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 HYPERCONGESTION 
 Kenneth A. Small and Xuehao Chu 
 
 ABSTRACT 
 
The standard economic model for analyzing traffic congestion, due to A.A. Walters, incorporates a 

relationship between speed and traffic flow. Empirical measurements indicate a region, known as 

hypercongestion, in which speed increases with flow. We argue that this relationship is unsuitable as a 

supply curve for equilibrium analysis because observed hypercongestion occurs as a response to 

transient demand fluctuations. We then present tractable models for handling such fluctuations, both for 

a straight uniform highway and for a dense street network such as in a central business district (CBD). 

For the CBD model, we consider both exogenous and endogenous time patterns for demand, and we 

make use of an empirical speed-density relationship for Dallas, Texas, to characterize hypercongested 

conditions. The CBD model is adaptable to any situation where accumulation of work to be processed 

becomes such a hindrance as to reduce outflow. 
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 HYPERCONGESTION 

 Kenneth A. Small and Xuehao Chu 

 

 Introduction 

 

 It has been more than a third of a century since A.A. Walters (1961) established what is now the 

standard way economists think about congestion, using the engineering relationship between travel time 

on a given length of highway and the traffic flow rate.1 Walters noted that by identifying flow as 

quantity, the engineering relationship could be viewed as an average cost curve (with a suitable 

transformation from travel time to cost) and then combined with a demand curve to analyze equilibria 

and optima. Optima can be achieved via a Pigovian charge known as a congestion toll. This model has 

proved extraordinarily fruitful in the study of transportation, other congestible facilities such as 

telephone service, Internet traffic, and electricity transmission, and even more widely in the literature on 

local public finance and clubs.2 

 One feature, however, gave Walters some difficulty and has caused endless trouble ever since. 

This is the non-unique relationship between travel time and flow depicted in Figure 1, and in particular 

the possibility of an equilibrium, such as E2 in the figure, where the average cost curve (derived from 

the curve labeled T) is downward-sloping. This branch of the curve is known in the economics literature 

                                                 
     1This relationship is well known in traffic theory as a variant of the fundamental diagram of traffic flow; 
see Haight (1963). It can be expressed as a speed-density, speed-flow, or flow-density relationship, the 
equivalence among them being due to the definitional identity equating flow to speed times density. 
Important predecessors of Walters' formulation include Pigou (1920), Knight (1924), Beckmann et al. 
(1955), and Vickrey (1955). For further developments in the economics of congestion, see Walters (1987), 
Newbery (1990), Small (1992), Hau (1998), or Lindsey and Verhoef (2000). 

     2To mention just some key developments appearing in the general interest economics journals: William 
Vickrey (1963, 1969) has tirelessly developed theoretical refinements and implementation techniques that 
enhance the practicality of congestion tolls. Mohring (1970) integrated the pricing analysis rigorously with 
investment analysis, placing both squarely in the realm of peakload pricing as developed by Boiteux (1949), 
Vickrey (1955), Williamson (1966), and others. Lévy-Lambert (1968) and Marchand (1968) worked out 
second-best pricing rules if substitute facilities cannot be priced. DeVany and Saving (1980) added uncertain 
demand. Edelson (1971) treated a monopoly road supplier, and David Mills (1981) combined monopoly 
with heterogeneous values of time. Applications to local public finance and clubs include Oakland (1972), 
Arnott (1979), and Berglas and Pines (1981). 
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as the region of "hypercongestion," in contrast to the lower branch which depicts a condition we will 

call “ordinary congestion.”3 Walters described equilibrium E2 as "The Bottleneck Case" (p. 679), a 

terminology which is not fully explained but which, as we shall see, is highly appropriate in the case of 

a straight road. 

 The conventional interpretation of E2, encouraged if not specifically stated by Walters, is that it is 

just an especially inefficient equilibrium. It follows that first-order welfare gains are possible by 

somehow shifting the equilibrium down to the lower branch of the curve. Serious arguments about 

Pareto-improving tolls have been based on just this argument, both for highways (Johnson 1964) and by 

analogy for renewable resources (De Meza and Gould 1987). 

 But this view has problems. For one thing, E2 is not obviously a stable equilibrium (Newbery 

1990, p. 28). Consider a simple quantity-adjustment mechanism on the demand side in response to a 

small upward fluctuation ∆T in travel time, due for example to an influx of inexperienced drivers. 

                                                 
     3Engineering terminology sometimes differs, with the upper branch called "congested” or “oversaturated" 
flow and the lower branch called "uncongested," “undersaturated,” or "free” flow. We use the terminology 
most common in the economics literature. 

Figure 1
A Model of Travel Time Versus Flow
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Quantity demanded would be reduced by ∆q in Figure 1; according to the hypercongested "supply" 

curve, this in turn would cause a further increase in travel time; and so forth. This is shown in the 

figure. We could try instead making curve D2 steeper, so as to cut T from above. Or we could define 

other dynamic adjustment mechanisms. But as Verhoef (1999) shows, none of these devices produces 

stable hypercongested equilibria.4 

 Even aside from stability, it is economically illogical to treat the AC curve in the neighborhood of 

E2 as a supply curve. To do so suggests that a smaller quantity demanded makes traffic worse, so that 

drivers confer a positive externality on each other.5 

 The underlying problem is that although Figure 1 purports to portray the simultaneous behavior of 

demand and supply curves, in fact the quantities (vehicle flows) that logically enter the demand and 

supply analyses are not the same things—a point hinted at by Walters, made clearly by Neuburger 

(1971), and reiterated by many subsequent authors.6 Roughly speaking, quantity demanded is 

represented by inflow and quantity supplied by outflow. But inflow and outflow on a road segment 

often differ. When they do, vehicle density cannot be uniform along the road, and the engineering 

                                                 
     4More precisely, Verhoef (1999,p. 349) shows that equilibria on the upper branch of Figure 1 cannot be 
stable with respect to both price and quantity perturbations. He also shows that there is no plausible dynamic 
process that could lead from an equilibrium like E1 to an equilibrium on the upper branch. Verhoef’s 
conceptual argument is further buttressed by a specific dynamic car-following model in Verhoef (2001). 

     5One can construct network paradoxes where increasing the quantity demanded in one place can 
improve travel times elsewhere (Fisk 1979). However, such cases are not described by a simple supply 
curve. Other authors have similarly concluded that a properly defined supply curve must be rising (Hills 
1993, Yang and Huang 1998). 
 
     6See May, Shepherd, and Bates (2000) for an illuminating discussion. Walters referred to the backward-
bending portion of curve AC as "the equilibrium relation between flow and unit cost when density has been 
taken into account" (p. 680), but his explanation is clumsy at best. Hills (1993) notes that "demand should be 
measured in terms of the number of vehicles wishing to embark on trips during a given period of time" (p. 
96). McDonald and d'Ouville (1988) make a similar distinction between inflow and outflow by defining 
them as inputs and outputs, respectively, of a production function. Else (1981), Alan Evans (1992), and Ohta 
(2001) try to rescue the static analysis by redefining quantity demanded as density. Evans rejects a curve like 
D1 in Figure 1 as a valid demand curve because "consumers do not choose the traffic flow given the price" 
(p. 212). But consumers do not choose density either; rather, density is a stock variable which depends on 
past inflows and on capacity and other parameters of the flow-density relationship, so is not a suitable 
measure of quantity demanded. A more helpful way of viewing the matter is the distinction between a 
“performance curve,” which describes variables measured over a specified range of places and times, and a 
“supply curve,” which describes variables encountered by a given vehicle. This distinction can be extended 
to a network, as described by May et al. (2000). 
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relationship underlying curve AC in Figure 1 no longer applies. Instead, an explicitly dynamic theory is 

required, such as the "kinematic" theory of Lighthill and Whitham (1955) or a car-following theory 

based on micro driver behavior (Herman 1982, Verhoef 2001). These theories explain, for example, the 

stop-and-go conditions so familiar to expressway drivers. 

 Dynamic phenomena are especially crucial when demand is changing rapidly. In practice, 

congestion on roads and most other facilities is a peak-load phenomenon. For ordinary congestion, 

ignoring the peaked character of demand might be an adequate approximation.7 But for 

hypercongestion, peaking is the whole game. As stated succinctly by Arnott (1990, p. 200): 

"hypercongestion occurs as a transient response of a non-linear system to a demand spike." 

 This paper proposes ways to deal with such demand spikes. The same approach could equally 

well handle transient reductions in capacity. In the sections that follow, we demonstrate more fully the 

truth of Arnott's characterization of hypercongestion. We then develop the consequences for two quite 

different situations: a uniform stretch of roadway, and a dense street network. Our goal is to provide 

tractable models for economic analysis, so we make some simplifications compared to a fully 

developed engineering model of traffic flow. We also ignore randomness in demand and capacity. 

 In the case of a uniform expressway, our simplification leads to a piecewise-linear average cost 

function based on simple queuing theory. Hypercongestion occurs but is irrelevant because its 

characteristics affect only the flow inside the queue, not total trip times. 

 In the case of a dense street network, we suggest two alternate simplifications, each of which 

allows hypercongestion to occur and to create large costs. These models are applicable to many 

situations where congestion degrades throughput. Telephone networks may break down when switching 

equipment is overtaxed. Storm drains clog when high water flow carries extra debris. Bureaucrats are 

distracted by extra inquiries when an unusually high flow of paperwork causes them to get behind. All 

these situations can lead either to temporary problems (busy signals, moderate flooding) or to a 

complete breakdown known as gridlock. Our model produces these features in a plausible and tractable 

way. 

                                                 
     7An example is Agnew (1977), who formulates a model akin to one of ours but considers only permanent 
changes in demand. Although his model does produce hypercongested equilibria, with all the inconsistencies 
we have described, those equilibria are only temporary so do not have much effect on the questions he 
considers. 
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 Queuing Makes the Supply Curve Upward-Sloping 

 

 In this section, we provide formal explanations for what every driver already knows: when more 

vehicles try to use the road, it slows them down. We do this because so much economic analysis has 

been based on the contrary assumption, due to viewing the hypercongested region of Figure 1 as a 

supply curve. 

 The basic argument is simple. Hypercongestion occurs when a capacity limit is exceeded 

somewhere in the system. As a result, local queuing begins, which becomes more severe the more cars 

are added to the input flows. Queuing adds to trip times beyond what is portrayed by the instantaneous 

speed-flow relationship. Of course, this condition cannot persist indefinitely, for then travel time would 

rise without limit. Demand must at some point fall back below the level that caused queuing in the first 

place. Once that happens, queues begin to dissipate and the system eventually reverts to one exhibiting 

ordinary congestion. Hence hypercongestion is, as Arnott said, a transient response to a demand spike. 

 The details of queuing depend on the nature of the road system. We review current understanding 

of these details in this section, for the two types of roads systems mentioned earlier.  

 

Straight Uniform Highways 

 

 The fundamental diagram of traffic flow describes an instantaneous relationship between 

variables, such as flow rate and speed, measured over a very short section of roadway. Of course, actual 

measurements must be made over finite distances and times. It is actually rare to observe flow near 

capacity on a short uniform highway segment, and the resulting plots tend to show an enormous scatter. 

Even worse, the speed-flow curve often demonstrates history-dependence and a discontinuity at the 

point of maximum flow (Banks 1989, Hall and Hall 1990, Small 1992). Small (1992, p. 66) presents a 

case for which attempting to fit a single function through the broad scatter of points drastically 

overstates the slope of the congested part of the speed-flow curve throughout most of its range—

precisely what seems to have happened in the data used for previous editions of the Highway Capacity 

Manual used in the United States (TRB 1992, p. 3-i). 

 A series of papers by Fred Hall and associates using data for Toronto, and another by Banks 
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(1989) using data for San Diego, have established the primary reason for these problems in the case of 

urban expressways (Hall, Hurdle, and Banks 1992). Traffic that is in or near a condition of 

hypercongestion is almost always influenced by a nearby bottleneck. Because of entrance ramps and 

variations in the roadway, the ratio of flow to capacity is never constant across distance. Instead, local 

bottlenecks occur where capacity is exceeded, and these affect adjacent sections: upstream of a 

bottleneck traffic tends to form a queue, while downstream it is metered to a level well below the 

capacity of that section. Within the queue, the speed-flow relationship is hypercongested but not 

necessarily well-defined.8 

 The upshot, then, is that hypercongestion on an urban expressway usually occurs as part of a 

queue. Where it occurs, the flow rate is governed not by quantity demanded but rather by downstream 

bottleneck capacity. The density within this queue is irrelevant to total trip time; hence so is the nature 

of the hypercongested speed-flow relationship. Rather, total trip time for a given vehicle is governed by 

the total number of vehicles in front of it (up to the bottleneck) and the rate at which they can flow 

through the bottleneck. 

 To demonstrate this statement, we follow Mun (1994, 2002) and consider the most common 

queuing model, in which bottleneck capacity is independent of flow conditions in the queue.9 Let L be 

                                                 
     8 Branston (1976) and Hall and Hall (1990) show that the relationship is sensitive to exactly how the 
bottleneck formed. Cassidy (1998) shows that the relationship is more predictable if attention is limited to 
observations for which speed is nearly constant within the time interval over which it is measured. There is a 
growing physics literature using micro-simulation to derive unexpected macro properties, including chaotic 
behavior, for traffic flow based on plausible micro behavior. See Helbing and Treiber (1998) for a review. 
Some of these papers have reported empirical observations of spontaneous transitions to apparently stable 
steady states involving hypercongestion (e.g. Kerner and Rihborn 1997). However, Daganzo, Cassidy and 
Bertini (1999) show that Kerner and Rehborn's observations are more simply explained as hypercongestion 
occurring in a queue, just as described here. McDonald, d’Ouville and Liu (1999) also describe purported 
observations of steady-state hypercongestion on Chicago expressways; however, it is extremely difficult to 
rule out the possibility that they are created by bottlenecks resulting from inhomogeneities in the roadway. 
Even an exit ramp can create a point of reduced capacity if slow traffic on the ramp causes drivers on the 
mainline lanes to slow down for caution, as shown by Muñoz and Daganzo (2002). 

      9All the "link capacity functions" reviewed by Branston (1976), and most models used in traffic 
micro-simulation, have this property. If, in contrast, the capacity of a bottleneck depends on upstream 
conditions or on the history of past flow conditions, then a more complex model such as by Neuberger 
(1971) or Yang and Huang (1997) is required. There is indeed evidence that the capacity of an 
expressway bottleneck sometimes drops by a few percent immediately after a queue forms behind it. 
Cassidy and Bertini (1999) review this evidence and add their own which shows a 4-10 percent drop (p. 
39). However, they find that the high flow rates typically preceding the onset of queuing lack day-to-day 
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the length of a highway segment with a bottleneck of capacity qb at its downstream end, and let λ(t) be 

the rate at which vehicles enter the segment. If λ(t) exceeds qb, a queue will form once those entering 

vehicles reach the bottleneck; the total number of vehicles in the roadway segment, Q(t), will then grow 

at rate λ(t)-qb. The queuing vehicles occupy a spatial distance H(t), which is determined endogenously 

through a flow-density relationship. The travel time for a vehicle entering at time t is: 

 

 

where v1(⋅) and v2(⋅) describe the congested and hypercongested branches of the speed-flow relationship 

governing the part of roadway upstream of the bottleneck, and J(t) is the queue length H encountered by 

a vehicle entering the segment at time t.10 

 By differentiating equation (1) with respect to input flow, Mun is able to show formally that the 

average travel time is a non-decreasing function of current and past flows. He explicitly interprets this as 

indicating a rising supply curve. Furthermore, for those vehicles that both enter and leave the segment 

during a period of continuous queuing, equation (1) simplifies to 

 

which does not depend at all on the speed-flow relationship.11 Hence even though hypercongestion 

(..continued) 
reproducibility and never last more than a few minutes, whereas the lower flows that characterize queue 
discharge are stable, long-lasting, and highly reproducible. They conclude that it is best to regard the 
higher flows as transient and to define bottleneck capacity as the lower long-run queue-discharge flow (p. 
40). The situation where flow exceeds this definition of capacity is analogous to a supersaturated 
chemical solution. 
 
     10 Mun (1994), eq (9), as modified by Mun (2002), eqs (11)-(12). Mun implicitly assumes, just as we do 
in assumption A4 later in this paper, that the speed of a vehicle prior to reaching the queue is governed by 
the flow rate at the time it entered the highway. This simplification is called a “no-propagation model” by 
Lindsey and Verhoef (2000) because it implies that any change in density encountered by one cohort of 
vehicles (e.g. because of a demand surge) does not change the densities encountered by other cohorts. 

     11We are grateful to James Banks for pointing out to us this simplification and its proof, which is as 
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exists, it is irrelevant to users who care only about total travel time.12 

 

Dense Street Networks 

 

 The fundamental diagram of traffic flow is not expected to apply to an entire network of streets. 

Instead, analysis typically proceeds by simulation using queuing theory at each intersection.13 

Considerable work has been done trying to characterize the "oversaturation delay" in such a situation, 

both for single intersections and for groups of intersections. One purpose of such work has been to 

develop relationships between travel time and input-flow characteristics for use in intersection design, 

as for example in the Highway Capacity Manual (TRB 1992, ch. 9). These relationships have the 

property one expects from ordinary experience: greater inflows cause greater delays. 

 As a simple example, consider the deterministic queuing delay caused by a flat demand spike of 

height λ and duration W ≡ (t2-t1) at a single intersection of capacity qb, with zero demand outside this 

interval. The number of queued vehicles starts at zero and rises to a maximum of (λ-qb)W, for an 

average delay: 

 

 

Other demand patterns give more complex formulas.14 

(..continued) 
follows. Write the two terms in equation (1) as T1(t) and T2(t), and let QJ(t) be the number of vehicles in the 
queue itself once it is encountered at time t+T1(t). QJ consists of the Q vehicles that were in the entire 
roadway segment at time t, less the qbT1 vehicles that exited before the queue was encountered. Hence 
QJ=Q-qbT1. Using the definitional identity qb=k2v2, where k2 ≡ QJ /J is the density in the queue, the second 
term in (1) becomes T2=QJ /qb, which is the conventional expression for the queuing time in a deterministic 
queue. Thus T1+T2 = T1+(Q-qbT1)/qb = Q/qb. 

     12This is an example of the equivalence, noted by Hurdle and Son (2001), between models of 
“vertically stacked” queues and those of horizontal queues. 
 
     13See for example Dewees (1979), Williams et al. (1987), or Arnott (1990). 

     14See Rouphail and Akçelik (1992), whose equation (34) is the case just mentioned. As they note on p. 
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 Dewees (1978 1979) uses a standard traffic-simulation model to estimate delays on two real street 

networks in the Toronto area, one suburban and one downtown. The simulations take into account the 

interactions among traffic flows on different streets due to their network interconnections. Starting with 

a base set of flows representing actual rush hour conditions, Dewees makes marginal increments, one at 

a time, to the flow entering each major street in order to determine the effects on average travel time. In 

all cases average travel time rises with entering traffic, despite the fact that many intersections were 

oversaturated and many links may have been operating in conditions of hypercongestion. 

 Small (1992, p. 70) shows that Dewees' results for average travel time on one suburban street, as a 

function of simulated input flow λ, are approximated quite well by a power law of a form used by 

Vickrey (1963) and many others: 

 

 

with T1/T0=0.102 and ε=4.08. One reason this power law has been popular for applied work on 

congestion pricing is precisely because it is single-valued, monotonically increasing, and defined for all 

input flows, thereby conveniently bypassing the conceptual problems we have described. The point here 

is that this is an entirely reasonable finesse because as long as we insist on a static model of supply and 

demand, a rising supply curve such as equation (3) represents actual time-averaged travel times better 

than an instantaneous relationship like that in Figure 1. 

 May et al. (2000) provide an especially clear exposition of how microsimulations give rise to an 

upward-sloping supply curve in a street network, even while yielding a conventional backward-bending 

curve relating average speed to aggregate flow on the network. They take into account the increased trip 

time resulting from rerouting of trips in response to congestion, and also show how the supply 

relationship depends on the shape of the network and the pattern of origins and destinations. 

 

(..continued) 
32, stochastic delay is quickly swamped by deterministic delay in typical oversaturated conditions, leading to 
common use of deterministic queuing as a good approximation. 

 ελ )/(10 bqTTT +=  (3) 
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 Modeling Hypercongestion on a Straight Uniform Highway 

 

 We now turn to the search for dynamic models that deal with hypercongestion, yet are tractable 

enough to be part of a toolkit for broader economic analysis. We begin with the straight uniform 

highway, making two alternate assumptions about demand: first that the timing of the peak is 

exogenous, and second that the timing is determined by scheduling costs. We are interested in travel-

time cost, which is travel time multiplied by the unit cost of travel delay, α. 

 

Exogenous Demand Spike 

 

 Suppose demand is a pulse of height λ (a variable) over a fixed time interval [t1, t2]. Let W=t2-t1. 

With demand exogenous, the average cost curve relevant to either positive or normative analysis 

(ignoring money cost) is the user cost of travel time, time-averaged over that interval; it is simply a 

function of λ. If λ≤qb, then travel delay is just the first term of (1) with J=0. If λ>qb, the number of 

users on the road is λ(t-t1) for t<t1+L/v1 (the time when the first users reach the bottleneck) and 

λL/v1+(λ-qb)(t-t1) after that. If L/vf << W (so that nearly all users enter after queuing begins), then 

average travel time is the time average of equation (2) with Q(t) = λL/[v1(λ)] + (λ-qb)(t-t1); this yields: 
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where α is the value of travel time. (This assumes λ is less than the capacity of the road upstream of the 

bottleneck.) This average cost function is kinked at λ=qb as shown in Figure 2. Total cost for all 

vehicles is TC(λ)=λW⋅AC(λ). The marginal cost of increasing the height of the input pulse by adding 

one vehicle, also shown in the figure, is MCλ ≡ d[TC(λ)]/d(λW) = d[λ⋅AC(λ)]/dλ = AC+d(AC)/dλ; it is 

discontinuous at λ=qb. 
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 In the region without hypercongestion (λ≤qb), average cost is rising modestly; marginal cost 

exceeds it as in the conventional analysis. When λ>qb, marginal cost exceeds average cost by an 

additional amount ½αWλ/qb, which is the optimal time-invariant toll associated with the queue and is 

proportional to N≡λW, the total number of vehicles.15 

 It is clear from Figure 2 that, depending on the location of the demand curve, optimal inflow λ* 

could be less than, equal to, or greater than bottleneck capacity. If it is greater, then hypercongestion 

occurs, but only within the queue.16 If it is equal (a corner solution), then the external cost is interpreted 

as the value of trips foregone due to the capacity constraint that is effectively imposed in this 

optimum — that is, it is the vertical gap between the demand curve and the AC curve. These and other 

pricing implications are considered by Mun (1999). 

                                                 
     15This additional amount is calculated as λ times the derivative of the last term in the second line of the equation 
for AC(λ). It is in addition to the difference between MC and AC arising from the first term in that line. 
 
      16Queueing can be optimal in this case because the duration and shape of the demand pulse are assumed 
exogenous. 
 

Figure 2
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 We can further simplify by making speed v1(λ) constant, justified by recent empirical findings 

which indicate that the speed-flow relationship is quite flat in the region of ordinary congestion (TRB 

1992). Then the curves in Figure 2 become piecewise linear, and are perfectly flat in the region of 

ordinary congestion. Such a cost function is shown by Small (1992) to give a reasonably good fit to 

Dewees' Toronto arterial data discussed earlier, as well as to some additional data from Boston 

expressways. This model was used in an application to a San Francisco Bay Area freeway by Small 

(1983). It turned out that in the San Francisco simulations, optimal flow was frequently equal to 

capacity and never exceeded it, suggesting that the vertical section of the marginal cost curve was quite 

high. 

 

Endogenous Demand Pattern 

 

 Given that the road is well approximated by a point bottleneck, the endogenous trip scheduling 

analysis begun by Vickrey (1969), provides an attractive alternative specification of how demand 

becomes expressed as entering flow rates.17 We review it here because our model in the next section 

builds on the same approach. 

 The simplest version postulates N identical travelers, each with preferred trip-completion time t* 

and per-minute costs β or γ for being earlier or later than that. For technical reasons it is normal to 

assume β<α<γ, which is supported empirically by Small (1982); this assumption guarantees a 

continuous rush hour. Thus user cost is: 

 

 

where t is the time the trip through the bottleneck is completed. Equilibrium requires that this cost be 

the same at all times in the interval during which travel occurs, which we denote by [ti, tu] . This 

                                                 
     17Important developments include those of Fargier (1983), Newell (1987), Braid (1989), and Arnott et al. 
(1990, 1993). This work is summarized concisely by Arnott et al. (1998). 
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condition implies: 

 

 

The equilibrium travel-time pattern therefore is that shown by the solid line in Figure 3a, with queuing 

delay beginning and ending at endogenously determined times ti and tu and with free-flow time Tf. 

 Travel time can be described equally well as a function of trip completion time, t, or as a function 

of trip start time, τ ≡ t-T(t). The latter function is shown as the dashed line in Figure 3a.18 It is 

convenient because from it we can work backward to find the inflow pattern by applying deterministic 

queuing theory. Assuming a constant free-flow travel time, Tf, the inflow pattern is shown as the dashed 

line in Figure 3b. Inflow has two levels, the first greater than bottleneck capacity and the second less 

than capacity. Outflow, also shown, is equal to capacity throughout the period of travel. For ease of 

interpretation inflow is shown as a function of trip start time whereas outflow is shown as a function of 

trip completion time. 

 It turns out that so long as queuing occurs, the combined scheduling and travel-delay cost per 

user, which is equalized across users, is proportional to (λ-qb). Thus the time-averaged average cost is a 

piecewise-linear function of λ with a flat region followed by a much steeper region, just like Figure 2 if 

v1 were held constant. MCλ is a step function. Arnott, de Palma and Lindsey (1993) show how to use 

this average cost curve to recover the conventional static analysis of optimal pricing, for purposes of 

setting the average price given that a time-varying price is being charged that just eliminates queuing. 

Yang and Huang (1997) provide an alternative analysis of pricing using optimal control theory. 

                                                 
     18Formally, this function, Θ(τ), is defined as the solution to T(τ+Θ)=Θ. Its slope is β /(α-β) for tt ~<  and 
-γ/(α+γ) for tt ~> , where )(~ ** tTtt −= . It is the function derived by Arnott et al. (1990). 
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Figure 3 
Equilibrium Travel Times and Flows: Endogenous Trip Timing with Bottlenecks 
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Modeling Hypercongestion in a Dense Street Network 

 

 Networks of city streets, unlike freeways, are prone to slowdowns in which various flows 

interfere with each other. As already noted, this phenomenon implies the existence of numerous local 

queues. But they would not obey the laws of deterministic queuing at an isolated bottleneck; rather, 

individual queue discharge rates are likely to depend on traffic density in neighboring parts of the 

network due to cross traffic. We can therefore envision a system in which density builds up when total 

input flow exceeds total exit flow, with the latter depending on the average density within the network. 

Vickrey (1994) terms this appraoch a "bathtub model," although the analogy would seem to require 

debris which clogs the drain when the water level gets too high. Perhaps a better analogy is to a messy 

desk: the bigger the backlog of work, the harder it is to find papers and consequently processing slows 

down. 

 To formalize this notion, we adapt a supply model used by Agnew (1977) and Mahmassani and 

Herman (1984). We think of our model as approximating conditions in a central business district 

(CBD). Trips inside the CBD begin and end either at its borders or at parking spaces within. The CBD 

contains M lane-miles of streets, and average trip length is L. Vehicles enter the CBD streets at some 

rate λ(t) vehicles per hour. At any time t traffic is characterized by two spatially aggregated variables: 

per-lane density k(t) (vehicles per lane-mile), and average speed v(t) (miles per hour). We make the 

following assumptions: 

 

A1. Vehicle flow rate: Vehicles exit the streets at rate (M/L)q(t), where 

 

 

Equation (6) defines q(t) (measured in vehicles per hour per lane) as an average per-lane flow rate. The 

idea is that cars "leak out" by exiting the system at a rate proportional to q(t) such that in a steady state, 

with entry and exit rates equal and constant at λ, density is constant at (L/M)(λ/v). 

 

A2. Speed-density relationship: Average speed is related instantaneously to density by a functional 

)()()( tvtktq          = . (6) 
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relationship V(⋅): 

That is, the fundamental diagram applies instantaneously in the aggregate. The function V is assumed to 

satisfy V′<0 and kV′′+2V′<0 for all k. This guarantees that flow kv is a single-humped function of k, 

rising from zero (at k=0) to a maximum qm at some value km, then falling to zero at a density kj known 

as the "jam density;" the region where it is falling is known as hypercongestion. Assumption A2 makes 

this an “instant-propagation” model in the terminology of Lindsey and Verhoef (2000), since an 

increase in density anywhere lowers speeds immediately throughout the system. 

 

A3. Conservation of vehicles: Vehicles appear or disappear in the system only through the entry and 

exit flows already identified; that is, the number of vehicles changes according to: 

 For the speed-density relationship (7), we adopt the empirical relationship measured by Ardekani 

and Herman (1987) from combined ground and air observations of the central business districts of Austin 

and Dallas, Texas. The functional form comes from the "two-fluid" theory of Herman and Prigogine 

(1979), in which moving vehicles and stopped vehicles follow distinct laws of motion. Letting K denote 

the "normalized density" k/kj, the Ardekani-Herman (AH) formula is: 

                                                 
     19This is a special case of their more general equation 7b when n=1, which is very close to the empirical 
value n=0.95 estimated for Dallas. We denote their expression vm(1-fs,min)1+ρ by vf. The Ardekani-Herman 
relationship is an example of a network-wide performance curve, from which we are deriving a dynamic 
supply relationship (see note 6). 

)]([)( tkVtv          = . (7) 

)()/()()( tqLMt=
dt

tdkM          −λ . (8) 

[ ] )(1)( 1tK v=tv          +
f − ρ  (9) 

where vf is the free-flow speed and ρ is an additional parameter.19 This formula implies a 

maximum flow of: 
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occurring at density 

 

 

 We now proceed to apply this supply model to the same two demand models considered in the 

previous section: first an exogenous demand spike, then an endogenous demand pattern generated by 

linear scheduling costs. 

 

Exogenous Demand Spike 

 

 Assume again that commuters enter the CBD network at a uniform rate λ over a fixed peak period 

[t1,t2]. We use a linear speed-density relationship proposed by Greenshields (1935), which is a special 

case of the AH formula for ρ=0: 

 

 )1( Kvv f −= .       (12) 

 

This simple relationship implies that flow is a quadratic function of speed; the congested and 

hypercongested branches are the two roots of the quadratic. Maximum flow qm=¼vfkj occurs at density 

km=½kj. The Greenshields relationship was the basis for Figure 1, and is used frequently in the 

engineering and economics literatures on congestion, for example Newbery (1990, p. 28). 

 By substituting (6) and (12) into (8), we obtain a differential equation in normalized density that 

applies for t1<t<t2: 

ρ

ρ

ρ
ρ

+

+

+
+

2

1

)2(
)1(

kv=q          jfm  (10) 

ρ+
k=k          j

m 2
. (11) 
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where µm ≡ (M/L)qm = ¼(M/L)vfkj is the maximum possible exit flow (completed trips per hour) and 

Tf ≡ L/vf is the free-flow trip time for the average user. The boundary condition is K(t1)=0. After t2, the 

same equation applies but with λ replaced by zero and with boundary condition that density be 

continuous at t2. 

 The solution for K(t) is provided in Appendix A and shown in Figure 4 for the case W=10Tf. Its 

broad properties can be inferred just by inspecting equation (13). Recall that the term -K(1-K) is zero 

when K=0 or K=1, and it reaches its most negative value when K=1/2. The curve portraying density 

K(t) therefore starts upward at time t1 with initial slope λ/(4µmTf). As time progresses the curve becomes 

flatter due to the term -K(1-K), then becomes steeper again when and if K increases beyond ½. At time 

t2, the slope undergoes a discontinuity and becomes negative, the curve being steepest near K=½ but 

then flattening and approaching zero asymptotically. Thus we have a period of density buildup during 

time interval [t1, t2] followed by a gradual relaxation back toward free-flow conditions. 

 The solution has different regimes depending on the value of λ. If λ§µm, normalized density 

builds asymptotically to a value less than or equal to ½. Thus hypercongestion does not occur, and the 

inflows can be maintained indefinitely. (The dashed curves in the figure show the paths that would be 

taken if the inflow were not ended at t2.) But if λ>µm, the system reaches maximum outflow qm with 

inflow still exceeding qm. At this point density builds up precipitously. This is the region of 

hypercongestion, and outflow declines steadily. If t2 comes soon enough, a rather long discharge period 

begins: it is especially long if K has reached a value near unity so that K(1-K) in (13) is small, indicating 

a condition where outflow is nearly blocked. If t2 exceeds a "jam time" tj, whose value is given in the 

Appendix, density reaches jam density (K=1) and the system breaks down: no more vehicles can enter. 

This applies to the leftmost curve in Figure 4. 

 

)1(
4

KK
µ

=
dt
dK

T          
m

f −−
λ  (13) 
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  Some numbers can help assess the model’s applicability. Suppose λ=1.05µm; then jam density is 

reached at time tj=t1+25.63Tf. Since Tf is a few minutes in a typical CBD, this allows room for rush hour 

of typical duration. However, for even moderately higher inflows this model cannot handle rush hours 

of realistic duration because jam density is reached too quickly. For example, if λ=1.33µm, jam density 

is reached at time t1+8.57Tf. What actually happens when desired inflow is high is that people rearrange 

their trip schedules, so the peak period becomes endogenous. This possibility is formally modeled the 

next section. 

 Because we have assumed a fixed time pattern of demand, the only costs relevant to pricing are 

time-averaged ones. The demand pattern has two parameters, height λ and duration W≡t2-t1, so there is 

one marginal cost for increasing λ (adding more users to the fixed peak period) and another for 

increasing W (widening the peak). They can be derived by computing TC(λ,W), the total travel cost of 

all users. The marginal costs of adding one user so as to make the pulse higher or wider are, respectively, 

MCλ ≡ (1/W)d(TC)/dλ and MCW ≡ (1/λ)d(TC)/dW. These quantities are described in Appendix A and 

Figure 4
Dense street network, exogenous demand spike:
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are portrayed in Figures 5a and 5b, respectively, along with average cost AC≡TC/(λW). These curves 

demonstrate how dynamics with hypercongestion still produce a rising supply curve. Indeed, Figure 5 

looks very much like the conventional static analysis of congestion. For example, both MCλ and MCW 

approach infinity at a critical value of λ or W, namely that for which K(t2)=1. 

 

Endogenous Demand Pattern 

 

 Here we apply the “bottleneck model” of endogenous scheduling, described earlier, to a 

hypercongested street network. Our starting point is Assumptions A1-A2 of the previous section, which 

implicitly define a speed-flow relationship. To include Assumption A3, however, would be 

incompatible with the bottleneck model. The latter requires identical individuals, all with the same trip 

distance L. But A1-A3 together imply a distribution of trip distances: for example, as we saw in the last 

section, after the input flow has fallen to zero the output flow falls to zero only asymptotically, implying 

there are some very long trips. 

 We therefore replace A3 with two assumptions, the second of which is really an approximation. 

 

A3′. Boundary conditions on density:  Density k(t) is continuous everywhere, and non-zero only during 

a finite time interval [ti, tu] when the flow of travelers reaching their destinations is non-zero. 

 Assumption A3′ cannot be reasonable unless the rush hour lasts considerably longer than free-

flow trip time L/vf. In our numerical simulation, the rush hour lasts 1.7 hours, whereas L/vf is 0.2 hours. 

 

A4. Approximation for travel time: The travel time for a trip completed at time t can be approximated 

by: 

 

)(
)(

tv
L=tT          . (14) 
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Figure 5 
Dense street network, exogenous demand pulse: Average and marginal costs 
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  Henderson (1981), Mahmassani and Herman (1984), and Yang and Huang (1997) all make an 

approximation like A4, in which the travel time for an entire trip is determined by the speed 

encountered at one point in the trip. The only difference is that for technical reasons, we take this point 

to be the end rather than the beginning of the trip; since trip completion time t and trip start time τ are 

fully determined functions of each other, the two alternate assumptions are equally strong. 

 Assumption A4 is drastic and its use by Mahmassani and Herman provoked vehement objection by 

Newell (1988).20 But it dramatically simplifies the problem. Furthermore, its adequacy can be assessed 

within the model itself. Once the system is solved for density k(t) using these assumptions, we can 

compute from (7) the average speed at each point in time, v(⋅). We can then follow a car completing its 

trip at time t backward through the system and compute its travel time T*(t) as the solution to: 

(Mahmassani and Herman in fact seem to have computed trip times this way, apparently without 

realizing that a different pattern of trip times was already implicit in their method for solving the 

system.) We report this calculation in our simulations below. 

 The equilibrium travel-time pattern T(t) is completely determined by the requirement that total 

trip cost be the same for everyone. This is just as in the bottleneck model described earlier, and the 

result is exactly the triangular-shaped pattern of travel times already shown in Figure 3a. Given A4, T(t) 

fully determines the pattern of average speeds, v(t). The pattern of flows, however, is quite different 

than in the bottleneck model; hence so are the duration of the rush hour and the maximum travel delay. 

This is because the exit rate of vehicles during the period of congestion is no longer constant at 

bottleneck capacity, but instead is determined by (6) and (7). 

 We solve the system in Appendix B, using the Ardekani-Herman speed-density relationship of 

equation (9). Figure 6 and Table 1 show some results for a particular set of parameters pertaining to the 

                                                 
20These authors focus on speed at the time the trip begins. However, Chu (1994, 1995) shows that in order 
to obtain an unpriced equilibrium, one needs instead to assume the speed when the trip ends determines 
trip time. Otherwise, travel time falls discontinuously at the end of the rush hour; the last traveler could 
not then be in equilibrium because he or she could be overtaken by a vehicle leaving slightly later. These 
technical problems do not affect Yang and Huang (1997) because they do not consider the unpriced 
equilibrium. The problems arise because scheduling costs are assumed to depend on trip completion time; 
presumably the situation would be reversed if scheduling costs were determined by deviation from a 
desired trip start time, as one might postulate for an afternoon rush hour. 

 L=tdtv          
t

(t)T-t

′′∫ )(
*

. (15) 
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Dallas CBD,21 along with scheduling and travel-time cost parameters from Arnott et al. (1990)22 and 

certain arbitrarily chosen values: t*=8.00 hours, L=4 miles, and N=10,000 vehicles. The bottleneck 

model is calculated for a bottleneck capacity qb of (M/L)qm, so that the two models have identical values 

of maximum flow. 

 The model with hypercongestion generates more travel delays than the bottleneck model—52 

versus 44 minutes at the height of the peak—and the rush hour lasts longer. The travel-time pattern 

follows directly from the equilibrium condition for travelers with piecewise-linear costs of undesirable 

schedules, so it has the same triangular shape in both models. However, the flow rate (which according 

to A1 is proportional to the arrival rate of vehicles at their destinations) is different in the 

hypercongestion model. It rises to the maximum possible amount, then is depressed by up to 24 percent 

during the busiest time, then rises again to its maximum before finally dropping quickly to zero. The 

times when flow is depressed is also the period, shown in the bottom panel, during which density 

exceeds the value corresponding to maximum flow. The ability to predict a pattern of densities that can 

be compared with actual measurements is a useful feature of our model, one that is lacking in the 

bottleneck model. 

 We see from Table 1 that total congestion cost (travel delay plus scheduling) is about 17 percent 

higher due to hypercongestion. Interestingly, however, it remains about equally comprised of 

scheduling cost and travel-delay cost, their ratio being 0.96 compared to exactly 1.0 in the bottleneck 

model. 

 

                                                 
     21These are: M=117 lane-miles; qm =224 vehicles/lane-hour; kj=100 vehicles/lane-mile; and ρ =1.67, all 
taken from Ardekani and Herman (1987), p. 9 and legend to Fig. 4. The implied free-flow speed from (12) is 
vf=19.22 mi./hr.; maximum flow occurs at density km=27 vehicles per lane-mile and at speed 8.2 miles/hour. 

     22Namely α=$6.40/hour, β=0.609α, and γ=2.377α. The latter two ratios are derived from Small 
(1982). 
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Figure 6 
Models with endogenous trip scheduling: Numerical results 

 
(a) Travel times 

 
 

(b) Flow rates (vehicles/hour per lane) 
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Table 1 
Numerical Results for Models with Endogenous Trip Scheduling 

 

 Dense street network 
with 

hypercongestiona 

Bottleneck 
modelb 

Parameters:   

Number of commuters, N 10,000 10,000 

Maximum flow, qm 224  

Bottleneck capacity per lane-mile, qb*M/L  224 

Results:   

Duration of peak period, hours, (tu-ti) 1.78 1.53 

Duration of hypercongestion, hours, (tuh-tih) 1.21 na 

Fraction of trips during hypercongestion 0.71 na 

Peak congestion delay, minutes, [T(t*)-Tf]*60 52 44 
Peak density as fraction of critical density for hyper-
congestion, K(t*)⋅(2+ρ) [see eqn. (11)] 

1.68 na 

Flow at most desirable time of day, as fraction of max 
flow, q(t*)/qm 

0.76 1.00 

Average scheduling plus travel-delay cost, $/trip 5.53 4.74 

Ratio of scheduling cost to travel-delay cost 0.96 1.00 
a Model of this section, using parameters described in text. 
b Model of Arnott et al. (1990), eqs (8), (12). 

 

 

 

 Figure 7 shows the result of our numerical check on the approximation (14), using the scenario 

with N=10,000. It compares the pattern of travel times T(t) in (14) (also shown in Figure 6a) with T*(t) 

as calculated from (15) once the system is solved. The approximation in assumption A4 overstates 

travel times when travel times are increasing and understates them when they are decreasing. The 

discrepancy is substantial, suggesting that a more accurate approximation than Assumption A4 would 

improve computational accuracy considerably. 
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Figure 7 
Comparison of approximate with exact travel times 
(based on a solution using the approximate times) 

 

 We have not attempted to derive optimal pricing rules, which in this case will be time-dependent. 

To do so requires defining an optimal control problem, and there is no guarantee that the solution to 

such a problem can be achieved by any toll applying to identical individuals.23 However, it is clear that 

hypercongestion will not occur in the optimum, for the same reasons it does not in the pure bottleneck 

model with endogenous scheduling. By raising the price just enough to eliminate hypercongestion, 

greater exit flow can be achieved throughout the time interval (tih, tuh), which permits both a reduction in 

scheduling costs (since more people can exit the system close to the desired time t*) and a reduction in 

travel-time costs (since speed is higher during the previously hypercongested time interval). What is not 

so easy to determine is whether, and by how much, optimal inflows would be suppressed below qm in 

order to maintain speeds above the value V(km) which maximizes outflow. Here, unlike in the pure 

bottleneck model, there is a tradeoff between the goals of high exit flow and fast travel times. Thus, we 

would not expect a result like that of the pure bottleneck model, where the optimal toll eliminates all 

travel delays without changing the pattern of arrivals. 

 

 5. Conclusion 

 

 Hypercongestion is a real phenomenon, potentially creating inefficiencies and imposing 

considerable costs. However, it cannot be understood within a steady-state analysis because it does not 

                                                 
23 See Mirrlees (1972) for a case where a social optimum cannot be achieved by a pricing system applied to 
identical individuals. 
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in practice persist as a steady state. Rather, hypercongestion occurs as a result of transient demand 

surges and can be fully analyzed only within a dynamic model. Even if the dynamic model is converted 

to a static one through the use of time averaging, the appropriate specification of average cost depends 

on the underlying dynamics. In virtually all circumstances that specification will portray average cost as 

a rising function of quantity demanded, even when hypercongestion occurs. 

 In one case, that of a uniform length of highway ending in a bottleneck, hypercongestion exists 

but it just describes the density of vehicles within a queue and does not materially affect total travel 

time. 

 In another case, that of a dense street network, it is plausible to model flow within a well-defined 

area as subject to hypercongestion. We have shown that a dynamic model incorporating this feature can 

be constructed and solved for two interesting special cases of the demand pattern. Doing so explains 

features that we observe in real cities: the gradual buildup of vehicle density during a rush hour, with 

dramatic and quite sudden slowdowns possible if density reaches the hypercongested region. A state of 

total breakdown, where speed falls to zero, is theoretically possible: this is gridlock in its literal 

meaning, with the various local queues on the network totally blocking each other. There is no way out 

of gridlock within the model. However, severe congestion short of gridlock ultimately dissipates once 

the demand surge abates. 

 One promising way to model these demand surges is by means of the endogenous scheduling 

models that have worked their way prominently into both the economics and engineering literatures. 

We show how ideas from these models can be applied to a dense street network subject to 

hypercongestion. 
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Appendix A: Solutions for Straight Uniform Highway: Exogenous Demand Spike 
 

The system is summarized by the differential equation (13) in normalized density K(t). This can be solved by 

"completing the square," i.e. by writing (13) as: 

 

 

Solution for t1§t§t2 

 

The boundary condition is K(t1)=0. The integral of the left-hand side of (A1) depends on the sign of the 

second term in the denominator. There are three possibilities: 

 

Case 1: λ<µm. 

In this case, integrating (A1) yields: 
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and C is a constant of integration. Applying the boundary condition to determine C and solving for K yields: 
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Note that 0<B<½. Thus K<½ so hypercongestion does not occur.   

 

Case 2: λ=µm. 

In this case the integral of the left-hand side of (A1) is -(K-½)-1 and solving for K yields: 

 

 

This equation can also be derived as the limit of (A4) as B→0. Again K<½. Also K→½ as t→∞. 

 

Case 3: λ>µm. 

In this case the integral of the left-hand side of (A1) is 
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Integrating (A1) then yields: 

 

  

For convenience, we choose the branch of the arctan function lying in the interval (0, π/2). From (A8), the 

normalized density K reaches 0.5, the onset of hypercongestion, at time th given by: 
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and jam density is reached at time 
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For t > tj the model breaks down and (A8) is no longer valid—in fact no solution can be given; in reality, 

outside intervention is needed to halt inflow until the built-up density can be discharged. 

 

Solution for t>t2 

 

 After the traffic pulse ends, the cars in the center will gradually dissipate. Assume t2<tj  and define 

K2≡K(t2), as determined from (A4), (A6), or (A8) as appropriate. Then density is determined by solving (A1) 

again, this time with λ=0 and with the boundary condition that K(t2)=K2 . The solution is obtained from (A2) 

by setting B=½ and choosing the constant of integration to meet the new boundary condition. The result is  

 

 

This function is decreasing in t, approaches zero asymptotically, and has an inflection point when and if 

K=½. 

 

Total Cost 

 

 The total cost to all users is just the value of time, α, times the total number of user-hours spent in the 

system: 
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Writing I1 for the part of the integral from t1 to t2, and integrating (A10) from t2 to ∞, this equation yields: 
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The integral I1 can be calculated as follows, where W≡t2-t1 is the pulse duration: 
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For Figure 5, we have calculated the total cost from (A11) and (A12) and marginal costs using numerical 

derivatives. 

 

Appendix B. Solutions for Dense Street Network: Endogenous Demand Pattern 

 

 First, we formulate the differential equation that will determine normalized traffic density K(t). 

Substituting (9) into (14), we differentiate the result to obtain the time derivative, dT/dt, that is consistent 

with the flow dynamics: 

 

 

But (5) gives the time derivative that is consistent with equilibrium in scheduling. Equating the two yields 

 ∫
∞

=
1

)(
t

j dttKMkTC α . 

[ ])/2exp()21()21(log)4log(
2
1

1 fff TBWBBTBTWB = I         −−−+−+⋅





 −  if λ<µm ; 

. 
dt
dKK-1+1T = 

dt
dT          f

)2())(( ρρ +−  (B1) 



 

 
A-5

the following differential equation in K(t): 
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Equation (B2) is solved (for fixed σ) by grouping terms in K and terms in t in the left- and right-hand sides, 

respectively, and integrating to obtain: 

 

 

which is valid separately for the two regions of t over which σ is constant. Solving (B4),  

 

 

where σ is given by (B3) and C is another constant of integration. 

 The boundary conditions for the two regions t<t* and t>t* are, respectively, K(ti)=0 and K(tu)=0. Here 

ti and tu are the times the first and last trips are completed and their values are still to be determined. These 

conditions, along with the definition of σ, yield: 
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The function K(t), and hence T(t), must be continuous at t*; thus 

 

 

(We could have deduced this equality directly from the fact that the first and last travelers suffer no travel 

delay and so must have equal scheduling costs.) Equation (B6) fixes t* within the interval [ti, tu]; it remains to 

determine the width of this interval. This is done by integrating the exit flow (M/L)q(t) ≡ 

(Mkj/L)K(t)vf⋅[1-K(t)]1+ρ over the duration of the rush hour and setting the result equal to N, the exogenous 

number of travelers. After much tedious calculation, this yields: 

 

 

where 

 

 s ≡ β(t*-ti)/(αTf) ≡ γ(tu-t*)/(αTf)       (B8) 

 

is the ratio of schedule delay cost to travel-time cost for the first and last travelers (equalized according to 

B6). Note that s is an indicator of how severe congestion is for the first and last travelers, hence for all 

travelers. Equation (B7) implies: 
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where δ ≡ βγ/(β+γ) is a kind of average measure of scheduling costs which plays a key role in the analysis of 

Arnott et al. (1990, 1993). Equation (B9) can be solved numerically for s, from which ti and tu are 

determined by (B8). 

 Hypercongestion occurs if K reaches the critical value  1/(2+ρ), as given by (11), which occurs if  

Further calculation shows that if hypercongestion occurs, it begins and ends at times: 

For the special case ρ=0, which is the Greenshields linear speed-density relationship, the occurrence of 

hypercongestion is coincident with the condition s>1, that is, that scheduling costs exceed travel-time costs 

for the first and last travelers. 
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