates the subsequent exploration of concretely quantifying
meaning specificity to be utilized as a feature in negation resolution.

4.3 A first attempt to incorporate meaning specificity

As a first attempt to assess meaning specificity in an automatic and easy-to-
implement way, I considered aspects of a term’s usage that might be correlated

13

Table 4: A manually created toy lexicon of 10 words. Affirmative and negated
sentiment scores extracted from compiled sentiment dictionary 2.1 and NRC
lexicon (Zhu et al., 2014) respectively. Meaning specificity values were subjectively
determined by the author.

Words Affirmative Negated Specificity
happy Positive Negative Not
prepared Neutral Neutral Very

good Positive Negative Not

equal Neutral Neutral Very
disappointed Negative Positive Somewhat
easy Positive Neutral Not

angry Negative Positive Not
positive Positive Neutral Not

best Positive Neutral Somewhat
truly Positive Neutral Very

with its specificity. The first aspect being considered is frequency, with the idea
that more-specific terms might be used less frequently than less-specific terms —
this is because the more-specific terms are appropriate in fewer contexts. As a
second related aspect, I considered inverse dispersion (Gries, 2008), which is a
measure of the diversity of contexts a term appears in. Inverse dispersion captures
the different contexts a word may be used, which ties more directly to my intuitive
sense of meaning specificity. The idea would then be that more-specific terms
appear in less diverse contexts than less-specific terms.

We can interpret the interaction between frequency and inverse dispersion as
capturing a similar concept to term frequency-inverse document frequency (tf-idf)
(Salton and McGill, 1986). Tf-idf is commonly used in search engines to match
results with searches, and reflects the importance of a term ¢ to a collection of
documents. The tf-idf of a term 7 is calculated by multiplying the term’s frequency
(tf) with the term’s inverse document frequency (idf). Term frequency is calculated
as the number of occurrences in a document while inverse document frequency is
calculated by the formula below:

idf (t) = log.(Total number of documents/Number of documents with term t)

Generally, high tf coupled with high idf means that term ¢ is specific to the topic
under discussion, which is useful for identification of relevant search results. An

14

interaction between frequency and inverse dispersion could be viewed as switching
idf into inverse dispersion, yielding another variant of a term specificity metric.
While I do not investigate this metric here, it is an interesting avenue for future
work.

5 Implementation of meaning specificity

I now discuss the estimation of each component I use to approximate meaning
specificity: frequency and inverse dispersion. I also highlight the use of an ac-
cessible corpus to quickly approximate meaning specificity. Information about
meaning specificity is stored in a lookup table where the keys correspond to a
language token. For example, to retrieve the frequency count of the token “good,”
one would refer to the frequency lookup table and extract the value associated with
the key “good.” Negation for meaning specificity is handled via an equation with
four variables: sentiment score, frequency, inverse dispersion, and the interaction
between frequency and inverse dispersion. The weight of each variable is tuned
using my gold standard. I demonstrate how to integrate this version of meaning
specificity into a sentiment analysis pipeline, including strategies to handle novel
tokens that aren’t in the lookup table. I subsequently introduce a lightweight
version of meaning specificity negation handling strategy which is a variation of
my original proposal.

5.1 Estimating term frequency and inverse dispersion

One way to estimate frequency and inverse dispersion for a given term is to ap-
proximate components of meaning specificity using any corpus, assuming that the
corpus is a reasonable representation of everyday language use. Here, I leveraged
82.8 million reviews retrieved from an Amazon product review corpus (He and
McAuley, 2016; McAuley et al., 2015). Each element used for approximating
meaning specificity (frequency and inverse dispersion) was calculated from the
corpus. I extracted the information for every entry that exists in the sentiment
dictionary.

Frequency was calculated by counting the occurrences of the sentiment term in
the Amazon product review corpus. Inverse dispersion (ID) was calculated as in
Gries (2008) (see (3)), and can be viewed as how widespread the word’s use is.* A

“Note that Gries (2008) refers to ID as dispersion. I decided to adopt a different terminology for

15

word with low inverse dispersion is used equally often in all contexts (i.e., its use
isn’t very specific).

X1 |observedyora, — expected yora,
2

(3)]Dword =

1 = #£ corpus parts

JTequord; size of corpus part;

observedyorg = ————
4 Yotal frequord

) exPGCtedwordi = ;
size of entire corpus

To calculate inverse dispersion, we need to have different samples that represent
different contexts a word could be used in. So, I first divided the Amazon product
reviews corpus into 10 equal parts of approximately 8.28 million words each (i.e.,
1=10). The intuition is that the 10 different corpus sections represent different
contexts (e.g., reviews about clothing or reviews about electronics). Then, the
observed usage in that corpus part is compared against the expected usage in that
corpus part. For the observed usage observed,,,q;, I calculate the frequency of each
sentiment word (frequorq;)- Then, I normalize this frequency by dividing by the
word’s overall frequency (total freqyorq). For the expected usage expected,,ord, ,
I set this to 0.1. That is, if a word had completely widespread use irrespective of
context, it would appear in each of the equally-sized 10 parts at the same rate. So,
its expected appearance is %=SZ‘Z€O‘}JC e S"OZZS ~0.1.)

The difference between the observed and expected usage is then summed in
each of the 10 parts, Z}il |observed,yora, — expected,,orqy| and divided by two
to change the range of inverse dispersion from [0,2] to [0,1]. So, this calculation,
in effect, yields how much the word’s observed usage differs from a maximally-
dispersed word’s usage. The resulting inverse dispersion value ranged from O to 1,
with O indicating that the sentiment term’s use wasn’t different from a maximally-
dispersed word’s (i.e., it was distributed evenly throughout the corpus) and 1
indicating the term’s usage was very different from a maximally-dispersed word’s
(i.e., the sentiment term clustered in certain corpus sections and therefore is used
in more restricted contexts).

5.2 Constructing a lookup table for meaning specificity

A lookup table was built to allow rapid access of frequency and inverse dispersion
for words that exist in my sentiment dictionary. During negation resolution, the

a more intuitive interpretation: an ID of 0 means that the word is distributed across all contexts; an
ID of 1 indicates that the word clusters in a specific context.

16

to-be-negated token is the key to search for its matching frequency and inverse
dispersion values. If the key exists in the dictionary, the corresponding values for
meaning specificity were used in subsequent calculations.

5.3 A negation transformation incorporating meaning speci-
ficity

The frequency and inverse dispersion values were incorporated into a function
that would take a term’s original sentiment score and generate a negated sentiment
score. I used a linear equation relating the original score, the term’s frequency,
the term’s inverse dispersion, and the interaction between frequency and inverse
dispersion to the term’s negated score. To determine appropriate weights for this
linear equation, I used the same 42-word list that was used to implement my version
of asymmetrical shift (see Section 2.2 and Table 10). More specifically, I performed
a multiple regression with these 42 original and negated scores, along with the
accompanying frequency and inverse dispersion values. This yielded the equation
in (4), where F'requency is the raw term frequency and InverseDispersion is
calculated via the metric outlined in Section 5.1.

4)
Negated = (—6.112665 x 102) — 0.3851552 * Original

+ (7.751644 x 1077) * Frequency — 2.26025 * InverseDispersion
— (1.976151 x 10_6) x F'requency x InverseDispersion

To allow easy interpretation on the weights, I retrained the multiple regression
model with frequency normalized. Note that this version of the equation is only
used to interpret the weights by restricting both frequency and inverse dispersion
in the same range of [0,1]. The equation taking raw frequency as input was used
for actual sentiment calculation.

Negated = —0.061 — 0.39 x Original
5) + 2.77 x F'requency — 2.26 x Dispersion
— 705.61 x Frequency x Dispersion

Interestingly, based on these inferred weights, the interaction of frequency
and inverse dispersion matters far more (by two orders of magnitude) than either
component individually. Future work can compare the effects between applying
frequency and inverse dispersion combined with equations applying td-idf.

17

5.4 How to handle novel tokens: Inferring frequency and in-
verse dispersion from sentiment scores

While unigrams and bigrams appearing in my constructed dictionary will have
their meaning specificity components pre-calculated from the Amazon product
review corpus, I will also encounter terms or larger phrases that I need meaning
specificity estimates for. While these terms or larger phrases will have sentiment
scores associated with them, they won’t have frequency or inverse dispersion values
readily available. Having a way to infer those meaning specificity components on
the basis of a term’s original sentiment score will allow for a more robust negation
resolution algorithm, as sentiment scores are easily accessible at any stage in a
sentiment analysis pipeline.

As an illustration, consider the sentence “I am not happy about it” with the
negation scope “happy about it.” In this case, there is only 1 sentiment-carrying
term “happy” in the scope. Therefore, the meaning specificity component for the to-
be-negated phrase “happy about it” boils down to the negation of “happy.” Lookup
tables for meaning specificity components would work in this case. However,
consider another review sentence “I will not recommend anyone to rely on it,”
where the negation scope (“recommend anyone to rely on it”’) encompasses multiple
sentiment-carrying terms (“recommend” and “rely”). In this example, the meaning
specificity component of the to-be-negated phrase cannot be determined easily.
In this case, the sentiment of the to-be-negated phrase would first be aggregated.
Then, the aggregated sentiment would be used to infer its meaning specificity
components.

To infer a term’s frequency ¢y and inverse dispersion ¢;; on the basis of its
original sentiment score ¢, . , [divided all existing original sentiment scores ¢ into
discrete bins of size 0.04. For example, a bin included terms with -1.0< ¢, <-0.96,
and the following bin included terms with -0.96< ¢, <-0.92. There were a total of
52 bins, with the 1st and 52nd bins containing only those terms with ¢,=-1.0 and
ts=-1.0 respectively, the extreme sentiment values.

For each sentiment bin, mean frequency value and mean inverse dispersion
value were calculated, along with their standard deviations. The resulting mean
and standard deviation parameters were used to reconstruct a Gaussian distribution
of meaning specificity components for any term with a sentiment score falling
within that bin. So, the general procedure when encountering a novel term or larger
phrase is the following:

e Access its sentiment score ¢

Sorig

18

e Determine the bin of that sentiment score

e Access the Gaussian distribution of frequency and inverse dispersion values
that was pre-computed on the basis of the mean and standard deviation of
those values for that bin

e Draw a random sample from the distribution for each component (i.e., one
draw for the frequency value ¢ and one draw for the inverse dispersion value

Lid)

e Use the sampled frequency and inverse dispersion values in the equation (4)

I note that this method can’t handle the cases where words of similar sentiment
values have different negated scores. Instead, it’s a back-off alternative for terms
and phrases that aren’t in my sentiment dictionary, and so don’t have pre-computed
meaning specificity components.

5.5 Further exploration: Lightweight variation of meaning speci-
ficity negation handling approaches

My proposed meaning specificity negation handling approach utilizes two com-
ponents: a meaning specificity lookup table, and a back-off method of inferring
meaning specificity components, with priority given to the lookup table. Therefore,
I refer to this approach as meaning specificity lookup approach.

In this section, I discuss an alternative to the meaning specificity lookup ap-
proach. The variation, which I call meaning specificity lite approach, drops the
component of the meaning specificity lookup table and always uses the back-off
method. Recall that the back-off method infers meaning specificity components
from their corresponding distributions (details in Section 5.4). This is a “lite”
version of the meaning specificity lookup approach for two reasons: (1) it removes
the need for a comprehensive meaning specificity lookup dictionary, and (2) it is
easier to construct. By removing dependency on a lookup dictionary, it eliminates
the need to compile a dictionary in the first place and therefore eliminates the
need to obtain representative frequency and dispersion values for each entry in the
dictionary. Second, it is easier to construct distributions of meaning specificity
within each sentiment bin than to construct a comprehensive lookup table, because
each distribution is a class where entries in a lookup table belongs to. That is,
only two distributions are needed to recreate the meaning specificity components,
namely frequency and inverse dispersion, for each of the 52 sentiment bins. The

19

constructed distribution can thereby be applied to all other instances in the sen-
timent bin, regardless of whether the item has been seen before. Furthermore,
construction of those distributions uses bounded and controllable memory: one
can choose to stop sampling for a sentiment bin once there are enough entries m to
construct the distribution, with the magnitude of m being a free parameter chosen
by the user. While greater m approximates the true distribution better, one can
afford to set a lower value for m in cases where resources (time or memory) are
limited.

For the current study, I simply constructed the underlying distributions using all
the entries in my sentiment dictionary. Future research could investigate construct-
ing the distributions by sampling an equal number of entries in each sentiment
bin.

6 Validation of Frequency and inverse dispersion:
Values added to improve data separability

Section 4 illustrated a proof of concept that there is value in considering the
meaning specificity of a token when handling negation. As expected, the original
affirmative score is strongly but not perfectly indicative of the negated sentiment.
That is, although affirmative sentiment roughly dictates the resulting negated
sentiment, it fails to disambiguate cases where words have similar affirmative
sentiment but wildly different negated sentiment. By including meaning specificity
as an additional feature that provides information gain, (1) I obtained a non-
zero information gain when given the additional feature of meaning specificity,
I[M : N|A], and (2) it passed the sanity check of I[M : N|A] > I[M' : N|A],
where M’ are random meaning specificity values sampled from a uniformly random
distribution. However, are frequency and inverse dispersion sensible estimates of
meaning specificity? Recall that in section 4, utility when considering meaning
specificity was demonstrated — but using toy specificity categories (not specific,
somewhat specific, and very specific). Here I demonstrate that my implementation
of meaning specificity with frequency and inverse dispersion is useful, as indicated
by information gain above a baseline.

I performed the same calculations with my compiled sentiment dictionary and
implementation of meaning specificity. Consistent with my hypothesis, I find that
(1) the information gain when given meaning specificity /[M : N|A] is again
non-zero (0.018 bits) and (2) is greater than the random baseline information

20

gain I[M' : N|A] (0.0043 bits). In other words, my implementation of meaning
specificity provides 4.2 times more information than random values.

To better understand the contributions of each feature (affirmative scores,
frequency, inverse dispersion, and the interaction between frequency and inverse
dispersion) to the final classification of negated sentiment, I implemented a decision
tree as a data exploration technique. Based on the features provided, a decision
tree ranks the features based on their importance to maximally reduce entropy
at each node (Loh, 2014). Features are used in the decision process in order of
their precedence: the feature at the root is the most distinguishing feature, and that
which offered the most information gain.

Two decision tree classifiers of maximum depth of three were built to compare
the information gain (1) when including meaning specificity features, D74, , and
(2) with the model considering affirmative scores alone, D7'4. A limit was placed
on the maximum depth for both decision trees because without the constraint, the
optimal choice for any decision tree would be to partition each point of classification
into its own node, which essentially reduces the tree to a look-up table. The
choice of maximum depth 3 is arbitrary, as it was the suggested depth of the
module’ and it seems reasonable for an exploratory analysis of feature importance.
The features of the decision tree were the actual values of affirmative sentiment
(real numbers in [-1,1]) extracted from my sentiment dictionary and/or meaning
specificity components obtained from the lookup table. The gold standard dataset
was chosen in this exploration for two reasons: (1) it is a manually verified dataset
with a known target negated sentiment, and (2) it contains entries that have similar
affirmative sentiment but vastly different target negated sentiment, such as the
three-way comparison between negated phrases “not best,” “not great,” and “not
nice.” The affirmative sentiment scores for “best,” “great,” and “nice” are fairly
similar (.81, .73, .72). However, the negated sentiment scores are different in an
intuitive way (“not best” being -.02, “not great” being -.34, “not nice” being -1.9).
Target values were the negated sentiment scores of the gold standard (see Appendix
A). The problem is further simplified into a classification problem by binning the
real value negated sentiment scores into three classes: positive, neutral, or negative,
using the scale described in Table 5. For example, “not best” reflects a neutral
sentiment, “not great” and “not nice” both reflect negative sentiment.

Figures 1 and 2 show visualizations of the decision trees. Each split of a
decision tree informs us of the intermediate steps taken which lead to the final infor-

SModule from sklearn.DecisionTreeClassifier (https:/scikit-learn.org/stable/modules/tree.
html#tree).

21

Sentiment scores (range) | Sentiment bins
—1,—.2) Negative
[—.2,+.2) Neutral

[+.2, +1] Positive

Table 5: Mapping from sentiment scores to sentiment bins

mation gain. It also transparently depicts the essential components for calculation
of information gain at each node: samples, value, and entropy. Samples refers to
the number of samples for consideration under the node, starting with all 42 terms
grouped under the root node. Value represents the value bins or classifications,
which tells us the correct distribution of the samples in the format [number of posi-
tive samples, number of neutral samples, number of negative samples]. Entropy is
calculated based on the distributions of the samples in its value bins. For example,
referring to Figure 1, the root node has entropy of 1.125, which is obtained through
calculation —32 % logo(32) — £ % logs(2) — 2 * loga(=5).

With the essential components, information gain as quantified by reduction in
entropy, can be calculated as we progress deeper into the tree by comparing the
resulting entropy values before and after a split. For example, in Figure 1, the
information gain obtained after splitting at the root node (on the feature “Affirmative
score” at threshold 0.017), entropy reduced from 1.125 to % * 0.991 + % * 0.439
=.5591 (weighted entropy from the resulting children nodes after the split); this
results in an information gain of 1.125 — .5591 = .5659 (entropy before split -
entropy after split).

Not surprisingly, both decision tree models failed to classify the data perfectly
after 3 levels (the final entropy scores are non-zero), with D74 performing better
than DT'4. The sum of the resulting entropy for DTy is higher (2% (.918) +.222 =
2.058) compared to that of D74 (.544). Looking at the structure of D74 ,we can
see that meaning specificity components played consequential roles. Features such
as inverse dispersion and the interaction between frequency and inverse dispersion
were used early in the decision process, supporting the hypothesis that frequency
and inverse dispersion are sensible factors for negation handling.

22

Affirm <0017
entropy = 1.125
samples = 42
value =[30, 8, 4]

True/ wge

Affirm <-0.523 Affirm < 0.033
entropy = 0.991 entropy = 0439
samples =9 samples = 33
value = [0, 5, 4] value = [30, 3, 0]

l W

entrony = 0.0 Affirm < -0.069 Affirm < 0.024 Affirm < 0.789
sam Pl)é;= 5 entropy = 0.863 entropy = 1.0 entropy = 0.345
\"I.IKU.C E l'U 0"2] samples =7 samples = 2 samples = 31
‘ —e value = [0, 5,2] value =[1,1,0] value =[29,2,0]
entropy = 0.0 entropy = 0918 entropy = 0.0 entropy =0.0 entropy =0.222 entropy = 0.918
samples = 4 samples = 3 samples = 1 samples = 1 samples = 28 samples =3
value = [0, 4,0] value = [0, 1,2] value =[1,0, 0] value = [0, 1,0] value =[27,1,0] value =[2,1,0]

Figure 1: Visualization of DTy, the decision tree with the affirmative sentiment
scores alone as decision features. I indicate affirmative sentiment as “Affirm.” Each
node specifies the decision criteria, followed by its entropy state before splitting,
the number of samples before splitting, and the target classes of those samples
[positive, neutral, negative].

Affirm < 0.017
entropy = 1.125
samples = 42
value = [30, 8, 4]

True/ \:-'alse

ID =0.005 Freq*ID = 5004.5
entropy = 0.991 entropy =0.439
samples = 9 samples = 33
value = [0, 5, 4] value = [30, 3, 0]

d

A

Affirm =-0.539
entropy = (.65
samples = 6

value = [0, 5, 1]

entropy = 0.0
samples = 3
value = [0,0, 3]

entropy = 0.0
samples = 16
value = [16,0,0]

VAN

.

Freq*ID = 6201.3
entropy = 0.672
samples = 17
value = [14, 3, 0]

N

entropy = 0.0
samples = 1
value = (0,0, 1]

entropy = 0.0
samples =5
value = [0, 5, 0]

value = [0, 1,0]

entropy = 0.0
samples = 1

entropy = 0.544
samples = 16
value = [14,2,0]

Figure 2: Visualization of D74, the decision tree with both the affirmative senti-
ment scores and meaning specificity components (frequency, inverse dispersion,
and the interaction between frequency and inverse dispersion) as features. I indicate
affirmative sentiment as “Affirm,” frequency as “Freq,” and inverse dispersion as
“ID.” Each node specifies the decision criteria followed by its entropy state before
splitting, the number of samples before splitting, and the target classes of those
samples [positive, neutral, negative].

23

7 Incorporating negation resolution approaches into
a sentiment analysis pipeline

We have seen now that there is theoretical support for including meaning specificity
as a plausible component in negation handling. The following sections present the
tests performed on my proposed method in a practical setting of sentiment analysis.
In this section, I focus on the supporting parts of a sentiment analysis pipeline.

I first discuss the implementation of an important stage that precedes negation
resolution: negation scope detection. Recall from section 1 that negation scope
detection identifies the content that needs to be negated. I consider three approaches
to negation scope detection, as there’s no current consensus on the best negation
scope detection approach. I then discuss the next stage after negation resolution,
which is the aggregation of negated sentiment. This step defines how multiple
sentiment-bearing terms are combined into a single sentiment score. I investigated
two sentiment aggregation methods that take in the negated sentiment of tokens
and output an aggregated numerical representation.

7.1 Negation scope detection

To arrive at the stage of negation resolution, we first need to detect the content
to be negated, i.e., the scope of negation. Importantly, the accuracy of negation
scope detection affects the performance of negation handling — in particular, the
effectiveness of any negation resolution algorithm is only as good as that of
negation scope detection. That is, no matter how good an approach is at resolving
negation, it won’t work well if the wrong content has been identified as the scope
of negation. Therefore, I considered three current approaches to negation scope
detection: n-grams (Blair-Goldensohn et al., 2008; Taboada et al., 2011; Thelwall
et al., 2012), parse trees (Klein and Manning, 2003; Carrillo-de Albornoz and Plaza,
2013; Socher et al., 2013), and a machine learning based classifier (Enger et al.,
2017). I give a brief summary for each approach in the following subsections.

7.1.1 N-grams

One simple and surprisingly effective approach to negation scope detection is to
define the negation scope as the n subsequent words following a negation (Blair-
Goldensohn et al., 2008; Taboada et al., 2011; Thelwall et al., 2012). For example,
in the sentence “I like how it looks but I will not recommend anyone to rely on

24

it,” a 4-gram negation scope detector marks the subsequent four words after “not

2

(“recommend anyone to rely”) as the negation scope. I used the list of negation
words in Table 2 to detect negation scopes. In cases where punctuation was reached
before the n count was complete, I terminate the negation scope at the punctuation.

Because common values for n range
between one and four, I combined 1-,
2-, 3- and 4-gram negation scope detec-
tors in pilot analyses with the inversion
negation resolution approach and evalu-
ated them on the test dataset described
in section 8.2. The best performing n
value was 4. I subsequently used 4-
grams in combination with other nega-
tion resolution methods for all other
analyses.

7.1.2 Parse tree

A linguistically-motivated approach to
negation scope detection utilizes the
syntactic structure of a sentence, as im-
plemented in its parse tree (Carrillo-de
Albornoz and Plaza, 2013; Socher et al.,
2013). Once a parse tree is available,
the negation scope can be defined as
all subsequent siblings and children of
the negative node. For the example il-
lustrated in Figure 3, the subsequent
sibling of the negation word “not” is
the verb phrase (VP). Thus, that VP
and all its children are labeled as in the

ROOT

|
VERN
VA NN
| /\
SN I
/

the instructions provided

BAR

ﬂ
|

/ A\

VBD ADJP

helpful

Figure 3: Negation scope as identified by
the Stanford-parser-generated parse tree.
After the negation word “not,” all subse-
quent siblings and children of those sib-
lings are labeled as in the negation scope.

negation scope of “not”. Negation was identified with the same list of negation cue
words as in Table 2. Prior studies reported promising results using the Stanford
Parser to identify the scope of negation. Therefore, I adopted the Stanford Parser

in my implementation as well.®

®I do note, however, that it’s imperfect and can generate incorrect parses sometimes (as with
Figure 3). However, for the purposes of negation scope detection, it may often be good enough; for
example, in Figure 3, the correct scope is all the material after “not” (“think...helpful”), and this is

25

7.1.3 Machine learning based negation scope classifier

Machine learning has also been used to create more sophisticated tools for negation
scope detection. I utilized a pre-trained supervised machine learning strategy called
Negtool, which relied on a support vector machine (SVM) (Enger et al., 2017).
Specifically, negation cue words were first identified by a SVM. Then, another
SVM analyzing for negation scope operates at a sentence level, taking in features
such as the word lemma, part of speech, and the relationship between each token
extracted from a dependency parser as input. The negation scope detector SVM
was trained on a negation annotation corpus, the ConanDoyle-neg corpus (Morante
and Daelemans, 2012). The corpus was generated by human annotation on two
texts, The Hound of the Baskervilles and The Adventure of Wisteria Lodge. It
contains approximately 4000 sentences with around 1000 sentences that contained
negation.

7.2 Combining negation scope detection with negation resolu-
tion

Since it is currently unknown how negation scope detection interacts with different
negation scope resolution approaches, I conducted a systematic comparison of
negation scope detection methods in combination with different negation resolution
methods. This resulted in 3 negation scope detection approaches (4-gram, parse
tree, negtool) by 4 negation scope resolution methods (inverting, asymmetrical
shift, antonym dictionary, and meaning specificity) ways to create a model, as
shown in Table 6.

Due to practical concerns, I did not consider models involving scope detection
via a parse tree and scope resolution via an antonym dictionary. This is due to
the expensive operation of extracting words from nodes for the implementation
I adopted (one model falls under this category). While information about the
sentiment of each node is easy to extract, negation resolution via an antonym
dictionary requires individual word tokens which are buried deep down in the tree
at the leaf nodes. I did not implement changes to the structure of parse trees that
would allow cheap accessing of word tokens. Future research should consider
combining parse trees and an antonym dictionary.

in fact the scope identified by the incorrect parse tree generated by the Stanford parser.

26

7.3 Sentiment aggregation

Once negation has been resolved, the

sentiment-bearing terms must be aggre- ROOT

gated to arrive at a single score for the ‘

sentence. | considered two methods to s

sentiment score aggregation at the sen- / \

tence level: flat-average aggregation N v

and structure-based aggregation. To / /N \

obtain the overall review sentiment, 1 PRP VEP NP PP

took the average of the sentiment scores | | N RN
DT NNS

across all sentences. Lo ik

The flat-average aggregation ap- / \
proach simply averages all available e istcons - provided S
sentiment values; this is equivalent to ’
+ ¥ s;, where X s; is the sum of all Ve
sentiment scores and N is the number / \
of sentiment-carrying terms. In con- VED ARE
trast, the structure-based aggregation
approach relies on the form of the parse
tree. An average is taken at each layer |
of the tree, starting with the leaves and "
working recursively up to the root node.
More specifically, for each node with
children, that node’s sentiment value is
the average of its child sentiment val-
ues (i.e., the sentiment score of the parent = % s, where C' is the number of
children).

I demonstrate the differences in these two approaches in Figure 4, where I
consider the sentence “I think the instructions provided were helpful.” There
are several sentiment-bearing terms: “think”=0.391, “instructions”’=-0.174, “pro-
vided”’=0.054, and “helpful’=0.875. A flat-average aggregation approach would
yield a final sentiment score of 0.287, taking an average of words that carry sen-
timent values (Sentiment=}l(0.391 + (—0.174) 4+ 0.054 + 0.875) = 0.287). A
structure-based aggregation approach would yield a different sentiment score: first,
the VP “were helpful” inherits the sentiment score of 0.875 from “helpful”; then,
the PP “provided were helpful” arrives at an averaged sentiment score of .465;
the NP “the instructions” is assigned a sentiment score of -0.174 while the VBP

Figure 4: Example of a structure parse
tree with labeled sentiment scores.

27

“think” carries sentiment score of .391. The sentiment bearing terms are averaged
at node VP “think the instructions provided were helpful” with a sentiment score
of .227 and finally propagate back to the root where the whole sentence I think
the instructions provided were helpful” is assigned of a sentiment score of .227.

8 Evaluation of negation handling approaches:
Results of the sentiment analysis pipeline

8.1 25 negation handling models

Table 6 shows the sentiment analysis models that were included in evaluation. I
first included a baseline model that involves no negation handling. The remain-
ing models are the result of a factorial crossing of negation resolution method,
negation scope detection, and aggregation method. I considered 3 methods for
negation scope detection (4-grams window’, parse tree, and machine learning
based classifier), 5 methods for negation resolution (inverting, asymmetrical shift,
antonym dictionary, meaning specificity lookup, and meaning specificity lite), and
2 methods for sentiment aggregation (flat and structure-based). This yielded 3 x 5
x 2 = 30 sentiment analysis models.

However, not all of these were investigated, because I removed combinations
with negation scope detection that used a parse tree and aggregation that used a
flat-average (five models fall under this category since there are five methods for
negation resolution). This is because a parse tree represents more sophisticated
linguistic knowledge compared to a flat aggregation. Therefore, if I have already
gained access to the information provided by a parse tree, I see no motivation to
disregard it and revert to a naive form of flat aggregation. Therefore, when the
parse tree is used for negation scope detection, I only considered the structural
aggregation method, fully utilizing the syntactic information available during
sentiment aggregation.

The total number of models compared in my current project is 25 (1 baseline
model + 30 sentiment analysis models - 5 parse tree negation scope combined
with flat aggregation models - 1 parse tree negation scope combined with antonym
dictionary and structural aggregation).

"I selected 4-grams due to my pilot analysis that compared the accuracy of 1-, 2-, 3- and 4-grams.
This analysis used inverting for negation resolution and flat aggregation. The best performing
window size was 4, and so I used 4-grams in the main analyses.

28

Models Negation Scope Detection Negation Resolution Aggregation

1 None None Flat

2 Inverting

3 Asymmetrical Shift Flat

4 Antonym Dict

5 Meaning Spec

6 4-grams Meaning Spec Lite

7 Inverting

8 Asymmetrical Shift ~ Structure
9 Antonym Dict

10 Meaning Spec

11 Meaning Spec Lite

12 Inverting

13 Parse Tree Asymmetrical Shift Structure
14 Meaning Spec

15 Meaning Spec Lite

16 Inverting

17 Asymmetrical Shift Flat

18 Antonym Dict

19 Meaning Spec

20 Negtool Meaning Spec Lite

21 Inverting

22 Asymmetrical Shift Structure
23 Antonym Dict

24 Meaning Spec

25 Meaning Spec Lite

Table 6: Models that were evaluated, which combined different approaches to
negation scope detection, negation resolution, and sentiment aggregation.

29

8.2 Test Datasets

I now describe the test datasets used to evaluate the different sentiment analysis
models in Table 6. I introduce two test datasets, easy reviews and hard reviews,
to evaluate the models. I then present the motivation for using the each dataset as
well as the inferences that can be made.

8.2.1 Easy reviews dataset

Since my goal is to test different negation handling strategies, an appropriate test
dataset would be reviews that contain many instances of negation. The easy reviews
test set was generated by extracting 10,000 reviews with at least one negation word
from a larger Amazon product review corpus (He and McAuley, 2016; McAuley
et al., 2015). A list of negation words used is included in Table 2. The distribution
of test data based on target sentiment is included in Table 7.

The significance of this easy dataset is that the distribution closely approxi-
mates the actual usages of negation in human-generated reviews. This is because
no additional constraints were placed when I sampled reviews which contained
negations. As I pointed out in the introduction, there were multiple interpretations
of negation depending on the context; the easy reviews test dataset includes the
sentiment-bearing reviews in their respective proportions. Therefore, it is useful
because it can reveal the incentive for even applying a negation handling model
in a real world application. In particular, I will be looking at the difference in
performance between any negation handling model and my baseline model that
ignores negation handling. I hypothesized that a model that ignores negation
would perform poorly. However, I was unsure of the magnitude of decline in
performance since the sentiment of negated words would be averaged with other
sentiment-carrying terms in the review. Additionally, I will be evaluating whether
any negation handling model performed poorly, which would indicate that the
model is not applicable to real world negation distribution.

8.2.2 Hard reviews dataset

The hard reviews test dataset is intended to be a more demanding assessment which
can potentially differentiate among all negation handling models. While the easy
reviews test dataset may also be tested on my baseline model, the baseline model
should not be able to correctly classify any reviews for the hard reviews test dataset.
This way, any differences in performance can be attributed to the differences in

30

negation handling strategies (and their combinations of negation scope detection
and aggregation methods).

The hard reviews test dataset is created by including two additional criteria in
my sampling of test instances: (1) the baseline model (which ignores negation)
predicted the sentiment inaccurately and (2) the target star rating is non-neutral.
Criterion 2 was added to only consider cases where where negation maximally
changes the overall sentiment of a review (from positive to negative, or negative to
positive), filtering out less extreme examples (from positive or negative to neutral).
Future research could consider including neutral targets to further differentiate the
nuances of negation handling models.

An example review from the hard reviews test dataset read: “This product
truly did not live up to the expectations; or advertised results! Will not repurchase.
Do not recommend it”. This review has a negative truth polarity (star rating of
1). However, a model ignoring negation would label the review as positive based
on positive words such as “live,” “expectations,” “repurchase,” and “recommend.”
The usage of negation completely inverts the sentiment from positive to negative.
Without proper negation handing, a model will struggle to label the intended
polarity. For example, the baseline model labels this sentence as having a sentiment
score of .14 (which is effectively neutral). In other words, because negation has
a strong impact on these examples, I should be able to see the impact of more or
less-effective strategies for negation handling.

I again sampled 10,000 examples of hard reviews from the Amazon product
review corpus (He and McAuley, 2016; McAuley et al., 2015). The distribution
of test data based on target sentiment is included in Table 7. Note that while
it is beneficial to keep the proportion of sentiment targets for easy reviews to
approximate the actual distribution, it might be less desirable to do so for hard
reviews if the resulting distribution is unbalanced. In my case, the distribution
came out to be severely unbalanced. This complicated the interpretation later on
since high performance on the hard reviews test dataset may indicate good negation
handling model in general, or a negation handling model that only performs well
in predicting negative reviews. The current hard reviews dataset did not allow us to
distinguish among the two. Future research should investigate model performance
run on a balanced hard reviews test dataset.

29 ¢

8.3 Evaluation metric

To assess the performance of negation handling models, I compare model predic-
tions with the ground truth. Since the test datasets were extracted from Amazon

31

Table 7: Breakdown of test data based on target sentiment

Test data Positive Negative Neutral
Easy 6945 1965 1090
Hard 601 9421 0

reviews, I have access to the star ratings (1 star - 5 stars) associated with each
review; these can be used as user-labeled ground truth of the intended sentiment. I
binned the star ratings into three sentiment classes (positive, neutral, and negative)
using the mapping in Table 8. Similarly, I converted real number model predictions
in the range [-1,1] to sentiment bins with the mapping described in Table 5.

Star ratings | Sentiment bins
1-2 Negative

3 Neutral

4-5 Positive

Table 8: Mapping from star ratings to sentiment bins

Once I converted both model predictions and their respective targets to the same
scale (i.e. sentiment bins of positive, neutral, and negative), model performance can
be evaluated by calculating the rand index (RI) (Rand, 1971). RI can be understood
as calculating the proportion of correct classifications. A correct classification is
when the model predicted the same sentiment class as the target. The formula for
RI in included in Equation 6.

correct classi fications
all reviews = 10,000

(6) RI =

While this is the ideal metric to be implemented, I find RI sub-optimal in
this project as it produces scores that are heavily left-skewed. Most models have
performances clustered at the lower end of the scale, and thus no differences
between negation handling techniques can be identified. The issue of the skewed
distribution did not come from the RI, but instead the complication that rises when
predicting sentiment ratings from reviews. I identified one prominent factor that
inspired me to introduce a more lenient accuracy scoring metric.

32

Specifically, I revised my definition of correct classification in light of the
“neutralization” effect (Lak and Turetken, 2014). Lak and Turetken (2014) in their
investigation of the agreement between text-based opinion and human-generated
ratings found that when it comes to expressions of opinion, people tend to adopt a
neutral tone. That is, regardless of sentiment rating (positive, neutral, or negative),
the set of word choices overlap greatly: in all cases people chose to use neutral
words to express their opinions for the most part. As such, Lak and Turetken (2014)
observed that most predictions of sentiment analyzers lie in the neutral region.
Without sophisticated techniques sensitive to nuances in natural language, it is a
significant challenge to encourage non-neutral predictions in models.

I would like our evaluation metric to be more informative about the best nega-
tion handling model. Therefore, I see a need to slightly revise my evaluation
metric to allow comparisons between different negation handling strategies while
compensating for the limitations imposed by the neutralizing effect from sentiment
analyzers. I introduce a more lenient accuracy scoring metric where model predic-
tion of neutral sentiment is less wrong than model predictions of opposite sentiment
(target being positive and model predicted negative or target being negative and
model predicted positive). The new metric, which I call partial neutral (PN), will
still award 1 full point to correct classifications of any class (positive as positive,
neutral as neutral, negative as negative); however, it will award partial credit (0.5)
to any predictions labeling polarized input (i.e., positive or negative sentiment) as
neutral (see Equation 7). So, Rl serves as a lower bound for the PN score. In the
case where a model simply predicts neutral sentiment for all input, the maximum
partial neutral score would be .50.

D o* [HGUtralmodel |targetpositive/negative]

7 PN = RI
7 RI+ all reviews = 10,000

While I am aware of the importance of the neutral classification, especially
when it comes to sentiment analysis (Koppel and Schler, 2006; Hamed et al., 2016),
this research focused on accurately labeling the coarse classification of two extreme
sentiment classes: positive and negative sentiment classes. This is because it is
more damaging to a classifier to grossly misclassify sentiment of the opposite
polarity. For example, it is more harmful to conclude that customers of a certain
product are happy (positive sentiment) while they are not (negative sentiment)
or misapprehend satisfaction level as low (negative sentiment) while the general
consensus is high (positive sentiment). In other words, it raises a greater concern
when sentiment analyzers predict opposite sentiment classes than labeling them as

33

neutral. Therefore, I think it is logical to assign partial credit to false labeling of
neutral sentiment. Results of evaluation using partial neutral metric are informative
for cases where the consequence of labeling a polarized input as neutral is not as
expensive as labeling the sentiment the polar opposite, such as considering the
consensus of public on a product.

8.4 Results

A complete version of the results can be found in Table 9. Given that the main
focus of this research is to find the best negation resolution method, I calculated
the mean performances across different negation resolution methods, collapsing
negation scope detection and aggregation methods. A visualization of the analysis
is included in Figure 5.

For the easy reviews test dataset, the best performing model the one using the
4-grams negation scope detector, inverting negation resolution, and the structural
aggregation method (partial neutral score of .6376). However, all five negation
resolution methods performed equally well, with performances falling in the range
[.56 - .64]. One surprising observation was that performance of the baseline model
which ignored negation was high (ranked 9th out of 25 models). Figure 6 provides a
visual representation for the distribution of performances of each of the 25 models,
along with the baseline model which was represented by the red boundary line.

The hard reviews test dataset provided a better window for differentiating
between the negation resolution methods. The best performing model was the
one using the Negtool negation scope detector, meaning specificity lite negation
resolution, and the flat aggregation method (partial neutral score = .6575). The best
negation resolution method was meaning specificity lite with mean partial neutral
score of .604 (range [.58 - .66]). Notably, all models of meaning specificity lite
ranked higher than any model from the second best performing negation resolution
method, inverting, which had a mean partial neutral score of .519 (range [.50 - .56])
(see to Figure 7.

Since negation resolution is part of a bigger sentiment analysis pipeline, I per-
formed the same aggregate analysis, calculating the mean performances of models,
on negation scope detectors (4-grams, Negtool, and parse tree) and aggregation
methods (flat and structural) to gain a deeper understanding on how each stage of
the analysis contribute to the final performance score. Note that I did not include
performance of the baseline model when I collapse model performances across a
particular negation scope detection or aggregation method because the baseline
model had a partial neutral score of O on the hard reviews test dataset. From my

34

Table 9: Summary of Results. Bolded values represent the best performing model
within the specific test dataset.

Models / . Partial Neutral
asy Hard
Datasets Flat Structural | Flat Structural

Baseline (None) .6287 - 0.0 -
4-grams

Inverting 6116 6376 4986 4968

Asymmetrical shift .6070 .6330 4435 4357

Antonym dictionary .6147 .6321 2728 2823

Meaning specificity .6067 .6335 4421 4325

Meaning specificity Lite .5873 .6067 5788 .5693
Parse Tree

Inverting - .6348 - 5012

Asymmetrical shift - .6299 - 4405

Meaning specificity - .6035 - ST57

Meaning specificity Lite - .6013 - 5827
Negtool

Inverting .6066 .6319 5573 5416

Asymmetrical shift .6004 .6263 4799 4667

Antonym dictionary .6098 .6328 .3393 .3356

Meaning specificity .6013 .6270 4772 4621

Meaning specificity Lite .5572 5877 6575 .6355
Note:

Bolded values represent the best performing model for the dataset.

35

Difficulty Levels

Hard

Labels

M Invert

1 Asymmetrical shift
B Antonym dictionary
1 Meaning

B Meaning Lite

Mean of Partial Neutral

Figure 5: Visualization of negation resolution, collapsed across scope detection
and aggregation. Error bars shows 95% confidence interval for the mean.

F | | | | | MNegation Resolution Methods
MW 1. Invert
2. Asymmetrical shift
| 1 I M 3. Antonym
4. Meaning specificity
M 5. Meaning specificity Lite

L L

D.IBE D.IET CI.I5& D.,IEB CI.IECI D.IG‘I CI.IEZ D.IES CI.EN’I-I
Results (Partial Neutral), Boundary = Baseline Model
Figure 6: Visualization of performances of 25 easy review models. The red

boundary line represents the partial neutral score achieved by baseline model.

Negation Resolution

5 1 . 1 MNegation Reselution Methods
] W 1. Invert

E 2 2. Asymmetrical shift

g sl 1 3. Atonym

E 4. Meaning specificity

s 4 [5. Meaning specificity Lita

g o 1

T T T T T T T T
025 030 0.35 0.40 0.45 0.50 0.55 0.60 065 0.70
Results (Partial Neutral)

Figure 7: Visualization of performances of 25 hard review models. The baseline
model had a partial neutral score of 0 and therefore is omitted from the figure.

36

analysis (see Figure 8), there was no specific incentive for utilizing a particular
negation scope detector or aggregation method for both easy and hard reviews.
Although it seems that choosing a parse tree negation scope detector yielded bet-
ter results than using 4-grams, a Bayesian ANOVA revealed that it is 3.74 times
more likely to occur under a model without including an effect of negation scope
detectors. That is, the analysis was in favor of the null hypothesis: there are no
difference between the mean partial neutral scores of different negation scope
detectors.

Negation Scope D S Aggregation Methods
Difficulty Levels 0.623 Difficulty Levels
0.6 M Easy 0.6 0.600 Easy
M Hard Hard

0.5 0.5
O.% 0.{&
0.4

0.3+

o
i
1

Partial Neutral
o
w
1

o
)
N

0.2+

0.1
0.1+

0.0-
0.0

Flat-|

» L
£ g
s >
5 15}
3 z

Parse tree
Structural -

Figure 8: Left: Visualization of negation scope detectors, collapsed across negation
resolution and aggregation methods. Right: Visualization of aggregation methods,
collapsed across negation scope detectors and negation resolution. Both: Error
bars shows 95% confidence interval for the mean.

9 General discussion

Here I have investigated how incorporating meaning specificity could benefit
negation handling approaches in sentiment analysis. In particular, I have provided
an empirical comparison of different negation handling strategies implemented
in a sentiment analysis pipeline. I compared meaning specificity approaches
(lookup and lite) against three previous strategies: inverting, asymmetrical shift and
antonym dictionary. The meaning specificity approach I introduced uses frequency

37

and inverse dispersion to approximate meaning specificity, harnessing intuitions
about factors that seem to impact a word’s meaning specificity.

In this section, I elaborate on the results obtained from running two datasets
of varying difficulties, highlighting cases where meaning specificity negation
resolution outperformed other methods. I discuss the factors contributing to good
performance and similarly investigate causes where applying meaning specificity
is less beneficial. Finally, I conclude by discussing the limitations of current work
as well as presenting suggestions for future work.

9.1 Inferences to be drawn from datasets of varying difficulty

To study the effects of different negation resolution strategies, it is important to
have datasets that would reveal where the strategies differ. Notably, I found that
the “easy dataset”, containing reviews that had least one negation word didn’t do
this. The different strategies had very similar performance. In contrast, the “hard
reviews” dataset revealed different performance for different negation resolution
strategies. In this subsection, I present the inferences to be drawn from each dataset
based on observations of the results, and discuss their contributions in my search
for the best negation resolution method.

9.1.1 Easy Reviews Dataset

My results showed that for easy reviews, all negation handling methods performed
similarly and obtained comparable results, with partial neutral scores in the range
of [.56 -.64]. Moreover, the baseline model, which ignores negation, ranked high in
the list, 9th out of 25 (partial neutral score of .629 compared to the best performing
model of .638). It seems counter-intuitive that doing nothing is better than doing
something, even though negation is occurring. I investigate this observation from
two directions: (1) the reason for the high performance of the baseline model, and
(2) reasons for negation handling models to perform worse than the baseline model.

One plausible explanation for the high performance of the baseline model is
that negation is used in conjunction with other words that have strong sentiment
cues, making the effect of negation on the overall sentiment less pronounced. For
instance, consider this sample review excerpt: “This case is as cute as it is durable.
Your phone sits in a rubber casing that fits very snug. Your phone won’t be falling
out.” The review excerpt expressed positive sentiment with cue words such as
“cute,” “durable,” “fits,” and “snug.” These positive sentiment terms collectively
overpower the negative sentiment of “falling.” That is, doing nothing to negate the

38

negative sentiment of “falling” doesn’t hurt much — it’s overpowered by the positive
sentiment terms already. So, the resulting sentiment of this specific review with
or without the negation phrase is fairly similar (all models including the baseline
model predicted positive sentiment, specifically 4 stars, with sentiment values
around .2). This highlights that the contribution of the negation in these review
sentences is small compared to the sentiment already present.

On the other side, models performing some kind of negation handling per-
formed worse than the baseline model may be explained by the models failing to
arrive at the intended interpretation of negation. For instance, the review “It is
and does exactly what the description said it would be and would do. Couldn’t be
happier with it” would be classified positive by a baseline model ignoring negation;
however, it might be classified as neutral by negation-handling models because
the phrase “couldn’t be happier” does not diminish the intensity of happiness but
rather intensifies the expression. In other words, “couldn’t be happier” is inter-
preted as less positive than “happier” alone. Considering that there might be other
examples of this kind, models performing negation handling incorrectly adjusted
their predictions toward the opposite sentiment, thereby arriving at performance
scores slightly lower than the baseline model.

Overall, the easy reviews test dataset is valuable in that it captured common
usages of negation. Results from the easy dataset serves as a sanity check as any
negation resolution method should be broadly applicable to different negation cases,
including easy ones. When coupled with results from the hard reviews dataset, the
negation resolution method with the least variance in performance across these two
datasets can be considered the most robust technique since it would indicate that
the method performs well irrespective to review difficulty.

9.1.2 Hard Reviews Dataset

While all models performed comparably well on the easy reviews test dataset, the
hard reviews test dataset was designed to be a more rigorous test to differentiate
among the models. Specifically, the hard reviews test dataset is a compilation
of reviews where the baseline model that ignored negation failed to predict the
target sentiment accurately. In other words, hard reviews are instances where
negation really mattered and ignoring negation leads to blatant errors. From the
distribution of model performances, the hard dataset successfully distinguished
different negation handling strategies, with model performance in the much wider
range of .27-.66. Therefore, hard reviews allowed us to infer the method that
handles negation more robustly.

39

With hard reviews, the top performing models were ones that utilize meaning
specificity as their negation resolution method, with the most obvious improvement
observed when applying the lite version of meaning specificity. Specifically,
the top six models had meaning specificity as their negation resolution methods,
with the model combination of negtool scope detector + lite version of meaning
specificity negation resolution + flat having the highest partial neutral score of
.6575. Results from the hard reviews dataset illustrate that applying the meaning
specificity approach is more rewarding when negation plays an important role in
influencing the final target sentiment category.

9.2 Negation resolution strategy highlight:
Meaning specificity lite as a robust general negation han-
dling strategy

9.2.1 Assessing the effort and reward for applying meaning specificity lite

Results from the hard reviews particularly highlighted the value of meaning-
specificity-based approaches to negation resolution: the top 5 models were models
utilizing the meaning specificity lite approach. This suggests that it is beneficial
to include components of meaning specificity when handling hard instances of
negation in sentiment analysis, where negation completely changes the polarity of
an expression.

However, the same isn’t true for the easy reviews. Although all models per-
formed similarly on the dataset, meaning specificity lite ranked last compared to
other negation handling methods, with an averaged partial neutral score of .588,
compared to the best performing .625 of inverting. Given this, if it is known be-
forehand that the negation instances are rarely hard in the sense I defined here, it’s
better to implement the inverting technique of negation resolution which requires
less effort to implement.

On the other hand, when the nature of the test dataset is unknown (as may
often be the case), it seems useful to apply the meaning specificity lite approach to
negation resolution. Meaning specificity lite is the most robust of all the techniques
I investigated, as evidenced by the small variance in partial neutral scores for both
easy and hard reviews (with .588 for easy and .604 for hard). Therefore, this method
is capable of handling easy reviews, which are found more abundantly in real world
data sets; it’s additionally more reliable for dealing with hard reviews, making
fewer mistakes that are really bad, such as classifying the intended sentiment as
the opposite.

40

9.2.2 Meaning specificity lite being a less accurate variant of meaning speci-
ficity

Recall that meaning specificity lite was intended as a lightweight version of the
original proposed meaning specificity negation resolution method. Instead of a
lookup table mapping sentiment tokens to meaning specificity components, it relied
on distributions from which meaning specificity components (i.e., frequency and
inverse dispersion) are sampled from. Interestingly, these models performed better
than those that utilized meaning specificity lookup, especially for the hard reviews
dataset.

9.2.3 Incomplete adherence to imperfect underlying assumptions of mean-
ing specificity afforded better performance

It might seem counterintuitive that utilizing a less precise meaning specificity
method, that is, random sampling from distributions rather than using the actual
value computed from a corpus sample, boosted performance. However, note that the
meaning specificity lite approach did not sample meaning specificity components
from completely random distributions. Rather, the method injected randomness
in a structured way, based on similar sentiment scores: the meaning specificity
components needed to calculate the negated sentiment score were based on the
affirmative sentiment bins they fell into. This structured randomness somehow
moved the performance in a more desirable direction.

Similar findings have been noted in the realm of language development mod-
eling; there are cases where better developmental performance occurrs when
the learning model had sub-optimal inference (Phillips and Pearl, 2015). More
specifically, modeled learners who had to approximate inference for the specified
computation performed better than modeled learners who accomplished this in-
ference optimally. Phillips and Pearl (2015) suggested that this was because the
computation that the learner was trying to accomplish was itself sub-optimal — so
optimal inference for that sub-optimal computation yielded an outcome that was
itself sub-optimal. In contrast, approximate inference pushed the modeled learner
away from the optimal outcome of that sub-optimal computation, and for whatever
reason, towards a better outcome.

Here, frequency and inverse dispersion are heuristics used to approximate
meaning specificity. In this way, they can be considered a sub-optimal computation
of meaning specificity. In addition to that, the equation used a likely sub-optimal
set of weights to combine the features, as these were estimated from a small gold

41

standard set. Using the same reasoning as Phillips and Pearl (2015), perhaps
approximating these components pushes the model towards a better outcome,
because it’s no longer adhering so strictly to this sub-optimal computation of
meaning specificity. As with the results of Phillips and Pearl (2015), further
research is needed to pinpoint why this way of approximating meaning specificity
improved performance.

9.3 Limitations and Future Work

The current work served as an exploratory analysis of the contributions of meaning
specificity in negation handling, as applied in sentiment analysis. With this in
mind, I consider some limitations of the current study, along with actionable future
directions involving how to better evaluate negation handling models and how to
more fruitfully incorporate meaning specificity into a negation handling strategy.

9.3.1 Evaluation

In the current project, two datasets were used to empirically compare different
negation resolution strategies: easy and hard reviews. As an exploratory analysis,
both test datasets were extracted without balancing, i.e., the test subset I extracted
most likely resembles the actual distribution in the original amazon review dataset
(He and McAuley, 2016; McAuley et al., 2015). While keeping the proportions of
positive, neutral, and negative reviews close to their respective true distribution is
useful for easy reviews, the current research neglected the importance of balancing
the hard reviews test dataset. Recall that the hard reviews test dataset was populated
with negative reviews at a proportion of .94. As such, it is unclear if a high
performing model on my hard reviews test dataset would continue to perform
well if tested on positive reviews. Given this, it would be useful to evaluate the
meaning specificity strategies I investigated here on a balanced dataset of positive
and negative hard reviews.

Nonetheless, regardless of the outcome (i.e., whether meaning specificity
negation resolution method performs well on a balanced test dataset), the results
here are still interesting. The ideal case would be that meaning specificity models
performed equally well on balanced datasets, suggesting the approach I took is
not dependent on the valence of the review. If instead the meaning specificity
approaches don’t perform better on balanced datasets, this suggests the approach is
most useful on negative valence reviews. This would be quite interesting because
in general, sentiment analyzers perform worse on negative valence reviews (Dhaoui

42

etal., 2017). So, in this case, meaning specificity would offer a targeted away to
improve performance on negative reviews.

Another limitation with the current evaluation concerns the integrity of the
target. Recall that in the current research I regarded the user-provided star rating
as the target or ground truth which I compared my model predictions against.
However, several studies have pointed out the tendency for reviewers to write
and rank differently, termed the fext-rating inconsistency (TRI) phenomenon (Lak
and Turetken, 2014; Geierhos et al., 2015). In the current study, I treated star
ratings of reviews as ground truth when evaluating models; this implicitly assumes
consistency in text rating. Nevertheless, given what I have access to, I regard star
ratings as a good enough window into the coarse sentiment of a text-based review
(Lak and Turetken, 2014).

9.3.2 Elements of meaning specificity and ways of combining them

The most profound component of a lexicon-based sentiment analyzer is its sen-
timent dictionary. In general, having an accurate and comprehensive sentiment
lookup is the foundation for further applications. However, it’s often difficult to
create such a lookup table. In the current study, my compiled sentiment dictionaries
consist of manual human-labeled lexica mixed with automatically-generated ones;
this led to the dictionary prioritizing comprehensiveness over accuracy. In addition
to this, the current project did not consider aspects of word senses or contexts. For
instance, “thick”, when used in the context of a winter jacket or in the context of
a phone, has a different sentiment score. Future research could consider utilizing
a better sentiment dictionary, with sentiment manually annotated by humans via
crowd-sourcing, and hopefully obtain a better sentiment dictionary, which would
be the foundation of any sentiment analyzer.

Another open avenue of future work concerns the specific meaning specificity
approach I pursued in the current study. While it was the most robust strategy
compared to other approaches, there are several aspects where my implementation
could be improved. These include: (1) elements involved in estimating meaning
specificity, (2) the gold standard or training data used to tune the negated sentiment
equation, and (3) methods of combining the elements. I discuss each in turn.

First, I consider the elements I used to heuristically approximate meaning speci-
ficity: frequency and inverse dispersion. My results showed that models utilizing
meaning specificity lite, which sampled from distributions of frequency and inverse
dispersion respectively, were robust across both the easy and hard reviews test
dataset. Nonetheless, the exact relationship between those two components and

43

meaning specificity is yet to be determined. One potential solution is to conduct a
behavioral study where users rate the specificity of different words. Correlation or
dependence analysis would reveal any statistical relationship between my proposed
meaning specificity elements (frequency and inverse dispersion) and meaning
specificity.

Another aspect that is worth investigating is a more accurate and indicative gold
standard. Since my negated sentiment equation is tuned by performing multiple
regression analysis on the gold standard, future studies should experiment with a
more balanced and larger corpus for a gold standard. In particular, the current gold
standard consists of 42 entries (25 positive, 5 negative, and 12 neutral affirmative
entries mapped to 4 negative, 9 neutral, and 29 positive negated sentiment); these
entries were extracted from an automatically-generated lexicon (Kiritchenko et al.,
2014). Therefore, an equation tuned to a larger, more balanced, and possibly more
accurate gold standard is likely to improve performance. Although I manually
inspected the gold standard to catch entries that didn’t align with my intuitions, an
attainable ideal would be to construct the gold standard from human judgments on
the negated sentiment.

Another natural question concerns the way to combine the elements that relate
to meaning specificity, and then are used to calculate the negated sentiment. Cur-
rently, I utilized multiple regression to determine the weights of each component
in a linear equation. However, the coefficients for variables in the equation could
be determined by other ways such as a support vector machine (SVM). On top
of that, the elements may also be combined in non-linear ways using techniques
such as a multilayer perceptron or decision tree. Future research can investigate
the best method for combining meaning specificity elements to generate a negated
sentiment score.

Lastly, a surprisingly finding in the current study was that the meaning speci-
ficity lite negation handling strategy was the most robust technique, obtaining
results with lowest variance across reviews of different difficulty levels. As noted
in section 9.2.3, it’s unclear why this occurred. Future research can ascertain if this
continues to occur across different meaning specificity implementations, and if so,
what the underlying cause might be.

10 Conclusion

This project evaluated meaning specificity as a potential feature to be included in
negation handling of sentiment analysis. Meaning specificity was quantified by

44

frequency and inverse dispersion, as well as the interaction between the two. It
was validated that there is information to be gained demonstrated by reduction in
entropy, taking meaning specificity as an additional feature on top of sentiment
scores. By incorporating a meaning-specificity-based negation handling approach
into a sentiment analysis pipeline, an improvement in performance was achieved
when tested on a harder subset of negation instances. Performance of a particular
meaning specificity negation approach (meaning specificity lite) was also most
stable across the two test sets with variable difficulty, as evidenced by its lowest
variance in performance across the easy and hard reviews test datasets. Therefore,
I find positive support for incorporating meaning specificity in negation handling
for sentiment analysis.

Acknowledgement

I would like to thank Alan Yuen and Lisa Pearl for their thoughtful comments and
suggestions.

45

Sentiment Scores

Appendix A Gold Standard with Affirmative and Negated

Table 10: Forty-two adjectives and adverbs I regarded as the
gold standard, and used to tune equations for asymmetrical
shift and meaning specificity negation resolution approaches.

Word POS Affirm NRC NRC Negation
Affirm Negated Freq

able Adjective 0.25 0.28 -0.50 278,625
alone Adverb -0.55 -0.03 0.26 38,372
attractive Adjective 0.68 0.30 -1.51 10,756
bad Adjective -0.50 -0.92 0.19 471,908
best Adjective 0.81 1.12 -0.02 190,440
clear Adjective 0.25 0.37 -1.15 86,683
disappointed Adjective -0.58 -1.96 1.53 253,215
due Adjective 0.04 0.20 -0.34 21,083
far Adverb 0.02 0.10 0.01 40,576
free Adjective 0.56 0.36 -1.31 24,707
full Adjective 0.48 0.35 -0.44 42,207
further Adverb -0.04 -0.46 0.82 65,724
good Adjective 0.66 0.74 -1.08 643,979
great Adjective 0.73 1.42 -0.34 270,430
happy Adjective 091 1.07 -1.49 171,241
high Adjective 0.02 0.20 -0.80 62,514
important Adjective 0.33 0.04 -0.53 23,059
impressed Adjective 0.81 1.18 -1.51 78,127
impressive Adjective 0.60 1.04 -1.04 10,202
interested Adjective 0.48 0.02 -1.12 49,546
live Adjective 0.11 0.46 -0.52 42,389
necessary Adjective -0.09 -0.24 -0.01 55,632
new Adjective 0.41 0.66 -0.89 79,927
nice Adjective 0.72 0.91 -1.90 32,916
often Adverb -0.02 -0.13 0.35 40,983
open Adjective 0.39 0.40 -0.62 35,215
possible Adjective 0.10 0.03 -0.55 43,309
prepared Adjective 0.13 0.02 -0.34 12,864

46

pretty
ready
safe
satisfied
simply
special
strong
together
truly
well
willing
worried
wrong
young

Adverb
Adjective
Adjective
Adjective
Adverb
Adjective
Adjective
Adverb
Adverb
Adverb
Adjective
Adjective
Adjective
Adjective

0.77
0.52
0.56
0.53
0.11
0.74
0.08
0.03
0.28
0.47
0.22
-0.23
-0.44
0.20

0.17
0.57
0.24
1.09
1.04
1.06
0.62
0.26
0.46
0.35
0.06
-0.69
-1.01
0.21

-0.72
-0.97
-1.50
-0.69
-0.83
-0.90
-0.42
-0.10
-0.10
-1.20
-1.04
-0.08
-0.09
-0.90

24,281
36,285
20,885
32,789
26,697
23,990
80,894
23,836
13,363
232,925
23,269
21,753
29,418
13,571

47

References

Sasha Blair-Goldensohn, Kerry Hannan, Ryan McDonald, Tyler Neylon, George A
Reis, and Jeff Reynar. Building a sentiment summarizer for local service reviews.
In WWW workshop on NLP in the information explosion era, volume 14, pages
339-348, 2008.

Jorge Carrillo-de Albornoz and Laura Plaza. An emotion-based model of negation,
intensifiers, and modality for polarity and intensity classification. Journal of the
Association for Information Science and Technology, 64(8):1618—-1633, 2013.

Chedia Dhaoui, Cynthia M Webster, and Lay Peng Tan. Social media sentiment
analysis: lexicon versus machine learning. Journal of Consumer Marketing, 34
(6):480-488, 2017.

Martine Enger, Erik Velldal, and Lilja @vrelid. An open-source tool for negation
detection: a maximum-margin approach. SemBEaR 2017, page 64, 2017.

Michaela Geierhos, Frederik Simon Bidumer, Sabine Schulze, and Valentina Stuf.
” 1 grade what i get but write what i think.” inconsistency analysis in patients’
reviews. In ECIS, 2015.

Stefan Th Gries. Dispersions and adjusted frequencies in corpora. International
Jjournal of corpus linguistics, 13(4):403-437, 2008.

AL-Rubaiee Hamed, Renxi Qiu, and Dayou Li. The importance of neutral class
in sentiment analysis of arabic tweets. Int. J. Comput. Sci. Inform. Technol, 8:
17-31, 2016.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering. In proceedings of the
25th international conference on world wide web, pages 507-517. International
World Wide Web Conferences Steering Committee, 2016.

Svetlana Kiritchenko and Saif Mohammad. The effect of negators, modals, and
degree adverbs on sentiment composition. In WASSA@ NAACL-HLT, pages
43-52, 2016a.

Svetlana Kiritchenko and Saif M. Mohammad. Sentiment composition of words
with opposing polarities. In Proceedings of The 15th Annual Conference of

48

the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL), San Diego, California, 2016b.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mohammad. Sentiment analysis
of short informal texts. Journal of Artificial Intelligence Research, 50:723-762,
2014.

Dan Klein and Christopher D Manning. Accurate unlexicalized parsing. In
Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics-Volume 1, pages 423—430. Association for Computational Linguis-
tics, 2003.

Moshe Koppel and Jonathan Schler. The importance of neutral examples for
learning sentiment. Computational Intelligence, 22(2):100-109, 2006.

Parisa Lak and Ozgur Turetken. Star ratings versus sentiment analysis—a compari-
son of explicit and implicit measures of opinions. In System Sciences (HICSS),
2014 47th Hawaii International Conference on, pages 796-805. IEEE, 2014.

Wei-Yin Loh. Fifty years of classification and regression trees. International
Statistical Review, 82(3):329-348, 2014.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
Image-based recommendations on styles and substitutes. In Proceedings of the
38th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 43-52. ACM, 2015.

George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39-41, 1995.

Saif M Mohammad, Svetlana Kiritchenko, and Xiaodan Zhu. Nrc-canada:

Building the state-of-the-art in sentiment analysis of tweets. arXiv preprint
arXiv:1308.6242, 2013.

Roser Morante and Walter Daelemans. Conandoyle-neg: Annotation of negation
in conan doyle stories. In Proceedings of the Eighth International Conference
on Language Resources and Evaluation, Istanbul. Citeseer, 2012.

Lawrence Phillips and Lisa Pearl. The utility of cognitive plausibility in language
acquisition modeling: Evidence from word segmentation. Cognitive science, 39
(8):1824-1854, 2015.

49

William M Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical association, 66(336):846—-850, 1971.

Johan Reitan, Jgrgen Faret, Bjorn Gambick, and Lars Bungum. Negation scope
detection for twitter sentiment analysis. In Proceedings of the 6th Workshop on
Computational Approaches to Subjectivity, Sentiment and Social Media Analysis,
pages 99-108, 2015.

Nicolas Ruytenbeek, Steven Verheyen, and Benjamin Spector. Asymmetric infer-
ence towards the antonym: Experiments into the polarity and morphology of
negated adjectives. Glossa: a journal of general linguistics, 2(1), 2017.

Gerard Salton and Michael J McGill. Introduction to modern information retrieval.
1986.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Man-
ning, Andrew Y Ng, Christopher Potts, et al. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the conference

on empirical methods in natural language processing (EMNLP), volume 1631,
page 1642, 2013.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kimberly Voll, and Manfred Stede.
Lexicon-based methods for sentiment analysis. Computational linguistics, 37
(2):267-307, 2011.

Mike Thelwall, Kevan Buckley, and Georgios Paltoglou. Sentiment strength
detection for the social web. Journal of the Association for Information Science
and Technology, 63(1):163-173, 2012.

Xiaodan Zhu, Svetlana Kiritchenko, and Saif Mohammad. Nrc-canada-2014:
Recent improvements in the sentiment analysis of tweets. In Proceedings of

the 8th international workshop on semantic evaluation (SemEval 2014), pages
443447, 2014.

50

