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ABSTRACT OF THE DISSERTATION

A Quantitative Framework for Specifying Underlying Representations
in Child Language Acquisition

By

Galia Kaas Bar-Sever

Doctor of Philosophy in Cognitive Sciences

University of California, Irvine, 2019

Professor Lisa Pearl, Chair

My research broadly demonstrates how quantitative approaches can be effectively leveraged

for developmental research. In this dissertation, I show one quantitatively precise way to

identify the nature of developing mental representations in a variety of domains; my approach

utilizes the connection between a learners input, creation of a potential mental representa-

tion from that input, and evaluation with respect to the learners output. More specifically,

the quantitative approach I use leverages both realistic input data and realistic output data

as part of the model design and evaluation. Using modeling, we have the opportunity to

concretely evaluate representational options that we would not otherwise be able to dis-

ambiguate. I demonstrate this quantitative approach with three case studies in language

development: (I) the development of adjective ordering preferences, where I find that the

representations that adults use to talk to children are different than the ones used to talk to

other, adults, (II) immature individual syntactic category representations, where I identify

precisely which immature category representation young children are likely to be using, and

(III) the development of adult productive syntactic category representations, where I identify

when adult category knowledge emerges in typically and atypically developing populations.
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Chapter 1

Introduction

1.1 The puzzle of language development

As anyone who has tried to learn another language knows, adults can struggle with this

task. For most adults, it can take years to develop anything close to fluency, and they rarely

reach true native ability. Babies, on the other hand, can’t solve equations, compose sonatas,

or perform any of the complex tasks that adults can1; in learning language, though, they

shine. Babies will achieve a high level of proficiency in their native language within five

years, while an adult may never reach the same level of proficiency in a second language.

Moreover, babies do this naturally, without much explicit correction or instruction (Sakai

[2005], Saffran et al. [2001]).

The ease with which babies process, organize, and use their languages rules belies the in-

credible complexity of language learning. Babies must independently sort out all kinds of

language and non-language data, and determine how to construct the rich systems of lin-

guistic representation that underlie language proficiency. This includes knowledge of what

1The author would like to reassure any babies reading this that, while an adult, she cannot compose
sonatas either.
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sounds fit together (phonology), what parts make up words (morphology), individual word

meaning (lexical semantics), and how words work together (syntax), not to mention the

additional layers built upon these fundamental skills, such as understanding sentence-level

semantics and pragmatics.

Given that more sophisticated knowledge is built upon more fundamental knowledge, this

means that the development of this knowledge necessarily happens in stages, with more basic

steps in the learning process preceding more complex ones. Children create linguistic build-

ing blocks, or mental representations, in a variety of domains (like knowledge of phonology,

morphology, lexical semantics, syntax, sentence-level semantics, and pragmatics) based on

their input. The mental representations that children form during this staged process are

critical, since they scaffold future learning. Understanding the development of these mental

representations is thus crucial for researchers looking for a complete picture into how lan-

guage learning works. Relatedly, precise knowledge about when certain linguistics structures

typically develop allows for diagnosis of atypical development when we detect deviations from

typical development.

While these representations exist in the mind of the child, and are therefore unobservable, we

can theorize about them based on behavior that is observable. In particular, because children

rely on these representations both to understand and produce language, researchers have

traditionally theorized about the representations based on the children’s behavior. However,

this kind of theorizing is difficult to do, because the link between the representations and

the behavior is complex. Even in carefully controlled experiments, it is difficult to draw a

causal link between behavior and a specific mental representation. This is especially true in

experiments involving very young children. For example, say we observe a child describe an

object as a “small grey kitten”. What is causing this particular order of adjectives (small

before grey) in describing this kitten? It could be that this ordering of adjectives depends

strictly on how often the child heard those particular adjectives in those particular locations
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in the string. It could also be that the adjective order is dependent on an adjective’s lexical

class. In fact, a number of mental representations of adjective order could produce the

small grey kitten utterance we observe. Which could it be? It’s impossible to ask adults

directly what representation of adjectives they were using to generate their observed adjective

productions, much less a child.

Even though we can’t observe mental representations directly, we often have a good idea of

what the adult mental representations could look like for a particular language phenomena.

For example, we have a pretty good idea that words are represented within parts of speech

like noun, verb, etc.) and these categories interact with each other in predictable ways.

For instance, an adult might represent a noun phrase (like the kitten) as a combination

of categories, like determiner (the) and noun (kitten). Adults seem to be using these

categories productively, and the way these categories are organized is unlikely to change

much. The question then becomes how do children develop these categories out of the words

they encounter?

Importantly, as children develop, their representations in turn are developing. In particular,

children may be considering different immature representations along the way to develop-

ing the mature, adult representation. The approach I take allows us to consider different

potential representations a child could be using, both immature and mature. My approach

allows us to predict what output the child would generate from a particular representation,

given the child’s input; then, we can compare the predicted outputs against the child’s true

output to see which one matches best.

More specifically, we can use the child’s input to mathematically specify the exact form of

a candidate representation. For example, we can disambiguate between a child representing

the kitten as simply being amalgam based on their input (i.e., how many times they heard

the kitten in their input) vs. a child representing the kitten as a combination based on

their own internal representation of a determiner (the) combined with a noun (kitten).
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We can then evaluate which potential representation best informs how the child actually

used the kitten in their output. This connects the child’s input, which is observable, to

the mental representation, which isn’t observable. Then, we can mathematically specify the

output that the candidate representation would cause the child to produce. So, the unseen

mental representation is again connected to something observable: the child’s output. This

approach thus allows us to determine which representation the child is most likely to have

by connecting that unobservable representation to language data we can observe, namely a

child’s language input and output.

1.2 Underrepresented populations in computational lan-

guage research

An important thing to consider when investigating child language development is that not

every child’s development proceeds in a typical fashion. There are many populations whose

language learning trajectories diverge from typical development. In particular, there has been

a lot of research in the developmental linguistics community focusing on typically-developing

children who are learning spoken languages. However, there is much less work in develop-

mental linguistics outside of this population, in both typically-developing children learning

a non-spoken language (e.g. American Sign Language) or children from clinical populations

(like Autism Spectrum Disorder, Specific Language Impairment, or Down Syndrome).

A large amount of data is necessary for robust analysis of any phenomenon in language acqui-

sition. However, there are nontrivial issues in undertaking computational modeling for these

populations that are underrepresented in computational language research. For one, there

is limited information about how mental representations and behavior are linked in children

who either have atypical input or have atypical cognitive abilities. In cognitively atypical
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populations, not only is the population generally smaller than in typically-developing pop-

ulations, but in some parts of the atypically-developing population (such as children who

suffer from particular disorders such as Specific Language Impairment and Down Syndrome),

production is necessarily affected by this disorder; this lack of productions in turn results in

less observable language data to collect. When we look at language development in other

linguistically-diverse, but not necessarily cognitively diverse populations, the modality of the

linguistic data adds an extra wrinkle. Such is the case with American Sign Language. It

is difficult in itself to code auditory language data, but coding signed languages presents

a particular challenge. This is not only because there are different annotation conventions

between annotators, but also because the nature of signed languages means features can

be simultaneously articulated, making transcribing these elements tricky. For all underrep-

resented populations, this lack in quantity of data is compounded by the fact that there

are fewer able coders of such data, as well as there being varied methods and annotation

conventions between able coders, resulting in much less available data.

However, even given these difficulties, it is crucial to take a broad look at data from cog-

nitively and linguistically diverse populations in order to make general claims about how

language development works. Lack of information in both arenas further limit our under-

standing of language development in general. Looking at linguistically diverse populations

allows us to disambiguate what aspects of language learning are specific to a particular lan-

guage and what is true about language learning more generally. This can be even further

expanded by looking at signed languages. By examining signed languages, we can gain in-

sight into how language develops irrespective of modality, and what is modality dependent.

Looking at underrepresented populations with different developmental profiles also gives us

insight in language development. In particular, we can better understand (i) what cognitive

faculties are required to achieve certain stages of linguistic development that involve partic-

ular mental representations, and (ii) what is actually different (representations, strategies,

etc.) in language development in typically vs. atypically-developing populations. That is,
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are children with different language learning profiles, whether they be from clinical popu-

lations or differing modalities) constructing the same linguistic representations as typically

developing children? Do the strategies they use differ?

In the following chapters, I use my novel quantitative approach on three different case studies

of language development in order to identify which mental representations children are using

at a specific time when we know both their input and output. I first look at the develop-

ment of adjective ordering preferences in typically-developing children; then I turn to the

development of immature syntactic categories in typically-developing children, and finally to

the emergence of adult-level productive syntactic category knowledge in typically-developing

and atypically-developing children.
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Chapter 2

The Development of Adjective

Ordering Preferences

2.1 Introduction

Adults have robust ordering preferences that determine the relative order of adjectives in

multi-adjective strings: this is why small grey kitten and nice round penny are preferable to

grey small kitten and round nice penny. Adults are reliably and robustly uncomfortable with

the latter options, yet are typically unable to pinpoint why they have this reaction. Notably,

these preferences surface for any multi-adjective string, even ones never before encountered:

English adults would probably prefer tiny green magical mouse-riding gnomes to mouse-

riding magical green tiny gnomes, even though it is unlikely they have encountered these

particular adjectives strung together before. Even more remarkable than the robustness

and productivity of these preferences in English is the fact that these ordering preferences

surface in a variety of unrelated languages, both those with pre-nominal adjectives (like

English, Dutch, or Mandarin Chinese) and those with post-nominal adjectives (like Selepet
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or Mokilese) that follow the modified noun (for discussion, see Dixon 1982, Sproat and Shih

1991).

When it comes to the source of these preferences, there have been a number of hypothe-

ses. The null hypothesis for adults would hold that they simply repeat back what they

hear when forming multi-adjective strings, reflecting the statistics of the particular multi-

adjective strings in their input. However, this kind of input frequency strategy is limited in

its productivity (if you haven’t heard it, you don’t have a preference about it) and adults

are not limited this way. Importantly, because of their productivity, these preferences ap-

pear to be based on abstract representations, rather than simply reflecting the positioning

of specific adjectives in the input. If you aren’t considering both adjectives in a string as a

combined unit (for example, assuming the adjectives in nice round seals are an atomic unit as

nice+round), keeping track of the positional frequency of the adjectives is the next best null

hypothesis (e.g., keeping track that nice appeared before round, which appeared before the

noun). This will work well if you are working with lexical items you have heard before. For

example, I might have a preference for green mouse-riding gnomes over mouse-riding green

gnomes simply because I have previously heard green 2 “slots” away from the noun (i.e. like

in green crystalline chinchillas or green fire-eating pixies). We can refer to adjectives like

nice in this case as being in the “2-away” position.

But how exactly do adults represent these ordering preferences? Prevailing approaches in

linguistics advance the idea that adult adjective ordering is determined by abstract syntax,

with adjectives grouped into lexical semantic classes that are hierarchically ordered [Dixon,

1982, Cinque, 1994]. These lexical classes and their hierarchical ordering would then serve as

primitives in the representation of the preferences. For example, because green is a color

adjective, it would necessarily be placed before metal because a color adjective would

always come before a physical adjective hierarchically – this is why I say green metal stars

instead of metal green stars. Yet, why should these classes be ordered the way they are, and
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how do we handle adjectives that do not fit neatly into a single clear lexical class? Words like

bright, for example, could refer to the physical notion of emitting light, or apply to sentient

creatures as being smart.

Recently, Scontras et al. [2017] identified adjective subjectivity as a robust predictor of

adult ordering preferences, with less subjective adjectives preferred closer to the modified

noun; they advanced the hypothesis that ordering preferences—and the lexical class ordering

observed cross-linguistically—derive from the perceived subjectivity of the adjectives. Thus,

perceived subjectivity would serve as a primitive of the adult representation of adjective

ordering preferences. This would also mean that it wouldn’t matter if an adjective didn’t

have a clear lexical class it would fit into–all that matters would be its relative subjectivity.

Still, little is known about the development of these adjective-ordering preferences in children,

other than that these preferences do in fact develop [Bever, 1970, Martin and Molfese, 1972,

Hare and Otto, 1978]. What we do know is incomplete and messy, discussed in more detail

later on in section 2.2.3.

Bar-Sever et al. [2018] assessed when more abstract knowledge about adjective ordering

emerges, how that knowledge gets represented, and whether the knowledge representation

matches what we believe to be active in adults. To perform this same assessment here, I

build off of previous work by Bar-Sever et al. [2018] and use corpus analysis and quantitative

metrics to connect children’s linguistic input, potential underlying representations regarding

adjective ordering, and linguistic output, thereby arriving at a clearer picture of children’s

knowledge in this domain.

But what mental representations are adults using when talking to children? Across many

different linguistic domains, it’s known that adult-directed and child-directed speech can

differ in fundamental ways [Ferguson, 1964, Fernald et al., 1989, Grieser and Kuhl, 1988,

Snow, 1977]. Adults are known to adjust the complexity of their child-directed speech based
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on the child’s age (e.g., Kunert et al. 2011), and so it may be that the representations

underlying child-directed adjective orderings vary depending on the age of the child being

addressed. For instance, hyperarticulation is thought to be a common feature of child-

directed speech, most often considered in highlighting phonetic categories, specifically vowels

[Kuhl et al., 1997]. If adults are providing children with input of a fundamentally different

character from what they are providing other adults—for example, by hyperarticulating

positional differences between adjectives—we ought to understand the pressures that lead to

that divergence.

Since adults are probably at the target state, looking at what underlies their productions

towards each other might signify the target representation for these preferences. Thus, child-

directed speech may differ from adult-directed speech precisely because of these systematic

differences. However, there may be differences in child-directed speech in some domains

and not others (Pearl and Sprouse [2013], Bates and Pearl [2019]). I will investigate if the

mental representations of adjective-ordering preferences are something that changes in child-

directed speech. Looking at these two language interaction types will tell us about the one

that presumably serves at the target state for learning (adult-directed speech), while the

other is what underlies children’s input (child-directed speech).

2.2 Previous accounts of adjective order

I start by reviewing relevant background for the competing hypotheses surrounding adult

knowledge of adjective ordering. I then review behavioral studies aimed at understanding

children’s preferences, given that there is little known about children’s development of these

preferences.

10



2.2.1 The lexical class hypothesis

The lexical class hypothesis begins with the assumption that adjectives come pre-sorted

into classes according to their semantic properties: color adjectives group together, size

adjectives group together, etc. To account for adjective ordering, these classes correspond to

a deterministic hierarchy that maps adjective strings to their linear order, as in (1); higher

positioning in the hierarchy leads to greater distance from the modified noun.

(1) Lexical semantic class hierarchy from Dixon [1982] :

value > dimension > physical property > speed

> human propensity > age > color

As proposed by Dixon [1982], these hierarchical lexical semantic classes form part of a

speaker’s internal grammar and the lexical classes themselves are universal, existing regard-

less of differences in the morpho-syntactic expression of these semantic types. In an attempt

to formalize the linear ordering of these lexical semantic class hierarchies, Cinque [1994]

built on these classes and proposed a fully syntactic account of ordering preferences whereby

the individual classes project their own phrasal structure, with one phrase hierarchically

dominating another. Under a syntactic account, in small grey kitten, the color adjective

appears closer to the noun than the size adjective because the adjective phrase projected

by small hierarchically dominates the adjective phrase projected by grey. This hierarchical

ordering gets expressed as the linear order of adjectives modifying a noun. The proposal has

been elaborated on since its initial formulation, with recent authors proposing even richer

structure, as in [Scott, 2002] (see also Laenzlinger 2005). In this example, certain phrases

(like Color Phrases – ColorP) are constituents of successive hierarchical phrases, with nodes

left empty to fit potential adjectives in.
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(2) Phrase structure proposed by Scott [2002] for cute small grey kitten

Subj.CommentP

AP

cute

Subj.CommentP′

e SizeP

AP

small

SizeP′

e LengthP

e ColorP

AP

grey

ColorP′

e NP

kitten

Throughout this work on lexical classes, authors have disagreed about the precise specifi-

cation of the classes themselves. Dixon’s classes in (1) gave way to Cinque’s (possessive,

speaker-oriented, subject-oriented, manner/thematic), which depart from the

classes proposed by Sproat and Shih [1991] (quality, size, shape, color, provenance).

Table 2.1 shows each of the authors’ proposed classes. While there is some overlap (color

for Dixon [1982] and Sproat and Shih [1991]), there is little agreement.

Still, despite the fact that it is hard to settle on the universal adjective classes, it has been

shown that a certain ordering of adjective classes goes some way in matching the patterns

observed in adults. What this collection of research does not address is where the hierarchy

comes from in the first place: supposing size adjectives do syntactically dominate color

adjectives, why should this be the case and not the reverse? This approach also relies on an
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Dixon [1982] Cinque [1994] Sproat and Shih [1991]
value possessive quality

dimension speaker-oriented size
physical property subject-oriented shape

color manner/ thematic color
speed provenance

human propensity
age

Table 2.1: Comparison of lexical semantic classes proposed by Dixon [1982], Cinque [1994],
and Sproat and Shih [1991]

ability to identify the appropriate lexical semantic class for any given adjective, enforcing a

sorting into discrete bins based on a static meaning. What about adjectives that fail to fall

into an existing semantic class, like medical or multiple? If an adjective doesn’t fall neatly

into a class, how can someone make lexical-class-based decisions about how to order these

adjectives? Would these words be placed randomly, or by some other strategy?

2.2.2 The subjectivity hypothesis

In an attempt to address the concerns facing the lexical class hypothesis head-on, recent work

by Scontras et al. [2017] advances the hypothesis that aspects of an adjective’s meaning

determine its relative position in a multi-adjective string. In particular, Scontras et al.

propose that the perceived subjectivity of the property an adjective names influences its

ordering. This subjectivity hypothesis states that less subjective adjectives are preferred

closer to the modified noun than adjectives that are more subjective (see also Hetzron 1978,

Hill 2012). This would mean that a turtle that was described as both Italian and gentle

would be labeled as a gentle Italian turtle, because gentle is more subjective than Italian,

and therefore placed farther from the noun.

Scontras et al. operationalized subjectivity as the potential for faultless disagreement be-

tween two speakers about whether an adjective applies to some object [Barker, 2013, Kennedy,

2013, Kölbel, 2004]. In a test of faultless disagreement, two speakers are presented with an
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object (say, a kitten); the speakers then disagree about whether the object holds some prop-

erty (say, being small). To the extent that both speakers can be right while they disagree,

the property (and the adjective that names it) admits that degree of faultless disagreement,

which stands proxy for its subjectivity. This makes sense, because what makes something

subjective or not is whether two people can disagree without either being wrong – i.e., the

disagreement being faultless. So, an adjective’s subjectivity is defined by how much disagree-

ment speakers can have about that adjective without one of the speakers necessarily being

wrong. An adjective like small admits a relatively high degree of faultless disagreement

(two people can disagree about whether they consider an object small), and is therefore

relatively subjective. In contrast, an adjective like grey is relatively objective: when two

people disagree about whether something is grey, one of those people is likely to be wrong.

One might think it would be difficult to rate subjectivity of a given adjective, but in fact,

Scontras et al. found that participants’ estimates of faultless disagreement matched their

ratings for adjective “subjectivity” (r2 = .91, 95% CI [.86, .94]). So, simply asking adults

how “subjective” they believe an adjective to be (a metalinguistic task) can serve as a proxy

for the potentially more ecologically valid faultless disagreement task.

To get a clearer picture of the English ordering preferences that need to be accounted for,

Scontras et al. measured ordering preferences in a behavioral experiment; participants in-

dicated the preferred ordering for multi-adjective strings (e.g., small grey kitten vs. grey

small kitten). To ensure that the behavioral measure captured the implicit knowledge that

speakers use when forming multi-adjective strings, Scontras et al. compared their measure

against naturalistic multi-adjective strings from corpora. Finding a high correlation between

the behavioral measure and corpus statistics (r2 = .83, 95% CI [.63, .90]), Scontras et al.

concluded that the preferences that were measured accurately capture speaker knowledge.

To test the subjectivity hypothesis, Scontras et al. used their estimates of adjective subjec-

tivity to predict the preferred adjective orderings. They found that adjective subjectivity
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accounts for between 51% and 88% of the variance in the ordering preferences. In other

words, subjectivity does predict adjective ordering, thus offering a cognitive explanation for

the linguistic universal of adjective ordering preferences. Given its promise in accounting

for adult knowledge of adjective ordering, one might reasonably wonder about how this

subjectivity-based knowledge might develop.

2.2.3 The development of adjective ordering preferences

The cross-linguistic robustness of ordering preferences has led many researchers to conclude

that the knowledge underlying these preferences is innate, pre-specified as part of the Uni-

versal Grammar that shapes human language [Dixon, 1982, Sproat and Shih, 1991, Cinque,

1994]. Part of the appeal of the subjectivity hypothesis is that it allows us to move away

from claims of innateness (and the puzzle of genetically specifying linguistic structure) [gkb:

see greg notes]. Instead, the subjectivity hypothesis favors an account where subjectivity

awareness develops as we use language to communicate; after all, the potential for fault-

less disagreement is a problem all speakers must attend to. To better understand the role

of subjectivity in ordering preferences and the pressures that lead to it, we must therefore

ask whether this knowledge is present from the start, or whether it develops—perhaps in

stages—into what we observe as the adult state.

There have been several studies examining adjective ordering preferences in children that

tested for emergence of preferences according to lexical class, but the results have been

unclear. Still, the existing evidence at least suggests that the preferences do in fact develop

in the sense that there is a change over time from less adult-like preferences to more adult-like

preferences.

Bever [1970] found that with children between two and five years of age, the younger children

were more likely to repeat unnatural adjective orderings such as the plastic large pencil ; older
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children corrected the phrase to the large plastic pencil. We might therefore conclude that

the younger children fail to demonstrate stable adjective ordering preferences. However,

Martin and Molfese [1972] attempted to recreate Bever’s experiment but were unable to

replicate his findings. This replication failure led Martin and Molfese to suggest that the

original repetition task is not a reliable measure of adjective ordering preferences. In its

place, they used a production task, finding that three- and four-year-olds produced phrases

with adjectives denoting cleanliness closer to the noun than color adjectives (e.g., yellow

clean house), while the adult preference is for color adjectives to appear closer (i.e., clean

yellow house). This result provides evidence that children’s preferences differ from adult

preferences, but only with respect to adjectives of cleanliness and color. A later study

by Hare and Otto [1978] had children in grades one through five arrange three adjectives of

size, color, and material to create natural adjective phrases; children in each succeeding

grade level chose the adult-preferred order of size–color–material (e.g., little yellow

rubber duck) more often than children in the preceding grade level.

These developmental studies leave much unsettled, but they do suggest that adjective or-

dering preferences develop or strengthen over time. However, there is disagreement among

these studies on the age of acquisition, and what the developmental trajectory looks like.

Moreover, none of these studies attempt to tie children’s knowledge to adjective subjectiv-

ity. If in fact the perceived subjectivity of adjectives is what adults are using to inform

their adjective ordering preferences, we ought to wonder when children begin to deploy this

strategy.

Notably, this question becomes more complicated in light of recent work showing that chil-

dren may not have reliable estimates of subjectivity until around the age of seven or eight

[Foushee and Srinivasan, 2017]. If subjectivity is not available but children still demonstrate

clear ordering preferences, how are these preferences acquired from the input children receive

and represented with their available cognitive resources? It may be possible (indeed, likely)
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that children evolve through various stages of knowledge representation for their adjective

ordering preferences. To investigate this knowledge and its stages of development, I examine

children’s production of multi-adjective strings in light of the input they are receiving at

different ages as well as how adults are forming multi-adjective strings when speaking to

each other and to children at different stages of development.

If the current best idea is that subjectivity best accounts for adults’ adjective ordering prefer-

ences, there are a few questions that emerge which I can try to answer. First, is subjectivity

the target state for representing these underlying preferences? Using my approach of con-

necting input to output via the underlying representation, I can evaluate head-to-head these

potential underlying representations (the sophisticated lexical class and subjectivity-based

representations as well as the less taxing positional frequency representation, discussed in

Section 2.1) as a reasonable baseline strategy that relies on individual lexical items rather

than more abstract representations. Second, I can look at which of these representations

children seem to be using at different ages and thus concretely identify their developmental

trajectory. Third, I can look at how adults talk to children versus each other, because adults

are known to adjust linguistic properties of their language when directing it towards children.

2.3 Quantitatively assessing representational hypothe-

ses: The approach

2.3.1 The representational hypotheses

I consider three representational hypotheses that could underlie speakers’ adjective ordering

preferences. The first two correspond to the two potential adult representations discussed in

Section 2.2: representations based on (i) hierarchically-ordered adjective lexical classes or
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(ii) perceived subjectivity of adjectives. Both hypotheses require speakers to create some

abstraction across individual adjective lexical items (i.e., in terms of lexical class or perceived

subjectivity), and then order adjectives with respect to this abstraction. In contrast, the

third representational hypothesis I consider is a simpler lexical-item-based approach, and

does not require additional abstraction. This hypothesis states that speakers track the po-

sitional frequency of adjectives appearing in certain positions in multi-adjective strings,

and their productions mirror the frequencies observed in the input. In particular, for each

adjective, speakers would pay attention to how often it appears in the 1-away position clos-

est to the noun vs. the 2-away position farther from the noun (e.g., small2−away grey1−away

kitten). This positional frequency approach corresponds to the null hypothesis discussed in

Section 2.1, and serves as one of the simplest approaches to adjective ordering preferences

once you go beyond repeating whole chunks of strings (i.e., small+grey as a unit). Tracking

this kind of positional frequency information would require some kind of statistical learning

ability, which we already have evidence that children have and apply to other learning tasks

where they can track distributions in their input (e.g., Saffran et al. 1996, Maye et al. 2002,

Gerken 2006, Mintz 2006, Xu and Tenenbaum 2007, Maye et al. 2008, Smith and Yu 2008,

Dewar and Xu 2010, Feldman et al. 2013, Gerken and Knight 2015, Gerken and Quam 2017,

among others).

Not only are children likely to be able to track statistical distributions in their input, but

it may be a less costly strategy for children, meaning it uses less cognitive resources, than

a strategy that requires abstraction. In particular, it may be less costly to use a positional-

frequency-based representation when a learner isn’t explicitly forced to use something more

sophisticated. This situation could arise, for instance, if learners were to encounter a novel

adjective they need to make a semantic judgement about. For example, if a person heard

a sentence I just heard a lipidub story, they would need to make a judgement about the

meaning of the new adjective lipidub, and consider how subjective it is to both the speaker

and themselves. Is lipidub a word like fantastic? If so, you may agree with the speaker or
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not, depending on your taste. Or, is it a word like French, where they’d either be right

or wrong? This process of considering perceived subjectivity certainly would require some

cognitive energy, and so be more cognitively taxing than a strategy just based on positional

frequency. But, for a novel adjective like lipidub, this process would be necessary. In contrast,

for familiar words (like fantastic or French), a less-cognitively-taxing representation could

be relied on.

2.3.2 Corpus data

I investigate three different types of interactions and three different “speaker” types (where

I need to know the input directed towards the speaker and the output produced by the

speaker): (I) a child speaker type, where the speaker output is child-produced data and the

speaker input is child-directed data; (II) a caretaker speaker type, where the speaker’s output

is child-directed data and the input is adult-directed data; and (III) an adult speaker type,

where the speaker’s output is adult-directed data and the input in turn is adult-directed

data. For the three speech interactions I’m modeling, I utilize different combinations of

the corpus data shown in Table 2.2 below. To identify the representations underlying the

development of adjective ordering preferences, I assess naturalistic child input in the form of

child-directed speech (CDS), naturalistic child output in the form of child-produced speech

(CPS), as well as adult-directed speech (ADS). For the Child learner speaker type, I use

child-directed speech (CDS) as the input, and evaluate the underlying representation on

CPS. For the Caretaker speaker type, I use ADS as the input and evaluate on CDS. For the

Adult speaker type, the input and the output are both ADS.

The child-directed and child-produced data came from the CHILDES database [MacWhin-

ney, 2000b]. I focus on the morphologically-annotated corpora in the North American

datasets for children between the ages of two and four, yielding 688,428 child-directed and
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1,069,406 child-produced utterances. The strings used for analysis were taken from Bar-Sever

et al. [2018]. Adult-directed data came from the Penn Treebank subset of the Switchboard

(SWBD) corpus of telephone dialogues with 15744 utterances (Godfrey, Holliman, & Mc-

Daniel, 1992), as well as from the spoken and the written portions of the British National

Corpus (BNC, see http://www.natcorp.ox.ac.uk/). The BNC-Spoken corpus had 201,261

utterances total and BNC-Written had 89630 utterances total.

Table 2.2: The delineation of input and output data for each speaker type.

Speaker type Input Output
Child learner CDS from CHILDES CPS from CHILDES

Caretaker ADS from SWDB, BNCW, BNCS CDS from CHILDES
Adult speaker ADS from SWDB, BNCW, BNCS ADS from SWDB, BNCW, BNCS

After extracting all instances of adjective-adjective-noun (AdjAdjN) strings, like wonderful

calm capybaras, I arrived at the counts in Table 2.3 and Table 2.4.1

Child-directed data Child-produced data
age # AdjAdjN # tokens # types # AdjAdjN # tokens # types

2 1,440 2,880 131 466 932 79
3 881 1,762 128 274 584 72
4 745 1,490 124 235 470 81

Table 2.3: Number of AdjAdjN strings and both the adjective tokens and adjective types
comprising these strings per age in the morphologically-tagged North American CHILDES
corpora.

Adult-directed data
corpus # AdjAdjN # tokens # types

SWDB 559 1,252 412
BNCW 9,027 19,948 2,603
BNCS 5,346 10,692 1,200

Total 14,932 31,892 4,215

Table 2.4: Number of AdjAdjN strings and both the adjective tokens and adjective types
comprising these strings per age in the morphologically-tagged Switchboard Treebank Cor-
pus, the British National Corpus-Written, and the British National Corpus-Spoken).

1Because there is no natural split in the adult-directed data between input and output, I performed the
evaluation discussied later on on a 90/10 split of the corpora, with 90% of the corpora serving as the input
data and 10% as the output data, which I repeated 10,000 times to get a reasonable estimate.
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2.3.3 Empirical grounding of the representational hypotheses

Each potential representation requires certain information to be known about an adjective:

lexical class, perceived subjectivity, or positional frequency. For lexical class, I utilized the

assignments from previous work in Bar-Sever et al. [2018], which in turn were based on

the 13 lexical classes and adjective assignments reported in Scontras et al. [2017]. These

assignments were derived from a synthesis of previous literature [Dixon, 1982, Sproat and

Shih, 1991]. I inferred a hierarchical ordering of these classes on the basis of the behavioral

data reported by Scontras et al.2.

Sample adjectives and classes
Age Color Material Value Shape Speed

young yellow wooden awful round quick
ripe brown plastic brilliant oval instant
new blue iron fantastic square slow
old golden wool awesome squiggly fast

ancient pink silk crummy circular speedy

Dimension Physical Location Nationality Human Temporal

tubby dry far Chinese sleepy past
fat sharp western French sorry next

narrow hard front Mexican brave late
flat rough south Dutch angry early
wee damp upstairs European clever recent

Table 2.5: All of the lexical classes used in analysis with samples of the words assigned to
those classes.

If an adjective had no lexical class entry in Scontras et al. [2017] or Bar-Sever et al. [2018],

I attempted to analogize it to an existing entry based on similar meaning (e.g., teeny is

similar in meaning to small and so was assigned to the dimension class). If there was no

clear analogy to an existing entry (e.g., ripe), I manually assigned it to a lexical class via

collective agreement by undergraduate researchers. Some of the adjectives wound up in the

X “elsewhere” class as defined in Scontras et al.; these adjectives did not neatly fit into any

of the other class categories. Because the elsewhere class is so heterogeneous, its adjectives

2A full list of the lexical classes and their assigned adjectives are available on my GitHub https://

github.com/galiabarsever/dissertation_files

21

https://github.com/galiabarsever/dissertation_files
https://github.com/galiabarsever/dissertation_files


fail to cohere on the basis of meaning. As a result, this collection of adjectives does not stand

as a lexical semantic class, so is unlikely that there is a clear conclusion about whether it

is overall “closer” or “farther” from a noun than another class, nor can a larger semantic

meaning be drawn from its contents (some words in this category include obvious, different,

and roundabout). Therefore, I excluded its adjectives from the representational analyses

described below. Other exclusions are described in Appendix A.

For positional frequency, I derived both 1-away and 2-away frequencies from the input data’s

AdjAdjN strings (ex: nice old dog, happy little mice, etc.). I then calculate how often an

adjective appeared in the 1-away vs. 2-away position in the input. A subjectivity score

between 0 and 1 (0 being not subjective, 1 being maximally subjective) was assigned to each

adjective, based on the mean of participants’ judgements on the subjectivity of an adjective

[Scontras et al., 2017]. Subjectivity scores were considered the same if they were within

+-0.1 of each other.

I took the lexical class assignments and subjectivity scores from previous work from Bar-Sever

et al. [2018], and collected additional judgements for common words present in the adult-

directed corpus that were not captured in the previous work. To get perceived subjectivity

for these 68 additional adjectives, I obtained subjectivity scores from 30 adult participants

on Amazon.com’s Mechanical Turk crowdsourcing service, replicating the methodology of

Scontras et al. [2017] and Bar-Sever et al. [2018]. Participants were presented with 30

adjectives total (one at a time) in a random order and asked to indicate how “subjective”

a given adjective was on a sliding scale; endpoints were labeled “completely objective” and

“completely subjective.” To arrive at the perceived subjectivity score for a given adjective,

responses were averaged across participants. These words were additionally grouped into

lexical classes in the same way as Bar-Sever et al. [2018]3.

3The full list of all the adjectives and associated lexical classes and subjectivity scores are available on
my GitHub https://github.com/galiabarsever/dissertation_files/
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Table 2.6: A sample of the adjectives and their associated lexical class and subjectivity
assignments.

Adjective Lexical class Subjectivity
new age 0.265
gold color 0.214
giant dimension 0.622
brave human 0.702
iron material 0.1

2.3.4 Quantitatively linking input to output

Recall that producing an AdjAdjN string requires transforming the input according to the

underlying knowledge representation and using that representation to generate the AdjAdjN

string. For each representational hypothesis, I can define how this process would occur,

thereby linking the AdjAdjN input to AdjAdjN output. I focus on how a given representa-

tional hypothesis would generate an adjective in the 2-away vs. the 1-away position when

combined with another adjective in an AdjAdjN string.

I consider the collection of AdjAdjN output as a dataset D that is produced according to any

of the three representational hypotheses hi ∈ H, where H = {hlex, hsubj, hpos}. I select the

hypothesis that is most likely to have generated the data in D by calculating the likelihood

of a given hypothesis h generating the data D, p(D|h). The representational hypothesis with

the largest probability of generating D (i.e., the highest likelihood) is the hypothesis that

best matches the output.

I can conceive of D as the set of AdjAdjN strings involving different combinations of all the

adjectives Adj observed in the corpus. For example, D might be the set {grey furry kitten,

small grey kitten, small grey kitten, small furry kitten}, where Adj is {grey, furry, small}. To

account for the portion of the AdjAdjN strings involving a particular adjective adjx ∈ Adj,

I can calculate the likelihood of the data involving that adjective, p(Dadjx|h). So if we’re

concerned first with the adjective small, our set of AdjAdjN strings that included small

would be the set {small grey kitten, small grey kitten, small furry kitten}; in this example,
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small occurs in the 2-away position with probability 1.0. The grey strings would form the

set Dgrey: {grey furry kitten, small grey kitten, small grey kitten}; here, grey occurs in the

2-away position with probability 0.33. I then multiply these individual adjective likelihoods

to yield the likelihood for the whole dataset D under that hypothesis, as shown in equation

(2.3).

p(D|hi) =
∏

adjx∈Adj

p(Dadjx|hi) (2.3)

I define the likelihood for an individual adjective adjx for a given hypothesis hi as in equation

(2.4), which considers the number of times N that adjx appeared in an AdjAdjN string in the

output, the number of times t that adjx appeared in the 2-away position, and the probability

that adjx would appear in the 2-away position given the representational hypothesis hi,

p2exp(adjx|hi).

p(Dadjx|hi) =

(
N

t

)
(p2exp(adjx|hi))t(1− p2exp(adjx|hi))N−t (2.4)

To see how this equation works, consider Dgrey from above: {grey furry kitten, small grey

kitten, small grey kitten}. Suppose a given representational hypothesis hi predicts that grey

should appear in the 2-away position with a certain probability p2exp(adjx|hi). The intuition

is that I compare this expected probability with the actual frequency of grey occurring in

the 2-away position to calculate the likelihood of Dgrey under hi, p(Dadjx|hi); if the expected

probability matches the actual frequency, the hypothesis does an excellent job of accounting

for the child output.

To calculate the likelihood, I need to determine the number of ways of generating the pattern

in Dgrey (i.e., grey in the 2-away position twice and in the 1-away position once). This

corresponds to
(
N
t

)
, the number of ways of generating N AdjAdjN strings with grey in

the 2-away position t times. So, there are
(
3
2

)
= 3 ways of generating three AdjAdjN
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strings with this pattern (i.e., grey in the 2-away position twice and in the 1-away position

once). Having determined the number of ways to generate the observed pattern, I then

calculate the probability of generating the observed pattern given a specific representational

hypothesis hi. I first need to calculate the probability that grey would appear in the 2-

away position two times, (p2exp(adjx|hi))t. So, grey would be in the 2-away position two

of three times ((p2exp(adjx|hi))t = 0.752 = 0.5625) and grey in the 1-away position one

of three times ((1 − p2exp(adjx|hi))N−t = (1 − 0.75)3−2 = 0.25); the probability of this

pattern is 0.5625 ∗ 0.25 = 0.14. To capture the full pattern, I also need to calculate the

probability that grey would appear in the 1-away position once, (p2exp(adjx|hi))N−t. By

multiplying the probability of generating the observed pattern together with the number of

ways I could have generated it, I arrive at the likelihood in equation (2.4). So, I multiply the

probability of this pattern with the number of ways of generating it to yield the likelihood,

p(Dgrey|hi) = 3 ∗ 0.14 = 0.42.

The calculation of p2exp(adjx|hi), the probability that a particular adjective adjx will appear

in the 2-away position, depends on the hypothesis hi under consideration, as well as the input

the listener has encountered in their input. For both the lexical class hypothesis hlex and

the subjectivity hypothesis hsubj, the probability that adjx surfaces in the 2-away position

in an AdjAdjN string depends on the kind of adjective it appears with. For hlex, if adjx is

combined with an adjective in a hierarchically-closer lexical semantic class, it should surface

in the 2-away position 100% of the time (p = 1.0); if adjx is combined with an adjective

in the same lexical class, it should surface in the 2-away position with chance probability

(p = 0.5). For hsubj, if adjx is combined with an adjective perceived as less subjective, it

should surface in the 2-away position 100% of the time (p = 1.0); if adjx is combined with

an adjective perceived as equally subjective, it should surface in the 2-away position with

chance probability (p = 0.5).4 These considerations represent the numerator in equation

4 I considered two adjectives to be perceived as equally subjective if their subjectivity scores were within
0.1 of each other; scores ranged from 0 to 1.
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(2.5).

p2exp(adjx|hi ∈ {hlex, hsubj}) =

finput(< adjx|hi) + 0.5 ∗ finput(= adjx|hi) + α

Ninput(Adj) + α ∗ |Adj|
(2.5)

In particular, finput(< adjx|hi) represents the number of adjective tokens in the input that

are either from a lexically-closer class than adjx (given hlex) or are less subjective than adjx

(given hsubj); the larger this number, the more I would expect the speaker to produce adjx in

the 2-away position under the relevant hypothesis. Similarly, finput(= adjx|hi) represents the

number of adjectives that are from the same lexical class as adjx (hlex) or are equally subjec-

tive as adjx (hsubj); this number gets multiplied by 0.5 to represent the chance probability

that adjx would appear 2-away with adjectives of the same kind. I arrive at the probability

of adjx appearing in 2-away position once I divide these counts by the total number of ad-

jective tokens appearing in AdjAdjN strings in the input, Ninput(Adj). Both the numerator

and the denominator of equation (2.5) contain the smoothing factor α = 0.5, which is added

to handle adjectives for which there are no observations; in the denominator, α is multiplied

by the number of adjective types |Adj|. To implement the idea that the target adjective adjx

cannot combine with tokens of itself (e.g., small small kitten), the number of adjx tokens is

subtracted from the counts of how many adjectives either are in the same lexical class or

have the same subjectivity score in the numerator; this number is also subtracted from the

total adjective token count in the denominator. If we take the number of adjectives tokens

for a particular adjective under consideration as nadj, then the full calculation for p2exp

corresponds to Equation 2.6.
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p2exp(adjx|hi ∈ {hlex, hsubj}) =

finput(< adjx|hi) + 0.5 ∗ (finput(= adjx|hi)− nadj) + α

(Ninput(Adj)− nadj) + α ∗ |Adj|
(2.6)

A different calculation is used for p2exp for the positional frequency representational hy-

pothesis hpos, as shown in equation (2.7). The probability of adjx appearing in the 2-away

position given hpos is a simple reflection of how often it appeared in the 2-away position in the

input (f2input(adjx)) divided by the total number AdjAdjN strings in which adjx appeared at

all (Ninput(adjx)). Again, I add the smoothing factor α to avoid assigning zero probability

for adjectives not observed; in the denominator, α gets multiplied by 2, corresponding to the

two positional options for adjx: 2-away vs. 1-away.

p2exp(adjx|hi = hpos) =
f2input(adjx) + α

Ninput(adjx) + 2 ∗ α
(2.7)

Using equations (2.3)-(2.7), I can evaluate how probable it is that speakers would have

produced the AdjAdjN strings in their output given the input they heard and a particular

representational hypothesis: lexical class, subjectivity, and positional frequency.5

2.4 Results & Discussion

2.4.1 Child speaker type

Log-likelihood is shown below for the three representational hypotheses at 2, 3, and four-

years-old using child-directed input and child-produced output (see Figures 2.1, 2.2, 2.3).

5 I only included AdjAdjN strings in both the input and output sets where both adjectives in the string
had been assigned a lexical class and a subjectivity score.
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The log of the likelihood was taken to avoid dealing with very small numbers with multiplying

very small probabilities together. More probable log-likelihood scores are closer to zero (less

negative) than less probable scores (more negative).

Confidence intervals (CIs) allow us to make more reasoned judgements about the results of

our analyses, and give a sense of a result’s variance. For this and subsequent analyses, I

reported 95% confidence intervals. To get these intervals, I drew the individual AdjAdjN

strings (like small grey kitten) from the input or output with replacement. This resampling

and the likelihood analysis was done 10,000 times.

Figure 2.1: Two-year old child speaker type, where the Y-axis is log-probability and the
X-axis is each representation (positional frequency, lexical class, and subjectivity).

Looking at the means in Figure 2.1 (positional frequency: -195.0, lexical: -301.0, and sub-

jectivity: -234.0), it would appear that two-year-olds are utilizing a positional frequency

representation over the other more abstract representations. However, the CIs for the posi-

tional frequency hypothesis and the subjectivity hypothesis appear to overlap. What we can

certainly tell at two-years-old is that children are unlikely to be using a lexical representation.

At three and four, there seems to be a messier picture. The means for each of the hypothe-

ses at three-years-old are positional frequency: -119.0, lexical: -143.0, and subjectivity:

-132.0. The means at four-years-old are positional frequency: -175.0, lexical: -151.0, and

subjectivity: -178.0. It seems suggestive that a more abstract representation (lexical or
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Figure 2.2: Three-year old child-speaker
type, where the Y-axis is log-probability and
the X-axis is each representation (positional
frequency, lexical class, and subjectivity).

Figure 2.3: Four-year old child-speaker type,
where the Y-axis is log-probability and the
X-axis is each representation (positional fre-
quency, lexical class, and subjectivity).

subjectivity-based) may be used at four.

From Bar-Sever et al. [2018], the quantitative assessment done without CIs suggested that

the development of adjective ordering preferences demonstrates that abstract knowledge is

likely to underlie children’s preferences at age four (but not earlier); moreover, these means

were interpreted to indicate that this abstract knowledge is lexical-class-based rather than

subjectivity-based, with children initially tracking the word-level statistics of their input

when determining adjective ordering. By age four they would shift to a more abstract (and

compact) representation based on lexical semantic class.

Looking at the means here, we do see the same trajectory (means at two: positional fre-

quency = -195.0 , lexical class = -301.0, subjectivity = -234.0, means at three: positional

frequency = -119.0, lexical class = -143.0, subjectivity -132.0, means at four: positional

frequency = -175.0 , lexical class = -151.0, subjectivity = -178.0). However, taking a

more nuanced look at these findings using 95% CIs makes this interpretation less obviously

the only one that’s possible. While we can reasonably assume that children are probably

utilizing the positional frequency strategy mental representation at two-years-old, at three

and four-years-old, any of the three representations is possible, possibly due to competing
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representations that are developing at three- and four-years old. It appears we may know

something about the mental representations at two (whether children may be using positional

frequency or subjectivity, but not lexical class), but it is unclear what mental representation

children are using at three and four.

2.5 Caretaker speaker type

Here I present the results for the representations adults are using to form the input children

receive at ages two, three, and four. The likelihoods in this case are calculated using the

adult-directed data as the adult input (from SWDB, BNCW, and BNCS) and the child-

directed data from CHILDES at ages two, three, and four is used as the adult output data.

I report 95% confidence intervals and utilized the same resampling process as in the child

speaker type interaction.

Figure 2.4: Adults talking to two-year old
children, where the Y-axis is log-probability
and the X-axis is each representation (posi-
tional frequency, lexical class, and subjectiv-
ity).

Figure 2.5: Adults talking to three-year old
children, where the Y-axis is log-probability
and the X-axis is each representation (posi-
tional frequency, lexical class, and subjectiv-
ity).

I find that just looking at the means, when talking to children two-years-old, adults appear

to be utilizing a lexical class representation (means at two: positional frequency = -690.0 ,
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Figure 2.6: Adults talking to four-year old children, where the Y-axis is log-probability and
the X-axis is each representation (positional frequency, lexical class, and subjectivity).

lexical class = -531.0, subjectivity = -674.0). For talking to children who are three-years-

old, adults switch to a subjectivity-based hypothesis (means at three: positional frequency

= -388.0, lexical class = -394.0, subjectivity -371.0) which they continue to use at four

(means at four: positional frequency = -371.0 , lexical class = -366.0, subjectivity =

-346.0).

However, again the CIs suggest that at three and four (as with the child speaker type), it is

unclear exactly what mental representation is being used; all representations appear to be

equally compatible (see Figures 2.4, 2.5, 2.6).

So, it appears that adults are adjusting their child-directed speech when speaking to children

at age two from what we might expect the representation is that they use for adult-directed

speech (subjectivity). However, when speaking to children age three and four, it is unclear

which representation adults are using. Still, it’s interesting that the most likely mental

representation that two-year-olds might be using, positional frequency, does not seem to

be the mental representation that adults are using to talk to two-year-olds (lexical class).

Neither is subjectivity, which is the proposed adult representation.
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2.5.1 Adult speaker type

Both this analysis and that of Scontras et al. [2017] are trying to get at the same ques-

tion: what underlying representation is responsible for adults’ adjective ordering prefer-

ences? What makes this analysis fundamentally different is the way I compare the different

representations. Scontras et al. pitted subjectivity against other abstract groupings of ad-

jectives (not just lexical class), and I compare both subjectivity and lexical class additionally

against the positional frequency representation, which was not a representation considered

by Scontras et al. [2017].

The input and the output in this case comes from the adult-directed corpora of the SWDB,

BNCW, and BNCS, with the means and variance calculated from resampling the input (90%

of the adult-directed data) and resampling the output (10% of the adult-directed data) 10,000

times.

Figure 2.7: Adults talking to adults, where the Y-axis is log-probability and the X-axis is
each representation (positional frequency, lexical class, and subjectivity).

I find that adults appear to be overwhelmingly utilizing the positional frequency hypothesis

over both the lexical and subjectivity representations, (considering both means and CIs) –

see Figure 2.7. In particular, for this speaker type, the means are positional frequency =

-122.0, lexical class = -565.0, subjectivity = -528.0.
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What’s striking is how close subjectivity and lexical class are when it comes to data likeli-

hood, while positional frequency is clearly a better fit. Why should this be? It could be that

the positional frequency strategy performs so strongly because it demonstrates a better fit

for words that occur only in one position. For example, if a particular adjective is always

either in the 1-away or 2-away position according to the input (i.e., in a multi-adjective string

like little dog, the word little always appears 2-away from a noun, never 1-away), then a soft

score (like a subjectivity score of 0.7 for little instead of 0 or 1) will not be as strong of an

explanation, and therefore that representational hypothesis will not be as strongly favored.

This may also be happening when we consider lexical class as well, although perhaps less

often because we have multiple words belonging to a given lexical class. But, it could be the

case that an adjective (say grey) is the only color adjective a child encounters. If someone

only ever hears cute grey kitten, nice grey kitten, and happy grey kitten, where grey is only

ever in one position, this could bias them away from that lexical class hypothesis because we

would again see an extreme positional frequency in the data, but the lexical class hypothesis

would soften the score, depending on what other lexical classes the adjective appears in

combination with6.

Given that subjectivity appears to so robustly explain the corpus data Scontras et al. [2017],

it seems surprising that the positional frequency performs so much better. Importantly

though, Scontras et al. (2017) didn’t compare the positional frequency hypothesis to sub-

jectivity and lexical class. So perhaps if they did, it would explain their data even more

robustly.

If positional frequency is indeed a better fit for adult speakers, one idea why this should be

is due to the function of human processing. It could be that adults who would have already

developed robust preferences, perhaps based on subjectivity, are no longer calculating relative

6Full tables with each evaluated output adjective and it’s associated positional frequency, lexical class,
subjectivity, and associated scores as well as input and output strings are available on my GitHub https:

//github.com/galiabarsever/dissertation_files/
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subjectivity online while producing multi-adjective strings, and instead are using a strategy

that allows them to offload a relatively computationally expensive process in favor of just

tracking statistics of the relative positions of the adjectives in the multi-adjective string itself.

Calculating subjectivity online requires sophisticated reasoning about theory of mind and

other people’s beliefs (i.e., as mentioned previously, it’s cognitively taxing). So, adults might

not rely on it if they don’t have to.

Interestingly, humans have been shown to utilize these kind of “cheap” cognitive solutions in

other domains of language comprehension (Ferreira et al. [2002]). Ferreira et al. [2002]’s idea

is that while using language, adults may not be accessing the semantic content or the “true

meaning” of language, instead relying on computationally inexpensive heuristics to process

language. This kind of mental off-loading could be an explanation as to why positional

frequency could out-explain the other abstract representations for adults talking to adults.

In particular, positional frequency might be cheaper to access in the moment than perceived

subjectivity.

2.6 General discussion

What is most striking about the three different explorations of mental representations, both

the development of them in children and their use in both child-directed speech and adult-

directed speech, is the story that emerges when I look beyond the means to a more nuanced

analysis that includes confidence intervals.

For the three speaker types, I found that in general the representations that children are

using at certain ages to generate their AdjAdjN strings do not match the representations

that adults are using to direct speech towards children of that age. While it is unclear

what mental representation children or adults are using at three and four, there is a marked
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difference in the mental representation used by adults to form AdjAdjN strings directed to

two-year-olds (lexical class) and the representation that two-year-olds seem to be using to

form their own AdjAdjN strings (positional frequency or subjectivity). The child speaker

types, which have more viable potential representations, are also markedly different from

the adult speaker type, where positional frequency is so strongly favored. Further, the

representations that adults seem to be using to talk to two-year-olds are more abstract

representations than they use to talk to other adults, where they appear to be utilizing a

positional frequency representation. However, I do note that the large CIs we see in the child

speaker and caretaker speaker results may be the result of a potential data sparsity issue,

which could be remedied by access to more available data.

Child speaker type. For the child speaker type, just looking at the means would show a

clear progression to a more abstract representation, developing from positional frequency at

two-years-old to a lexical class representation at four. However, with the addition of confi-

dence intervals, we can now see much less certainty about how these abstract representations

develop. We do know that at two, children seem to be using either a positional frequency

representation or a subjectivity-based one, but not a lexical-class-based one.

Caretaker speaker type. When looking at the mental representations of the caretaker

speaker type, we see an interesting split between the representations that children appear to

be considering, given those that adults are using at certain ages. While for three- and four-

years-old, there seems to be a similar pattern of uncertainty about the mental representation

being used, at two-years-old there is a definite difference between the utilized representation.

Two-year-olds appeared to be utilizing a positional frequency representation when producing

multi-adjective strings, and adults appear to be utilizing a lexical class representation when

producing child-directed strings. It is unclear why this should be different both from the

child-produced representation, and from the adult-to-adult representation. It may be that
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lexical classes are abstract (and so allow productivity for new adjectives) but aren’t as

computationally expensive to calculate as subjectivity. Another possibility is that adults are

scaffolding development of more abstract representations that are just beyond the child’s

capabilities (see Chaiklin [2003]). In particular, because lexical class is more abstract than

positional frequency, but not as abstract as subjectivity, caretakers are demonstrating an

“easier” kind of abstraction. It is possible that for older children who may then be using a

more abstract representation like lexical class, the caretakers would further model the next

step on the path to the adult state (e.g., subjectivity-based abstraction).

Adult speaker type. The other striking element to these findings is in how adults ap-

pear to be accessing and forming their multi-adjective strings when talking to each other. I

assume that adults have access to a robust abstract mental representation, as demonstrated

in experiments on adult notions of adjective subjectivity [Hahn et al., 2017, Foushee and

Srinivasan, 2017, 2018], but for this speaker type they appear not to be using it. Adults who

would have already developed robust preferences, perhaps based on subjectivity, might no

longer be calculating relative subjectivity online while producing multi-adjective strings, and

instead are using a strategy that allows them to offload a relatively computationally expen-

sive process in favor of just tracking statistics of the relative positions of the adjectives in the

multi-adjective string itself. Another idea relates to the origin of adjective ordering prefer-

ences: it is possible that there is an evolutionary benefit to have adjectives ordered according

to subjectivity, as it provided a communicative benefit [Franke et al., to appear]. However,

while subjectivity may be the results of an evolutionary pressure, it might not be the best

explanation for how adults now mentally represent their adjective ordering preferences.
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2.7 Future work

Child speaker type. It remains unclear when (or whether) subjectivity replaces lexical

classes as the underlying representation for adjective ordering preferences—this timing no

doubt depends on children’s development of the conceptual underpinnings of subjectivity,

which occurs remarkably late [Foushee and Srinivasan, 2017]. Future work would look at

slightly older children, who perhaps have developed a sense of subjectivity, to see when chil-

dren are firmly landing on an abstract representation for their adjective ordering preferences

or if there are certain situations (like novel adjectives) that will force them to rely on more

abstract representations.

Future behavioral work can assess children’s perceived subjectivity of adjectives at different

ages. The subjectivity scores used in our assessment were derived from adult judgments, but

children’s estimates are likely to differ, given the sophisticated theory of mind involved in

evaluating subjectivity. Whether this potential difference in how children consider what is

“subjective” affects our understanding of children’s productive knowledge of adjective order-

ing remains an open question. Moreover, it could turn out that adult-like subjectivity aware-

ness develops later than stable adjective ordering preferences. This could mean that adjective

ordering could provide clues to children and bootstrap their subsequent subjectivity-based

preferences from the adjective ordering they encounter, rather than using subjectivity to

figure out the adjective orderings in the first place.

Caretaker speaker type. Future work here would involve taking a closer look at the

differences between the child-directed speech and adult-directed speech. What makes the

speech directed at two-year-olds different than the speech directed to three- and four-year-

olds? It could be that there are different kinds of adjectives being used at these ages,

perhaps in different contexts. Certainly at older ages children are producing more multi-word
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utterances, and it is possible that this rise in sophistication is matched by an adjustment in

the speech directed to the child at a particular age. It would be useful to see what conditions

promote different behavior in adults that change the representation they appear to be using

to produce multi-adjective strings. It may be that adults are using a representation that

looks more like how they speak to adults as they are directing their speech to older children.

We could see when this happens by looking at analyses of the caretaker speaker type with

child-directed speech to older children.

Adult speaker type. It may be that whatever forces children to utilize an abstract rep-

resentation may also force adults to use one. It would be useful to see what conditions might

force an adult to access an abstract representation (like subjectivity) over a positional fre-

quency heuristic. This might involve behavioral studies like Hahn et al. [2017]’s, which forced

subjectivity judgements for novel adjectives that adults would not already have positional

frequency information for.
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Chapter 3

Frequent Frames: The utility of early

syntactic categories in child language

3.1 Introduction

Language acquisition happens in stages. This means that early language acquisition strate-

gies probably don’t yield adult knowledge right away. Instead, they’re more likely to provide

transitory representations that scaffold the acquisition of later knowledge [Frank et al., 2009,

Connor et al., 2010, 2013, Gutman et al., 2014, Phillips and Pearl, 2015]. For example, syn-

tactic categories that twelve-month-olds have may not look like adult noun, adjective,

and verb categories. However, if children’s developing knowledge representations aren’t

adult-like, what do they look like?

Being able to answer this question depends on the relationship between what’s going on in

the child’s mind and what we see in the world. We can see the reflections of the underlying

representations in the observable linguistic behavior (both comprehension and production).

This means that given a set of candidate hypotheses about potential underlying representa-
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tions, and a child’s input, we can assess which potential representation best predicts a child’s

output, which is the same approach I took in the previous chapter looking at adjective or-

dering preferences.

In this chapter, I consider different candidates for developing knowledge of syntactic cate-

gories that might be used by children to produce their own utterances. First, I discuss the

potential hypotheses and underlying representations, as well as around what age represen-

tations are likely to be either immature or adult-like. Second, I will talk about Frequent

Frames (FFs) as a potential source of immature category representations, and discuss the

relevant child input and output data. Third, I discuss how to link these potential immature

representations to the child’s input and output data, which will involve constructing these

potential immature representations from the child’s input and then assessing the probabil-

ity of the child’s output given the particular representation. Finally, I discuss the results,

which indicate which representations best match the output. I find that certain immature

representations better predict the children’s output than mature categories. I conclude with

possible future directions.

3.2 Emerging syntactic category knowledge

3.2.1 Syntactic categories are useful

In essence, syntactic categories are clusters of individual lexical items that function similarly

syntactically. For example, the finer-grained adult nouncount category includes lexical items

like kitty, penguin, and idea, and each of these can be preceded by a determiner like the or

a(n) and used to create a noun phrase that can serve as the subject of a sentence. So, one

purpose of syntactic categories is to more compactly represent the syntactic patterns of the

language (i.e., a single rule NP → determiner nouncount will suffice, instead of multiple
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rules like NP → the kitty, NP → a penguin, etc.).

If language users recognize that individual words are instances of a larger coherent category,

it becomes easier to predict the underlying structure of the language input encountered, as

implemented by the language’s syntax. This is because the structural commonality across

different utterances is more readily apparent (e.g., the kitty is cute and a penguin is adorable

are both examples of determiner nouncount copula adjective). Given this, syntactic

categories seem like a useful abstract representation to learn.

3.2.2 Children’s syntactic category knowledge

There hasn’t been a clear consensus for when children develop syntactic categories, whether

open-class (e.g., noun, verb, adjective), or closed-class (e.g., determiner, auxiliary).

Some studies suggest that knowledge of certain categories – either rudimentary or adult-like

– may be in place as early as age two [Pinker, 1984, Valian, 1986, Capdevila i Batet and

Llinàs i Grau, 1995, Booth and Waxman, 2003, Rowland and Theakston, 2009, Theakston

and Rowland, 2009, Yang, 2010, 2011, Shin, 2012, Meylan et al., 2017, Bates et al., 2018],

while others argue that such knowledge only emerges much later [Pine and Lieven, 1997,

Tomasello, 2004, Kemp et al., 2005, Tomasello and Brandt, 2009, Theakston et al., 2015].

For example, Booth and Waxman [2003] show that children as early as 14 months old

may have rudimentary open-class categories like noun and adjective that encompass

subsets of nouns and adjectives, respectively. Bates et al. [2018] showed evidence for at

least one closed-class adult-like category as early as two years (auxiliary and possibly

negation). More generally, there seems to be some agreement that children may have

rudimentary knowledge of open-class categories (e.g., noun, adjective) fairly early, but

don’t refine these into adult-like open-class categories until later. However, for closed-class

categories (e.g., determiner, negation, auxiliary), there isn’t yet consensus on when
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either rudimentary or adult-like versions of these categories develop. Given this, if we’re

interested in the syntactic category representations that young children have (e.g., around

two-years-old), it seems likely that these representations are of immature syntactic categories;

later on, these early representations will be refined into adult syntactic categories.

3.2.3 A possible strategy for immature representations: Frequent

Frames

What do these immature syntactic categories look like? For example, young toddlers might

not recognize all the nouns adults would identify as nouncount – instead, toddlers might

realize that kitty and penguin are the same kind of thing, without recognizing that idea is,

too.

Frequent Frames (FFs) form the basis of an early categorization strategy that is both compu-

tationally inexpensive and linguistically-based. This strategy has yielded promising results

for many spoken languages with different linguistic properties (e.g, English: Mintz 2003a;

Wang and Mintz 2008; French: Chemla et al. 2009b; Spanish: Weisleder and Waxman 2010;

German: Stumper et al. 2011, Wang et al. 2011; Dutch: Erkelens 2009; Turkish: Wang

et al. 2011; and Mandarin Chinese: Xiao et al. 2006). The basic intuition is that young

toddlers pay attention to frequently occurring frames, which identify linguistic units that

behave similarly in utterances (i.e., appear in the same linguistic context, as implemented

by the frame). For example, in the sentences I am petting nice kitties and I am hugging nice

penguins, the word-level frame am nice identifies that petting and hugging have the same

linguistic context and so are the same kind of word. The morpheme-level frame am -ing

identifies that pet and hug are the same kind of word.

Experimental evidence for toddlers being able to construct frames like these comes from

Mintz [2006]. This suggests that twelve-month-olds are sensitive to word-level frames. More
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generally, twelve-month-olds can recognize the non-adjacent dependencies that frames rely

on if they already know that adjacent dependencies exist between linguistic elements [Lany

and Gómez, 2008].

The “frequent” part of the FFs strategy is meant to capture the intuition that young toddlers

have limited attention. More specifically, something that occurs frequently is likely to be

salient to toddlers, and so the FFs strategy assumes that toddlers rely on a set of frames

that are frequent enough to be noticed. In particular, the intake for early categorization is

a set of frequent frames and the output are clusters of linguistic elements captured by each

frequent frame. In the cross-linguistic computational investigations mentioned above, these

clusters have been compared against adult syntactic categories and generally found to be

very precise. For example, a FF might cluster together many verb items and exclude non-

verb items, and so be very precise with respect to the adult verb category. This leads to

categories that have very high precision, but generally low recall – this is because FFs would

produce many clusters of verbs, instead of just one. However, these small homogeneous

categories (where there may be a few categories comprised only of verbs) may be more useful

to early learners than larger messier categories (i.e., categories that include all of the adult

verbs, but also a bunch of adverbs and prepositions) in developing intuitions about groups

of words that function in the same way.

3.2.4 Instantiation and evaluation of FFs

There are several considerations for instantiating the FFs strategy and evaluating the FF-

based categories that result. I discuss each in turn, including my modeling decisions for each

one.

I tested three different implementations of FFs that have been used by other researchers

working with FFs in a variety of languages (Chemla et al. [2009a], Mintz [2003b], Wang and
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Mintz [2008], Weisleder and Waxman [2010], Wang et al. [2011],) where there were three

different approaches to how to define “frequent”. The first was utilized by Mintz [2003b]’s

first experiment, where they used a strict “most frequent 45 frames” (Top45) based on a pilot

experiment that deemed this cutoff provided “good enough” categorization. Accuracy at

capturing adult-level syntactic categories with these frames in English was very high (between

90% and 93% type accuracy). Mintz [2003b] then in a second experiment selected FFs based

on a relative rather than absolute threshold, where the FFs were selected relative to the

total number of the frames in the corpus (specifically if they were in the top 0.13% of frames

in the corpus (Top.13), which roughly corresponded to the same 45 frames from the first

experiment). These frames were also highly accurate (between 92% and 94% type accuracy).

Many cross-linguistic FFs studies have utilized one of these two frequency thresholds (Wang

and Mintz [2008], Weisleder and Waxman [2010], Wang et al. [2011]). Chemla et al. [2009a]

choose a frame-frequency-based metric similar to Mintz [2003b], but what they deemed to

be more conservative (a frame must contain 0.5% of word types and 0.1% of word tokens to

be considered frequent (T.5T.1)); this cutoff resulted in comparatively fewer frames (only

6 FFs) – however, these selected FFs were very precise (100% accuracy). I look at each of

these major frequency thresholds when implementing FFs here, summarized below.

1. (Top45) The top 45 most frequent frames were counted as frequent enough [Mintz,

2003b, Wang and Mintz, 2008, Wang et al., 2011, Weisleder and Waxman, 2010].

2. (Top.13) The top 0.13% most frequent frames were counted as frequent [Mintz, 2003b].

3. (T.5T.1) A frame must contain 0.5% of of the total word types and 0.1% of the word

tokens in the corpus to be considered frequent [Chemla et al., 2009a].

Each of these versions of FFs will also be considered with and without utterance boundaries

as potential frame units. For example, if we don’t use utterance boundaries in the sentence
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# I love cosmic snowcones #, a frame would not include a start-of-utterance or end-of-

utterance marker. So, # love and cosmic # would not be considered frames in this case;

in contrast, if we did include utterance boundaries, those frames would be included. The

original implementation of FFs did not include utterance boundaries in framing units (Mintz

[2003b]). However, it is likely that children are in fact paying attention to utterance bound-

aries, and that the words that appear next to utterance boundaries are highly salient (Seidl

and Johnson 2006, Shukla et al. 2007, Johnson et al. 2014, Longobardi et al. 2015). Because

of this, Weisleder and Waxman [2010] utilized end-frames (FFs using the end of an utterance

as a boundary) as well as frames generated without utterance boundaries. Weisleder and

Waxman [2010] found that the 45 most frequent frames created with utterance boundaries

were messier (i.e., less precise) than the frames created without utterance boundaries. How-

ever, it might still be true that, although messy, these frames could still be highly salient to

young children, and perhaps still helpful in developing immature category representations.

Because of these considerations, I include versions of FFs that include utterance boundaries,

as well as versions that do not utilize utterance boundaries.

I identified frames that fit the above frequency criteria for a total of 6 different framing

methods: T.5T.1+utt, T.5T.1-utt, Top45+utt, Top45-utt, Top.13+utt, Top.13-utt.

3.3 Language data

To determine which syntactic category representation best matches a child’s behavioral data,

we need input and output data from children at relevant developmental stages, in this case

around 2 and just under two-years-old. I looked at typically-developing English-speaking

children from the CHILDES database [MacWhinney, 2000b].

The first child’s data I look at is the same selection of the Peter corpus that Mintz [2003b]
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used in his implementation. [Bloom et al., 1974, 1975] from the CHILDES database (shown

in Table 3.1), one of the corpora which has syntactic categories annotated.

Table 3.1: Corpus data for Peter

Corpus Age Range Speaker # Utts # Tokens # Types MLU

Peter 1;9 - 2;4
child-directed 18317 77212 2291 4.2 words
child-produced 14790 37588 1349 2.5 words

I also wanted to use a corpus from a child around the same age that was not used in the

original FFs implementations. I selected Adam from the widely-used Brown corpus from the

CHILDES database (Brown [1973], MacWhinney [2000b]) as another typically developing

child around two-years-old (shown in Table 3.2).

Table 3.2: Corpus data for Adam

Corpus Age Range Speaker # Utts # Tokens # Types MLU

Adam 2;0 - 2;11
child-directed 9300 37834 2065 4.1 words
child-produced 16289 39474 1755 2.4 words

3.4 Quantitatively connecting underlying representa-

tions to output

One practical reason previous studies compared the categories created from FFs to adult

categories is that this is a “gold standard” that’s both available and fairly easy to agree

on (at least, as implemented by syntactic category annotation in many corpora like those

in CHILDES: MacWhinney 2000a). However, as mentioned above, the problem is that

two-year-olds’ syntactic categories may not match adult categories: toddlers might not (i)

recognize all instances of a given category as belonging to that category (like nouncount),

or (ii) realize certain conceptually subtle categories even exist (like pronouns and deter-

miners). So, a traditional approach comparing the FF-generated categories against adult

categories may not be the best way of assessing if FFs generate the categories toddlers do.
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As an alternative approach, just as in the previous chapter, I’m going to be using realistic

child input to construct the potential underlying representation, in this case a particular set

of potential syntactic categories and the words they contain, and then use those categories

to assess how well the potential representation predicts the child’s output. In contrast to the

previous approach with adjective ordering, here I instead quantify probability of a particular

categorization strategy via the output’s perplexity [Brown et al., 1992b]. Perplexity is based

on surprisal theory, which has been previously used to assess the utility of early syntactic

categories in language processing [Bar-Sever and Pearl, 2016] and also used as a standard

metric in Natural Language Processing for assessing different language models (Brown et al.

[1992a]) given language data the model’s meant to capture. In particular, perplexity is

inversely related to probability (as shown in Equation 3.1), with the intuition that low

probability utterances are unpredictable and therefore highly perplexing. In contrast, high

probability utterances are more predictable and so less perplexing. The benefit to using

perplexity over log likelihood like I did in the previous chapter is that perplexity allows

me to control for length of utterance. This was not a consideration when dealing with 2-

adjective-long strings, as all the strings were the same length. Because we are dealing with

whole utterances, we can calculate general perplexity over an entire utterance by normalizing

with respect to utterance length.

In Equation 3.1, the perplexity of utterance U , comprised of words w1...wn, is the geometric

mean of the inverse probability of U . So, when the probability of U is low (e.g., a garbled

utterance like penguins I nice like), the inverse probability is high; in this case, U has a

high perplexity. In contrast, when the probability of U is high (e.g., I like nice penguins),

the inverse probability is lower and so U has a low perplexity. Because probability ranges

between 1 and 0, the inverse probability (and so perplexity) ranges between 1 and positive

infinity.
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Perplexity(U = w1...wn) = n

√
1

P (U = w1...wn)
(3.1)

Clearly, how we determine the probability of a sequence of words (P (w1...wn)) matters,

since this is the heart of the perplexity calculation. To do this, I follow Bar-Sever and

Pearl [2016] and use two potentially plausible assumptions for how toddlers view language

generation. First, I assume words belong to underlying (i.e., latent) syntactic categories.

This presumably motivates categorizing words in the first place. Second, I assume toddler

hypotheses about how language is structured are still developing. So, while toddlers have

yet to learn how their native language is truly structured, they likely recognize some local

dependencies between syntactic categories (similar to how they recognize local dependencies

more generally: e.g., Gómez and Lakusta 2004, Lany and Gómez 2008). One instantiation

of this idea is that the current syntactic category depends on the previous category, i.e., a

bigram generative mode, a very simple approximation of a child’s early syntactic knowledge

(Figure 3.1).

words w1...wn

endcaticati−1begin

wi

Figure 3.1: A bigram generative model for words w1...wn. Words are observed, as
are the utterance boundaries indicated by begin and end. Categories are latent
(shaded).

In the bigram generative model in Figure 3.1, each word wi is generated based on its latent

category cati, which is conditioned on the previous word’s latent category cati−1.
1 To cal-

culate the probability of any sequence w1...wn, I use Equation 3.2, which is the product of

the probability of generating each word wi in the utterance U . This involves two probabili-

ties: the emission probability and the transition probability. The emission probability is the

1Note that the first latent category is conditioned on begin, i.e., the utterance beginning.
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probability of generating (or “emitting”) wi based on its latent category cati (P (wi|cati)).

The emission probability is multiplied by the transition probability, which is the probability

of generating the latent category cati given the previous category cati−1 (P (cati|cati−1)) –

in other words, the probability of “transitioning” to the current latent category given the

previous context, represented in this model as the previous latent category. The previous

category for the first category is the utterance-initial boundary (begin). Additionally, the

probability of generating the utterance-final boundary (end) after the last category catn

is included. I demonstrate this calculation for the utterance I like nice penguins in (3.1),

assuming the utterance is represented by the syntactic category sequence pronoun verb

adj nouncount.

P (U = w1...wn) =

(∏
wi∈U

P (wi|cati)P (cati|cati−1)

)
P (end|catn) (3.2)

Example 3.1. Words: I like nice penguins

Categories: begin pronoun verb adj nouncount end

P (U = w1...w4) =
(∏

wi∈U (P (wi|cati)P (cati|cati−1)
)
P (end|catn)

= P (I|pronoun) * P (pronoun|begin)

* P (like|verb) * P (verb|pronoun)

* P (nice|adj) * P (adj|verb)

* P (penguins|nouncount) * P (nouncount|adj)

* P (end|nouncount)

Using perplexity and an implementation of P (U) like the one above, we can compare dif-

ferent category representations because each will yield a perplexity score for an evaluation

dataset (here, an individual child’s productions). This contrasts with the traditional met-
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rics that require comparison against adult-level knowledge, which implicitly assumes that

early syntactic categorization should yield adult categories. This approach allows me to

compare the perplexity of different proposed underlying representations, including the adult

categories typically used as the gold standard, as well as the FF-based immature categories

I’ll be investigating. This comparative evaluation is a marked methodological improvement,

precisely because it doesn’t assume a child at this stage of development has adult categories,

the way a gold standard evaluation does.

I also note that this is a comparative metric only (just as the log likelihoods were for adjective

ordering representations in the previous chapter), because a perplexity score is based on the

predictability of a particular dataset. For example, a perplexity score of 608 isn’t meaningful

on its own; instead, it’s only meaningful with respect to the dataset used to generate the

perplexity score. So, if two category representations are used to generate a perplexity score

for a specific dataset, these scores can be compared against each other, with a lower score

indicating the a particular representation gives the best fit to the data.

3.4.1 Implementing perplexity with potential representations: Eval-

uation considerations

One evaluation consideration concerns the words that are uncategorized by FFs. This actu-

ally wasn’t a concern for previous studies that evaluated the accuracy of FF-based categories

against adult categories because only words that were captured by FFs were evaluated, and

the rest were ignored. That is, words that were not inside any of the FFs were irrelevant

for evaluation because evaluation focused only on the accuracy of the words in the FF-based

categories. However, the proposed perplexity measure requires us to know the classification

of every word, not just the words captured within the FFs. This surfaces in the calculation

of P (U), the probability of an utterance, in the perplexity evaluation metric described in
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section 3.4. More specifically, every word has both an emission probability and a transition

probability, both of which depend on the latent category of the word. So, in order to cal-

culate the probability of an utterance, we need to know what category every word in that

utterance belongs to – whether the word is inside a FF or not.

Two simple options for determining the category of uncategorized words are (i) assuming

each uncategorized word is its own individual category (i.e., as individual as a snowflake),

so I’ll refer to this as a snowflake strategy, or (ii) collapsing all uncategorized words into

a single category (i.e., all uncategorized words belong to catnotFF ), which I’ll refer to as a

snowball strategy. I tested both options as viable potential grouping strategies for words that

didn’t fall in any FF. The different FF-based categorization options, including how to treat

uncategorized words, are shown in Tables 3.3-3.4 for each corpus.

Table 3.3: Number of categories for each version of categorization for both Peter. The total
number of categories (Total) is the sum of the FF-categories (FFs) and the uncategorized
word types (non-FFs). Framing elements may exclude (-utt) or include (+utt) utterance
boundaries (Utt B).

Categories
Version Utt B FFs Non-FFs Total
Peter gold-std categories N/A N/A 34 34
Peter flake, T.5T.1 +utt 85 2015 2100
Peter flake, Top45 +utt 45 2087 2132
Peter flake, Top.13 +utt 72 2050 2122
Peter ball, T.5T.1 +utt 85 1 86
Peter ball, Top45 +utt 45 1 46
Peter ball, Top.13 +utt 72 1 73
Peter flake, T.5T.1 -utt 35 2222 2257
Peter flake, Top45 -utt 45 2224 2269
Peter flake, Top.13 -utt 41 2224 2265
Peter ball, T.5T.1 -utt 35 1 36
Peter ball, Top45 -utt 45 1 46
Peter ball, Top.13 -utt 41 1 42

Another evaluation consideration is the number of true syntactic categories. Previous work

by Bar-Sever and Pearl [2016] looked at three categorization schemes. First were the two

utilized by Mintz [2003b], who collapsed the finer-grained %mor annotation in CHILDES
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Table 3.4: Number of categories for each version of categorization for Adam. The total
number of categories (Total) is the sum of the FF-categories (FFs) and the uncategorized
word types (non-FFs). Framing elements may exclude (-utt) or include (+utt) utterance
boundaries (Utt B).

Categories
Version Utt B FFs Non-FFs Total
Adam gold-std categories N/A N/A 30 30
Adam flake, T.5T.1 +utt 80 1724 1804
Adam flake, Top45 +utt 45 1800 1845
Adam flake, Top.13 +utt 80 1741 1821
Adam ball, T.5T.1 +utt 80 1 81
Adam ball, Top45 +utt 45 1 46
Adam ball, Top.13 +utt 80 1 81
Adam flake, T.5T.1 -utt 43 1957 2000
Adam flake, Top45 -utt 45 1977 2022
Adam flake, Top.13 -utt 45 1971 2016
Adam ball, T.5T.1 -utt 43 1 44
Adam ball, Top45 -utt 45 1 46
Adam ball, Top.13 -utt 45 1 46

into categories corresponding roughly to “basic” linguistic categories like noun and verb,

using what he called the Standard labeling option with 10 categories: (noun (nouns and

pronouns), verb (verbs, auxiliaries, and copula forms), adjective, preposition,

adverb, determiner, wh-word, negation, conjunction, or interjection); the sec-

ond option was what he called an Expanded Labeling option with 13 categories (nouns

and pronouns were labeled as distinct categories, as were verbs, auxiliaries, and the

copula). The other option is simply to use the %mor line annotations from CHILDES as

is.

I chose to use the %mor annotations with minimal modifications for the English corpus,

which ended up being 34 categories. I decided to use the categories provided by the CHILDES

%mor line because I was unable to replicate the Mintz [2003a] results, likely due to differing

assignment of words to categories. For example, part of the difficulty in assigning words to

larger categories of part of speech is what to do with words that do not obviously fall into one

category or the other. An example of this is a contraction like “we’re”. As we is a pronoun
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and ’re, the contracted form of are, is an copula, it is not obvious where to put “we’re” in the

categories laid out by Mintz [2003b]. That is, we’re isn’t obviously pronoun or copula.

The %mor categories help avoid confusion about where to place categorically ambiguous

words like contractions (in the %mor line, “we’re” has its own particular classification as a

combination of a pronoun+copula). The %mor line categories also have a larger number

of smaller categories, which may be more like the categories that FFs generate.

I do note that the number of true categories impacts evaluation both for the traditional

approach and the proposed perplexity metric, though in different ways. In the traditional

approach where we compare the FF-based categories directly to the gold standard categories,

more categories means there are likely to be fewer words in each category. So, FF-based cate-

gories may suffer in comparison if they don’t make fine-grained enough category distinctions.

For example, let’s say there are indeed 13 gold standard categories. If FFs collect 7 cat-

egories with a big snowball category for the un-captured words, those frames are likely to

suffer in their precision, as they would necessarily be clumping together words from different

gold standard categories. That is, if there are 13 true categories but only 8 (7 + snowball)

FF-based categories, by necessity, at least one of the FF-based categories must have more

than one true category in it, leading to lower precision for that category.

In contrast, for perplexity, the number of true categories impacts the probability of the

utterance for the true category representation, where more categories means the transitional

probability P (cati−1|cati) is likely to be lower on average. However, due to there being fewer

words on average per category, the emission probability P (wi|cati) is likely to be higher.

The benefit of using perplexity over the traditional approach is that perplexity balances

the effect of the number of categories because of the relative effects of the emission and

transition probabilities; so, the actual number of categories becomes less important for a

perplexity-based evaluation than it would in the traditional approach comparing against a

gold standard set of categories.
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A third evaluation consideration concerns the implementation of the perplexity metric. Re-

call from section 3.4 that the perplexity calculation relies on two kinds of probabilities: (i)

the emission probabilities of words being generated by a specific category (P (wi|cati)), and

(ii) the transition probabilities between categories (P (cati|cati−1)). To calculate perplexity

on new language data, the modeled learner must already have some idea of these probabili-

ties from the previous data encountered. Emission and transition probabilities are estimated

from the training set and used in the perplexity calculation of the test set. To prevent assign-

ing a probability of 0 for emissions or transitions not seen in the training set, I use add-0.5

smoothing. The emission and transition probability calculations are shown in (3.4)-(3.5).

All counts are derived from the training set.

The emission calculation includes the count of word wi instances in category cati (countcatwi
),

the smoothing factor 0.5, the count of total word instances in category cati (countcati), and

the total word types in category cati (Wci).

Emission = P (wi|cati) =
countcatwi

+ 0.5

countcati + (Wci + 1) ∗ 0.5
(3.4)

For example, suppose I encountered a word puppy that came from a category noun that

contained puppy 2 times, kitty, and gosling ; then, the emission probability of puppy from

the category noun would be the number of instances of the particular word in that category

(2) plus the smoothing factor (0.5), divided by the number of total words in the category

(4) plus the number of word types in noun (3) plus one (for the smoothing possibility of a

new word type), multiplied by the smoothing factor: (2+0.5)/(4+(3+1)*0.5) = 2.5/6.

The transition calculation in (3.5) includes the count of instances where the category sequence

cati−1-cati occurs (countcati−1−cati), the smoothing factor 0.5, the count of total instances of
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category cati−1 no matter what follows it (countcati−1
), and the total count of category types

that can follow any given category cati−1.

Transition = P (cati|cati−1) =
countcati−1−cati + 0.5

countcati−1
+ (Cat+ 1) ∗ 0.5

(3.5)

This last variable includes all the possible category types that could potentially follow cati−1

(Cat) and the utterance marker end, yielding Cat+1. For a concrete example, let’s say I see

the puppy yawns, where puppy is a noun and yawns is a verb; suppose I previously saw the

kitty plays (determiner-noun-verb), the porg sneezes (determiner-noun-verb), and

the hero within (determiner-noun-preposition). To calculate the transition between

puppy and yawns, we calculate the number of times we previously saw a noun-verb sequence

(2) plus the smoothing factor (0.5). This is divided by the number of times we see a noun

followed by any category (3) plus all the possible transition types we’ve previously seen

(noun-verb, noun-preposition = 2) plus 1 times 0.5. Our transition for puppy yawns is

then (2+0.5)/(3+(2+1)*0.5) = 2.5/4.5.

Importantly, if a child encounters a word she does not know in the test set, she has no

reason to put it into any particular category. If the word encountered hasn’t been seen in

the training corpus, the word will be treated as if it is a newly encountered element, and

therefore either belonging to a brand new individual category (i.e. a new snowflake category)

or to the larger category containing all uncategorized words (i.e. the snowball category). For

example, if an utterance from a test set included I like nice thestrals, but thestrals had never

been seen in training, thestrals would be considered a new category and not a noun.

Let’s calculate the emission of this new word thestral, which as far as I the learner know

belongs to a new category. If I was considering a snowflake strategy, then the number
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of times I would have “seen” this new word in this new “category” is 1. This means my

numerator in equation 3.4 is (1+0.5). The number of tokens in my new “category” is 1,

which means there is 1 type in my new “category” as well, so the denominator of equation

3.4 is (1+(1+1)+0.5). This gives me an emission of 1.5/2.

However, if I am considering a snowball strategy instead, my emission calculation is going to

look a bit different. All “categories” that I have not seen before are automatically relegated

to a giant snowball. Therefore I never really encounter a “new” category, just a snowball

which may or may not have a word I’ve seen before in it. Let’s say thestral is assigned to the

snowball, which is made up of dog, cat, monkey, porg, horse, cat. If I have not seen thestral

before in training, the number of times I would have seen that word in my snowball is 0, so

the numerator is (0+0.5). The number of word tokens is simply the size of the snowball, or

the number of tokens in the snowball, and likewise the number of word types in my snowball.

The denominator becomes (5 + (4+1)*0.5). For the snowball strategy, my emission is then

0.5/7.5. Therefore, the emission from a snowflake category will be higher than the emission

from a snowball category, which could be very large (so the emission from the snowball could

be very small).

Let’s say instead of seeing the puppy yawns, we see the silly puppy (determiner-adjective-

noun). In our training data we saw the kitty plays (determiner-noun-verb), the porg

sneezes (determiner-noun-verb), the hero within (determiner-noun-preposition),

and the hippogriff is naughty (determiner-noun-verb-adjective). If we are looking at

silly puppy in our test string, and we did not see did not see a adjective-noun transition

in our training data, this means we have a “new” transition, and we use (3.6) (indicated as
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Transitionnew), where countcati−1−cati is 0, because we have never seen this transition before.

Transitionnew = P (cati = new transi|cati−1)

=
countcati−1−cati + 0.5

countcati−1
+ (Cat+ 1) ∗ 0.5

=
0 + 0.5

countcati−1
+ (Cat+ 1) ∗ 0.5

=
0.5

countcati−1
+ (Cat+ 1) ∗ 0.5

(3.6)

If instead of the silly puppy we see the silly thestral, where threstral has not been seen before,

and we’re using a snowflake strategy so thestral does not belong to an existing category, it

is both part of a new transition and a new category. The transition calculation will be as

in (3.7) (indicated as Transitionnewcat), where the probability of seeing a new category is

multiplied by a new transition to the category from the previous category.

Transitionnewcat = P (cati = new|cati−1)

= Pnew category ∗ Transitionnew

=
0.5

Cat+ (Cat+ 1) ∗ 0.5
∗ 0.5

countcati−1
+ (Cat+ 1) ∗ 0.5

(3.7)

So, continuing our example, suppose the training data we saw includes the kitty plays

(determiner-noun-verb), the porg sneezes (determiner-noun-verb), the hero within

(determiner-noun-preposition), the silly puppy (determiner-adjective-noun), the

bouncy ostrich (determiner-adjective-noun), and the hippogriff is naughty (determiner-

noun-verb-adjective). We now see the silly thestral (determiner-adjective-snowflake)

in our test set, and the probability of seeing a new category (in position i) involves the
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smoothed count for the new category in the numerator (=0.5). The denominator includes

the count of the existing categories that could potentially transition from the previous cate-

gory (Cat) plus the smoothing for those categories and the new category ((Cat+ 1) * 0.5).

In our example, this means that the Transitionnewcat calculation will be the probability of

the new transition, 0.5 over the number of times we saw the previous category (adjective

as the start of a transition with any category (=2), plus the number of possible category

types the previous category could transition to, plus 1 (for the transition to end), resulting

in (1+1), times 0.5 for smoothing. Then, the probability I generate a new category based on

the previous category is the smoothing (=0.5) over the number of category types that could

potentially come after the previous category (=1), plus the same number plus 1 for our new

category times the smoothing factor ((1+1)*0.5). This is then the probability of generating

a new category entirely. The entire probability of Transitionnewcat will be the probability I

see a new transition (0.5/(2+(1+1)*0.5) times the probability of generating a new category

(0.5/(1+(1+1)*0.5))

Note that the probability of a transition to this new category uses Transitionnew, but we now

have one more category than before, and the count of this new transition (countcati−1−cati)

is 0. The upshot of this calculation is that it is less probable to have a transition to a

completely new category than to have a new transition to an existing category. This is

intuitively satisfying.

There are four different possibilities for having a new transition. Let’s say a child saw

the transitions Category1 Category2 and Category2 Category3 in her input. One option

is that (I) it is a transition between two previously seen categories, but not in transition

together (ex: Category1 Category3 ). In this case, TransitionNew will be used. Another

option (II) is a transition between a new category unseen in the training and a previously

seen category (new-seen) (ex: Category4 Category1 ); in this case, TransitionNew will be

used but the countcati−1
(here, Category4 ) will be 0 and Cat will be 0, because there were no
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types in training that this “new” category would have transitioned to. A third option (III)

would be a previously seen category followed by a new category (ex: Category1 Category4 ).

In this case TransitionNewCat will be used. The final option for a new transition would be

(IV) when it is a transition between two new categories, new-new (Category4 Category5 );

in this case, TransitionNewCat will be used, but the countcati−1
(here, Category4 ) will be 0

and Cat will be 0. For all of the instances where a new category is encountered, the number

of existing categories will not be updated because the modeled child is not learning as it

analyzes the test data. Rather, the representations are fixed, and are being evaluated on the

test data.

3.5 Results

Below I present the average perplexity scores for representations utilizing categories (either

gold standard adult or FFs-based) based on the input (training data) and evaluated on

the an utterance in the child’s output data. The first gold column on the left of Figures

3.2a-3.2d is the perplexity score for the gold standard categories. In Figures 3.2a and 3.2b,

the pink columns are the perplexity scores for the snowflake FFs instantiations without

utilizing utterance boundaries (-utt), and the purple columns are the perplexity scores for the

snowflake FFs instantiations that do utilize utterance boundaries (+utt). In Figures 3.2c and

3.2d, the green columns are the perplexity scores for the snowball FFs instantiations without

utilizing utterance boundaries (-utt), and the blue columns are the perplexity scores for the

snowball FFs instantiations that do utilize utterance boundaries (+utt). 95% confidence

intervals (not shown because they’re so small, but reported in Tables 3.5-3.6) were generated

by calculating perplexity over the output data set based on resampled transitions from the

training set. This was done 100 times for each instantiation.
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Figure 3.2: The gold standard perplexity scores are given on the left, with the pink and
green columns indicate the FFs representations without utterance boundaries (-utt), and
the purple and blue columns indicate the FFs representations with utterance boundaries
(+utt). An ’*’ indicates a representation with a perplexity score significantly less than the
gold standard category representation

(a) (b)

(c) (d)

Tables 3.5 and 3.6 shows the perplexity score for each category instantiation as well as the

95% confidence internals associated with them. The gold standard category row is high-

lighted in yellow, and any FFs instantiation that has a perplexity score that is significantly

less than the gold standard perplexity score is highlighted in cyan.

Recall that when a produced utterance is more probable, it is less perplexing (i.e., it has

a lower perplexity score). The less perplexing something is (i.e., the closer the perplexity

score is to 0), the more probable it is. In this case the lower the perplexity score, the better

performing is at explaining the children’s output.

To interpret these scores, scores should only be used to compare against each other within the
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Table 3.5: Perplexity scores and CIs for Peter

Version Utt B Scores CIs
Peter gold-std categories N/A 51.08 [50.60, 51.54]
Peter flake, T.5T.1 +utt 73.72 [73.41, 74.16]
Peter flake, Top45 +utt 155.31 [153.63, 157.69]
Peter flake, Top.13 +utt 86.60 [86.19, 87.30]
Peter ball, T.5T.1 +utt 82.09 [81.75, 82.60]
Peter ball, Top45 +utt 173.77 [171.92, 176.85]
Peter ball, Top.13 +utt 98.10 [95.73, 96.96]
Peter flake, T.5T.1 -utt 123.58 [123,20, 124.34]
Peter flake, Top45 -utt 113.42 [112.50, 115.04]
Peter flake, Top.13 -utt 114.23 [113.56, 115.73]
Peter ball, T.5T.1 -utt 140.95 [140.38, 142.28]
Peter ball, Top45 -utt 135.98 [134.96, 137.91]
Peter ball, Top.13 -utt 136.73 [135.51, 138.43]

Table 3.6: Perplexity scores and CIs for Adam

Version Utt B Scores CIs
Adam gold-std categories N/A 63.65 [62.90, 64.78]
Adam flake, T.5T.1 +utt 52.32 [52.10, 52.67]
Adam flake, Top45 +utt 103.68 [103.20, 104.73]
Adam flake, Top.13 +utt 61.92 [61.68, 62.30]
Adam ball, T.5T.1 +utt 67.77 [67.56, 68.12]
Adam ball, Top45 +utt 131.53 [130.82,132.77]
Adam ball, Top.13 +utt 81.05 [80.80, 81.53]
Adam flake, T.5T.1 -utt 50.42 [50.25, 50.71]
Adam flake, Top45 -utt 48.24 [48.12, 48.56]
Adam flake, Top.13 -utt 49.12 [48.98, 49.30]
Adam ball, T.5T.1 -utt 84.36 [84.00, 85.51]
Adam ball, Top45 -utt 85.41 [84.97, 86.42]
Adam ball, Top.13 -utt 86.10 [85.75, 87.09]

same corpus. What we see consistently between Peter and Adam (both typically developing

English speaking children around two-years-old) is that there is a similar qualitative pattern

between the perplexity scores among the various instantiations of the FFs. In Figures 3.2a,

3.2c, and 3.2d, T.5T.1+utt stands out as being markedly less perplexing than others, includ-

ing the gold standard categories. For Adam using a snowflake strategy, T.5T.1+utt still is

relatively less perplexing than the other instantiations using utterance boundaries, though

it’s more perplexing than the version that doesn’t utilize utterance boundaries.
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For Peter, there was no particular difference in the qualitative perplexity score pattern

between the snowflake and snowball strategies, except that the snowflake scores were slightly

lower all around. While the T.5T.1+utt FFs consistently performed the best (73.72 for

snowflake and 82.09 for snowball), none of the FFs perplexity scores performed better than

the gold standard categories (at 51.08). So, in contrast with Adam, Peter seems more likely

to be using the gold standard categories than any of the FF-based representations.

For Adam, however, when using a snowflake strategy, most of the scores for the FFs-based

categories are less perplexing than the gold standard categories (Figure 3.2b); in particular,

all of the FFs-based categories that do not use utterance boundaries (-utt) have very similar

perplexity scores and perform better at explaining the children’s output (are less perplexing)

than the gold standard categories. (The gold standard categories are at 63.65 compared to

T.5.T.1-utt FFs at 50.42, Top45-utt FFs at 48.24, and Top.13-utt FFs at 49.12. In addition,

two of the FF-based categories that do use utterance boundaries (T.5T.1+utt FFs at 53.32

and Top.13+utt FFs at 61.92) have lower perplexity scores than the gold standard categories.

Interestingly, the Adam snowball strategy does yield a T.5T.1+utt FFs instantiation (at

67.77) that comes very close to the gold standard performance (at 63.65) ((Figure 3.2d).

Overall, these results suggest that gold standard categories tend to be the more likely rep-

resentation for Peter, while Adam is relying on FF-based categories that ignore utterance

boundaries as framing elements and allow each uncategorized word to be its own snowflake

category. Also, there seems to be very little difference between the FFs-based categories do

not use utterance boundaries, while the Top45+utt FFs-based categories consistently are

less a fit to each child’s output data than any of the other FFs-based categories.
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3.6 Discussion

At least for one child (Adam), it seems like one version of immature FF-based categories is

more likely to be the underlying representation than a version of the adult categories. Why

should this be? It could be that these representations, while immature, are more useful for

young children who are also developing other representations and processing abilities.

I also note that these immature representations are also likely to be more useful than having

no representation at all, with a child taking every word as its own snowflake or all classified

as a snowball (though that is certainly a useful baseline I could test in the future). Below

I discuss the various relevant considerations in interpreting the results of my investigation

into developing category representations.

There are certain qualitative patterns in the potential immature representations for the

children I investigated. In general, I found that for both children, the snowflake strategy

(where each uncategorized word belongs to its own category), performs better than a snowball

strategy (where each uncategorized word belong to a single category). In fact, for Adam, the

snowflake strategy yielded FFs, both with and without utterance boundaries, that performed

better at matching his output than the gold standard categories.

However, in all other implementations of FFs, the gold standard categories performed better

than the FFs. The least well-performing FFs implementation was a strict Top45 FFs cutoff,

which made the child’s output most perplexing, and therefore matched the child’s output

the least well.

Below I discuss in more detail the implications of different FF implementation decisions

(snowball vs. snowflake, the role of utterance boundaries in FFs, the utility of the different

FF-frequency thresholds), differences between the two children investigated, and the overall

utility of FF-based categories.
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3.6.1 Snowball vs Snowflake

Overall, the FFs implementations that used a snowflake strategy over a snowball one per-

formed better at predicting children’s output. For Adam, the snowflake strategy yielded FFs

that performed better than the gold standard categories. This means that at this stage of

development, Adam was likely to consider each new word as belonging to its own special

category, rather than assuming all unknown words are grouped together into a giant catch-all

category. The superior performance of the snowflake strategy across the board also means

that the higher probability associated with emitting from a small snowflake category matters

more than the smaller probability associated with transitions to many different snowflake

categories.

3.6.2 The role of utterance boundaries

Here, the combination of relative thresholds and the presence of utterance boundaries as po-

tential framing units seems to be the best performing combination in FFs for both snowflake

and snowball versions of FFs for Peter and the snowball version for Adam; however, in

these cases, the FF-based categories never appear to be the best performing option, with

gold standard categories still being the best match for the child’s output. In contrast, FFs

without utterance boundaries for Adam (using a snowflake strategy) seem to better match

Adam’s output than gold standard categories, with both T.5T.1+utt and Top.13 also better

performing than the gold standard categories. It could be that utterance boundaries may

still be a useful cue to young children at certain stages of development. Here, Adam would be

in the stage of development while Peter would have already passed through it. It would also

be useful to see this kind of analysis applied to a wider age group to determine if there are

more general patterns of utterance boundary salience during the transition from immature

to mature categories.
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3.6.3 The utility of frequency thresholds

Overall, the T.5T.1+utt FFs strategy, or FFs where each frame had to capture 0.5% of

types and 0.1% of tokens (and where utterance boundaries were included in framing units),

performed generally better than the rest of the FFs strategies, even when it didn’t perform as

well as the gold standard categories at matching the child’s output. This version of frequency

threshold is thought to be more conservative and potentially more accurate (Chemla et al.

[2009a]). It also utilizes a relative frame-frequency-based threshold that is dependent on

corpus size instead of a strict numerical cutoff of frame number. Certainly within the versions

of frames that use utterance boundaries, T.5T.1 and Top.13% both perform better than the

strict Top45 cutoff. While a strict cutoff might be easy to implement for a child (perhaps as a

limited memory buffer), it might not be useful enough for a child who is acquiring immature

category representations. The combination of a relative threshold, plus the information

provided with utterance boundaries, seems like the most useful of the FFs strategies for at

least one child. It is unclear if there is anything particularly special about the two relative

threshold measures discussed here. It is possible that other thresholds may be useful, and

in fact the thresholds might differ between children based on an individual child’s cognitive

abilities and memory constraints.

3.6.4 Differences between children

What does it mean that I only found FFs that performed better than the gold standard

categories in one child? There are differences between Peter and Adam, who are both

typically developing around two-years-old (Peter: 1;9-2;4 and Adam 2;0-2;11). One is that

there are quantitative differences between the corpora for each child, with differences in the

amount of input and output data available, but it is unclear what effect that has on the

analysis. Besides differences in the amount of data, there are individual differences between
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children’s language development trajectories (Tomasello and Todd [1983], Bates et al. [1991]).

It is possible that at the age I look at, Peter has already developed the finer-grained adult-like

categories that were investigated here as the gold standard. It is possible that by looking at

younger data for Peter we might see FFs as a better match for generating output (although

there is likely to be a data sparsity issue, as multi-word utterance output is less likely under

2). Adam, on the other hand, may still be utilizing more immature representations at 2. It

is possible that if I were to look at Adam’s data at a little older, I would find that adult-level

syntactic categories might generally perform better than any FFs categories, as we see in

Peter.

3.7 Future work

I’ll now briefly discuss possible future directions, including other informative implementations

and additional possibilities for how children might deploy FFs in order to create immature

categories.

3.7.1 Baseline evaluation

Firstly, I’d like to evaluate other baselines, like evaluating FFs against a total snowflake

strategy (where every word is its own category), to firmly assess whether any category

representation is better than having no representation at all. Having this baseline will give

context to our previous results on how well the representations in question best match data

that we observe.
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3.7.2 Further FFs implementations

Secondly, I’d like to explore what other FF implementations seem plausible besides those

that I’ve investigated here. Some of these implementations include “flexible” frames, where

categories generated by FFs are merged based on how many overlapping words they have,

attempting to create more adult-like categories [Mintz, 2003b, Chemla et al., 2009b]. Here

I have only looked at a few FFs implementations, but that does not mean there are not

other definitions of frequency that are valid (and possibly more effective) as well. Another

question is whether these results depend on using the finer-grained %mor classifications for

the adult categories. That is, could these results change with a broader gold standard part

of speech classification system more akin to the ones utilized by Mintz [2003b]? Recall that

there are implementation difficulties with sorting words into broader categories as Mintz

[2003b] and others have done, in that all words need to be categories, and many do not fit

neatly into the broader categories they outline in their studies (for example, what do we do

with contractions like we’re?). However, if these issues can be surmounted, it’s possible that

other potential adult category representations could be evaluated against child data.

3.7.3 Investigating FFs deployment

Another consideration involves children whose developing processing abilities don’t allow

them to deploy FFs as accurately as here. That is, a FFs-based strategy might not be

useful for every child. What would a “broken” FFs strategy look like in children who might

lack the cognitive resources or skills to fully utilize this strategy? Remember that being

able to track frames is just being able to remember what words/morphemes are on either

side – for example, remembering that in At dawn we ride, dawn is in between At and we.

Tracking these non-adjacent dependencies and tabulating their frequencies on the rest of

the words in subsequent utterances falls under the general umbrella of “statistical learning”
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(Gomez and Gerken [1999], Saffran et al. [1996], Romberg and Saffran [2010]). Interestingly,

children with Specific Language Impairment (SLI) tend to have deficiencies in statistical

learning [Evans et al., 2009, Haebig et al., 2017], a skill that is crucial for tracking the

non-adjacent dependencies that frequent frames rely on. So, SLI children trying to use a

FFs-based strategy to form categories may end up with much noisier categories than what

I investigated here.

It would also be interesting to see how the different frequency implementations that I utilized

in this chapter perform for children who have statistical learning deficiencies. We could do

this by introducing different types of noisy FF-based categories. It could also be that if

there are memory and processing constraints, there is a higher threshold for frequency than

a typically developing child might have, and there might therefore be a bias for fewer, more

accurate FFs. To investigate this, I could try increasingly stringent limitations on what

counts a frequent, and see if these “highly” frequent frames are better or worse at matching

the output of an atypically developing child than either gold standard categories, or the FFs

thresholds implemented here for typically developing children. This kind of investigation

might give us insight into what kind of memory constraints these atypically developing

children may be working with when developing immature category representations.

3.7.4 The underlying model

What about children who have different developing syntactic systems (i.e., more rudimentary

or more advanced that what I assumed here)? These developing systems could range from

something as simple as a unigram model to a syntactic model that is more complex and

adult-like, instead of using a bigram assumption as we have done in this chapter. Changing

the generative model so that it is more appropriate for children of different developmental

stages and abilities can help us assess if a particular underlying syntactic representation
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might be more appropriate for this developmental stage, or at least how much the results

here depend on the syntactically-immature bigram generative model. It may also be useful to

see what this analysis suggests for adult data (similar to what I did in the previous chapter);

this would allow us to determine if the standard adult-like categories (and an adult-like

generative model) perform better than the other possible category representations for the

adults.
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Chapter 4

The emergence of productive

categories in typically and atypically

developing children

4.1 Introduction

The previous chapter looked at possible immature syntactic category representations that

children could have on the way to acquiring adult representations. Although linguists may

disagree on what those immature representations should be (as well as the adult repre-

sentations), we generally agree that typically developing children eventually achieve adult

linguistic knowledge.

But when is “eventually”? How can we tell exactly when a child has successfully acquired

an adult linguistic representation? This chapter investigates the emergence of a particular

linguistic milestone: developing productive syntactic categories. I do this by again utilizing

the framework of the previous chapters, that of assessing the possible options for underlying
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representation, in this case the presence or absence of productive adult categories.

To do this, I start by looking at a variety of children, including a child in the previous chapter

(Peter), as well as atypically developing children with Specific Language Impairment (SLI)

and age-matched controls. I take the input and output data from each child and diagnose

the presence of productive categories by evaluating possible underlying adult-like, productive

syntactic categories by connecting that child’s input and output.

4.2 Target knowledge: what does it mean to be “pro-

ductive”?

As discussed in the previous chapter, categories are effectively clusters of words that behave

similarly in linguistic contexts. Measuring when a cluster of similarly behaving words be-

comes an “adult” category is a tricky task. One way to assess the presence of a category is

to measure the behavior against a gold standard adult category. An alternative option that

I will explore in this chapter is looking at how words combine together productively in adult

speech, and using this as a signal to assess the presence of a particular adult-like category

via the multi-word productions in the child’s output.

For instance, let’s say I am trying to ascertain if an adult has a determiner category

and a noun category. What I can do is look at the simplest ways words can combine –

2-word strings. We have some idea about how a determiner category might combine with

a noun category. In the simplest case (e.g., ignoring exceptions based on agreement), a

word that is a determiner should be able to combine with a word that is a noun. If I

have a collection of determiners (like the, an, your, that) and nouns (like serval, ocelot,

jaguar, cheetah, lioness), I should expect to see the cheetah, your ocelot, that lioness, etc.,

as any determiner from this set could combine with any noun from this set.
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The target knowledge, then, is that within these 2-word determiner+noun combinations,

we should see productivity, where words in two different categories that can combine do

combine at the same rate seen in adult 2-word productions. We can observe the results

of this potential productivity in children’s output to see if children are generating 2-word

phrases with the same level of productivity for each category under consideration that we

believe we should see in adults.

4.2.1 Atypically developing children: A look at Specific Language

Impairment

Looking at a sophisticated linguistic skill like productive syntax, we might naturally find

variation in typically developing populations already. However, in addition to this individual

variation, there are many factors that can impact the development of language. What

happens when we look at children that seem to struggle with some aspects of language?

Delays and deficits in productivity can result in serious linguistic difficulties. One population

that consistently experiences issues with productive language is children with Specific Lan-

guage Impairment (SLI). Children with SLI are typified by linguistic impairment without

any obvious non-linguistic cognitive impairment or belonging to any other clinical group.

Cross-linguistic studies in SLI have shown that SLI children tend to struggle the most with

whatever in their language is hardest to acquire, often including syntax and morphology, de-

pending on the language (Leonard [2014]). In fact, delays or problems in producing 2-word

combinations at 24 months is a strongly predictive measure of presenting with SLI, stronger

even than delays in producing first words [Diepeveen et al., 2016, Rudolph and Leonard,

2016]. These later difficulties in producing multi-word utterances could be a symptom of

incomplete or differing development of these categories themselves.

The amount of language delay in SLI children is variable and the population itself is very
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heterogenous. Some accounts claim that their production is delayed about a year behind

their peers, and their comprehension skills delayed about 6 months. However, it is fairly

common for children to be far more impaired. All SLI children are typically exemplified by a

limited vocabulary and, for English speakers, limited grammatical morphology (such as tense

markers). Some sample speech from a 16-year-old with SLI shows how morphology can be

limited: “He want to play that violin. Those men sleeping...Can I play with violin?” [Weiner,

1974]. SLI children often never catch up to their typically developing peers [Weismer, 2010].

In this chapter, I look at various children with SLI at three- and four-years-old as well as age-

matched control children who are typically developing. The possible representation profiles

of children with SLI and typically developing children of the same age might show that there

are systematic differences in which kind of productive categories seem to be available. This

could give insight into what kind of categories are easier for a child with SLI to acquire. If

there are not systematic differences, it could be that either SLI emerges later than the ages

we look at here, or that SLI interferes with language at a different level than this kind of

productive category representation. Beyond this, because of the heterogeneity of the SLI

population, we might expect each individual’s productive category representation profile to

look different from each other.

4.3 Assessing category knowledge

At the category level, the two representations I’ll consider here are that the mature category

is (i) present (i.e, {the, that, your, etc.} ∈ Det), or (ii) absent (i.e., the, that, your, etc.

are simply individual words that aren’t interchangeable syntactically). At the multi-word

combination level, I focus on combinations made up of two potential categories (e.g., the

cheetah, which could involve Det and Noun). For these combinations, there are three

possible representations: Not, Semi, and fully Productive. More specifically, a Not pro-

73



ductive representation has both categories absent; a Semi-productive representation has one

category present and the other absent; a fully Productive representation (which we assume

adults have) has both categories present.

the         
an          
your     
that        
the        

“the serval”, “an ocelot”, 
“your jaguar”, “that cheetah”, 

“the lioness”

semi-productive, 
DETERMINER+word

semi-productive, 
word+NOUN

fully-productive, 
DETERMINER+NOUN

non-productive,  
word+word

“the cheetah”

P(DET+cheetah) P(the+NOUN) P(DET+NOUN) P(the+cheetah)

serval 
ocelot 
jaguar 
cheetah 
lioness

the         
an          
your     
that        
the        

serval 
ocelot 
jaguar 
cheetah 
lioness

the         
an          
your     
that        
the        

serval 
ocelot 
jaguar 
cheetah 
lioness

serval 
ocelot 
jaguar 
cheetah 
lioness

the         
an          
your     
that        
the        

Figure 4.1: A diagram of how potential output 2-word combinations are considered for the
cheetah, based on the hypothesis under consideration (within the grey box) and the child’s
input. Combinations involving lexical items in black ovals get their probabilities from the
child’s input.

4.3.1 Possible child category representations for multi-word com-

binations

I will now consider these three types of syntactic category representation (exemplified in

Figure 4.1) that very young children could use to form multi-word combinations (like the
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cheetah). The representation types differ with respect to whether the child produces multi-

word combinations according to (i) the distribution of multi-word combinations in her input

(Not productive), (ii) both her input distributions and an internal category representation

(Semi-productive), or (iii) internal category representations alone (fully Productive).

A child using a Not productive representation can only generate a multi-word combination

if she’s heard it in her input (e.g., the cheetah → (the+cheetah)Input). So, any multi-word

combination she generates is effectively a memorized amalgam; how often she generates

a particular amalgam depends on how frequently that amalgam was in her input. (See

the fourth column in Figure 4.1.) This contrasts with a child using a Semi-productive

representation, who relies on an internal category for generating one part of the multi-word

combination and her input combinations with that category for generating the other part

(e.g., the cheetah → (Determiner+cheetah)Input). (See the first column in Figure 4.1 for a

productive Determiner category and the second column for a productive noun category.)

Here, if she’s heard cheetah used with a Determiner – any Determiner, not just the – she

can generate the cheetah this way. So, the child can generate some novel expressions, but still

relies on input distributions when the expressions involve words that aren’t part of a syntactic

category. This also works in the other direction (e.g., the cheetah → (the+Noun)Input).

Here, if she’s heard the used with a Noun – any Noun, not just cheetah – she can generate

the cheetah this way. However, a child with a fully Productive representation can generate

novel combinations by relying on her internal syntactic categories alone, rather than input

distributions of multi-word combinations (e.g., the cheetah → Determiner+Noun). (See

the third column in Figure 4.1.) That is, the child draws on her internal category knowledge

when generating utterances just the way we believe adults typically do, which allows for

productive creation of novel multi-word combinations.
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4.4 How can we quantitatively measure representational

knowledge?

To assess the presence of adult-level category knowledge, we need to measure what particular

underlying representation a child has with respect to a certain category. In this section, I

outline how to quantitatively analyze children’s productions to determine the nature of their

underlying representations, following Bates et al. [2018]’s quantitative framework. I review

key ideas from this framework below.

4.4.1 Lexical overlap as a measure of category knowledge

Lexical overlap is often used as a measure for productivity [Yang, 2010, 2011, Pine et al.,

2013], and is meant to capture the intuition that words in one category can be freely combined

with words from another. That is, category members are effectively interchangeable in those

combinations. For example, a Determiner category would allow any of its member words

(e.g., the, that, your, etc.) to combine with nouns like cheetah. So, we would expect to see

multiple determiners used with any given noun (e.g., the cheetah, that lioness, your serval,

etc.) – that is, there would be overlap in the use of determiner lexical items. So, to assess

a category, we need to examine its lexical overlap with respect to words that the category

can combine with. For example, when assessing Determiner in combination with nouns,

we can look at how many nouns have lexical overlap when it comes to determiners.

So, if we want to assess the lexical overlap for determiner, that means we want to know

for each individual noun (like cheetah) whether it only occurred with the or if it also oc-

curred with any other possible determiner, say with a. If cheetah did occur with more

determiners than just the, this would be a case of lexical overlap.
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I assess both the Observed lexical overlap present in a speaker’s productions and the Expected

lexical overlap if the speaker used a particular representation to generate those productions.

While there’s only one Observed score per potential category (e.g., a DetObserved for how

determiners combine with nouns), there’s an Expected score for each potential representation

the speaker could be using to generate her productions. If the Expected overlap for a

particular representation matches the observed overlap well enough, this indicates that the

representation is compatible with the speaker’s output.

4.4.2 Calculating Observed overlap

I first describe how to calculate the lexical overlap for a potential category with respect to a

set of words it combines with. This is the core calculation that will be used for calculating

Observed and Expected overlap scores for multi-word combinations. I then describe how to

calculate the Observed overlap for multi-word combinations and the Expected overlap for

each of the three representation types (Not, Semi, and Prod).

For a potential category whose status is Unknown (like Determiner), we look at the lexical

overlap in words which that category combines with (like nouns, which would be wcomb ∈

Combine in (4.1)). Lexical overlap itself is defined very liberally, following previous studies

using it [Yang, 2010, 2011, Pine et al., 2013]: if more than one word wunk ∈ Unknown (e.g.,

both the and that) appears in combination with a word wcomb ∈ Combine (e.g., cheetah),

then lexical overlap for wcomb is 1. Otherwise, if wcomb only ever appears in combination with

a single word wunk ∈ Unknown (e.g., the cheetah is the only combination of a noun with

cheetah), lexical overlap is 0. This is overlapwcomb
in (4.1). The total overlap overlapCombine

is the lexical overlap average across all words that the potential category can combine with

(wcomb ∈ Combine). For example, this would be the lexical overlap average across all nouns

when assessing potential category Determiner on how it combines with nouns. So, if there
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are 50 nouns that combine with determiners in the data sample, then individual overlap

scores overlapwcomb
are calculated for each of these 50 nouns, and the average is taken of all

50 scores.

overlapwcomb
=


1: wcomb occurs with > 1 word wunk ∈ Unknown

0: wcomb occurs with only 1 word wunk ∈ Unknown

overlapCombine =

∑
wcomb∈Combine overlapwcomb

|Combine|

(4.1)

For a multi-word combination involving two potential categories (e.g., Determiner+Noun),

Observed overlap can be calculated with respect to each category (e.g., with respect to nouns

when assessing Determiner and with respect to determiners when assessing Noun). The

observed overlap calculation is just as in (4.1), shown in (4.2) over the set of speaker pro-

ductions that involve those kind of multi-word combinations SObs (e.g., all combinations of

determiners+nouns for Determiner+Noun).

Observed = overlapCombine(SObs) (4.2)

4.4.3 Calculation of Expected overlap for the different represen-

tation types

Below I provide a walk-through of the calculation of the Expected lexical overlap for the

three representational types: Not, Semi, and fully Productive.

For the Not productive representation (e.g., the cheetah → the+cheetah), the speaker gen-

erates her multi-word combinations as memorized amalgams from her input. Using this

representation, she will produce a given amalgam with about the same frequency she heard
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it in her input. To simulate this process, I generate multi-word combination data samples

SExpNot
that are the same size as the observed speaker multi-word combination sample Sobs;

these samples are drawn from the speaker’s input. That is, if there are 100 determiner+noun

combinations in the speaker’s output, I generate 100 determiner+noun combinations, based

on the determiner+noun distribution in the speaker’s input. This is shown in the top portion

of equation (4.3).

The combinations that specific word wunk from the category whose status is Unknown is

generated with depend on the combinations from the speaker’s input that wunk appeared

with. To continue with our determiner example from above, if detj appeared with noun

nounk (e.g., the+cheetah) for 10% of the speaker’s input, about 10% of the generated deter-

miner+noun combinations SExpNot
will be detjnounk combinations. That is, the probability

of sample si involving word wunk combined with wcomb depends on how often wunk+wcomb

appeared in the speaker’s determiner+noun input. Once the sample using the Not produc-

tive representation has been generated, we can calculate the lexical overlap for this sample

and use that as the Expected overlap for a child using the Not productive representation.

This is shown in the bottom part of (4.3).

|SExpNot
| = |Sobs|

si ∈ SExpNot

si = wunkwcomb ∝ pwunkwcombInput

wunk ∈ Unknown, wcomb ∈ Combine

ExpectedNot = overlapCombine(SExpNot
)

(4.3)

Because we are generating samples of data produced by a child using the Not productive

representation, we repeat this process 1000 times (i.e., generate 1000 expected multi-word

combination samples and calculate the Expected overlap). We then average these expected
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overlap scores to get the Expected overlap for the Not productive representation.

We can use a similar approach when calculating the Expected overlap for the Semi-productive

representation (e.g., the cheetah → Det+cheetah or the+Noun). Using this representation,

a speaker generates her multi-word combinations by relying on her internal category repre-

sentation for one word and her input distributions for combinations with the other word.

More specifically, let’s consider the case where the word from Unknown, wunk, comes from

a category while the word from Combine, wcomb, doesn’t (like determiner+cheetah). To

generate combination wunkwcomb, the child relies on her internal category representation to

generate word wunk (i.e., Determiner← the) and then looks to her input to see how often

words from this category combine with word wcomb (i.e., cheetah). So, she would generate

combination wunkwcomb (the+cheetah) with about the same frequency she heard examples of

Unknown wcomb (Determiner+cheetah) in her input. To simulate this process, we again

can generate multi-word combination data samples SExpSemi
that are the same size as the

observed speaker multi-word combination sample Sobs. Because this representation assumes

that all words wunk ∈ Unknown in the speaker’s output were generated from her internal

category, they will appear as often as they appeared in her observed output. For example,

if Determiner is Unknown and determiner detj ∈ Det (the) appears 10 out of 100 times

in the speaker’s output, the generated sample will include a combination with detj about

10
100
∗ 100 = 10% of the time. In particular, category Unknown (Determiner) generates

words wunk with some probability, and this is the probability we see these words in the

speaker’s output. So, the Semi expected samples involve word wunk proportional to how

often they appeared in the speaker’s observed productions. This is shown in the top part of

(4.4).

The combinations that wunk (the) is generated with depend on the combinations from the

speaker’s input that words of category Unknown (Determiner) appeared with. Returning

to our determiner example from before, if Determiner is being assessed in combination with

80



individual nouns, and determiners appear with noun nounj (cheetah) 5 out of 100 times, the

generated sample will include determiners in combination with nounj 5% of the time. That is,

the probability of multi-word sample si ∈ SExpSemi
involving a specific word wunk ∈ Unknown

combined with wcomb depends on how often any word in Unknown combines with wcomb in

the speaker’s input. This is equivalent to how often wcomb appeared in the multi-word

combinations involving words of category Unknown in the speaker’s input wcombinput
, as

shown in (4.4).

|SExpSemi
| = |SObs|

si ∈ SExpSemi

wunk ∈ si ∝ pwunkObs

si = wunkwcomb ∝ pUnknown pwcombInput

wunk ∈ Unknown, wcomb ∈ Combine

ExpectedSemi = overlapCombine(SExpSemi
)

(4.4)

A similar process can be used when Unknown isn’t a category while Combine is (e.g.,

the+Noun). To generate combination wunkwcomb (the+cheetah), the child relies on her

internal category representation to generate word wcomb (Noun ← cheetah) and then looks

to her input to see how often words from this category combine with word wunk (the).

So, she would generate combination wunkwcomb with about the same frequency she heard

examples of wunk Combine (the+Noun) in her input. To simulate this process, we again

can generate multi-word combination data samples SExpSemi
that are the same size as the

observed speaker multi-word combination sample Sobs. Because this representation assumes

that all words wcomb ∈ Combine in the speaker’s output were generated from her internal

category, they will appear as often as they appeared in her observed output. For example,

if Noun is Combine and Noun nounj ∈ Noun (cheetah) appears 30 out of 100 times in

the speaker’s output, the generated sample will include a combination with nounj about
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30
100
∗ 100 = 30% of the time. In particular, category Combine generates words wcomb with

some probability, and this is the probability we see these words in the speaker’s output. So,

the Semi expected samples involve word wcomb proportional to how often they appeared in

the speaker’s observed productions. This is shown in the top part of (4.5).

The combinations wcomb is generated with depend on the combinations from the speaker’s

input that words of category Combine appeared with. Returning to our noun example from

before, if Noun is being assessed in combination with individual determiners, and nouns

appear with determiner detj (the) 2 out of 100 times, the generated sample will include

nouns in combination with detj 2% of the time. That is, the probability of multi-word

sample si ∈ SExpSemi
involving a specific word wcomb ∈ Combined combined with wunk

depends on how often any word in Combine combines with wunk in the speaker’s input.

This is equivalent to how often wunk appeared in the multi-word combinations involving

words of category Combine in the speaker’s input wunkinput
(the+Noun), as shown in (4.5).

[h]

|SExpSemi
| = |SObs|

si ∈ SExpSemi

wcomb ∈ si ∝ pwcombObs

si = wunkwcomb ∝ pwunkInput
pCombine

wunk ∈ Unknown, wcomb ∈ Combine

ExpectedSemi = overlapCombine(SExpSemi
)

(4.5)

As before, once the sample using the Semi representation has been generated, we can calcu-

late the lexical overlap for this sample and use that for a child using a Semi representation.

This is shown in the bottom part of (4.4) and (4.5). We then do this process 1000 times to

get 1000 Semi samples, compute the lexical overlap for each, and take the average as the

Expected Semi overlap score.
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For the fully Productive representation (e.g., the cheetah → Determiner+Noun), the

speaker generates her multi-word combinations by relying on internal category representa-

tions for both words. Yang (2010, 2011) describes an analytical solution for the expected

lexical overlap when both categories exist (shown in (4.6)).

overlapprodwcomb
=

= 1− P (no wcomb)− P (only 1 wcomb)

= 1− (1− pwcomb
)Sobs −

Sobs∑
k=1

(
Sobs

k

)
(pwcomb

∗ pwunk
)k(1− pwcomb

)Sobs−k

= 1 + (|Unknown| − 1)(1− pwcomb
)Sobs

−
∑

wunk∈Unknown

(pwcomb
∗ pwunk

+ 1− pwcomb
)Sobs

pwunk
= pwunkObs

, pwcomb
= pwcombObs

ExpectedProd =

∑
wcomb∈Combine overlapprodwcomb

|Combine|

(4.6)

We can use this here, rather than generating expected samples and calculating lexical overlap

for those samples. The key intuition involves the definition of lexical overlap, where a word

wcomb shows lexical overlap if more than one word wunk ∈ Unknown combines with wcomb.

So, we can calculate this analytically as 1 minus the probability that wcomb will (i) never

appear with any word in Unknown, or (ii) only appear with a single word in Unknown.

For wcomb to never appear with any word in Unknown, this means that for all multi-word

combination samples Sobs involving words from Unknown, wcomb was never selected. The

probability of wcomb can be represented as pwcomb
, and so the probability of not choosing

wcomb to combine with a word from Unknown Sobs times is (1-pwcomb
)Sobs .

For wcomb to appear with only a single word wunk in Unknown, this means that for every

multi-word combination Unknown+Combine, either wcomb was selected and combined

83



with wunk (which occurs with probability pwcomb
∗ pwunk

) or some other word – and not wcomb

– was selected (which occurs with probability 1-pwcomb
). Any given sample with wcomb only

ever appearing with wunk will have some split between these two options, for all Sobs samples

(i.e., k samples will have wcomb with wunk and Sobs−k samples will have some other Combine

word). So, if we sum up all these possibilities (shown in (4.6)), this is the probability of

wcomb only ever appearing with a single wunk.

Some algebraic rearrangement yields the formula for overlapprodwcomb
at the bottom of

(4.6) for the Expected overlap for word wcomb from Yang (2010, 2011). Note that all

word probabilities are estimated based on the speaker’s productions of wcomb and wunk (i.e.,

pwcomb
= pwcombObs

, pwunk
= pwunkObs

). This is because all words in these combinations are

generated from an underlying internal category, and so don’t rely on the speaker’s input. As

with the original calculation of lexical overlap, these individual word overlaps are averaged

to get the Expected overlap.

4.4.4 Evaluating possible representations

For each child, the potential representation must include some information about each poten-

tial category within that representation. For each potential category, either it is productive

(there is a Determiner category that determiners are drawn from) or there is not (where

all determiners are treated as individual words). Suppose a child, for example Peter, has 4

potential categories (Determiner, Noun, Verb, and Pronoun). Therefore, there are 16

possible category representations (24) that Peter could be entertaining, ranging from Not-

productive (determiners, nouns, verbs, and pronouns are not part of categories, and so not

productive) to fully-productive (all potential categories are productive) to somewhere in

the middle (some categories may be productive and some may not, yielding semi-productive

representations).
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For each child, I gathered the 2-word combinations that met certain criteria. The combina-

tions had to (i) make up their own phrase (like Determiner+Noun: the cheetah and not

Noun+Prep: cheetah on) and (ii) have at least 100 tokens of any Determiner+Noun

combination). That is, any Determiner+Noun combination would need to have appeared

at least 100 times in both the child’s input and output. This cutoff is based on the recom-

mended frequency from Bates et al. [2018]. Then, I calculated the Observed and Expected

overlap for each child and representational hypothesis, given each potential representation.

Once we get a collection of Observed and Expected scores for a potential representation, how

do we decide if it’s “good enough” with respect to matching adult-level productivity? To

assess whether a potential representation is “good enough”, I followed Bates et al. [2018]’s

implementation of assessing agreement between Observed and Expected overlap using Lin’s

Concordance Correlation Coefficient (LCCC, represented with ρc: Lawrence and Lin [1989])

to generate one number that captures how well the Observed and Expected scores match

and which can be more easily compared across potential representations.

More specifically, LCCC measures the agreement between two sets of observations on a scale

from -1 to 1, with a ρc of -1 indicating perfect disagreement, 1 indicating perfect agreement,

and 0 indicating no agreement. So, given that there are multiple lexical overlap scores

for each category representation (one for each legitimate multi-word combination within a

particular category representation), I assess ρc for the Observed vs. Expected overlap scores

within that category representation.

In the example of Peter, we would have ρc scores for each of the 16 possible category repre-

sentations. Then, we then need to decide which representations have a “good enough” match

LCCC-wise between Observed and Expected overlap. Unfortunately, there isn’t a current

consensus about what the threshold should be for good agreement with the LCCC [Altman,

1990, McBride, 2005]. Given this, as per Bates et al. [2018], I leverage each child’s input

data, with the idea that the adults producing the children’s input had a fully productive
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category representation (RepProd). Because of this, the agreement between the Observed

overlap in the child’s input and the Expected overlap from the RepProd category represen-

tation could serve as a “good enough” threshold of agreement. More specifically, because

we believe the RepProd category representation generated the child’s input, the ρc obtained

for that representation is a reasonable cutoff for when a category representation in general

matches sufficiently well with the observed data. The threshold value for each child is taken

from each child’s input ρc when comparing the Expected overlap with a RepProd category

representation against the Observed. This is the measure for when each child’s possible

category representations are sufficiently compatible with their output.

4.5 Child corpus statistics

I now describe the data from the different children, both typically developing and with SLI,

that we’ll be assessing for productive syntactic categories.

4.5.1 Typically developing two-year-old: Peter

The first child, Peter, is a typically developing child under 2;4 [Bloom et al., 1974, 1975] from

the CHILDES database [MacWhinney, 2000b], and who we saw in the previous chapter when

we were assessing immature FF-based categories against fully-adult productive categories.

There, given the available category representation options, the fully-adult categories seemed

a better fit. However, here we can more clearly compare different combinations of fully-adult

categories and non-adult categories.

Peter’s potential categories, whose combinations appeared more than 100 times, consist

of Determiner, Noun, Verb, and Pronoun. Table 4.1 shows the frequency of the

individual potential categories and 2-word combinations. On the left is the data from the
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child-directed input; on the right is the data from the child’s productions, or output.

Table 4.1: Types and tokens of potential categories and multi-word combi-
nations involving those categories in the two-word combinations in Peter’s
input and output.

Peter, Age 2 Input Output

Potential category Types Tokens Types Tokens

Determiner 16 1104 11 562

Noun 323 1104 188 562

Verb 129 761 59 325

Pronoun 36 761 20 325

2-word combination Types Tokens Types Tokens

Determiner+Noun 456 1104 278 562

Verb+Pronoun 280 761 113 325

4.5.2 SLI children at three- and four-years-old: Daniel, Nathan,

Harry, and Bonnie

I looked at four children identified with SLI: Daniel, Nathan, Harry, and Bonnie, which

come from the Conti-Ramsden-3 corpus in the CHILDES database [Joseph et al., 2002,

MacWhinney, 2000b]. Two of the children (Harry and Nathan) have data at both 3 and

4 years of age, with a wider spread for age three (Harry 3 (3;05-3;11), Harry 4 (4;0-4;08),

& Nathan 3 (3;0-3;11), Nathan 4 (4;0-4;03)). Daniel only has data at age three (3;0-3;11)

and Bonnie only has data at age four (4;0-4;11). Tables 4.2-4.5 show the frequency of

the individual potential categories and 2-word combinations that appeared over 100 times

in each child’s data sample. This included 6 potential categories: Adjective, Adverb,

Determiner, Noun, Preposition, and Verb.
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Table 4.2: Types and tokens of potential categories and multi-word com-
binations involving those categories in the two-word combinations in
Daniel’s input and output.

Daniel, age three Input Output

Potential category Types Tokens Types Tokens

Adjective 81 490 31 109

Adverb 59 756 25 246

Determiner 22 3136 18 891

Noun 868 4601 375 1308

Preposition 25 737 13 194

Verb 161 994 63 362

2-word combination Types Tokens Types Tokens

Adjective+Noun 293 490 76 109

Preposition+Noun 210 737 65 194

Determiner+Noun 1126 3136 424 891

Verb+Adverb 267 756 83 246

Verb+Noun 200 238 91 114
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Table 4.3: Types and tokens of potential categories and multi-word combi-
nations involving those categories in the two-word combinations in Harry’s
input and output.

Harry, age three Input Output

Potential category Types Tokens Types Tokens

Adjective 84 501 40 143

Adverb 57 808 30 239

Determiner 24 2695 19 590

Noun 726 4114 273 1047

Preposition 24 681 15 207

Verb 149 1045 60 346

2-word combination Types Tokens Types Tokens

Adjective+Noun 271 501 98 143

Preposition+Noun 195 681 72 207

Determiner+Noun 918 2695 328 590

Verb+Adverb 267 808 93 239

Verb+Noun 163 237 91 107

Harry, age four Input Output

Potential category Types Tokens Types Tokens

Adjective 73 320 38 109

Adverb 48 394 30 130

Determiner 20 1260 15 493

Noun 611 2019 265 736

Preposition 24 439 20 134

Verb 74 395 43 130

2-word combination Types Tokens Types Tokens

Adjective+Noun 197 320 82 109

Preposition+Noun 192 439 67 134

Determiner+Noun 625 1260 293 493

Verb+Adverb 174 395 87 130
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Table 4.4: Types and tokens of potential categories and multi-word com-
binations involving those categories in the two-word combinations in
Nathan’s input and output.

Nathan, age three Input Output

Potential category Types Tokens Types Tokens

Adjective 124 1344 80 680

Adverb 69 1160 51 711

Determiner 29 5046 19 1247

Noun 954 7761 500 2783

Preposition 30 1253 23 741

Verb 201 1278 124 826

2-word combination Types Tokens Types Tokens

Adjective+Noun 530 1151 255 506

Adverb+Adjective 95 193 72 174

Preposition+Noun 260 1253 220 741

Determiner+Noun 1432 5046 619 1247

Verb+Adverb 341 967 207 537

Verb+Noun 239 311 195 289

Nathan, age four Input Output

Potential category Types Tokens Types Tokens

Adjective 50 235 27 105

Adverb 36 255 33 152

Determiner 22 1051 15 354

Noun 458 1547 241 637

Preposition 21 261 17 178

Verb 64 255 50 152

2-word combination Types Tokens Types Tokens

Adjective+Noun 161 235 77 105

Preposition+Noun 103 261 82 178

Determiner+Noun 491 1051 242 354

Verb+Adverb 118 255 91 152
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Table 4.5: Types and tokens of potential categories and multi-word com-
binations involving those categories in the two-word combinations in Bon-
nie’s input and output.

Bonnie, age four Input Output

Potential category Types Tokens Types Tokens

Adjective 52 308 40 300

Adverb 47 430 35 492

Determiner 18 2330 15 1738

Noun 566 3225 442 2818

Preposition 22 466 16 596

Verb 103 551 68 676

2-word combination Types Tokens Types Tokens

Adjective+Noun 176 308 129 300

Preposition+Noun 136 466 192 596

Determiner+Noun 762 2330 595 1738

Verb+Adverb 168 430 120 492

Verb+Noun 101 121 147 184

4.5.3 Typically developing age-controls at three- and four-years-

old: Ross & Mark

I selected Mark and Ross from the MacWhinney corpus from the CHILDES dataset as age-

matched controls for the SLI children (MacWhinney [1991, 2000b]). Both Mark and Ross

have data at age three (3;0-3;11) and at age four (4;0-4;11). Tables 4.6-4.7 show the frequency

of the individual potential categories and 2-word combinations that appeared over 100 times

in both the child’s input and output for each child. This included 6 potential categories

for Mark at age three: Adjective, Adverb, Determiner, Noun, Preposition, and

Verb, with the addition of Modal for Mark at age four and Ross at age three and four.
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Table 4.6: Types and tokens of potential categories and multi-word combi-
nations involving those categories in the two-word combinations in Ross’s
input and output.

Ross, age three Input Output

Potential category Types Tokens Types Tokens

Adjective 157 1345 138 1163

Adverb 78 745 65 639

Determiner 24 2582 20 3176

Modal 11 238 10 325

Noun 1122 4968 1164 5298

Preposition 29 754 25 630

Verb 233 1474 270 1567

2-word combination Types Tokens Types Tokens

Adjective+Noun 613 1085 527 907

Adverb+Adjective 90 158 74 119

Preposition+Noun 375 754 319 630

Determiner+Noun 1148 2582 1456 3176

Modal+Verb 124 238 158 325

Verb+Adjective 81 102 94 137

Verb+Adverb 291 587 256 520

Verb+Noun 419 547 476 585

Ross, age four Input Output

Potential category Types Tokens Types Tokens

Adjective 119 668 110 421

Adverb 67 430 53 358

Determiner 25 1856 23 1773

Modal 10 236 11 194

Noun 921 3340 980 2937

Preposition 30 520 27 433

Verb 200 962 227 862

2-word combination Types Tokens Types Tokens

Adjective+Noun 407 668 301 421

Preposition+Noun 300 520 288 433

Modal+Verb 120 236 127 194

Determiner+Noun 960 1856 1056 1773

Verb+Adverb 260 430 235 358

Verb+Noun 256 296 271 310
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Table 4.7: Types and tokens of potential categories and multi-word combi-
nations involving those categories in the two-word combinations in Mark’s
input and output.

Mark, age three Input Output

Potential category Types Tokens Types Tokens

Adjective 160 921 87 335

Adverb 73 550 49 289

Determiner 27 2311 20 1347

Noun 1124 4431 709 2209

Preposition 27 682 25 288

Verb 221 1067 135 528

2-word combination Types Tokens Types Tokens

Adjective+Noun 572 921 225 335

Preposition+Noun 367 682 180 288

Determiner+Noun 1136 2311 732 1347

Verb+Adverb 319 550 173 289

Verb+Noun 405 517 190 239

Mark, age four Input Output

Potential category Types Tokens Types Tokens

Adjective 299 2026 161 824

Adverb 111 1534 81 736

Determiner 29 4469 24 2835

Modal 11 482 10 356

Noun 1865 8457 1120 4501

Preposition 33 1398 29 548

Verb 383 2580 293 1386

2-word combination Types Tokens Types Tokens

Adjective+Noun 949 1631 467 705

Adverb+Adjective 252 395 94 119

Preposition+Noun 785 1398 322 548

Modal+Verb 220 482 170 356

Determiner+Noun 1959 4469 1358 2835

Verb+Adverb 551 1139 337 617

Verb+Noun 735 959 361 413
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4.6 Results

The following results give the LCCC scores for the different representational possibilities for

each child, given the adult threshold cutoff for that child. Recall that LCCC scores can

range between -1 and 1, where 1 is perfect agreement and -1 is perfect disagreement. The

adult threshold LCCC cutoff comes from comparing the adult Observed overlap in these

same corpora against a fully Productive representation, because we assume that adults are

already using this representation.

Results for Peter. Table 4.8 shows the only compatible representation that exceeds the

adult-derived threshold of 0.805. This representation contains Determiner, Noun, and

Pronoun but not Verb. Peter’s results show that there is some development of productive

categories in typically developing children under age three, which at least contain Deter-

miner, Noun, and Pronoun. Like Bates et al. [2018] found in their study with another

typically developing child just under two-years-old, Peter’s possible representations contains

at least one closed-class category (Determiner and Pronoun).

Results for Daniel, Nathan, Harry, and Bonnie. For the rest of the children in Tables

4.9-4.15, because there are so many possible permutations, I only show the representations

that exceeded the adult-derived threshold for that child 1.

For Daniel, at three-years-old, the common thread between all of the compatible represen-

tations that exceed the adult threshold is that there are at least 2 productive categories.

However, it is not clear what those two categories are.

For Harry, at three-years-old, a similar pattern to Daniel shows that the compatible rep-

1All of the associated category permutations and associated LCCC scores are available on my GitHub
https://github.com/galiabarsever/dissertation_files/
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Table 4.8: LCCC scores for the 16 possible category representations Peter could have, com-
paring his Observed lexical overlap against the lexical overlap Expected by each possible
category representation. Representations with sufficient agreement (>0.805) are indicated
in white cells.

Representation Det Noun Verb Pro LCCCρc
RepNot 7 7 7 7 0.303
RepProductive 3 3 3 3 0.561
RepSemi1 3 3 3 7 0.723
RepSemi2 3 3 7 3 0.821
RepSemi3 3 7 3 3 0.313
RepSemi4 7 3 3 3 -0.227
RepSemi5 3 3 7 7 0.501
RepSemi6 3 7 3 7 0.460
RepSemi7 3 7 7 3 0.476
RepSemi8 7 7 3 3 0.214
RepSemi9 7 3 7 3 -0.039
RepSemi10 7 3 3 7 0.008
RepSemi11 3 7 7 7 0.388
RepSemi12 7 3 7 7 0.094
RepSemi13 7 7 3 7 0.318
RepSemi14 7 7 7 3 0.315

resentations contain at least 2 productive categories, but again it is not clear what they

are. This pattern is maintained at four-years-old, with many compatible representations,

but they all contain at least 2 productive categories.

For Nathan, at three-years-old, the only compatible representation is a fully productive

one, with the presence of all possible categories, Adjective, Adverb, Determiner,

Noun, Preposition, and Verb. At four-years-old, there appear to be more compatible

representations (including a fully productive one) where every representation contains at

least 2 productive categories, but it is not clear which categories those are. However, it is

likely that if he developed a fully productive representation at 3, he would have kept it at 4,

which is one of the compatible representations at 4.

For Bonnie, at four-years-old, all the compatible representations contain Adjective, Ad-

verb, Preposition, and Verb, and possibly also Determiner and Noun.
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In contrast to Peter, the SLI child results are more difficult to interpret. Most of the SLI

children seem to have many possible representations that they could be entertaining, or that

are above the adult-derived cutoff. In all of these potential representations, the children

across the board have at least 2 productive categories, with a couple of children certainly

having more than that (Nathan at three-years-old with a fully productive representation

and likely keeping it at 4, and Bonnie at four-years-old with 4 productive categories). These

disparate profiles are in line with what we expect from such a heterogeneous population as

SLI.
Table 4.9: Possible category representations for Daniel at 3 yo (adult cutoff: 0.50).Each row
is a possible candidate representation, with its LCCC in the right hand column.

Adj Adv Det Noun Prep Verb ρc
7 3 7 7 7 3 0.54
7 3 7 7 3 7 0.68
7 3 7 7 3 3 0.70
7 3 7 3 3 7 0.53
7 3 7 3 3 3 0.55
7 3 3 7 7 3 0.54
7 3 3 7 3 7 0.69
7 3 3 7 3 3 0.70
7 3 3 3 3 7 0.53
7 3 3 3 3 3 0.55
3 7 3 3 3 7 0.51
3 7 3 3 3 3 0.52
3 3 7 7 7 3 0.53
3 3 7 7 3 7 0.71
3 3 7 7 3 3 0.74
3 3 7 3 3 7 0.50
3 3 7 3 3 3 0.54
3 3 3 7 7 3 0.53
3 3 3 7 3 7 0.50
3 3 3 7 3 3 0.50
3 3 3 3 3 7 0.50
3 3 3 3 3 3 0.50

Results for Ross & Mark. For Ross, at three-years-old, the only compatible represen-

tation contains Adjective, Adverb, Modal, Noun, Preposition, and perhaps Verb,
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Table 4.10: Possible category representations for Harry at age three (adult cutoff: 0.39).
Each row is a possible candidate representation, with its LCCC in the right hand column.

Adj Adv Det Noun Prep Verb ρc
7 3 7 7 3 7 0.52
7 3 7 7 3 3 0.60
7 3 7 3 3 3 0.42
7 3 3 7 3 7 0.50
7 3 3 7 3 3 0.59
3 7 7 3 3 3 0.42
3 7 3 7 3 3 0.41
3 7 3 3 3 7 0.40
3 7 3 3 3 3 0.45
3 3 7 7 7 3 0.41
3 3 7 7 3 7 0.65
3 3 7 7 3 3 0.79
3 3 7 3 3 7 0.44
3 3 7 3 3 3 0.58
3 3 3 7 3 7 0.65
3 3 3 7 3 3 0.80
3 3 3 3 3 7 0.40
3 3 3 3 3 3 0.56

Table 4.11: Possible category representations for Nathan at age three (adult cutoff: 0.68).
Each row is a possible candidate representation, with its LCCC in the right hand column.

Adj Adv Det Noun Prep Verb ρc
3 3 3 3 3 3 0.68

Table 4.12: Possible category representations for Bonnie at age four (adult cutoff: 0.69).
Each row is a possible candidate representation, with its LCCC in the right hand column.

Adj Adv Det Noun Prep Verb ρc
3 3 7 7 3 3 0.77
3 3 7 3 3 3 0.73
3 3 3 7 3 3 0.80
3 3 3 3 3 3 0.75

but not Determiner. At four-years-old, Determiner becomes one of the categories that

are certainly in the possible representations, with possibly also Adverb or Preposition,

and a fully productive representation also meets the threshold.

For Mark, at three-years-old, he certainly has Adjective, Adverb, Noun, and Verb

and perhaps Preposition, but not Determiner. At four-years-old, the same certain
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Table 4.13: Possible category representations for Harry at age four (adult cutoff: 0.41). Each
row is a possible candidate representation, with its LCCC in the right hand column.

Adj Adv Det Noun Prep Verb ρc
7 7 7 7 3 3 0.47
7 7 7 3 3 7 0.42
7 7 7 3 3 3 0.51
7 7 3 7 3 7 0.44
7 7 3 7 3 3 0.54
7 7 3 3 7 3 0.43
7 7 3 3 3 7 0.49
7 7 3 3 3 3 0.60
7 3 7 7 3 7 0.47
7 3 7 7 3 3 0.64
7 3 7 3 7 3 0.42
7 3 7 3 3 7 0.53
7 3 7 3 3 3 0.74
7 3 3 7 3 7 0.51
7 3 3 7 3 3 0.70
7 3 3 3 7 3 0.44
7 3 3 3 3 7 0.58
7 3 3 3 3 3 0.83
3 7 7 7 3 3 0.46
3 7 7 3 3 3 0.52
3 7 3 7 3 7 0.42
3 7 3 7 3 3 0.55
3 7 3 3 3 7 0.49
3 7 3 3 3 3 0.63
3 3 7 3 3 3 0.47
3 3 3 7 3 3 0.43
3 3 3 3 3 3 0.53

categories carry over with the possibility of Determiner, the introduction of Modal, and

still possibly Preposition.

Both Ross and Mark appear to have at least 3 productive categories for each of the represen-

tations at each age and appear to be have consistently more categories that are clearly pro-

ductive and fewer representations that are above the adult-derived cutoff for “good enough”.

This issue of the number of matching representations may be due to low agreement between

the adult observed overlap and a fully productive representation (0.805 for typically devel-

opig two-year-old, 0.68-0.72 for the typically developing three- and four-year-olds, 0.39-0.70
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Table 4.14: Possible category representations for Nathan at age four (adult cutoff: 0.48).
Each row is a possible candidate representation, with its LCCC in the right hand column.

Adj Adv Det Noun Prep Verb ρc
7 7 7 3 3 3 0.49
7 7 3 7 3 3 0.53
7 7 3 3 3 3 0.57
7 3 7 7 7 3 0.53
7 3 7 7 3 7 0.51
7 3 7 7 3 3 0.77
7 3 7 3 3 3 0.66
7 3 3 7 7 7 0.51
7 3 3 7 7 3 0.62
7 3 3 7 3 7 0.61
7 3 3 7 3 3 0.91
7 3 3 3 7 3 0.51
7 3 3 3 3 7 0.48
7 3 3 3 3 3 0.81
3 7 7 7 3 3 0.50
3 7 7 3 3 3 0.54
3 7 3 7 3 3 0.59
3 7 3 3 3 3 0.64
3 3 7 7 3 3 0.62
3 3 3 7 3 3 0.80
3 3 3 3 3 3 0.62

for the SLI three- and four-year-olds).All of the adult thresholds are lower than the one in

Bates et al. [2018], but it is unclear whether that is unusual or simply a result of differences

in the data. I discuss this in more detail in the next section.

Results Summary. My results suggest that each child and each population presents a

slightly different profile. At a little over two-years-old, a typically developing child shows the

presence of both closed-class and open-class categories. The typically developing children

at age three and four consistently have at least 3 productive categories in their possible

representations. The SLI children present a slightly messier picture even at three- and

four-years-old, with all compatible representations having at least 2 productive categories;

however, from the available data it is impossible to tell which categories they are. I’ll discuss

each of these findings in turn.
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Table 4.15: Control kids categories

Age Child Adj Adv Det Mod Noun Prep Verb ρc
3 Mark (0.70) 3 3 7 N/A 3 7 3 0.73

3 3 7 N/A 3 3 3 0.73
3 Ross (0.72) 3 3 7 3 3 3 7 0.73

3 3 7 3 3 3 3 0.74
4 Mark (0.70) 3 3 7 7 3 7 3 0.76

3 3 7 7 3 3 3 0.72
3 3 7 3 3 7 3 0.80
3 3 7 3 3 3 3 0.76
3 3 3 7 3 7 3 0.74
3 3 3 3 3 7 3 0.78
3 3 3 3 3 3 3 0.73

4 Ross (0.68) 3 3 3 3 3 7 3 0.70
3 7 3 3 3 3 3 0.75
3 3 3 3 3 3 3 0.82

4.7 Discussion & Future work

4.7.1 Productive categories in a typically developing two-year-old

As I mentioned above, Peter shows the presence of closed-class categories (Determiner

and Pronoun) similar to the two-year-old in Bates et al. [2018]. As in Bates et al. [2018], I

did not detect the presence of Verb at two years old. Where Peter differs from the younger

child in Bates et al. [2018] is that Peter has at least one productive open-class category as

well (Noun). While there is evidence that a rudimentary Noun category may develop in

children as early as 14 months [Booth and Waxman, 2003], there is no guarantee that an

adult-level noun category would be present by two years old. Peter, however, is slightly older

(at 2;4) than the child in Bates et al. [2018] (who was 1;8-2;0), so it may be that an adult-like

Noun category develops between the ages of 2;0 and 2;4. It is also true that although the

adult-derived threshold for Peter (0.805) is lower than what Bates et al. [2018] found in

their study with a two-year-old (0.901), we simply don’t know what the normal threshold for

typically developing two-year-olds is because at this point, there are only two case studies.

Further studies looking at typically developing children of the same age will give a clearer
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picture of what the expected threshold is in this population.

Moreover, recall that in the previous chapter’s analysis, we found that Peter’s output was

most compatible with a fully adult-like representation, containing (at least) the four cate-

gories analyzed here, when compared against immature FF-based categories. However, here

we find that a better-fitting representation is one where verb is actually immature, while

the other categories (noun, determiner, and pronoun) are adult-like. Thus, this analysis

allows us more precision than what we saw before.

Given this, it’s therefore possible to apply the analysis used in this chapter more broadly to

include specific immature categories. That is, we don’t have to simply test for the binary

presence or absence of adult-like productive categories in young children – we can also assess

the presence of productive immature categories in the same way I do here. For example, we

could consider the FF-based categories from the previous chapter as a possible immature

representation – these are non-adult categories, but they are nonetheless categories, and so

can behave productively just as the adult categories I assessed in this chapter. Given this

similarity, I would be able to assess which particular FF-based categories might be present

by using the fully-productive metric to assess the presence or absence of different immature

categories.

4.7.2 Productive categories in three-and four-year-olds: Typically

and atypically developing populations

While delay of the production of 2-word combinations is a developmental hallmark of SLI

children, it is possible that by the age of three, both typically developing and SLI children

may have a large number of productive categories. In trying to interpret the potential

category representations for each child, there are some things to consider. In general, there

are three different explanations for patterns we could observe in the results. First, if some
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category knowledge is generally harder to acquire than others, we should see a general pattern

between children, with some categories consistently acquired at two, some at three, and some

at four. However, the results here suggest that we do not in fact see this kind of general

pattern. More specifically, across the SLI and typically developing three- and four-year-olds,

there does not seem to be a strong general pattern of which categories may be acquired first.

So, what could be going on? The differences between productive category profiles could

be the result of: (I) a child-internal variable – that is, there are some internal cognitive

abilities of an individual child that makes them more or less likely to acquire a particular

adult-like category before another one, or (II) a child-external variable – that is, a difference

between the input that the children are getting that makes one category more easily (or

sooner) acquired than another one. Let’s now consider the results in light of each of these

hypotheses.

First, looking at typically developing children, Mark and Ross seem to have more in common

in their productive category development than any of the other children. At four they both

consistently have Adjectives, Nouns, Verbs, and likely Adverbs), and both may have

Determiners, Modals, and Prepositions. However, this is markedly different from

Peter, also typically developing, who seems to have an adult-like Determiner category at

two. So, why are Mark and Ross so similar to each other, while showing this marked difference

to Peter? This similarity may be due to their child-internal factors (i.e. shared cognitive

abilities as typically developing children), or due to child-external factors, (i.e. the similar

input they get as siblings with shared caretakers, who are likely giving the same or similar

input to each sibling). Their divergence from Peter likewise could also be explained by either

child-internal individual differences or systematic child-external differences in input. Further

studies could test other typically developing two-, three-, and four-year-olds to analyze what

a typically developing child’s profile looks across a greater number of children at these ages.

To further untangle the role of the child’s input, it would take a study where children who
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were likely to share child-internal factors (like twins) were separated at birth and raised

in different households with different caretaker input. If we see differences between the

children’s category representation development, we can claim that child-external factors,

like input, might have more to do with the category learning trajectory than child-internal

ones.

When interpreting the results for the SLI children, it is important to note that the child-

internal factors, (i.e. presentation of SLI symptoms and associated linguistic skills) might

vary widely. The only consistent pattern between the SLI children is that it is likely that

they are working with at least a couple productive categories; however, because of the wide

variation both between children and in the large number of compatible representations, it is

difficult to say what those categories might be. This large spread of compatible representa-

tions is due to the generally low adult-directed LCCC match thresholds for each child. The

difference between the threshold ranges is striking (0.68-0.72 for the typically developing

three- and four-year-olds and 0.39-0.70 for the SLI three- and four-year-olds). Not only is

there a wider variation of thresholds in SLI children, these lower thresholds indicate a lower

level of agreement between adult productions and a fully productive representation, and

this results in many more representations that meet this threshold. One way to interpret this

difference is as a true difference in input, which would then serve as a child-external factor for

why we see the variation we do in the SLI children. In particular, the low level of agreement

in the adult speech with using a fully productive representation could be because adults are

in fact not using a fully productive representation while talking to SLI children. This is not

implausible, as it is well-documented that adults modify their speech when directing their

speech at children at particular ages (Weisleder and Fernald [2013], Rowe [2012]). Recall

also that in Chapter 2 that I found that adults are changing the representation they use to

talk to children versus the one they use when talking to adults.

If the adults are indeed changing how they speak to SLI children at the representational
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level, we could no longer assume that the adults are using a fully productive representation

in their own speech. To determine which representation the adults are likely to be using, we

could calculate the observed and expected overlap for all the potential adult representations,

instead of simply the fully productive representation as I do here, and then pick the repre-

sentation that has the highest LCCC as the adult-derived threshold. If this representation

is not the fully-productive representation, adults are likely modifying the input that chil-

dren are getting at the representational level. This less-than-fully-productive representation

might serve as a better indication of the target knowledge for SLI children at a particular

stage, and the LCCC threshold associated with it may serve to better disambiguate possible

developing SLI child category representations as opposed to using the LCCC threshold score

from an adult fully-productive representation.

Another consideration is the uneven spread of data between the SLI children who have data

at both three and four (Harry and Nathan). Most of the data for the children at three is

between 3;0 and 3;11, with much less data around the early stages of four (4;0-4;08). If we

consider that developing adult-like categories can happen very quickly (possibly within a

few months), then presenting results from data over the span of a year may disguise some

of the development of these adult-like categories. For example, if a child does not have a

productive Noun category at the beginning of the year three, but they develop it at the end

of the year, taking all of the data within that year may muddy the actual categories present

for that child. In the future, it would be useful to divide the data over the year into smaller

sections that may more accurately reflect the developmental stage of the child’s category

representations at a particular time. This would be useful not just for the SLI children, but

for all of the children’s data from both typically and atypically developing populations.

What we can take away from all the populations is that some form of a semi-productive

representation, with some categories being fully productive and others perhaps not, appears

to be normal up to the age of four. This accords with what we know about children’s linguistic
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development, since at four, in typically developing populations, knowledge of syntax and

morphology is still developing [Pine and Lieven, 1997, Tomasello, 2004, Kemp et al., 2005,

Tomasello and Brandt, 2009, Theakston et al., 2015]. As children age and as we see children

produce more complex utterances and use more complex syntax later on in development, we

would expect these semi-productive representations to fade away to more fully productive

ones, at least in typically developing populations. It is unclear what the developmental

trajectory of atypically developing populations is. It is possible that, as SLI children usually

do not catch up with their peers in linguistic skill, they may never reach a typically developing

adult-like fully productive representation.
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Chapter 5

Conclusion

My research broadly demonstrates how quantitative approaches can be effectively leveraged

for developmental research. In this dissertation, I’ve shown one quantitatively precise way

to identify the nature of developing mental representations in a variety of domains; my

approach utilizes the connection between a learner’s input, creation of a potential mental

representation from that input, and evaluation with respect to the learner’s output. More

specifically, the quantitative approach I use leverages both realistic input data and realis-

tic output data as part of the model design and evaluation. Using modeling, we have the

opportunity to concretely evaluate representational options that we would not otherwise be

able to disambiguate, and uncover the developmental trajectory of a child that might other-

wise have been opaque. In the previous chapters, I demonstrated this quantitative approach

with three case studies in language development: (I) the development of adjective ordering

preferences, where I found that the representations that adults use to talk to children are

different than the ones used to talk to other, adults, (II) immature individual syntactic cat-

egory representations, where I identified precisely which immature category representation

young children are likely to be using, and (III) the development of adult productive syntac-

tic category representations, where I identified when adult category knowledge emerges in
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typically and atypically developing populations.

Utilizing this framework demonstrates the explanatory power of the framework, as well as

highlighting the importance of the assumptions that were made for each of the implemen-

tations of this framework. For adjective ordering preferences, assumptions included the

judgements that were made about what the null hypothesis should be, how the adjectives

should be placed in their appropriate lexical classes, and the probability calculation itself.

For immature syntactic category representations, assumptions included choosing which kind

of frequent frames to assess as well as the assumption of a bigram generative model for gen-

erating observable output. For more mature syntactic category representations assumptions

includes the binary presence or absence of an adult-level productive categories. All of these

assumptions impact the results of these models, and choices at any point (i.e., anything

from how to represent the input data to how to evaluate on the output data) effects what

representation is deemed as the best fit from the model as we’ve designed it.

From a methodological standpoint, this approach allows researchers to better utilize more of

the data available in existing corpora. In each of the case studies, by specifying the possible

mental representations, whether possible representations of adjective ordering preferences,

possible immature syntactic category representations, or collections of productive adult-level

categories, we can connect available input data to child output data at specific ages. By using

both the input in the creation of the possible representations and the output in assessing the

relative probability of the representations, researchers can better harness the data available

to them.

Being able to use more of the existing data means that we can use more of the existing data

available for populations where the data is less abundant. Most computational modeling

work in language acquisition is focused on typically-developing children that receive typical

input. The process laid out in these chapters, while having mostly been applied to children

from the typically-developing population, could also reasonably be applied to children from
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a variety of backgrounds and abilities (as shown with the SLI children for mature syntactic

category development). However, what makes running an analysis like this difficult on

atypically-developing populations is that it can be difficult to find enough coded data from

a relevant population because (i) the nature of the development means that the output itself

may be limited (i.e. Late Talkers, SLI), and (ii) that there is a general dearth of available

coded data on these populations. To alleviate part of this problem for the field as a whole,

we need more linguistically-annotated data from atypically-developing populations. More

data, and using frameworks that maximize the usefulness of the data like the one described

here, will help bring us closer to understanding developing linguistic knowledge.
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and H Sung. Cross-linguistic distributional analyses with Frequent Frames: The cases of
German and Turkish. In Proceedings of 35th Annual Boston University Conference on
Language Development, pages 628–640. Cascadilla Press Somerville, MA, 2011.

Paul S Weiner. A language-delayed child at adolescence. Journal of Speech and Hearing
Disorders, 39(2):202–212, 1974.

Adriana Weisleder and Anne Fernald. Talking to children matters early language experience
strengthens processing and builds vocabulary. Psychological Science, 24(11):2143–2152,
2013.

Adriana Weisleder and Sandra R Waxman. What’s in the input? Frequent frames in child-
directed speech offer distributional cues to grammatical categories in spanish and english.
Journal of Child Language, 37(05):1089–1108, 2010.

Susan Ellis Weismer. Typical talkers, late talkers, and children with specific language im-
pairment: A language endowment spectrum? In Rhea Paul, editor, Language disorders
from a developmental perspective, pages 95–114. Psychology Press, 2010.

Ling Xiao, Xin Cai, and Thomas Lee. The development of the verb category and verb
argument structures in Mandarin-speaking children before two years of age. In Yukio
Otsu, editor, Proceedings of the Seventh Tokyo Conference on Psycholinguistics, pages
299–322, Tokyo, 2006. Hitizi Syobo.

Fei Xu and Joshua B Tenenbaum. Word learning as Bayesian inference. Psychological Review,
114(2):245, 2007.

Charles Yang. Who’s Afraid of George Kingsley Zipf. Unpublished Manuscript, 2010.

Charles Yang. A statistical test for grammar. In Proceedings of the 2nd workshop on Cogni-
tive Modeling and Computational Linguistics, pages 30–38. Association for Computational
Linguistics, 2011.

116



Appendix A

A.1 AdjAdj strings excluded from analysis

Any AdjAdj string including adjectives that can also be used as adverbs (in both British

and American English): brand (as in brand new) real (as in real good) jolly (as in jolly

good) super (as in super fun) awful (as in awful funny) dead (as in dead easy) massive (as

in massive great) wicked (as in wicked nice) mad (as in mad crazy) right (as in right great)

All counting adjectives, including: first, second, third, last, next

Other AdjAdj pairs exluded: eensie weensie, eensy weensy, itsy bitsy, teeny tiny, hot cross,

american hard, american short, dark haired, long haired, short haired, blonde haired, haired

old, low fat, south central, regional high, gracious good, gracious great, south american,

international high, poor sorry

A.2 Analysis files: Chapter 2

All lexical class and subjectivity assignments, as well as output results can be found on my

GitHub repository: https://github.com/galiabarsever/dissertation_files
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A.3 Analysis files: Chapter 4

All possible category permutations and corresponding LCCC scores, regardless of whether

they exceed the adult threshold, can by found on my GitHub repository: https://github.

com/galiabarsever/dissertation_files
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