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Abstract 

 
This paper develops an analytical framework for assessing the second-best optimal level of gasoline 
taxation taking into account unpriced pollution, congestion, and accident externalities, and interactions 
with the broader fiscal system. We provide calculations of the optimal taxes for the US and the UK under 
a wide variety of parameter scenarios, with the gasoline tax substituting for a distorting tax on labor 
income.  
 
Under our central parameter values, the second-best optimal gasoline tax is $1.01/gal for the US and 
$1.34/gal for the UK. These values are moderately sensitive to alternative parameter assumptions. The 
congestion externality is the largest component in both nations, and the higher optimal tax for the UK is 
due mainly to a higher assumed value for marginal congestion cost. Revenue-raising needs, incorporated 
in a “Ramsey” component, also play a significant role, as do accident externalities and local air pollution.  
 
The current gasoline tax in the UK ($2.80/gal) is more than twice this estimated optimal level. Potential 
welfare gains from reducing it are estimated at nearly one-fourth the production cost of gasoline used in 
the UK. Even larger gains in the UK can be achieved by switching to a tax on vehicle miles with equal 
revenue yield. For the US, the welfare gains from optimizing the gasoline tax are smaller, but those from 
switching to an optimal tax on vehicle miles are very large. 
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1. Introduction 

Recent demonstrations in Europe against high fuel prices heightened interest in the appropriate level of 

gasoline taxation. Excise taxes on fuel vary dramatically across countries: Britain has the highest rate 

among industrial countries and the United States the lowest (see Figure 1). In Britain the excise tax on 

gasoline is about $2.80 per US gallon (50 pence per liter), nearly three times the 2001 wholesale price, 

while in the United States federal and state taxes together amount to about $0.40/gal.1 

 The British government has defended high gasoline taxes on three main grounds. First, by 

penalizing gasoline consumption, such taxes reduce the emissions of both carbon dioxide and local air 

pollutants. Second, gasoline taxes raise the cost of driving and therefore indirectly reduce traffic 

congestion and traffic-related accidents. Third, gasoline taxes provide significant government revenue: in 

the UK, motor fuel revenue is nearly one-fourth as large as the entire revenue from personal income taxes 

(Chennells et al. 2000). This third argument finds an intellectual basis in Ramsey’s (1927) insight that 

taxes for raising revenue should be higher on goods with smaller price elasticities. Gasoline taxes have 

also been defended on other grounds, such as a user fee for the road network (its primary role in the US) 

and as a means to reduce dependence on oil supplies from the Middle East. 

 As these arguments suggest, several important externalities are associated with driving. Each 

potentially calls for a corrective Pigovian tax, although the ideal tax for each would be on something other 

than fuel. Only for carbon dioxide does a fuel tax closely approximate a direct Pigovian tax. For local air 

pollution, a direct tax on emissions would provide better incentives to improve pollution abatement 

technologies in vehicles. As for congestion, fuel taxes affect it through reducing total vehicle miles 

traveled (VMT), whereas peak-period congestion fees would also encourage people to consider avoiding 

peak hours and the most highly congested routes. An ideal tax to address accident externalities would 

charge according to miles driven rather than fuel consumed, and would vary across people with different 

risks of causing accidents.2 

                                                      
1 Gasoline is also subject to sales taxation in the United States and value-added taxation in European countries. 
However these other taxes apply to (most) other goods, and therefore do not increase the price of gasoline relative to 
other goods (except insofar as they are levied on top of the fuel-tax component of price). 

2 For further discussion of the efficiency of gasoline taxes at reducing externalities, see Walters (1961), UK Ministry 
of Transport (1964), De Borger and Proost (2000), Parry (2001) and Fullerton and West (2001). 
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 Nonetheless, ideal externality taxes have not been implemented for political, administrative, or 

other reasons. They raise objections on equity grounds, they require administrative sophistication, and 

they run counter to attempts to reduce geographical differences in taxes and insurance rates. The fuel tax, 

by contrast, is administratively simple and well accepted in principle, even at very high tax rates in some 

nations. Therefore it is entirely appropriate to consider how externalities that are not directly priced 

should be taken into account in an assessment of fuel taxes. 

 As for revenues, a well-developed public-finance literature rigorously compares the efficiency of 

different tax instruments for raising revenues.  Recently, this literature has been extended to compare 

externality taxes with labor-based taxes such as the income tax.3 One of its key insights is that by raising 

the cost of living, externality taxes have a distorting effect on labor supply similar to that of labor-based 

taxes. It is now feasible to bring the insights of this literature to bear on a tax, such as the fuel tax, that is 

partially intended as an imperfect instrument for controlling externalities. 

 A number of previous studies attempt to quantify the external costs of transportation.4 Typically 

these studies estimate external costs per distance traveled rather than per volume of fuel consumed. 

However the implications for the optimal fuel tax have rarely  been rigorously spelled out; as our 

formulation makes clear, the importance of distance-based externalities in the optimal fuel tax is 

substantially diminished to the extent that people respond to higher fuel taxes by purchasing more fuel-

efficient vehicles rather than driving them less.5 It is also important to update prior studies to take account 

of changes over time in vehicle emissions and safety, the value of travel time, the value of life, and so on.  

 This paper presents and implements a formula for the second-best optimal gasoline tax that 

accounts for both externalities and interactions with the tax system. This formula, extending that of 

Bovenberg and Goulder (1996), disaggregates the optimal fuel tax into components with economic 

interpretations. We furthermore allow for the possibility that gasoline is a relatively weak substitute for 

                                                      
3 See for example Bovenberg and van der Ploeg (1994), Bovenberg and Goulder (1996), Parry and Oates (2000). 

4 For example, Lee (1993), US OTA (1994), Peirson et al. (1995), Mayeres et al. (1996), Quinet (1997), ECMT 
(1998, ch. 3), Porter (1999), Litman (1999), Rothengatter (2000), and various papers in Greene et al. (1997). 

5 This point is noted by Newbery (1992, note 1). By way of contrast, De Borger et al. (1997) and Mayeres (2000) 
model fuel taxes in Belgium essentially as taxes on vehicle-kilometers traveled, with limited scope for 
improvements in fuel efficiency. They also consider two phenomena -- cross-border refueling and exporting of tax 
burdens – that we can bypass because the nations we consider have more self-contained economies than Belgium.. 
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leisure, thereby justifying a “Ramsey tax” component, and we incorporate feedback effects on labor 

supply from changes in congestion. We use our formula to estimate optimal gasoline taxes in the US and 

UK, focusing on externalities of congestion, air pollution (local and global), and traffic accidents.6 In this 

way we illustrate why, and to what extent, the optimal tax may differ across countries, and under what 

circumstances, if any, the low US rates or the high UK rates can be justified.  

 We summarize the results as follows. 

 First, under our benchmark parameter assumptions the optimal gasoline tax in the US is $1.01/gal 

(more than twice the current rate) and in the UK is $1.34/gal (less than half the current rate). The higher 

optimal tax for the UK mainly reflects a higher assumed value for marginal congestion costs. 

Significantly different values are obtained under reasonable alternative parameter scenarios, but a Monte 

Carlo analysis suggests that it is highly unlikely for either the optimal US tax to be as low as its current 

value, or the optimal UK tax to be as high as its current value. 

 Second, the congestion externality is the largest component of the optimal fuel tax. Thus even 

though fuel taxes are an imperfect instrument to control congestion, they still need to be significant in the 

absence of congestion pricing. The Ramsey component is the next most important, followed closely by 

accidents and local air pollution. Global warming plays a very minor roleironically since it is the only 

component for which the fuel tax is (approximately) the right instrument. 

Third, the optimal gasoline tax is substantially diminished by the fact that only a portion of the 

tax-induced reduction in gasoline useless than half in our base caseis due to reduced driving, the rest 

coming from changes in fuel efficiency. If we had made the mistake of assuming that vehicle miles are 

proportional to fuel consumption, we would have computed the optimal gasoline tax in both nations to be 

much higher, close to the current value in the case of the UK. 

 Fourth, when considered as part of the broader fiscal system, the optimal gasoline tax is only 

moderately higher than the marginal external cost of gasoline. While it is true that gasoline taxes should 

be set above marginal external costs because they raise revenue from a relatively price-inelastic good, the 

                                                      
6 Virtually all quantitative estimates of external costs of motor vehicles have placed these three at the top of the list, 
in magnitude far above such other candidates as noise, water pollution, vehicle and tire disposal, policing needs, 
pavement damage, and security of national petroleum supplies. See Delucchi (1997), US FHWA (1997, pp. III-12 
through III-23), and US FHWA (2000a, section entitled “Other Highway-Related Costs” and Table 10). For noise 
and pavement damage in comparison to other costs, see also De Borger et al. (1997, Table 1). 
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Ramsey component turns out to be only about $0.25 per gallon. Furthermore, there is a counteracting 

influence arising from the inefficiency of using a tax with a relatively narrow base.    

 Finally, we simulate a tax on vehicle miles, which more directly addresses the distance-related 

externalities of congestion, accidents, and local pollution (subject to regulations on emissions per mile). 

The potential welfare gains from this policy are much larger than those from optimizing gasoline-tax 

ratesnearly four times as large in the case of the US. Furthermore, the optimal tax rate is much higher, 

more than twice the optimal fuel tax when converted at the fuel efficiency that would obtain in that 

scenario. As a result, in the UK, most of the available welfare gains could be obtained simply by shifting 

the current tax from fuel to VMT, with a rate chosen to maintain equal revenues once people had adjusted 

their vehicle stocks in response. The Ramsey component is more important with a VMT tax because 

travel, being less elastic than fuel consumption, is a better target for raising revenue. 

 Our analysis abstracts from some other arguments that have been used to defend high gasoline 

taxes. These include alleged external costs in connection with road maintenance, parking subsidies, non-

optimal urban form, and international political and military policy to secure petroleum supplies. For the 

most part, attempts to quantify these arguments have resulted in smaller costs than those considered here. 

For example, Small et al. (1989) show that the road damage from passenger vehicles is minuscule 

compared to that from heavy vehicles (which are mostly diesel), and that even for heavy vehicles the 

damage is not closely related to fuel consumption. Delucchi (1998a) has estimated the US external cost of 

petroleum associated with energy security, and gets numbers much smaller than those from congestion, 

accidents, and air pollution. Nevertheless, there remains room for legitimate debate about the need for 

high fuel taxes for reasons that are hard to quantify. We hope that this article, by demonstrating what can 

and cannot be said based on externalities and revenue-raising needs, will discipline that debate. 

 Our model also abstracts from equity considerations, use of fuel in production, tax subsidies to 

petroleum extraction, strategic trade policy, and interactions with the capital marketthese issues are 

discussed at the end of the paper. 

 The rest of the paper is organized as follows. Section 2 describes our analytical model and a 

formula for the optimal gasoline tax. Section 3 discusses parameter values. Section 4 presents calculations 

of the optimal gasoline tax for the US and UK, compares the welfare effects of taxes on gasoline and 
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vehicle miles, and provides an extensive sensitivity analysis. Section 5 briefly comments on the politics of 

tax reform, and model limitations. 

 

 

2. Analytical Framework 

A. Model Assumptions 

Consider a static, closed economy model with many agents. The representative agent has the 

following utility function: 

(2.1) )()()),,,,(( APNGTMCuU δϕψ −−=  

All variables are expressed in per capita terms. C is the quantity of a numeraire consumption good, M is 

travel measured in vehicle-miles, T is time spent driving, G is government spending, N is leisure or non-

market time, P is the quantity of (local and global) pollution, and A is severity-adjusted traffic accidents. 

G, P, and A are characteristics of the individual's environment, perceived as exogenous. We include T in 

the utility function to allow the opportunity cost of travel time to differ from the opportunity cost of work 

time. The functions u(.) and ψ(.) are quasi-concave, whereas (.)ϕ  and (.)δ  are weakly convex functions 

representing disutility from pollution and from accident risk.7 

 Vehicle travel (VMT) is “produced” according to the following homogeneous function: 

(2.2) ),( HFMM =  

where F is fuel consumption and H is money expenditure on driving. This allows for a tradeoff between 

vehicle cost and fuel efficiency, e.g. via computer-controlled combustion or an improved drive train, 

while holding quality constant.8 It thereby allows for a non-proportional relation between gasoline 

                                                      
7 The separability of pollution and accidents in (2.1) rules out the possibility that they could have feedback effects 
on labor supply. Williams (2000) finds that the impacts on labor supply from pollution-induced health effects have 
ambiguous, and probably small, effects on the optimal pollution tax. The weak separability of leisure is not as strong 
as it might appear, as discussed below in connection with the Ramsey component of the optimal tax.  

8 In practice fuel efficiency may often be increased by choosing smaller cars that are less convenient, comfortable, 
or safe. This could be represented by complicating the production relationship, but at least for small changes it 
would make no difference to the welfare evaluation of fuel-efficiency changes so long as consumers are optimizing 
their quality choice. Furthermore, empirical measures of fuel-price elasticities should not be affected by whether the 
consumer chooses to use money or quality to “pay” for fuel-efficiency improvements. 
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consumption and VMT: in response to higher gasoline taxes people will buy more fuel-efficient cars 

(causing an increase in H) in addition to driving less.9 

 Driving time is determined as follows: 

(2.3) MMMT )(ππ ==  

where π  is the inverse of the average travel speed and M  is aggregate miles driven per capita. We 

assume 0>′π , implying that an increase in VMT leads to more congested roads. The notation 

distinguishing between M and M  is to remind us that agents take M  and hence π  as fixedthey do not 

take account of their own impact on congestion. 

 We distinguish two types of pollutants: those (denoted PF) like carbon dioxide that depend 

directly on fuel consumption, and those (denoted PM) that depend only on miles driven. The latter type 

includes nitrogen oxides, hydrocarbons, and carbon monoxide, for which regulations force emissions per 

mile to be uniform across most new vehicles. 10 PF and PM are both severity-weighted indices with units 

chosen so we can combine them as: 

(2.4) )()( MPFPP MF +=  

where 0, >′′ MF PP  and F  is aggregate fuel consumption per capita. Agents ignore the costs of pollution 

from their own driving since these costs are borne by other agents. 

The term )(Aδ  in (2.1) represents the expected disutility from the external cost of traffic 

accidents. Some accident costs are internalized; for example people presumably consider the risk of injury 

or death to themselves when deciding how much to drive. These internal costs are implicitly included 

either in utility function ψ(.) or money costs H. But other costs are external and are counted in (.)δ . Many 

of these external costs are borne by people in their roles as pedestrians or cyclists,11 and others are 

                                                      
9 We limit our analysis to gasoline-powered passenger vehicles and do not consider possible interactions between 
optimal tax rates for gasoline and diesel fuel. While there are interesting issues regarding relative taxes on these two 
fuels (Mayeres and Proost 2001a, De Borger 2001), we think they would little affect the quantitative results derived 
here. 

10 See ECMT (2000) for a review of current and anticipated emissions standards in Europe, the US, and Japan. 

11 In the US in 1994, 16 percent of fatalities from motor vehicle crashes were to non-motorists (US FHWA 1997, p. 
III-18). 
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functions of the number of trips rather than their length; so we make the simplifying assumption that this 

disutility is independent of the amount of the individual's own driving (in contrast to the cost of 

congestion as specified in equation 2.3). The number of severity-adjusted accidents per capita is thus 

taken to be exogenous to the individual agent, but dependent on the amount of aggregate driving per 

capita: 

(2.5) MMaMAA )()( ==  

where )(Ma  is the severity-adjusted accident rate per mile. Note that we also ignore any indirect effects 

on accident externalities via changes in vehicle size, partly because the direction of such effects is 

uncertain.12 The sign of a′  is ambiguous: heavier traffic causes more frequent but less severe accidents as 

people drive closer together but more slowly.  

 On the production side, we assume that firms are competitive and produce all market goods using 

labor (and possibly intermediate goods) with constant returns to scale. Therefore all producer prices and 

the gross wage rate are fixed; since we do not explore policies that would change them, we normalize 

them all to unity, aside from the producer price of gasoline which we denote qF. 

 Government expenditures are financed by taxes at rates tF on gasoline consumption and Lt  on 

labor income. Therefore the net wage rate is Lt−1  and the consumer price of gasoline is qF +tF. The 

government does not directly tax or regulate any of the three externalities, except as implicitly 

incorporated in the functions (.)δ , M(.), (.)π , (.)FP , (.)MP , and (.)a .13 

                                                      
12 Small cars are more dangerous to their own occupants but less dangerous to occupants of other vehicles and to 
bicyclists and pedestrians. Current evidence seems to suggest partially offsetting effects of changes in composition 
of the aggregate fleet. A shift from very large passenger vehicles (especially light trucks, minivans, and sport utility 
vehicles) to moderate sized vehicles decreases the aggregate average severity of accidents, while a shift from 
moderate to very small vehicles increases it (Charles Lave, personal communication; see also Gayer, 2001).  

13 For example, requirements for reformulated gasoline and bumper effectiveness reduce pollution and accident 
costs, but also increase the money costs of driving and therefore affect M(.) as well as (.)FP , (.)MP , and (.)a . We 
assume that fuel-efficiency standards are not binding. This is reasonable because even with regulated new-car 
technology, people may alter fuel efficiency through their choices of vehicle mix, driving habits, and maintenance 
practices ; for example, Rouwendal (1996, Table 3) finds that the fuel efficiency just for using a specific given 
vehicle has a price-elasticity of 0.15. In the US, exemptions for light trucks greatly weaken the effects of fuel 
efficiency standards and a recent attempt to tighten them found inadequate political support; if they are barely 
effective now, it seems highly unlikely that they would be binding at the optimal tax rates estimated in this paper. If 
efficiency standards are binding at low tax rates, but not at optimal ones, our welfare calculations are affected but 
not the optimal tax calculations. 
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 The agent’s budget constraint is therefore: 

(2.6) LtIHFtqC LFF )1()( −==+++  

where I is disposable income and L is labor supply. Agents are also subject to a time constraint on labor, 

leisure, and driving: 

(2.7) LTNL =++  

where L  is the agent’s time endowment. Finally, the government budget constraint is: 

(2.8) GFtLt FL =+ . 

We take government spending as exogenous so that higher gasoline tax revenues reduce the need to raise 

revenues from other sources.14 

 

B. Optimal Gasoline Tax 

We now discuss the welfare effect of an incremental increase in the gasoline tax. This leads to our 

formula for the optimal gasoline tax, written in terms of concepts known from the optimal tax literature. 

We go straight to the key equations, but provide a rigorous derivation of these equations in the Appendix. 

 

(i) Marginal Welfare Effects. In the Appendix we describe conditions for individual households to 

maximize utility. Differentiating household utility with respect to the gasoline tax, while taking into 

account changes in the labor tax required to keep the government budget balanced, we obtain: 

(2.9) =
Fdt

dV
λ
1 ( ) ( )

F
L

F

PAC

F
F

P

dt
dLt

dt
dMEEE

dt
dFtE MF +








−+++








−−  

where V is indirect utility, λ is the marginal utility of income and 

(2.10) λϕ /F
P PE F ′′= ;    λϕ /M

P PE M ′′= ;    MvE C π ′= ;    λδ /AE A ′′= ;    λ/1 TL utv −−≡ . 

Equation (2.9) shows the marginal welfare change from increasing the fuel tax, decomposed into 

three effects. The first is the welfare change in the gasoline market. This equals the reduction in gasoline 

consumption times the difference between the direct marginal pollution damage from fuel combustion, 

                                                      
14 If instead gasoline-tax revenues financed additional public spending, the optimal gasoline tax would be higher 
(lower) than that calculated here to the extent that the social value of additional public spending were greater (less) 
than the social value of using extra revenue to cut distortionary income taxes. 



  

9 

denoted FPE , and the tax rate. The second is the welfare gain from the reduction in VMT. This equals the 

reduction in VMT times the sum of the (marginal) per-mile external costs of congestion (EC), accidents 

(EA), and mileage-related pollutants ( MPE ).15 The third effect, i.e. the last term in (2.9), is the welfare 

effect in the labor market. It equals the change in labor supply (which is negative) times the wedge 

between the gross and net wage, that is, the wedge between the value of marginal product of labor and the 

marginal opportunity cost of forgone leisure time. 

Another way to view (2.9) is by grouping the two terms containing tax rates. Then the welfare 

change from an incremental tax increase is seen as the effect of induced behavioral changes on total tax 

revenue less total externality cost. 

 

(ii) Optimal Gasoline Tax. Setting (2.9) to zero yields, after some manipulation, the following formula 

(see Appendix): 

(2.11) =*
Ft

48476
taxPigovian

Adjusted

MEB
MEC

L

F

+1

4444 84444 76 tax
Ramsey

t
tqt

L

FFL

FF

c
LLMI

−
+−

+
1

)()1(
η

εη { }
444444 8444444 76

feedback
Congestion

t
tE

L

Lc
LLMILL

C

FM −
−−+

1
)1( εηε

α
β

 

where 

(2.12a) ))(/( MF PAC
FM

P
F EEEEMEC +++≡ αβ ; 

(2.12b) 
M
F

dtdF
dtdM

F

F

/
/

≡β = 
FF

MF

η
η

; M
FFMFFF ηηη += ; MFFM /≡α ; 

)1(1
1

1

1

LLL

LLL

LL
L

L

LL
L

L

L
L

L
L

L t
t

t
t
t

t

t
LtL

t
Lt

MEB
ε

ε

ε

ε

+−
=

−
−

−
=

∂
∂

+

∂
∂

−
≡ . 

                                                      
15 All external costs are in per capita terms. v denotes the opportunity cost of travel time. 
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In these formulas, MIη  is the expenditure elasticity of demand for VMT (i.e. the elasticity with respect to 

disposable income), 1/αFM is fuel efficiency or miles per gallon, FFη  is the negative of the gasoline 

demand elasticity, FMη  is the negative of the elasticity of VMT with respect to the consumer fuel price, 

M
FFη  is the elasticity of fuel efficiency with respect to the price of fuel (i.e. the negative of the gasoline 

demand elasticity with VMT held constant), and LLε  and  c
LLε  are the uncompensated and compensated 

labor supply elasticities. (We have defined all elasticities as positive numbers.) 

 Both αFM and tL in these formulas are endogenous. Since αFM is a function of tF (see Appendix), 

we approximate this function by a constant-elasticity formula: 

(2.12c)  

M
FF

FF

FF
FMFM tq

tq
η

αα
−









+
+

= 0
0 . 

Finally, tL is determined by budget constraint (2.8), which may be rewritten: 

(2.12d)  F
F

F
GL q

tt αα −=  

where LGG /=α  and LFqFF /=α  are the shares of government spending and gasoline production in 

national output. 

Equation (2.11) expresses the optimal fuel tax as a sum of three components. In interpreting it, let 

us start with the quasi-Pigovian tax represented by MECF . We may think of this as the marginal external 

cost of fuel use. It equals the marginal damage from pollution due directly to gasoline combustion, plus 

the marginal congestion, accident, and distance-related pollution costs; the latter are expressed per unit 

distance traveled and then multiplied first by fuel efficiency (1/αFM) and then by the portion of the 

gasoline demand elasticity due to reduced VMT (β). If fuel efficiency were fixed, i.e. if all the response to 

fuel price worked through the amount of driving, then we would have MFη  = FFη  and β  = 1. But in fact 

MFη  < FFη , so β < 1. This point is important because, as we shall see, empirical studies suggest that 

probably β<0.5, i.e. less than half of the long-run price responsiveness of gasoline consumption is due to 

changes in the amount of driving. Therefore the common practice of multiplying estimates of the 
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marginal distance-related external costs by fuel efficiencyi.e. setting β=1 in (2.12a)substantially 

overestimates the appropriate contribution to the optimal fuel tax.16 

 This dilution of the externalities in calculating the optimal tax arises because the quasi-Pigovian 

tax MECF addresses mileage-related externalities only indirectly. The endogeneity of fuel efficiency 

intervenes between the external cost and the tax instrument. To put it differently: what matters for the 

optimal tax is not the external costs generated while consuming a gallon of fuel, but rather the external 

costs generated in the process of increasing fuel consumption by a gallon as a result of tax incentives. The 

former is simply M/F times the external cost per mile, whereas the latter is reduced by the ratio 

MFη / FFη . 

 Even with MECF correctly computed, the optimal gasoline tax in (2.11) differs from it due to 

three effects arising from interactions with the tax system. The first effect is that MECF is divided by 

)1( LMEB+ .17 This adjustment reflects the fact that gasoline taxes have a narrow base relative to labor 

taxes, and in this respect are less efficient at raising revenues; it has been discussed elsewhere in the 

context of other externalities (e.g., Bovenberg and van der Ploeg 1994, Bovenberg and Goulder 1996). 

The size of this adjustment depends on the size of the distortion in the labor market, which results from 

the interaction of the labor-tax rate with the uncompensated labor-supply elasticity. 

 The second effect is the Ramsey tax component in (2.11). It follows from Deaton (1981) that 

when leisure is weakly separable in utility, as it is here, travel is a relatively weak (strong) substitute for 

leisure if the expenditure elasticity for VMT is less (greater) than one. Thus, leaving aside the other two 

                                                      
16 For example, Newbery (1995) says of mileage-related externalities in the UK: “If we allow all external road costs 
to be reflected in fuel taxes [by multiplying them by fuel efficiency], then [their size] suggests that doubling the tax 
would be justified” (p. 1267). He immediately qualifies this assertion by noting that “fuel taxes are a relatively blunt 
instrument to achieve efficiency in transport use.” This qualification suggests correctly that raising the fuel tax may 
be inferior to a more comprehensive tax reform; but in fact our results, as well as that in Newbery (1992, eq. 7 and 
note 1), show that the suggested tax is not even second-best efficient because it ignores the loss of desired impact via 
changes in the fuel efficiency of vehicles. Note also that if the global-warming externality FPE increases, the quasi-
Pigovian tax MECF rises by even more because fuel efficiency (1/αFM) in (2.12a) responds positively to any increase 
in fuel tax; this is a main point of Newbery (1992). However, we can see from (2.11) that *

Ft   soes not necessarily 
rise by more than FPE  due to the moderating factor 1/(1+MEBL). 

17 MEBL equals the welfare cost in the labor market from an incremental increase in tL, divided by the marginal 
revenue. It is positive provided that εLL >0 and that tL and εLL are not so large as to make the marginal revenue 
negative. 
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terms in (2.11), gasoline should be taxed or subsidized depending on whether travel is a relatively weak 

or strong substitute for leisure—the more so the more inelastic is its demand relative to the compensated 

demand for leisure. This is a familiar result from the theory of optimal commodity taxes (Sandmo 1976). 

When we consider sensitivity analysis, we vary the expenditure elasticity for VMT and thereby 

approximate the effects of relaxing the weak separability assumption.18 

 The third effect, indicated by the last term in (2.11), is the positive feedback effect of reduced 

congestion on labor supply in a world where labor supply is distorted by the labor tax (cf. Parry and 

Bento 2000). Reduced congestion reduces the full price of travel relative to leisure (see Appendix); hence 

it leads to a substitution out of leisure into travel, which is welfare-improving because labor is taxed. This 

raises the optimal fuel tax, but only slightly according to our empirical results in Section 4. 

 Equation (2.11) is not yet a fully computational formula for the second-best optimal tax rate 

because tF appears on both sides of the equation, being both explicitly in the Ramsey component and 

implicitly in the other components on the right-hand side via (2.12c-d). However, the system of equations 

(2.11)-(2.12) can be solved numerically for tF, given values for the various parameters. A remaining issue 

is that the observed values for these parameters apply to the existing equilibrium (with non-optimal 

gasoline taxes) whereas (2.11) depends on the values of these parameters at the social optimum. To infer 

the appropriate values we simply assume that elasticities are constant, and use observed data directly in 

the formulas. 

 

(iii) Total Welfare Effects and External Costs. We show in the Appendix that the per capita welfare 

benefits of an incremental tax change, as given in (2.9), can be rewritten as: 
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It is convenient to express the welfare change as a proportion of initial fuel production costs: 

                                                      
18The weak separability of leisure in the utility function (2.1) implies that labor supply and VMT would increase in 
the same proportions following an income-compensated increase in the wage. If all VMT consisted of  people 
commuting to work this might be a reasonable approximation, as most of the labor supply elasticity is due to 
changes in participation rates rather than changes in hours per day (see below). In practice less than half  of VMT is 
commuting, and in addition some of the extra commuting when someone joins the labor force is probably offset by a 
reduction in that person’s leisure trips. Allowing for this would have the same effect as using a lower value for the 
expenditure elasticity of VMT. We will see below that our results are moderately sensitive to this parameter. 
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where F0 is initial per capita fuel consumption. Starting with a current tax rate, we can numerically 

integrate (2.13b) to obtain the approximate welfare gain from moving to an optimal tax rate, as a fraction 

of production costs.19 

 As a matter of interest, we also compute the total external cost, which is just the sum of fuel- and 

mileage-related external cost. Since we will be interested only in how it changes over relatively small 

differences in consumption, we write it as though the marginal externality parameters (EC, EA, and so 

forth) were constant; this of course is highly implausible when fuel consumption and VMT are reduced all 

the way to zero. Expressed as a faction of initial fuel production costs, total external cost calculated this 

way is: 
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(iv) VMT Tax. With minor modification, our framework can be used to compute the welfare effects of a 

VMT tax, i.e. a tax on travel distance denominated in cents per vehicle-mile. This requires the observation 

that a VMT tax does not affect fuel efficiency; therefore travel and fuel change in the same proportions as 

the tax rate is varied. We show formally in the appendix that our equations can simulate a VMT tax 

simply by making three changes: (i) set β=1 in computing MECF; (ii) replace ηFF by ηMF in the Ramsey 

component (equivalently, hold ηMF constant and let  ηMF adjust in resetting β=1); and (iii) divide the 

resulting value of equation (2.11), which we now denote by v
Vt , by the value of αFM that would prevail 

with the VMT tax, namely the value at zero fuel-tax rate. We also show there how the welfare 

calculations are modified to evaluate replacing the gasoline tax by any desired VMT tax. 

 The VMT tax has two advantages over the fuel tax. First, because most externalities are mileage-

related, the Pigovian part of the tax gets at the externalities more directly; this is reflected in raising the 

                                                      
19 In doing so, we take F to depend on fuel price (qF+tF) with constant elasticity -ηFF. We do the same with αF in 
(2.12d), ignoring any tiny difference between its elasticity and that of F. Our assumption that λ is constant is 
justified by the small proportion of fuel in total expenditures. We stress that these assumptions do not affect the 
optimal fuel-tax rates. 



  

14 

value of MECF by setting β=1. Second, the revenue-raising function of the tax is more efficient because it 

can be evaded only by reducing mileage, not by adjusting fuel efficiency; that is, the relevant elasticity in 

the denominator of the Ramsey component is now ηMF instead of ηFF. Both advantages result in a higher 

optimal tax rate per vehicle-mile than is the case for the fuel tax. 

  

3. Parameter Values 

 In this section we choose parameter values for simulations.  Because we are more interested in 

obtaining plausible magnitudes than definitive results, we are free with approximations.  For most 

parameters, we specify a central value and a plausible range, intended as roughly a 90% confidence 

interval. Table 1 summarizes the parameter assumptions. 

 We would like any parameter differences across nations to reflect differences in conditions rather 

than in assumptions.  Therefore, where possible, we adjust US and UK studies for cross-national 

comparability and state them approximately in US$ at year-2000 price levels; we do this by updating each 

nation’s figures as appropriate, then applying the end-2000 exchange rates of UK₤1 =US$1.40 and 

Euro1= US$0.90. 

 

Initial fuel efficiency: 1/ 0
FMα  (miles/gal). Data for the late 1990s show average fuel efficiency at 20 

miles/gal for US passenger cars and other 2-axle 4-tire vehicles.  For the UK, the comparable figure is 30 

miles/gal.20 

 

Pollution damages, distance-related: MPE (cents/mile). Because most regulations specify maximum 

emissions per mile, we assume local (i.e. tropospheric) air pollution from motor vehicles are proportional 

to distance traveled. We further assume the costs are proportional to the amount of pollution, an 

assumption that is quite good over a wide range of conditions (Small and Kazimi 1995, Burtraw et al. 

1998), especially considering that any threshholds would be averaged out by aggregating over time and 

space. 

                                                      
20 The US figure averages 1998 and 1999 data from US FHWA (2000b, table VM-1). The UK figure is for petrol-
powered 4-wheeled cars, averaging 1997 and 1999 data from UK DOE (2000, table 2.4).  
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 Quinet (1997) reviews the European literature on pollution costs . McCubbin and Delucchi (1999) 

describe a comprehensive study for the United States, which for urban areas agrees reasonably well with 

Small and Kazimi’s (1995) study of the Los Angeles region.  Delucchi (2000) reviews evidence on a 

wider variety of environmental costs from motor vehicles, but finds air pollution to be by far the most 

important.  The US studies suggest that costs of local pollution from motor vehicles are roughly 0.4-5.4 

cents/mile for automobiles typical of the year-2000 fleet.21 In reviewing these and other studies, the 

authors of US FHWA (2000a) choose a middle value that comes to 1.9 cents/mile at year-2000 prices, 

with low and high values of 1.4 and 16.2, respectively.22 European studies give similar if slightly smaller 

results, and the differences are very likely due more to different assumptions than to different 

conditions.23  We therefore use the same values for both countries, namely a central value of 2.0 

cents/mile with range 0.4-10.0. 

 

Pollution damages, fuel-related: FPE (cents/gallon). Global warming costs are much more speculative 

due to the long time period involved, uncertainties about atmospheric dynamics, and inability to forecast 

                                                      
21 The cost estimates are dominated by health costs, especially willingness to pay to reduce mortality risk. For US-
wide estimates McCubbin and Delucchi (1999, Table 4, row 1) give a range 0.58−7.71 cents per vehicle-mile for light-
duty vehicles in 1990; updating to 2000 prices gives 0.8−10.8 cents.  For the mix of light-duty vehicles operating in the 
Los Angeles region in 1992, Small and Kazimi (1995) provide a central estimate of 3.3 cents per vehicle-mile at 1992 
prices, or 4 cents per mile in year 2000; however meteorological conditions for pollution formation are much worse in 
Los Angeles than on average for the US.  All these estimates are based on vehicles in use in the early 1990s. Small 
and Kazimi (Table 8) estimate costs from the California light-duty vehicle fleet projected for 2000 to be about half 
those from the 1992 fleet, due to improved controls, so we multiply the above estimates by one-half in quoting them in 
the text. 

22 This is calculated by separating out all gasoline vehicles from US FHWA (2000a, Table 12), for whom the central 
estimate for year 2000 costs in 1990 prices is 1.42 cents/mile (the VMT-weighted average of the three classes of 
vehicles shown); multiplying by 1.31, the 2000-to-1990 ratio of the consumer price index for all urban consumers 
(obtained from US Bureau of Labor Statistics at http://stats.bls.gov/cpihome.htm); and applying the ratios of low-to-
middle and high-to-middle total air-pollution costs from US FHWA (2000a, Table 10). The FHWA estimates are 
drawn from a study by the US Environmental Protection Agency (EPA), except they are adjusted downward to 
reflect the FHWA’s preferred 1990 “value of statistical life” of $2.7 million, which is lower than the value of $4.8 
million used by EPA. 

23 For the European estimates, we obtain a range of 0.37-2.7 cents/mile from Quinet’s Table A.1, after deleting 
extreme high and low estimates and multiplying the results from the early 1990s by 1.35 to adjust for UK inflation. 
A study by ECMT (1998, Table 78) estimates this cost at ECU 0.0084/km, or 1.2 US cents/mile, for the UK. As for 
emissions per mile standards, a definitive comparison is impossible because they are constantly changing and in the 
US they vary by state; but a review of Appendices A and B of ECMT (2000) shows that they are similar in 
magnitude. 
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adaptive technologies that may be in place a half-century or more from now.  Tol et al. (2000) review the 

estimates and conclude that (p. 199): “it is questionable to assume that the marginal damage costs exceed 

$50 /tC” (metric ton carbon). In fact, nearly all the evidence reviewed by Tol et al. suggests values 

considerably lower than this upper bound. Fankhauser (1994), using a Monte Carlo technique to capture 

uncertainty, suggests an expected damage in the early 1990s of $20/tC, or as high as $33/tC if 

catastrophic events are given positive probability. The review by ECMT (1998, p. 70) cites estimates 

ranging from $2-$10/tC. Nordhaus (1994) and Cline (1990) give mid-range values that average to $4.2/tC 

in year-2000 prices, while Nordhaus’s low estimate is $0.7/tC. Nordhaus and Boyer (2000) estimate a 

shadow value of carbon under a scenario resembling the Kyoto Protocol at $35/tC (1990 prices) in year 

2015.24 Azar and Sterner (1996) arrive at much higher estimates, $260-590/tC, but using less conventional 

methods.25 A European Union research project known as QUITS suggests an intermediate range of 

US$66-170/tC (Rothengatter, 2000, p. 108). All these are estimated costs to the entire world. 

 Given this evidence and the great uncertainty, we take the central value to be $25/tC with range 

$0.7-100. This is equivalent to a central value for FPE of 6 cents/gal, with range 0.2-24.26 These values are 

small in comparison to local pollution. They do not account explicitly for the possibility that for political 

or institutional reasons it may be desirable to adopt measures early in order to provide flexibility in 

responding to future scientific findings. 

 

External congestion cost: EC (cents/mile). Congestion is a nonlinear phenomenon, and highly variable 

across times and locations.  Therefore the marginal congestion cost averaged over an entire nation 

depends on the proportion of its traffic that occurs in high-density areas at peak times. 

                                                      
24 Their Table 8.4, column labeled “Annex I trade,” which permits emissions trading among the developed nations 
as is allowed by the protocol. The shadow value drops to $11/tC if emissions trading is extended globally, which the 
“Clean Development Mechanism” mimics in a crude way. Nordhaus and Boyer also state that “all policies that pass 
a cost-benefit test have near-term carbon taxes less than $15 per ton” (p. 175). 

 

25 For example, they assume the subjective rate of time preference is zero. They also apply distributional weights to 
income losses in rich and poor nations which are equal to one for rich nations and more than one for poor nations, 
thereby effectively capturing a pure transfer benefit from spending today in rich nations in order to help poor nations 
in the future.  

26 The conversion rate of 413 gal/tC is based on US National Research Council (2001), p. 5-5. 
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 A number of studies estimate congestion costs for individual cities, but few attempt an average 

over a nation.  One good one is Newbery (1990) for the UK. He estimates the marginal external cost of 

congestion averaged across 11 road classes at 3.4pence/km, or around 10-12 US cents/mile after updating 

to 2000.27  By way of comparison, Mayeres (2000, Table 5) and Mayeres and Proost (2001a) obtain 

marginal congestion costs for Belgium equivalent to around 12 cents per mile. 

 For the US, Delucchi (1997) estimates 1990 external congestion costs from private vehicles at 

1.3-5.6 cents per vehicle-mile (in 2000 prices), with a geometric mean of 2.5 cents.28 The US Federal 

Highway Administration (FHWA), in its Highway Cost Allocation Study, estimates marginal external 

congestion costs for autos, pickups, and vans at 5.0 cents/mile, with range 1.2-14.8.29  

 These VMT-weighted averages need to be adjusted for our purposes because the congestion cost 

enters our formula multiplied by the sensitivity to gasoline price (see equation 2.14). That sensitivity is 

less under congested conditions, both because more work trips occur during peak periods and because, 

through self-selection, more trips in congested conditions are of high value to the user.30 What we require 

is an average weighted not only by VMT but by fuel-price elasticity.31 Adjusting the estimates just 

described for this would lower the marginal cost in both countries, but more so in the UK than the US; so 

it also reduces the gap between their marginal congestion costs. Another factor that argues for a smaller 

                                                      
27 Scaling up Newbery’s estimate by wage inflation (about 64% in UK manufacturing between 2000 and 1990, per 
International Labour Organization 2000, table 5A, p. 894) gives about 12.5 cents/mile. Wardman (2001) suggests 
that the opportunity cost of travel time increases by wage growth to the power 0.5, which instead would yield 9.6 
cents per mile. We do not adjust for increased congestion over time, because some or all of that increase is offset by 
people moving to less-congested regions (Gordon and Richardson, 1994).  

28 This calculation is from Delucchi’s Table 1-A4 (p. 57), and assumes that travel is two-thirds “daily travel” and 
one-third “long trips”, with average vehicle occupancy 1.3. This yields a range of 0.75 to 3.26 cents per passenger-
mile in 1990. We update by the factor 1.32 for inflation between 1990 and 2000. 

29 Calculated from US FHWA 1997, Table V-23, using VMT weights 0.73 for automobiles and 0.27 for pickups and 
vans (from US FHWA 1997, Table ES-1) and updating from 1994 to 2000 prices by the consumer price index for all 
urban consumers (factor of 1.16). The low, middle, and high FHWA estimates assume values of congested travel 
time of $7.18, $14.36, and $21.54 per vehicle-hour in 2000 prices (FHWA 1997, Table III-11, updated by inflation 
factor 1.16), and also differ in that the amount of delay caused by an average vehicle is halved in the low estimate, 
and doubled in the high estimate, compared to the middle estimate. 

30 For example, Mayeres and Proost (2001b, table 4) report that trips on uncongested roads are three times as price-
sensitive as peak-period trips. 

31 In a richer model distinguishing among many classes of roads and times of day, each class would contribute a 
term like EC ⋅(-dM/dtF) in (2.9). Adding these terms together would be equivalent to creating a weighted average 
value for the external cost, EC, weighting each class of traffic by its fuel-price-sensitivity. 
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gap is that some of the differences among studies of the two nations are probably due to different 

assumptions. Still, it is entirely reasonable that marginal external congestion costs are somewhat higher in 

the UK than the US, because the UK has a much higher overall population density and a higher 

proportion of its population lives in cities.32 

 With these factors in mind, we adopt central values of 3.5 cents/mile and 7 cents/mile for the 

marginal congestion cost averaged across the US and UK respectively. We consider ranges of 1.5-9.0 

cents/mile for the US and 3-15 cents/mile for the UK.33 

 

External accident cost: EA (cents/mile). Several researchers have found that the total costs of motor 

vehicle accidents are quite large, comparable to time costs (Newbery 1988, Small 1992). However, 

accident rates have declined significantly since the studies of the 1980s. Furthermore, the majority of 

these costs are not external. Drivers presumably take into account the uninsured portions of risks to 

themselves and probably to other family members in the car. Traffic laws and graduated insurance rates 

create penalties which drivers may perceive as costs incurred on an expected basis. And some studies 

have suggested that the sign of a′ in equation (2.15), relating severity-adjusted accident rates to total 

travel, is negative because accidents are so much less severe with slower traffic.34 All these factors tend to 

make the accident externalities much smaller than the average accident costs estimated a decade ago. 

                                                      
32 For example, one-sixth of the UK population lives in London, where street congestion is notoriously bad.  
Mohring (1999) estimates that the average peak-period marginal external cost for roads in the Minneapolis area is 18 
cents/mile in 1990 while Newbery’s estimate for urban peak-period travel is 51 cents/mile for 1990, suggesting that 
urban congestion is more severe in the UK than in the US.  Moreover, Newbery’s table suggests that about two-
thirds of UK travel was urban, whereas it is about 60% for the US (US FHWA 1991, Table VM-2). 

33 Ideally these values should be considered exogenous to the tax rate, due to nonlinearity of congestion; but national 
data are barely adequate to estimate a single number, much less a functional relationship, so we approximate EC as 
constant. 

34 Fridstrøm and Ingebrigtsen (1991) and Fridstrøm (1999) provide such evidence. For more discussion of these 
issues, see Newbery (1990), Delucchi (1998b), and Small and Gomez-Ibanez (1999). Note that even if insurance 
were charged on a per mile basis, the social costs of driving would still exceed the private costs. In particular, 
insurance companies do not pay the full value of a statistical life for fatalities. 
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 Taking these considerations into account, Delucchi (1997) estimates the marginal external cost EA 

for all motor vehicles for the US in 1991 at 1.4-9.8 cents/mile in 2000 prices.35 The US Federal Highway 

Administration estimates EA for autos, pickups, and vans, which we again update to 2000 prices to get 2.3 

cents/mile with range 1.3-7.2 cents/mile.36 For the UK, Newbery (1988) estimates EA for cars and taxis at 

values that convert to 7.8-11.4 cents/mile in US currency at 2000 prices.37 While the US and UK 

estimates might seem rather far apart, they are really not when two adjustments are made: for value of life 

and for changes in accident rates since the studies were performed. 

 Our preferred values for a statistical life are derived from a meta-analysis by Miller (2000) and 

are $4.8 million for the US and $3.2 million for the UK.38 For a range, we multiply by 0.5 for the low end 

and 1.5 for the high end. We adjust the corresponding values of statistical life assumed by the above three 

studies (stated in US$ at 2000 prices) to these preferred values. When we do this, we find that the two US 

estimates are adjusted only modestly. However, the UK estimate is reduced very substantially at the low 

end and slightly at the high end; this is because Newbery used a single value of life that was US$5.5 

                                                      
35 We have added the low and high totals in Delucchi’s Table 1-8 (monetary externalities) to those in his Table 1-9A 
(non-monetary externalities), and divided by VMT from his Table 1-A5, obtaining 1.1-7.8 cents/mile in 1991. The 
US inflation factor from 1991 to 2000 is 1.26. 

36 US FHWA (1997). We have taken the VMT-weighted average of “automobiles” and “pickups and vans” for all 
highways, from Table V-24, and inflated by the factor 1.16 to put in year-2000 prices. The FHWA estimates are 
derived from calculations in Urban Institute (1991). The middle and high estimates include uncompensated costs of 
pain and suffering, but only the high estimate includes costs paid by insurance companies; see US FHWA (1997), p. 
III-18. 

37 Newbery’s range, corrected for a transcription error, is 2.0-2.9 pence/km (1984 costs at 1986 prices). The stated 
upper range in Newbery’s article is 4.9 rather than 2.9, but this is due to an error in copying a column of figures for 
“externality costs” from one table to another in his working paper, Newbery (1987). We have updated by the factor 
1.74 for inflation, an approximation for the UK consumer price index as given by International Monetary Fund 
(2000). We then multiply by conversion factors 1.4 cents/pence and 1.61 miles/km. From Newbery’s Table 3 it is 
apparent that virtually all the costs in the low estimate are deaths and injuries to pedestrians, whereas those in the 
high estimate also include one-fourth of the costs of fatalities and injuries incurred by motorists. 

38 Miller compiles 68 credible studies from 13 developed nations and uses regression analysis to relate their results 
to real gross national product (GNP) per capita and to several control variables. The resulting values are found to be 
nearly proportional to GNP per capita, having an elasticity of 0.96. Furthermore, the regression results permit an 
adjustment for various differences in study methodologies, and therefore a set of consistent predictions of value of 
statistical life for any developed nation. In 1995 US$, Miller’s predicted values of statistical life are $3.67 million 
for the US and $2.75 million for the UK. Inflating to 2000 price levels and adjusting for changes in real GNP per 
capita (with 0.96 elasticity), yields the values stated in the text. 



  

20 

million in 2000 prices, substantially higher than our preferred value for the UK and slightly higher even 

than our high estimate for the UK.39 

 Next, we adjust for the dramatic decreases in fatality and injury rates in both nations. We assume 

half of EA is directly proportional to the fatality rate and half to the injury rate. In the US, these two rates 

fell on average by 21 percent since 1991 and by 6 percent just since 1994; in the UK they fell by 52 

percent since 1986. Adjusting the studies by these factors gives the following ranges, all in year-2000 US 

cents per vehicle-mile:  Delucchi 1.0-8.3; FHWA 1.9-6.4 (middle 2.7) Newbery 1.1-4.7. (By way of 

comparison, Mayeres 2000 and Mayeres and Proost 2001a use estimates of around 3.0-4.5 cents/mile for 

Belgium.) 

 Based on these ranges, we take 3.0 and 2.4 cents/mile as the central estimates for the US and UK, 

respectively. 40 In each case, we divide the central estimate by 2.5 to get the low estimate, and multiply by 

2.5 for the high estimate. 

 

Gasoline price elasticities, ηFF and ηMF . Reviews of the many time-series and cross-sectional studies of 

demand for gasoline conducted before 1990 generally find price elasticities between 0.5 and 1.1.41 

However, more recent studies often find values about half as large, with a best estimate proposed by US 

                                                      
39 In making the adjustments, we assume the US estimates apply to half the costs, but the UK estimates apply to all 
the costs. This procedure is based on the assumption that the value of injury prevention is proportional to value of 
statistical life, and on the fact that half the US but all the UK estimate reflects deaths and injuries (the rest being 
mainly property damage). The resulting adjustment factors are: Delucchi low estimate 0.975, high 1.07; FHWA low 
1.54, middle 1.26, high 0.95; Newbery low 0.29, high 0.87. 

40 We have deliberately chosen the ratio of these estimates to be 0.8 from the following consideration. The two main 
differences between the US and UK affecting EA are: (a) the UK has about two-thirds as high a willingness to pay 
for reduction in injury and death, based on Miller's study; and (b) the fatality rate in the UK is about 79 percent of 
that in the US, whereas injury rates are about the same. (This latter statement is based on 1998 rates, which are 1.58 
and 1.25 per 108 vehicle-miles in US and UK, respectively, for fatalities, and 117 and 122 for injuries. Source: 
Economic Commission for Europe 2000, pp. 18, 122, and US FHWA 2000b, Table VM-1.) Assuming that fatalities 
account for one-fourth of the external costs, and injuries another one-fourth, and that other external costs are 
proportional to injury rates, this suggests that EA in the UK and the US have the ratio 0.25x(2/3)x0.79 + 
0.25x(2/3)x1.0 + 0.5x1.0 = 0.80. 

41 Dahl and Sterner 1991, Table 2; Goodwin 1992, Table 1; Espey (1996, Table 4); Espey (1998, Table 5); Graham 
and Glaister (2002), p. 10. 
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DOE (1996) of 0.38.42 We adopt a compromise value for ηFF that is somewhat closer to the recent 

estimates, namely 0.55, with a range 0.3 to 0.9. 

 Studies of the response of total vehicle travel to fuel prices typically get much lower long-run 

elasticities, mostly ranging from 0.1 to 0.3 but sometimes larger.43 These numbers would suggest a ratio 

β≡ηMF /ηFF around 0.25 to 0.5. When the same study is used to measure both elasticities, the ratio tends to 

vary between 0.2 and 0.6.44 Based on this information, we choose a central value for β of 0.4, and a range 

of 0.2 to 0.6. This central value is close to the recommendations of Johansson and Schipper (1997) and 

US DOE (1996).45 

 Our central values for ηFF and β  imply that the elasticity of VMT with respect to fuel price, ηMF, 

is 0.22. This quantity is crucial for the analysis of the VMT tax. 

 

Expenditure elasticity of demand for VMT, MIη . This is for practical purposes the same thing as an 

income elasticity. It is important in calculating the Ramsey component of the optimal tax rate in (2.11). 

Estimates are typically between about 0.35 and 0.8, although a few estimates exceed unity.46 We might 

expect the income elasticity to be a little higher in the UK because there is more room for vehicle 

                                                      
42 The differences occur mainly because the more recent studies better control for some or all of three confounding 
factors: (a) corporate fuel economy standards that were binding on some but not all manufacturers, (b) correlation 
among vehicle use, vehicle age, and fuel economy, and (c) geographical correlation between fuel price and other 
variable costs of driving such as parking fees. See the discussion in US DOE (1996), pp. 5-13 through 5-15 and 5-82 
through 5-87. The “best estimate” quoted is that in the first row of numbers in Table 5-2. One recent study 
producing a higher estimate, albeit on Canadian rather than US or British data, is Yatchew and No (2001), who 
suggest the long-run elasticity is 0.9. 

43 Goodwin (1992), Table 2; Greene et al. (1999), pp. 6-10; US DOE (1996), pp. 5-83 to 5-87. 

44 The VMT-portion of the gasoline demand elasticity in four studies reviewed by Schimek (1996), including his 
own, was 59%, 57%, 24%, and 19%, for an average of 40%. One study, Puller and Greening (1999), gets a ratio 
greater than one, implying a negative elasticity of fuel efficiency with respect to fuel price. This could result from 
travelers selectively reducing trips, such as vacations, that are relatively fuel efficient. We are skeptical of this result, 
and furthermore it would be inappropriate to use in our model because its explanation implies that urban VMT, 
which account for most of the externalities, are reduced by much less than total VMT. Graham and Glaister (2002, 
p. 17) conclude from their review that the ratio is well below one in the long run. 

45 The Johansson-Schipper best value is [1-(0.4/0.7)]=0.43, from their pp. 289-290. The US DOE best value is 0.46, 
calculated from the top row in US DOE (1996), Table 5-2; that row decomposes a long-run price elasticity of 0.376 
into a fuel efficiency component (0.200) and a vehicle-travel component (0.176). 

46 Based on Pickrell and Schimek (1997), and Pickrell (personal communication). 
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ownership to grow, and more room for mode shifts to and from public transport. We set the central value 

for income elasticity at 0.6 for the US and 0.8 for the UK.  For a range, we choose plus or minus half the 

central value. 

 

Labor market and other parameters. The remaining parameters are less important. There is a large 

literature on labor supply elasticities for the US.47 Based on this literature, we adopt the same values for 

supply elasticities in both countries: for the uncompensated elasticity LLε  a central value of 0.2 with 

range 0.1-0.3, and for the compensated elasticity c
LLε  a central value of 0.35 and a range 0.25-0.50. These 

elasticities reflect both participation and hours worked decisions, averaged across males and females. 

(Since most of the labor supply-response arises from changes in participation, the relevant labor-tax rate 

tL is primarily the average rather than the marginal rate, which provides some justification for our 

assumption of a proportional labor tax.) 

 We assume that the ratio of total government spending to GDP (αG) is 0.35 for the US and 0.45 

for the UK, based on summing average labor and consumption tax rates in Mendoza et al. (1994). For the 

range we add plus or minus 0.05. 

For the producer price of gasoline (qF) we use $0.94/gal and $1.01/gal for the US and UK 

respectively.48 For the range, we add plus or minus $0.50/gal, which is 2.7 standard deviations of the 

weekly retail prices for the US (keeping in mind that some of that variation is due to tax changes). Initial 

gasoline tax rates are taken from Figure 1 (rounding off slightly) at $0.40/gal for the US and $2.80/gal for 

the UK. Finally, we assume production shares Fα  of 0.012 for the US and 0.009 for the UK, based on 

shares of gross domestic product spent on motor gasoline.49 

                                                      
47 See, for example, Blundell and MacCurdy (1999) for a review of both US and UK studies, and also Fuchs et al. 
(1998). 

48 Both UK and US prices are provided by the US Energy Information Administration weekly from 1996 through 
early June of 2001 (see www.eia.doe.gov/emeu/international/gas1.html). The retail price for premium gasoline, 
including tax, averaged over this period was US$1.42/gal in US and US$3.93/gal in UK.  We subtract $0.10/gallon, 
which is about half the difference between premium and regular prices in the US, and we subtract the taxes shown in 
Figure 1 to obtain the producer prices.  

49 For the US, the share is based on 1999 consumption of motor gasoline of 3.06x109  barrels (US Energy 
Information Administration 2000, Table 5.11), net-of-tax gasoline price of $(1.25-0.38) per gallon (average of 
premium unleaded 95RON and 91RON), and gross domestic product of $9.30x1012.  For UK, it is based on 1998 
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4. Empirical Results 

A. Benchmark Calculations 

(i) Optimal Tax Rates.  Table 2 gives the components of the second-best optimal gasoline tax *
Ft  under 

our central parameters. The total is $1.01/gal for the US, more than twice the current rate, and $1.34/gal 

for the UK, less half the current rate. Thus, according to these estimates, the tax rate is justifiably higher 

in the UK than in the US but the current size of the difference is unjustified. The difference between the 

two countries in the optimal tax rate is due primarily to the higher assumed congestion costs for the UK. 

 These results are 9-22 percent above the marginal external cost MECF shown in the second row, 

which would be the optimal tax rate in the absence of labor-market distortions. The three interactions with 

the tax system that causes the optimal tax rate to differ from this amount are relatively modest in size and 

partially offsetting. For the UK, where the marginal excess burden of labor taxation is higher due to the 

higher average income-tax rate,50 the narrow base of the gasoline tax relative to the labor tax shaves $0.19 

from MECF in reaching the “adjusted Pigovian tax;” but the Ramsey component adds back $0.23 and the 

congestion-feedback effect another $0.07. For the US, the narrow base subtracts only $0.09, but the 

Ramsey component adds $0.26.  

 These results for *
Ft  are far below the “naïve” computation typically proposed in the literature. 

That value, here denoted 1
FMEC , is MECF as computed from (2.12a) but with β=1 and with fuel economy 

held at its initial value. Our calculation of 1
FMEC  is shown in the last row of the table. It is especially 

high in the UK because the mileage-related externalities in 1
FMEC  are multiplied by initial rather than 

optimal fuel economy, and in the UK they are substantially different (30 versus 25.6 miles per gallon). 

                                                                                                                                                                           
consumption of 511,000 barrels per day (source: US Energy Information Agency (2001), Table 3.5) at net price 
(2.57-1.73) pounds per gallon (average of premium leaded and premium unleaded gasoline) and gross domestic 
product of 747x109 pounds. Source for prices: International Energy Agency (2000), pp. 286, 277. 

50 In our case the marginal excess burden depends only on uncompensated labor supply elasticities, which are fairly 
small. For other purposes, for example when the extra revenue is used to finance transfer spending, the marginal 
excess burden would be much larger because it would depend in part on the compensated labor supply elasticity. See 
Snow and Warren (1996) for more discussion. 
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 Of the three externalities included in MECF, congestion is easily the largest component in the UK 

but only slightly larger than accidents and air pollution in the US. The global warming component is 

small, and is the smallest of the four externalities even if we were to triple our central estimate of global 

warming costs. 

 

(ii) Welfare Effects.  Table 3 shows the welfare effects, relative to the current situation, of several tax 

rates including the second-best optimum *
Ft  and the “naïve” value just described. Raising the US tax from 

its current rate ($0.40/gal) to *
Ft  ($1.01/gal) would induce a welfare gain equal to 7.4 percent of pre-tax 

fuel expenditures. Raising it to the “naïve” rate ($1.76/gal), by contrast, would overshoot the optimal rate 

so much as to yield very little net benefit. For the UK, the welfare gain from reducing the current tax 

($2.80/gal) to the optimal ($1.34/gal) would produce substantial gains, nearly one-fourth of pretax 

gasoline expenditures, while increasing the tax to the “naïve” rate of $3.43 would create a welfare loss of 

nearly 18 percent of pretax expenditures. 

 Table 4 shows results for a VMT tax. Results are computed at four different tax rates: (a) the 

initial fuel-tax rate converted to a per-mile basis using initial fuel efficiency; (b) the VMT rate that raises 

the same revenue as did the original fuel tax;51 (c) a pure Pigovian tax equal to the “naïve” fuel-tax rate 

described above, converted similarly to a per-mile basis using initial fuel efficiency; and (d) the optimal 

VMT tax rate. The welfare change is the net gain from reducing the gas tax from 0
Ft  to zero then 

increasing the VMT tax from zero to the rate shown (see Appendix for details). Table 5 gives some 

additional detail for the optimal VMT tax rate for the US, showing that the mileage-related components of 

the adjusted Pigovian tax are approximately doubled, and the Ramsey component quadrupled, in 

comparison to the optimal fuel tax.52 

                                                      
51 That rate is FMFt α0 . The revenue from either the fuel tax or the VMT tax is tFF in our notation. Since fuel use 

under either tax is given by FF
FFFF tqtqFF ε−++= )]/()[( 00 , where F0 is initial fuel use, F is identical to F0 under 

either the fuel tax at rate 0
Ft  or  the VMT tax at rate FMFt α0 . 

52 The increase in MECF is due to the higher value of β, offset slightly by a lower value of fuel efficiency (1/αFM). 
The increase in the Ramsey component is due to the lower value of ηFF and the higher value of after-tax fuel price 
( v

FF tq + ). 
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 Comparing the welfare changes in Table 4 with those in Table 3, we see that the VMT tax can 

achieve much greater gains than a fuel tax in the US, and moderately greater gains in the UK. 

Furthermore, the optimal VMT tax is very high, around 15 cents per vehicle-mile; it brings in 150 percent 

more revenue than the optimal fuel tax in the US and 70 percent more in the UK (not shown in the table).  

Several other observations about VMT taxes are noteworthy. First, in the UK, just converting the 

current fuel tax to an equal-revenue VMT tax achieves substantial benefitsmore than one-fifth of 

current fuel expenditures and more than the welfare gain from cutting the fuel tax from $2.80/gal to its 

optimal rate of $1.34/gal. (This is less true in the US, because the fuel-tax rate is already too low to 

accomplish much in the way of externality reduction.) Second, it happens that the current tax burden on 

driving in the UK is only seven percent lower than the amount that would be optimal if it were levied on 

VMT instead of fuel. Third, the pure Pigovian (“naïve”) VMT tax achieves most of the benefits of the 

optimal VMT tax. Fourth, a breakdown of the optimal VMT tax into the three components listed in 

equation (2.11) reveals that the Ramsey component is quite large: 42 percent of the optimal rate in the US 

and 31 percent in the UK. This is because the VMT elasticity with respect to fuel cost is quite small, 0.22 

in our base calculations, making VMT a more attractive target than fuel for a Ramsey tax. 

Finally, Table 6 shows how the optimal gasoline tax and the resulting total external costs vary 

with government revenue requirements, which effectively means how they vary with the labor-tax 

distortion. In each country, as government revenue requirement αG is increased, the adjusted Pigovian tax 

decreases but so does the total externality damage, calculated from (2.14). This confirms for our model a 

finding of Metcalf (2000) for a simpler model, 53 and reinforces Metcalf’s point that increasing the labor-

tax distortion does not necessarily make it optimal to put up with greater externality damage. 

  

B. Sensitivity Analysis  

How sensitive are the results in Table 2 to variations in parameters within the ranges we have 

suggested are plausible? We explore this question in several ways. 

 

                                                      
53 In Metcalf’s model, this occurs because as the labor tax is increased in response to greater revenue requirements, 
the substitution of dirty for clean goods caused by lowering the adjusted Pigovian tax (due to the term 1+MEBL in its 
denominator) is more than offset by substitution of leisure for consumption of the dirty good. 
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(i) Varying Parameters Individually.  First, we vary each of the six most important parameters one at a 

time, holding all others at their central values. The results are shown in Figure 2. The upper and lower 

curves in each panel show the calculated UK and US optimal tax rates, and ‘X’ denotes the optimal tax in 

the benchmark case (that in Table 2). The range covered by each curve is that shown in Table 1 for that 

parameter and nation. 

 In most cases, optimal tax rates vary by around US$0.50-$1.00/gal as we cover the reasonable 

range of each parameter. Results are more sensitive to congestion costs, due to their dominance in the 

optimal tax calculation. Results in the UK are also especially sensitive to the VMT portion of the price-

elasticity of gasoline consumption, β, because it multiplies all the mileage-related externalities. 

Results are not very sensitive to the labor tax rate, labor supply elasticity, fuel-related pollution 

damage, or producer price of gasoline, which when varied individually across their ranges change the 

result by up to only about plus or minus 5 cents/gal (these results are not shown in the figure). 

 

 

(ii) High and Low Scenarios for the Optimal Tax. Table 7 shows how high external costs would have to 

be in order that selected values of the gasoline tax are optimal, assuming specified values for the VMT 

portion of the gasoline demand elasticity β. In constructing these scenarios, all four external cost 

components of MECF in equation (2.12) are scaled up or down by the same proportion relative to their 

central case values. Each entry in the table is the required value of these external cost components as a 

fraction of their corresponding benchmark values in Table 2. 

 Table 7 shows, for example, that for the current US tax rate of $0.40/gal to be optimal, we would 

have to assume values for all external costs that are only 33% of those in our central case when β = 0.4, or 

between 23% and 61% of the central case values when β lies between 0.2 and 0.6. For the UK, with β = 

0.4 the current tax of $2.80/gal would be optimal if all external costs were 1.88 times their benchmark 

values, while a tax of only $1.00/gal would be optimal if all external costs were 24% below their 

benchmark values. 

 



  

27 

(iii) Monte Carlo Analysis. Clearly, a wide range of outcomes is possible under alternative parameter 

scenarios. To give a sense of how likely different outcomes might be, given our parameter ranges, we 

perform some simple Monte Carlo simulations. We focus on an approximation for the optimal tax rate 

(which does not require solving simultaneous equations) when external costs and the VMT portion of the 

gasoline demand elasticity are uncertain. For each country we draw those parameters randomly and 

independently 1000 times from selected distributions and for each draw we calculate the optimal gasoline 

tax *
Ft . This calculation uses (2.11)-(2.12), but in (2.12) and on the right-hand side of (2.11) it uses the 

values for αFM, tL, and tF from our benchmark case in Table 2. We then compute the distribution of *
Ft  

across the 1000 draws.54 

 Table 8 shows the resulting frequencies with which the (approximate) optimal tax is less than a 

given value. Here we see that for the US, the probability that the optimal tax is less than the current tax of 

$0.40/gal is only 0.01, and the probability that it is below $1.00 is 0.58. For the UK, marginal external 

costs are below the current tax of $2.80/gal with probability .98, and below $1.50 with probability 0.68. 

  

 

5. Conclusion 

 Policy toward gasoline taxation can be assessed most effectively within a framework that 

explicitly incorporates revenue needs and the existence of other distorting taxes. Such a framework makes 

clear, among other things, how far from optimal would be a tax calculated simply by multiplying per-mile 

external costs by average fuel efficiency. A primary reason is that people can partially evade such an 

externality tax by increasing fuel efficiency. 

 Our best assessment is that the optimal gasoline tax for the US is more than double its current 

rate, while that for the UK is less than half its current rate. Paradoxically, the prospects are remote for 

                                                      
54 For all external costs we fit gamma distributions with means equal to our central values and with 5% and 95% 
percentiles roughly equal to the minimum and maximum values for these parameters specified in Table 1. For the 
VMT fraction of the gasoline price-elasticity, we assume a uniform distribution over the parameter range. We 
experimented with other distributions but the results were only modestly affected. As discussed above, the optimal 
gasoline tax is far more sensitive to these parameters than the other parameters in the optimal tax formula. 
Therefore, the results would probably be similar if we had done a much more complex Monte Carlo analysis with all 
the uncertain parameters in Table 1 drawn from distributions and with the optimal tax computed numerically for 
each draw. 
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substantial change in the direction of optimality in either nation, given current political factors. In the US, 

the Clinton Administration achieved an increase in the federal gasoline tax rate of only 4 cents/gal in 

1993, despite a major effort. In the UK, the Conservative Party’s 2001 election pledge to cut gasoline 

taxes by 6 pence/liter (32 US cents/gal) failed to resonate with an electorate concerned about global 

warming and the funding of public services. 

 Both countries could do a lot better by addressing the external costs of driving, which are 

substantial, with other instruments. On that score there are some limited grounds for optimism, for 

example the experiments with “value pricing” in California and Texas and the plans for cordon pricing in 

London. But it will be a long time before these types of policies could become widespread.

 However, our results also reveal the attractiveness of a less drastic change, namely a tax on 

vehicle-miles. Such a tax is considerably more efficient than a tax on fuel, even though it falls short of a 

true externality tax. For the US, achieving benefits from such a shift would still require greatly increasing 

the tax burden on motorists, which may be politically untenable. But for the UK, more could be gained in 

welfare simply from swapping gasoline taxes for mileage taxes, even with no change in the overall 

burden of taxation on driving, than from reducing the gasoline tax to its optimal level. The analytical 

framework described here enhances our ability both to analyze such a shift and to explain its advantages. 

 Our analysis could be criticized for ignoring distributional issues. It is commonly thought that 

gasoline taxes are regressive and therefore should be set at lower levels than implied by a pure efficiency 

maximizing analysis. However the evidence is less convincing when measures of lifetime, as opposed to 

annual, income are used as proxies for individual well-being. For example, according to Poterba (1991) 

the portion of lifetime income spent on gasoline is only slightly larger for the lowest income decile than 

for the top income decile, and is greatest for middle-income households. Furthermore, nations that set 

higher fuel taxes for policy reasons may choose to offset any adverse distributional aspects with other 

policies, as arguably is the case throughout western Europe. 

 By ignoring gasoline-powered vehicles used in production, our model may understate the 

distortion caused by taxing fuel used as an intermediate good. However, only 3.2 percent of the gasoline 

used for highway travel in the US is used for medium or heavy trucks (Davis 2001, Table 2.4), and of the 
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40 percent used for light trucks probably less than half is part of production. If we were to analyze diesel 

taxation, we would need to pay more attention to production. 

 We do not address the complex industrial organization of the petroleum industry or the manner in 

which the tax system may favor it. Given the importance of petroleum imports for the US and exports for 

the UK, we expect that such considerations primarily affect the distribution of economic rents rather than 

the resource cost of the marginal source of fuel for consumption. Similarly, we do not consider how fuel 

taxes might be used by a large country to affect its terms of trade; other aspects of international politics 

are far more significant in determining the price of imported oil. 

 Finally, our model of the tax system is greatly simplified and ignores, in particular, taxes on 

capital. Bovenberg and Goulder (1997) have studied the interactions between gasoline taxes and the 

capital market, using a highly detailed dynamic model of the US tax system. They find that capital market 

interactions do not greatly alter the welfare costs of gasoline taxes that would be predicted by a purely 

static model. This is again because gasoline is primarily a consumption good, not an investment good. 
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Appendix: Analytical Derivations for Section 2 

A. Definitions 

For the analytical derivations we define the following terms: 

(A1) LtI L )1( −= ; 
M
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I
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M
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F
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F
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dt
dF F
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M
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−=η ; 
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FpF
FI

)(
=θ ; FFF tqp +=  

 

B. Deriving (2.9) 

Using (2.1)-(2.3), (2.6) and (2.7), the household’s utility maximization problem can be expressed as: 

(B1) ),,,,( πAPttV LF =
HFNMC

Max
,,,,

)()()),,,,(( APNGMMCu δϕπψ −− { }MHFM −+ ),(µ  

     + { }HFtqCMNLt FFL −+−−−−− )())(1( πλ  

where λ and µ are Lagrange multipliers and V(.) is the indirect utility function. (We have suppressed as 

arguments of V those parameters that are held constant throughout our simulation, namely qF and G.) The 

first-order conditions can be expressed, after using Euler’s theorem ( HMFMM HF += ): 

(B2a)  1=
λ
Cu

; L
N t

u
−= 1

λ
; M

M p
u

=
λ

 

where 

(B2b)  νπαα +++≡ HMFMFFM tqp )( ;      MFFM /≡α ;      MHHM /≡α ;    λ/1 TL utv −−≡  

Households equate the marginal benefit of driving (in dollars), λ/Mu , with pM, the “full” price of 

driving. The latter includes fuel used per mile ( FMα ), other market inputs per mile ( HMα ), and time per 

mile (π), all multiplied by their respective prices. Note that the “price” of time, v, is less than the net wage 

(1−tL) if the marginal utility of travel time, uT, is positive. The equality of marginal utility uM/λ and full 

price pM holds due to the envelope theorem, even though pM is endogenous to the individual consumer. 

 Because of the homogeneity property of M(.), the input ratios for producing travel are functions 

only of prices, which are all constant except for the fuel tax rate.  Therefore we can write the input ratios 

as FMα (tF) and HMα (tF). In practice, we simplify by specifying )( FFM tα as a simple empirical function 

rather than deriving it from the full model. Using (B2a) and (2.6)-(2.7), we can then obtain the demand 

functions in a conventional manner, writing them as 
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(B3a) ),( LM tpCC = ; ),( LM tpMM = ;   ),( LM tpLL = ;  

),()(),( , LMFFMLF tpMtttFF απ == ;  ),()(),,( LMFHMLF tpMtttHH απ ==  

The full price of driving depends on all the exogenous variables: 

(B3b) ),,( LFMM ttpp π= . 

Partially differentiating (B1), we can eliminate terms using (B2), the first-order conditions for F 

and H, and the Euler equation for M(.); we then obtain: 
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Totally differentiating (2.8) while holding G constant gives: 
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dFtF
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L

++
−=  

This is the balanced budget reduction in the labor tax from an incremental increase in the gasoline tax. 

The welfare effect of an incremental increase in the gasoline tax is found by using (B4) to write the total 

derivative dV/dtF, while taking into account the budget constraint via (B5) and the externalities via (2.3)-

(2.5). Because this is a normative analysis, the aggregates F and M  are variables in this calculation, and 

are set equal to F and M. The result is (2.9). 

 

C. Deriving (2.11) and (2.12)  

To determine the optimal tax *
Ft , we will set (2.9) to zero. But before that, we write its components in 

terms of empirically measurable elasticities. 

 First, consider the last term in (2.9). Substituting (B3b) into (B3a), we can write L as a function of 

tF, π, and tL. Differentiating totally as tF changes: 
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Substituting (C1) into (B5) and solving for dtL/dtF yields an alternative expression for the balanced-budget 

change in labor tax rate: 
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Substituting (C2) into (C1) and multiplying by tL yields: 
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where MEBL is defined in (2.12b).  

 We now consider the term in brackets in (C3). Using (B2b) and (B3a), and the chain rule for 

differentiating π(M): 
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From the Slutsky equations applied to the demand functions in (B3a): 

(C5) M
I
L

p
L

p
L

M

c

M ∂
∂

−
∂
∂

=
∂
∂

; L
I
L

t
L

t
L

L

c

L ∂
∂

−
∂
∂

=
∂
∂

 

where superscript c denotes a compensated coefficient. From the Slutsky symmetry property for goods in 

the utility function: 
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∂

 

Leisure is weakly separable in our utility function. Therefore when its price changes due to a change in tL, 

the resulting changes in the demands for consumption and for travel occur only through a change in 

disposable income (Layard and Walters 1978, p. 166). Therefore: 
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where L
c

L tLt ∂∂− /)1(  is the change in disposable income following a compensated increase in the labor 

tax.  Using (C4)-(C7) and the definitions of I, MIη  and EC from (A1) and (2.10): 
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Substituting (C8) in (C3), using the definitions of LLε , c
LLε  and LIη  in (A1), and using the Slutsky 

equation LI
c
LLLL ηεε +=  gives: 
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Using (C9) we can now equate (2.9) to zero. Dividing through by FdtdF / , and using the definition of 

FFη in (A1) and MEBL in (2.12b), we obtain (2.11). 

 Finally, using (B1): 
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(C10) FM
FF

M
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M
F
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Multiplying through by Ftq FF /)( + , and using MdtdF
MFFM /)/(=′α , we obtain the 

decomposition for FFη  in (2.12b). 

 

D. Deriving (2.13) 

First, use the definitions of FFη , MFη , and MECF to write (2.9) as: 
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where pF≡qF+tF. Next, substitute (C9) for the last term, regroup terms, and factor out (FηFF/pF) to get 
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where )1/( LLL tt −≡τ . From (2.12b) we can see that )1/(1)1( LLLLMEB ετ−=+ . Substituting this in 

the second term, factoring out (1+MEBL)(FηFF/pF) from both terms, and using (2.11) yields (2.13b). 

 

E. VMT Tax 

Suppose we replace the fuel tax by a VMT tax, i.e. a tax on M. To keep notation as similar as possible, 

denote the tax rate by v
FM

v
Ft α , where v

FMα  is the inverse of fuel economy with no fuel tax, determined 

from (2.12c) with tF=0. Because the production function M(F,H) is homogeneous and we no longer vary 

the price of either F or H, the input ratio FMα  is now constant at v
FMα . Therefore the tax payments can be 

written as FtMt v
FFM

v
F =α , in analogy to the tax payments FtF  in the case of the fuel tax. 

 As a result, the above derivations all apply with Ft  replaced by v
Ft . This includes replacing any 

derivative with respect to Ft  by the corresponding derivative with respect to v
Ft . As already noted, FMα  

is constant with respect to v
Ft . Equivalently, 0=M

FFη , so we see from (2.12b) that v
MF

v
FF ηη =  and β=1, 

where 

(E1) v
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v
FFv

MF dt
dM

M
tq +

≡η ; v
F

v
FFv

FF dt
dF

F
tq +

≡η . 
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 The question remains: What is the empirical counterpart of v
MFη ? Recall that the traveler is 

optimizing inputs F and H to produce M at least cost. Therefore the price of travel pM changes in either 

case by F times the change in tax rate ( Fdt  or v
Fdt ). To show this more formally, we decompose the 

changes in M both in the VMT-tax case and the fuel-tax case. Recall that M=M(pM,tL) from (B3a), with pM 

given by (B2b). Ignoring the small feedback from changes in tL via balanced-budget considerations 

(which is also ignored in our empirical measurement of the elasticities), we can use the chain rule as 

follows: 

(E2) FM
M

v
F p

M
dt
dM α

∂
∂

=  

(E3) 
F

M

MF dt
dp

p
M

dt
dM

∂
∂

= . 

The cost function for producing M is just MptMC MF )();( νπ−= . Applying Shephard’s Lemma 

yields 

(E5) FM
dt
dp

F

M =  

which implies that the right-hand sides of (E2) and (E3) are equal. Equivalently, MF
v
MF ηη = . This means 

that for purposes of calculating the VMT tax, MFη  is held at the same value as in the fuel-tax calculation, 

while βηη /MFFF ≡  is reduced to the value MFη  as β is changed to one. 

 In order to compute the welfare effects of replacing the fuel tax by a VMT tax at some arbitrary 

rate v
FM

v
Ft α , we proceed as follows. First, we gradually reduce the fuel-tax rate to zero, using (2.12c) to 

calculate the value of fuel efficiency and integrating (2.13b) to calculate the welfare change. Second, we 

use (2.11) to calculate the optimal fuel-equivalent VMT tax rate, *v
Ft . In this calculation we set β=1, ηMF 

equal to its previous value, ηFF =ηMF, and αFM to its zero-fuel-tax value, v
FMα . Third, using this value of 

*v
Ft  to replace *

Ft  in (2.13b), we integrate (2.13b) (with ηFF replaced by ηMF) while raising tF from 0 to v
Ft . 

The total welfare change is the sum of the two integration steps. 
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Source: International Energy Association, Energy Prices and Taxes, First Quarter 2000. 
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Figure 2. Sensitivity of Optimal Gasoline Tax to Parameter Variation 
(     US      UK) 
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Table 1. Parameter Assumptions 
(US units) 

 
 

US UK Parameter 
Central value range Central value range 

Initial fuel efficiency: 0/1 FMα  
(miles/gal)  

20 - 30 - 

Pollution damages, distance-
related: MPE  (cents/mile) 

2.0 0.4-10 2.0 0.4-10 

Pollution damages, fuel-related: 
MPE  (cents/gal) 

6 0.2-24 6 0.2-24 

External congestion costs: EC 
(cents/mile) 

3.5 1.5-9.0 7 3-15 

External accident cost: EA 
(cents/mile) 

3 1.2-7.5 2.4 0.96-6.0 

Gasoline price elasticity: ηFF 0.55 0.3-0.9 0.55 0.3-0.9 
VMT portion of gas price 
elasticity, β 

0.4 0.2-0.6 0.4 0.2-0.6 

VMT expenditure elasticity: MIη  0.6 0.3-0.9 0.8 0.4-1.2 

Uncompensated labor supply 
elasticity: LLε   

0.2 0.1-0.3 0.2 0.1-0.3 

Compensated labor supply 
elasticity: c

LLε  
0.35 0.25-0.5 0.35 0.25-0.5 

Government spending/GDP: αG 0.35 0.3-0.4 0.45 0.4-0.5 
Gasoline production share: Fα  0.012 - 0.009 - 

Producer price of gasoline: qF 
(cents/gal) 

94 44-144 101 51-151 

Initial tax rate on gasoline: 
0
Ft (cents/gal) 

40 - 280 - 
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Table 2. Benchmark Calculations of the Optimal Gasoline Tax Rate 

(All monetary figures in cents/gal at US 2000 prices) 
 

 US UK 
Elements in Equation (2.11):   
Fuel efficiency, M/F (miles/gal) 22.6 25.6 
Marginal external cost, MECF 83 123 

Pollution--fuel component, FPE  6 6 
Pollution--distance component, MP

FM E)/( αβ  18 20 

Congestion component, C
FM E)/( αβ  32 72 

Accident component, A
FM E)/( αβ  27 25 

Marginal excess burden, MEBL 0.11 0.18 
Adjustment to MECF for excess burden, 
       MECF•[(1+MEBL)-1-1] 

 
-9 

 
-19 

Components of optimal gasoline tax rate:   
Adjusted Pigovian tax: 74 104 

Pollution, fuel-related  5 5 
Pollution, distance-related  16 17 
Congestion  29 61 
Accidents  24 21 

Ramsey tax 26 23 
Congestion feedback 1 7 
Optimal gasoline tax rate ( *

Ft ) 101 134 

Naïve gasoline tax rate,a 1
FMEC  176 348 

 
a The “naïve” rate is MECF computed from (2.12a) with 0

FMFM αα =  and β=1. 
 

 

Table 3. Welfare Effects of Gasoline Tax Rates Using Benchmark Parameters 
(Relative to current rate, expressed as percent of initial pretax fuel expenditures) 

 
Fuel tax rate US UK 

 Rate 
(cents/gal) 

Welfare changea 
(% of pretax expen.) 

Rate 
(cents/gal) 

Welfare change 
(% of pretax expen.) 

0 0 -21.2 0 -51.2 
0.50 *

Ft  50 2.7 67 11.4 

0.75 *
Ft  76 6.4 100 20.3 

Optimal rate ( *
Ft ) 101 7.4 134 22.7 

1.25 *
Ft  126 6.6 167 21.0 

1.50 *
Ft  151 4.7 201 16.5 

Naïve rate ( 1
FMEC ) 176 1.9 348 -17.9 
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Table 4. VMT Tax: Benchmark Parameters 

 
 US UK 

VMT tax rate 
( FM

v
Ft α ) 

VMT tax 
rate 

(cents/mile) 
 

Equiv. fuel  
tax rate 

(cents/gal) 
( v

Ft ) 

Welfare changea 
(% of pretax 

expen.) 

VMT tax 
rate 

(cents/mile) 
( FM

v
Ft α ) 

Equiv. fuel 
tax rate 

(cents/gal) 
( v

Ft ) 

Welfare changea 
(% of pretax 

expen.) 

(a) Equiv. initial rate 
      ( 00

FMFt α ) 
 

2.0 
 

36 
 

-0.9 
 

9.3 
 

181 
 

21.6 
(b) Equal-revenue 
      ( FMFt α0 ) 

 
2.25 

 
40 

 
1.0 

 
14.5 

 
280 

 
27.4 

(c) Naïve ( 01
FMFMEC α ) 9.9 176 26.4 18.0 348 26.8 

(d) Optimal ( FM
v
Ft α* ) 14.0 248 28.4 15.5 300 27.5 

Componentsb of *v
Ft :       

Adjusted. Pigov. tax  142   193  
Ramsey tax  104   94  
Congestion feedback  2   13  

 
a Welfare effect of replacing the initial fuel tax by a VMT tax at the rate shown. Calculated using (2.11)-(2.13) with 
β=1 and 0

MFMF ηη = . 
 
b The components of *v

Ft  are the three identified terms in equation (2.11), with Ft  replaced by v
Ft .and with β=1, 

FMα  held at its value when tF=0, and ηFF set equal to ηMF. 
 
 
 
 

Table 5. Comparison of Fuel Tax with VMT Tax: US 
 

 Fuel Tax VMT Tax 
  

 
(¢/gal) 

Gasoline-
equivalent rate 

(¢/gal) 

Actual Rate  
 

(¢/mile) 
Components of optimal gasoline tax rate:    
Adjusted Pigovian tax:    

Global warming  5 5 0.3 
Pollution  16 32 1.8 
Congestion  29 56 3.2 
Accidents  24 48 2.7 

Ramsey component 26 104 5.9 
Congestion feedback 1 2 0.1 
Optimal tax rate ( *

Ft  or *v
Ft )  101 248 14.0 

Fuel efficiency (miles/gal) 22.6 17.8 17.8 
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Table 6. Effects of Government Revenue Requirement on  
Optimal Tax Rate and Total External Cost 

(External cost is relative to zero revenue requirement, as percent of initial pretax fuel expenditures) 
 

US UK αG 
*
Lt  *

Ft  Adj. 
Pigov. 

Tax 

Total 
Extern. 

Cost 

*
Lt  *

Ft  Adj. 
Pigov. 

Tax 

Total 
Extern. 

Cost 
0 -0.01 80 80 0 -0.01 120 121 0 

0.25 0.24 92 77 -2.7     
0.35 0.34 101 74 -4.6 0.33 129 110 -3.5 
0.45 0.44 114 71 -7.2 0.43 134 104 -5.4 
0.55     0.53 142 96 -8.3 

 
 
 

 

Table 7. Values for External Costs that Yield High and Low Values for the Optimal Gasoline Tax 
(expressed relative to the external costs for the benchmark case) 

 
 

US UK VMT portion of 
gasoline demand 

elasticity, β 
low value: 

tF=$0.40/gal 
high value: 

tF=$1.50/gal 
low value: 

tF=$1.00/gal 
high value: 

tF=$2.80/gal 
     

0.2 .61 2.60 1.54 3.62 
0.4 .33 1.47 .76 1.88 
0.6 .23 1.07 .48 1.27 

     
 
 
 
 

Table 8. Monte Carlo Results for Approximate Optimal Gasoline Tax 
 
 
 

US UK 
Amount in 

US cents/gal 
(X) 

Probability that 
XtF <*  

Amount in 
US cents/gal 

(X) 

Probability that 
XtF <*  

25 0 50 0 
40 0.01 100 0.30 
75 0.29 150 0.68 

100 0.58 200 0.90 
150 0.89 280 0.98 

 
 


