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Abstract

Engineering studies demonstrate that traffic in dense downtown areas

obeys a stable functional relationship between average speed and density,

including a region of ’hypercongestion’ where flow decreases with density.

This situation can be described as queuing behind a bottleneck whose capac-

ity declines when the queue is large. We combine such a variable-capacity

bottleneck with Vickrey scheduling preferences for the special case where

there are only two possible levels of capacity. Solving the model leads to

several new insights, including that the marginal cost of adding a traveler is

especially sensitive to the lowest level of capacity reached. We analyze an

optimal toll, a coarse toll, and metering, showing substantial benefits from

using these policies to eliminate the period of reduced capacity. Under hy-

percongestion, all of these policies can be designed so that travelers gain

even without considering any toll revenues.
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1 Introduction

Recent studies of traffic in urban street networks carried out by Daganzo and his

associates establish a number of regularities that promise to be very useful for

economic modeling of urban congestion.1 Their findings apply to neighborhoods,

defined as uniformly congested parts of cities of dimensions comparable with a

trip length. In such neighborhoods, regularities among aggregate variables emerge

even though data from specific points appear quite chaotic.

Two such regularities are especially important for congestion modeling. First,

there is a well-defined inverse-U-shaped relationship between space-averaged flow

and vehicle density (the latter is proportional to occupancy, the number of cars

traveling in the neighborhood). Second, the trip completion rate is proportional to

the space-averaged flow.

In contrast to the microscopic level of detail involved in looking at individual

streets and individual cars, we may consider neighborhoods as macroscopic enti-

ties. The observed regularities make it possible to abstract from the microscopic

complexity of actual traffic networks in order to offer a remarkably simple picture

of congestion at the macroscopic neighborhood level. Cars embarking on trips en-

ter a neighborhood at some rate, adding to the network density there. Cars move

ahead, passing points in the network according to a flow rate that on average de-

pends only on network density. Trips are completed and cars leave the system at a

rate that is proportional to the instantaneous flow. This last property is extremely

useful, enabling us to identify flow with quantity demanded. Thus it frees us from

having to take into account that trips have varying lengths and that changing the

flow rate may change the distribution of trip lengths.

The relationship between flow and density identifies regions of congestion and

hypercongestion, namely the rising and falling portions of the inverse-U flow-

density relationship. Under congested conditions, flow increases with density but

less than linearly. As more cars enter the system, flow increases at a diminishing

rate until it reaches the maximum flow. Above this point, additional traffic in the

system will decrease flow; this phenomenon is called hypercongestion.2

Conservation of vehicles dictates that at any point in time, the rate of change

in occupancy is the difference between the instantaneous entry and the exit rates.

Hypercongestion is thus inevitably a transient phenomenon. For hypercongestion

to occur there must have been a period with entry at a rate higher than the maxi-

mum flow rate, but that rate cannot continue indefinitely as the occupancy would

then increase indefinitely. More generally, it is necessary to consider intra-day dy-

namics in order to understand congestion and hypercongestion in a demand peak.

1See Daganzo (2007); Geroliminis and Daganzo (2008).
2In the engineering literature, these two regimes are called "uncongested" and "congested"

flow, respectively.
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To consider intra-day dynamics, we must take into account that travelers have

preferences regarding the timing of their trips, for which we use a formulation that

has become standard. We also need to determine the relationship between when

trips begin and when they end. For this, we make an assumption that may appear

innocuous but is actually quite strong: namely, that trips are completed in the se-

quence in which they are initiated. This first-in-first-out (FIFO) principle is not

necessarily consistent with a microscopic picture of the evolution of individual

travel speeds, but it is at least as plausible as several alternative assumptions that

have been made to make analysis of hypercongestion tractable.3 Without FIFO,

analysis would become extremely complex because one would have to explicitly

depict separate routes for each traveler and their interactions on a network; but

general features of the model should remain because we would still have equi-

librium conditions equating costs for a given traveler at different times, and the

feature of capacity reduction when vehicle density becomes large.

This description of congestion in an urban neighborhood brings us close to the

highly successful “bottleneck model” of Vickrey (1969). As shown by Vickrey

and further elaborated by Fargier (1983), Arnott, de Palma and Lindsey (hereafter

ADL) (1990,1993,1998), and others, the model depicts Nash equilibrium where

travelers adjust their departure times endogenously, accounting for aversion to

inconvenient schedules as well as to travel time. In the bottleneck model, there

is a queue that waits behind a deterministic bottleneck. But there is no hyper-

congestion: the bottleneck has constant capacity, hence implies a constant trip

completion rate once a queue exists. Other models have considered time-varying

capacities (Zhang et al., 2010) and so can analyze exogenous temporary imbal-

ances between inflow and capacity, but still do not depict a situation where greater

inflow results in lower outflow.

In our model, by contrast, there is a pool of cars traveling, whose trip times

are affected by the system’s limited processing capacity just as though they were

in a queue. (Indeed, at a micro level they typically are in queues at various inter-

sections.) But the flow rate from this "queue" declines with occupancy, producing

hypercongestion. Thus we can analyze an apparently complex macroscopic sys-

tem similarly to a bottleneck with variable capacity. This equivalence between the

two problems is noted by Geroliminis and Levinson (2009). In comparison to their

analysis, we simplify the dependency of flow on occupancy, enabling us to solve

the model explicitly. Specifically, we assume the bottleneck has two capacities,

the lower one being activated when occupancy reaches a certain level. Travelers

3Two such alternatives include that trip time depends solely on the density at the end of the

trip (Small and Chu, 2003), and that trip distances are randomly distributed and unknown to the

traveler (Arnott, 2011). Other papers making similar assumptions to that of Small and Chu (2003)

include Henderson (1981), Mahmassani and Herman (1984), Chu (1995) and Yang and Huang

(1997).

2



understand this and, in Nash equilibrium, account for it in their departure-time

decisions.

Our results demonstrate that indeed travel costs rise much more severely with

demand for travel than in the conventional bottleneck model, and thus there are

correspondingly greater gains to policies such as capacity reduction and dynamic

pricing that relieve congestion. Where the standard bottleneck model shows the

benefits associated with reduced queueing, our model shows additional gains as-

sociated with avoiding capacity drop. The latter become especially visible in an-

other policy analyzed here: metering, i.e. use of traffic signals to restrain the rate

of inflow to certain parts of the road network.4 The additional gains associated

with avoiding capacity drop also mean that the average cost of trips will decrease.

In fact, we obtain the somewhat surprising feature that if demand is not perfectly

inelastic, optimally regulating hypercongestion may entail increasing traffic—it

will definitely do so in the case of metering, and will do so in the case of tolling if

congestion (absent pricing) is especially severe.

The nature of hypercongestion and how to deal with it in economic models has

been the subject of a long discussion: its existence has been generally acknowl-

edged but its significance debated. Partly this is because hypercongestion has been

defined from microscopic data, but the interest in it arises from macroscopic phe-

nomena. Partly it is because hypercongestion can be defined in terms of a static

speed-flow relationship that entails what is effectively a backward bending supply

curve (e.g. Walters, 1961). But, as we have just seen, hypercongestion is an in-

herently dynamic phenomenon. Our approach deals explicitly with the dynamic

macroscopic properties that are the main source of interest in economic analysis

of very congested systems.

We proceed by defining and analyzing the variable-capacity model just de-

scribed in Sections 2 and 3. We then consider and compare a variety of policies

in Section 4, namely an optimal time-dependent toll, an optimal coarse toll (with

just one toll level), and metering of system inflow so as to eliminate hypercon-

gestion. Section 5 discusses extension to the case of elastic demand. We perform

numerical simulations in Section 6 and section 7 draws conclusions for policy and

for research.

2 Model setup

We consider a continuum of N travelers all making trips. Each traveler must

choose a departure time; the resulting arrival time is determined by the queueing

4When there are multiple user groups accessing the road with limited capacity at different

points, metering can also be used to reduce aggregate user cost by better allocating priority among

these groups (Shen and Zhang, 2010).
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system and thus depends on the aggregate departure schedule. We denote cumu-

lative departures by R (t), which has derivative ρ(t) ≥ 0 almost everywhere. All

travelers depart eventually, i.e. R (∞) = N. Similarly, we denote cumulative exits

by A (t), which is weakly increasing and satisfies A (−∞) = 0 and A (∞) = N.
Arrivals occur later than departures, i.e. R (t) ≥ A (t). The number of travelers

Q (t) in the system at any time is the number who have departed less the number

who have arrived: Q (t) = R (t)− A (t) .
For simplicity, we will ignore any travel time not related to congestion; adding

free-flow time or cost is a trivial extension. Therefore the first time anybody de-

parts is also the first time anybody arrives, i.e. there is no delay for the first person:

formally, inf {t|R (t) > 0} = inf {t|A (t) > 0}.
The queueing system obeys the first-in-first-out (FIFO) rule. This means that

the traveler departing at time t, with position R (t) in the sequence of departures,

has the same position in the sequence of arrivals. We denote the time of arrival as

a (t) ≡ A−1 [R (t)]. (Because A (t) is weakly increasing in t, this inverse exists

wherever A′ > 0, to which region we restrict attention.) The travel time for a

traveler departing at time t is the horizontal distance between the functions R (·)
and A (·) , i.e. it is a (t)− t.

The FIFO assumption guarantees that the later entrants will never exit before

the earlier ones. However, it does not imply a lack of effect of later travelers

on earlier ones. On the contrary, and in distinction from the standard bottleneck

model, they have a profound effect as now described. In short, this effect occurs

because later travelers affect the length of the queue and therefore the processing

rate that applies while the traveler in question is waiting in that queue, even though

they are behind that traveler in position. Thus, we should not think of the queueing

system as a literal queue, but rather a system where later entrants can influence

earlier ones. For example, in the areawide setting described in the introduction,

they might do so by blocking intersections that the earlier entrants will use to get

to their exits.

The delay for each traveler is governed by a processing rate ψ ≥ 0 for exiting

the queueing system. In the Vickrey (1969) bottleneck model, ψ is a constant, so

the function A (·) is very simple: it has derivative ψ whenever there is a queue.

But here, following Geroliminis and Levinson (2009) and Gonzalez and Daganzo

(2011), we assume that the processing rate at time s is a function ofQ (s), i.e., ψ =
ψ (Q (s)) and that A′ (s) = ψ (Q (s)) whenever there is a queue. Although ψ is a

temporary processing rate, we refer to it as "capacity," and to our model as having

variable or endogenous capacity, in much the same way that flow breakdown at

real highway bottlenecks is often described as a capacity reduction.

For a traveler entering the queueing system at time t, there are Q (t) earlier

travelers in who must be processed before this given traveler can exit the system.

They are processed at rate ψ [Q (s)] over the succeeding times s. Therefore arrival
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time a (t) is defined implicitly by

Q (t) =

a(t)∫
t

ψ [Q (s)] ds. (1)

Equation (1) shows that any traveler entering between times t and a (t) can influ-

ence the travel time of the traveler entering at t, via the function Q (s).

The consistency required by (1) makes the model intractable to solve in gen-

eral. As a result, researchers investigating hypercongestion have replaced (1) by

something simpler, for example letting Q (s) inside the integral be replaced by

Q (t) or by Q [a (t)] (see footnote 3). In this paper, we solve the problem without

compromising the mutual interactions of travelers in (1) by assuming a particu-

larly simple form for ψ (Q). Namely, we assume ψ (Q) is piecewise constant,

taking just three values: full capacity ψ0, reduced capacity ψ1, or zero:

ψ (Q) =


ψ0, Q ≤ Q0

ψ1, Q0 < Q < QJ

0, Q ≥ QJ ,

where Q0 is a critical queue size above which capacity drops and QJ is the queue

size where vehicles stop moving entirely, corresponding to the jam density in a

traffic flow model. We consider only values of N for which Q never reaches jam

density, since otherwise we would have infinite travel delays and the model would

break down; thus we actually need deal with only two values for ψ.

Having described congestion technology, we now turn to behavior. Again, we

will need simplifying assumptions in order to obtain a tractable model and results

that are amenable to interpretation. First, travelers are identical. Second, travelers

care about the timing of their departure and arrival with as expressed by a user

cost of the α-β-γ type formulated by Vickrey (1969), estimated by Small (1982),

and used by numerous authors since.5 Specifically, the user cost associated with

departing at time t and arriving at time a is

c (t, a) = α · (a− t) + β ·max (t∗ − a, 0) + γ ·max (a− t∗, 0) ,

where α is the value of time, β is the cost of earliness, γ is the cost of lateness,

and t∗ is the preferred arrival time. Like most authors using this behavioral model,

we require 0 < β < α < γ, assumptions supported empirically (Small, 1982), in

order to produce a sensibly shaped peak period. We normalize t∗ = 0 at no loss

of generality.

5For example, Fargier (1983), Arnott et al. (1990, 1993). For useful reviews, see Arnott et al.

(1998) or Small and Verhoef (2007).
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We look for a Nash equilibrium in which the macroscopic state of the system,

arising from the aggregate of individual scheduling decisions, leaves each traveler

achieving the lowest possible cost given that state. Given identical travelers, this

means that in equilibrium, user cost takes a constant value for all departure times

for which the departure rate ρ is positive, and no lower values elsewhere.

3 Unregulated equilibrium

It is straightforward to show that in equilibrium with no toll or metering, depar-

tures and arrivals all take place during a common interval [t0, t1]. The reasoning is

identical to that in the standard bottleneck model (ADL 1990). The first and last

departures (at times t0 and t1, respectively) provide congestion-free travel, while

in between the queue is always positive. The first and last departure times are

related by the equal-cost condition for first and last travelers: γt1 = −βt0.

The form of the cost function implies that the arrival time a (t) and delay

[a (t)− t] are piecewise-linear functions of departure time, governed solely by

cost parameters α, β, and γ. For early departure times, i.e. those for which

a (t) < 0, average cost [α · (a (t)− t)− β · a (t)] is constant, which requires

that a (·) be linear with slope

a′ (t) = α/ (α− β) ≡ a′E.

A similar condition for departures corresponding to late arrival a (t) > 0 yields

slope

a′ (t) = α/ (α + γ) ≡ a′L.

Accounting for boundary conditions, then, the arrival rate between times t0 and t1
is

a (t) =

{
t0 + a′E · (t− t0) , t < tM
a′L · (t− tM) , t > tM

(2)

where tM ≡ (β/α) t0 is the departure time leading to arrival at t∗ ≡ 0. Note that

travel delay, a (t) − t, first grows at rate a′E − 1 = β/ (α− β) and then declines

at rate 1− a′L = γ/ (α + γ) .
We now derive a departure pattern consistent with this equilibrium arrival pat-

tern, as well as with congestion technology. We can find the equilibrium departure

rate ρ (t) by differentiating (1), keeping in mind that the queue is Q (t) = R (t)−
A (t), the departure rate is R′ (t) = ρ (t), and the arrival rate is A′ [t] = ψ [Q (t)].
This yields, almost everywhere, that

ρ (t) = a′ (t) · ψ [Q (a (t))] . (3)
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Table 1: Base parameters for numerical examples

Assumed Parameters: Derived quantities

α 1.0 δ 0.4

β 0.5 a
′
E 2.0

γ 2 a′L 1/3

ψ0 1 N c
1 5.0

ψ1 0.5 N c
2 9.0

Q0 2.0 N c
3 11.0

Note that the equilibrium departure rate at time t depends on the exit rate at time

a (t); this is why the model with time-varying capacities is intractable in general.

With our simplifying assumptions, there are only two possible values for a′, as

seen from (2), and two for ψ: hence there are just four possible values of ρ.

It turns out there are three distinct possible equilibrium patterns, each arising

for successively larger values of N . We name them Regimes 1, 2, and 3. The

math involved in determining these regimes is straightforward but tedious, and is

given in the appendix. Here we provide an overview.

3.1 Regime 1

The first regime is where demand N is sufficiently low that only congestion and

not hypercongestion occurs. The reduced capacity is not activated and so this is

the standard bottleneck model (Arnott et al., 1993), depicted in Figure 1a using the

parameters shown in Table 1. As is well known, in that case t0 = − (δ/β)N/ψ0,

t1 = − (β/γ) t0, and the maximum queue length is δN/α, where δ ≡ βγ/ (β + γ)
is a measure of the strength of scheduling costs (those parts of user cost related to

preferences over schedules). The condition ensuring that the low capacity is not

activated is the one ensuring that maximum queue length does not reach Q0:

N ≤ N1 ≡ αQ0/δ.

The departure rate is defined almost everywhere by

ρ (t) =

{
a′Eψ0, t ∈ (t0, tM)
a′Lψ0, t ∈ (tM , t1) .

(4)

All travelers achieve the same cost in equilibrium, equal to the cost for the first

traveler departing at time t0. Hence total cost as a function of N is δN2/ψ0; mar-

ginal cost (its derivative) is 2δN/ψ0, which is exactly twice the average cost.
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Figure 1: Cumulative departure and arrival patterns for various N. (a) Regime 1

(N=5); (b) Regime 2 (N=8); (c) Regime 3 (N=12)
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3.2 Regime 2

When N > N1, the lower capacity ψ1 is activated over some non-zero time inter-

val. Denote by tdrop < tM the first departure time after which a traveler will be

processed at the slower rate, i.e. the first time when Q [a (tdrop)] = Q0. Similarly,

denote by tlift the next departure time after that for which a departing traveler will

again be processed at the faster rate, meaning that Q [a (tlift)] is again Q0. If N is

not too large, so that capacity drops only for a brief period, then tlift < a (tdrop);

this defines Regime 2, which is depicted in Figure 1b.

Whenever N > N1, some travelers now have to account for the fact that the

arrival rate will become slow before they complete their trips, and hence their

equilibrium condition (3) involves the lower processing rate ψ1. (These travel-

ers are sandwiched between others whose marginal condition involves the higher

rate.) In Regime 2, all of them arrive early. Thus the full set of departure rates is

ρ (t) =


a′Eψ0, t ∈ [t0, tdrop]
a′Eψ1, t ∈ (tdrop, tlift)
a′Eψ0, t ∈ [tlift, tM ]
a′Lψ0, t ∈ (tM , t1].

(5)

Note that there are only three distinct rates here, since one rate occurs twice. Note

also that the first and last departure rates are identical to those of Regime 1.

The arrival rate, A′ (t) , has just two values, ψ0 and ψ1, the slopes of the lower

curve in the figure. The first (high) value prevails until the queue builds to value

Q0 and again after it has fallen back to Q0; the second (low) value prevails in

between. The times when these kinks occur can be derived geometrically (relative

to t0) from the diagram, since we know the slopes ρ and A′ as just described;

these times are given in the Appendix, along with the corresponding numbers of

travelers Q in the system at each time. Finally, time t0 is determined from the

condition that all travelers are accommodated, i.e. that traveler N departs at time

t1. As shown in the appendix, the result is

t0 = − δN

βψ01

+
Q0

ψ0

α∆ψ

(α− β) ∆ψ + βψ1

(6)

= − δN

βψ01

+

(
1

ψ01

− a′eψ1/∆ψ

1 + a′eψ1/∆

)
Q0

where ∆ψ ≡ ψ0 − ψ1 and

ψ01 ≡ ψ0

(α− β) ∆ψ + βψ1

α∆ψ + βψ1

(7)

can be interpreted as an intermediate capacity, lying between ψ1 and ψ0.
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It is straightforward to verify that t0 in Regime 2 occurs earlier than in Regime

1. The marginal external cost δN/ψ01 is larger than in Regime 1, and smaller than

it would be if capacity were always equal to ψ1 (namely δN/ψ1); this observation

is important in the comparison with Regime 3.

3.3 Regime 3

As N grows, the time of reduced capacity lasts longer, and for large enough N
we will find that tlift > a (tdrop). This condition defines Regime 3. It implies

that some travelers experience only the reduced capacity for their entire trip, since

they arrive before the time when capacity goes back to its higher level. We show

in the Appendix that this occurs when N exceeds the critical value

N2 ≡ N1 +

(
α− β
β
· ∆ψ

ψ1

+ 1

)
Q0 (8)

which is always greater thanN1. There are two possibilities: if tlift < tM (Regime

3a), then (5) again applies, with just three distinct departure rates. Otherwise

(Regime 3b), all four possible departure rates occur:

ρ (t) =


a′Eψ0, t ∈ [t0, tdrop]
a′Eψ1, t ∈ (tdrop, tM ]
a′Lψ1, t ∈ (tM , tlift)
a′Lψ0, t ∈ [tlift, t1] .

(9)

Regime 3b is shown in Figure 1c.

The appendix also shows that in regime 3, the first departure time t0 is

t0 = − δN
βψ1

·
[
1−

(
∆ψ

ψ0

α + γ

γ
+

∆ψ

ψ1

α− β
β

)
Q0

N

]
. (10)

The factor in square brackets can be shown to lie between 0 and 1; thus the first

departure time is again later than would be the case if capacity were ψ1 throughout

the entire period, which would be − (δ/β)N/ψ1.

3.4 Implications of unregulated equilibrium

There are two notable features of the unregulated equilibrium in our model.

3.4.1 Time stretching

First, the effect of activating the lower capacity is to stretch the peak period, with

the beginning and ending looking just like they did before except taking place fur-

ther from the desired arrival time. This is more easily seen by holding N constant
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while decreasing ψ1, i.e. while exacerbating the decline in processing rate that

occurs when vehicle density is high. Figure 2 shows the cumulative departure and

arrival patterns for three such values of ψ1 (with other parameters as in Table 1).

As ψ1 decreases, the delay times in the middle of the rush hour (the horizontal

distance between the two curves) becomes larger, even though the queue length

itself (the vertical distance) does not. To maintain equilibrium, the earliest and

latest travelers suffer correspondingly higher scheduling costs.

Figure 3 zooms in on the early rush hour, namely the departures and arrivals

of the first 2Q0 travelers. The patterns are nearly identical but displaced to earlier

times as N increases. Similarly, we can see from Figure 2 that the patterns for the

last 1.5Q0 travelers are unaffected by ψ except for being displaced to slightly later

times when ψ is smaller.

3.4.2 Race to the bottom

The second notable feature is that at the margin, the cost of adding a traveler to the

system is governed ultimately by the lowest capacity. By "ultimately" we mean

once the transitional Regime 2 has been passed through. As seen from the above

expressions for t0, the average cost of a traveler, ac ≡ −βt0, is a linear function

of N within any given regime, whose slope increases from one regime to the next:

ac (N) = −βt0 =


δ
ψ0
N, N ≤ N1

ac (N1) + δ
ψ01

(N −N1) , N1 < N ≤ N2

ac (N2) + δ
ψ1

(N −N2) , N2 < N .

(11)

(Recall we assume throughout that N is smaller than the value that would cause

the queue to reach jam density.)

The marginal external congestion cost (mecc), i.e. marginal cost less average

cost, is determined solely by the term that is linear in N ,

mecc = N
d [ac (N)]

dN
=
δN

ψk
(12)

where k = 0, 01, 1 varies by regime. This is just like the standard bottleneck

model except with capacity replaced by ψk. We note in passing that if demand has

nonzero elasticity and the only policy tool available is a uniform toll, its optimal

level is mecc.
The average and marginal cost functions implied by 11 are illustrated in Fig-

ure 4 for the case ψ1 = 1/3. The figure also shows what they would be if there

were no capacity reduction. Note that average and marginal costs increase non-

linearly; average cost is convex and marginal cost is discontinuous at N1 and N2.

This property also characterizes many static models, but not the dynamic model
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Figure 2: Cumulative departure and arrival patterns for Regime 2, N = 8: (a)

ψ1 = 1; (b) ψ1 = 2/3; (c) ψ1 = 1/3
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most commonly used in economic analysis of congestion, which is the standard

bottleneck model (our Regime 1). Thus, our model gives a dynamic justification

for the common assertion — typically based on a static model — that congestion

becomes especially sensitive to traffic levels under highly congested conditions.

We conjecture that this conclusion is robust with respect to the inclusion of

many capacity levels. More specifically, we conjecture that if the model were

extended to include many possible values of successively lower capacity, then av-

erage cost would still be a convex function such that marginal external congestion

cost would be increasing; the average cost would depend in a complex way on the

whole range of activated capacities.

4 Policies

Hypercongestion can be reduced or eliminated by at least two types of policies.

One is pricing, designed to reduce departure rates enough to keep the maximum

queue length below the critical value Q0. The other is metering, designed to move

the queue outside of the region where it produces hypercongestion. For exam-

ple, if the model represents areawide congestion within a central business district,

vehicles might be allowed into that district at a reduced rate, with the resulting

queues regulated in such a way that they do not interfere with any moving traffic.

Of the many possible policies of these types we consider the three shown in
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Figure 4: Average and marginal cost functions for ψ1 = 1/3

Table 2: Policies considered

Policy objective Tolling Metering

No queue Optimal dynamic toll

No hypercongestion Coarse toll to remove hy-

percongestion

Metering to remove hyper-

congestion

Table 2. The optimal dynamic toll addresses all costs of queuing while the other

two (a coarse toll and metering) are aimed mainly at eliminating hypercongestion.

4.1 Optimal dynamic toll

The dynamic toll that produces the lowest average cost (and thereby maximizes

welfare given perfectly inelastic demand) has already been described by ADL

(1990). We know this because the same reasoning applies here as in the Vickrey

model. The optimal toll must eliminate all queuing, which is an unnecessary

cost to the system, while allowing travelers to fully utilize the capacity of the

bottleneck in order to minimize their aggregate user costs. Since the total number

of travelers is fixed, it is only the time pattern of the toll that matters: it can be

increased or decreased uniformly without affecting the resulting equilibrium. For

concreteness, and following convention, we assume the toll is zero for the first and

14



last travelers. We also assume that each traveler cares only about the "inclusive

price", defined as user cost plus toll.

This toll and the resulting departure and arrival patterns (which are identical)

are well known. The toll is time-varying and replaces exactly the queuing cost

that would have occurred in a hypothetical unregulated equilibrium with capac-

ity ψ0. Average revenue per traveler is (1/2) δN/ψ0. Travelers have the same

scheduling costs as they would in that equilibrium, but the corresponding hypo-

thetical queuing costs are replaced by the cost (to them) of tolling. Thus, relative

to that hypothetical high-capacity equilibrium, travelers perceive the same total

price with or without the toll policy in place. But of course toll payments are now

balanced by revenues, which are counted as a benefit.

Thus, there are two resulting sources of gain from this policy. First, capacity

can be maintained at the high level ψ0. This enables all travelers to be accommo-

dated during a shorter time interval, having duration N/ψ0. Second, even relative

to a bottleneck with that higher capacity ψ0, all queuing cost is eliminated. That

cost is exactly half the total cost in the hypothetical unregulated equilibrium, or

(1/2) δN/ψ0 per traveler. The two cost savings combined are found by subtract-

ing the average cost with optimal tolling, ac(tolled) = (1/2) δN/ψ0, from that

given by (11):

ac(unregulated)− ac(tolled) (13)

=


δ

2ψ
0

N, N ≤ N1(
δ
ψ
01

− δ
ψ
0

)
(N −N1) + δ

2ψ0
N, N1 < N < N2(

δ
ψ01
− δ

ψ0

)
(N2 −N1) + δ∆ψ

ψ0ψ1
(N −N2) + δ

2ψ0
N, N2 ≤ N .

As noted earlier, the average revenue from the optimal toll with fixed capacity

ψ0 is equal to the last term in each of these expressions. Hence, the expressions

show how welfare gain is divided between travelers and the recipient of revenues.

The fraction of gain accruing to travelers is zero forN ≤ N1 and it increases asN
increases. The possibility of having substantial gains accrue directly to travelers

contrasts sharply with the standard bottleneck model and also with the typical

static model, which assumes a sharply convex relationship between travel time

and flow.

4.2 Metering to remove hypercongestion

Suppose inflow to the system can be metered to remain below a certain rate, and

the resulting queue can be held where it is not part of the queue length that de-

termines capacity. Suppose further that FIFO applies in the metered queue. Then
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hypercongestion can be eliminated, either by limiting the metering rate to ψ0 or

less or at least by setting it so that the resulting queue within the system (the un-

metered queue) never exceeds Q0. Assume further that travelers view waiting in

either the metered or unmetered queue identically, with cost per minute α. Then

the system is converted into the equivalent of a standard bottleneck model whose

bottleneck capacity is ψ0 and whose queue length is the sum of the metered and

unmetered queues. In the language of areawide congestion, the travel time is the

sum of time waiting in the metered queue and time spent within the congested

area (the latter represented in the model by time waiting in the unmetered queue).

If storage in the metered queue is costless, then it is optimal to assure that no

hypercongestion occurs since, if it did, travel times and scheduling costs could be

reduced by decreasing the metering rate. Thus we already have the solution to

this policy, which is the departure pattern (4) originally presented as Regime 1,

but now applying for any value of N . The welfare gain per traveler, relative to

the unregulated equilibrium, is given by the difference in average costs, which is

easily obtained from equations (11):

ac(unregulated)− ac(metered) (14)

=


0, N ≤ N1(

δ
ψ
01

− δ
ψ0

)
(N −N1) , N1 < N ≤ N2(

δ
ψ01
− δ

ψ0

)
(N2 −N1) + δ∆ψ

ψ0ψ1
(N −N2) , N2 < N .

The welfare gain given in (13), from the optimal dynamic toll, can thus be

decomposed into two parts. The first part is that which results from the elimination

of hypercongestion; this part is the same as the welfare gain (14) from optimal

metering, and it accrues directly to travelers. The second part is δN/ (2ψ0); it is

due to eliminating the queue that remains even when capacity does not drop, and it

accrues to the recipient of revenues. Thus, if travelers ignore the use of revenues,

they are indifferent between optimal tolling and metering.

4.3 Coarse toll to remove hypercongestion

The optimal toll varies continuously over time and so one may seek a simpler

toll policy. This section considers a so-called coarse toll, which is a toll that

has a single level, here denoted τ , that is applied to arrivals (i.e. exits from the

bottleneck) during some interval which we denote [t+, t−] . The welfare benefits

of such a toll, for the case of constant capacity, have been described elsewhere

(Arnott et al., 1990; Laih, 1994, 2004; Fosgerau, 2011). Here, we analyze the

case of variable capacity.
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In either case, the outcome of a coarse toll depends on assumptions regarding

queueing technology. The issue is how to deal with the discontinuity that exists

at time t− when the toll is lifted, which may produce an equilibrium with massed

departures. Arnott et al. (1990) allow such massed departures to occur and assume

they are placed randomly in the queue position. A simpler approach, adopted by

Fosgerau (2011), is to assume that travelers who will arrive after time t− queue

separately while those paying the toll are being preferentially processed, even

though this violates FIFO. In other words, people who don’t want to pay the toll

can enter the system and queue up behind each other while waiting for the toll to

be removed at t−. (There is some realism to this idea: in Stockholm, drivers have

been reported waiting for the toll to be reduced before entering the city, even while

others enter and pay the toll.) Fosgerau (2011) shows that in the case of constant

capacity, and with the toll level set within certain limits, the departure and arrival

patterns of those not paying the toll will then be exactly as in the unregulated

equilibrium, while those paying the toll will encounter zero travel times at times

t+ and t− and so adopt a departure and arrival pattern that is just like they would

if they were in a Regime 1 system with starting and ending times t+ and t−.

To achieve this solution, we set t+ and t− so that−βt+ = γt− and−βt++τ =
−βt0 = Nδ/ψ0. That is, we set

t+ =
1

β

(
τ − δN

ψ0

)
, (15)

t− =
1

γ

(
δN

ψ0

− τ
)

(16)

Then in equilibrium the number of travelers paying the toll is ψ0 (t− − t+) =
N − (τψ0/δ); they depart and arrive during [t+, t−] and face inclusive price −βt0,

the same as for other travelers. This is the same inclusive price that is paid by all

in unregulated equilibrium, which shows that just as with an optimal toll, travelers

are indifferent between a coarse toll and an unregulated equilibrium if they ignore

revenues.

Figure 5 depicts the equilibrium under such a coarse toll, indicating actual cu-

mulative departures and arrivals (solid lines) as well as the intervening departures

that would occur in an untolled equilibrium (dotted lines). Note that some of the

untolled group depart before some of the latest of the tolled group, yet arrive after

them, since the tolled group receives preferential treatment; both contribute to the

queue simultaneously for a while, as shown at the top of the figure. These two

groups of travelers are shown separately as two dashed line segments. The one

for late untolled travelers is placed at the top of the figure to show how it fits into

the graph that applies for an untolled equilibrium (the outer triangle including the

dotted line). But the actual cumulative departure rate is the solid line segment con-
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Figure 5: Coarse toll: cumulative departures and arrivals

necting these two dashed lines, which has slope equal to the sum of their slopes.

Since our solution eliminates hypercongestion, it has the same properties as

the fixed-capacity coarse toll analyzed by Fosgerau (2011).6 The toll level that

maximizes welfare is also the one that maximizes revenues τψ0 (t− − t+) = τN−
τ 2 ψ0

δ
, which is

τ ∗ ≡ δN

2ψ0

. (17)

In this case exactly half the travelers pay the toll, providing total revenue δN2/(4ψ0)
which is half that from an optimal toll. Average cost is (3/4)δN/ψ0, which is mid-

way between that from optimal tolling and that in the unregulated equilibrium.

We show in the appendix that this solution is valid, in the sense that the maximal

queue never exceeds Q0, provided N ≤ 2N1. If N > 2N1, it is not possible to

eliminate hypercongestion using a coarse toll.

6There are other systems where capacity breakdowns may be avoided by giving some people

the chance to pay for the ability to bypass service queues. One is internet service, where providers

have proposed breaking "net neutrality" by giving preferred customers faster processing times.

Another is electricity provision, where customers can voluntarily submit to peak pricing in lieu

of being subject to blackouts. The analogy holds even if priority access is granted based on some

criterion other than paying a toll: as shown by Fosgerau (2011), creating an unpriced but restricted

express lane ("fast lane") can replicate the patterns of departures and queuing delays produced by

a coarse toll.
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The coarse toll provides a welfare gain consisting of two parts: that from

removing hypercongestion, which we already calculated as (14), and that from

further reduced queuing, which is the same as revenues. Thus total welfare gain

per traveler is

ac(unregulated)− ac(coarse toll) (18)

=


δN
4ψ0

, N ≤ N1(
δ
ψ
01

− δ
ψ0

)
(N −N1) + δN

4ψ0
, N1 < N ≤ min {N2, 2N1}(

δ
ψ01
− δ

ψ0

)
(N2 −N1) + δ∆ψ

ψ0ψ1
(N −N2) + δ

4ψ0
N, N2 < N ≤ 2N1

Equivalently, the welfare gain per traveler from replacing optimal metering by the

optimal coarse toll is δN/(4ψ0), again provided N ≤ 2N1.

5 Elastic demand

Our analysis thus far has taken total traffic volume N to be exogenous. As a

consequence, there is an indeterminacy in the optimal toll: only its pattern matters,

not its absolute level. However, if demand is a less than perfectly inelastic function

of inclusive price (average cost plus toll), this indeterminacy is removed as the toll

level now controls the total traffic volume. We already know from Arnott et al.

(1993) that the bottleneck model leads to a very neat division of the toll into a

component related to timing of departures (the same as derived earlier) and one

related to the total amount of traffic. This latter component is a constant equal

to the marginal external cost of congestion, mecc, defined as the derivative of the

average cost when viewed as a function of N . (Other external costs, such as from

air pollution, can be added to mecc.)
Regardless of what policy we consider, however, a new feature arises in our

model because these policies reduce average cost more than in the constant-capacity

model: specifically, by (14) due to eliminating hypercongestion. This affects the

inclusive price resulting from a given scenario. This will tend to increase total

traffic volume, analogously to the "rebound effect" from implementing energy ef-

ficiency regulation: by making operation cheaper, increased use is attracted.

For each of the policies described here, we can calculate the conditions under

which total traffic will increase due to the policy. This occurs whenever the extra

monetary cost imposed by a toll level is less than (14). For the metering policy,

there is no monetary cost so this condition always holds: metering will increase

total traffic. For the optimal toll including mecc = (1/2)δ/ψ0, total traffic will

increase if mecc is less than (14).
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For the coarse toll, the situation is more complicated because the toll is applied

only to part of the peak period; if its level is raised in order to suppress elastic

demand, the time pattern will also be distorted. Rather than solve that rather

messy problem, we consider adding a uniform toll (covering all times) on top of

the coarse toll. We have already seen that for this policy, ac (N) = (3/4)δN/ψ0

and therefore mecc ≡ d [ac (N)] /dN = (3/4)δ/ψ0. Thus traffic is increased

whenever this value is less than (14). Note that the greater N , the more likely

traffic will be increased by either an optimal or a coarse toll, since (14) rises with

N whereas mecc does not.

6 Simulation study

In order to determine how our model behaves when there are more than two lev-

els of non-zero capacity, we use numerical simulation. We have implemented a

simulation model using the values (α, β, γ) = (1, 2, 4) . Capacity is a decreasing

step function of the queue length, starting at ψ0 = 5 and declining by half at each

queue length in the set {2000, 4000, 6000, ...}.
A simulation run begins with an arbitrarily chosen time of the first departure,

t0. At each iteration, it uses the queue pattern from the preceding iteration to com-

pute the cumulative departures R, then recalculates the queue dynamically to de-

termine the cumulative exit rate A at each succeeding point in time. Convergence

is obtained when an iteration step does not change the queue length significantly

at any time. The value of t solving R (t) = A (t) is then found numerically, and

the corresponding value ofR is taken to be the amount of total trafficN consistent

with the chosen t0.

Figure 6 shows the cumulative departures and arrivals for a single run with

departures starting at time −5000. The simulation finds the corresponding total

traffic volume to be 17248. The figure clearly shows how kinks in the departure

rate are related to kinks in the arrival rate at the corresponding time of arrival, as

well as to the change from early to late arrival.

By carrying out such simulations runs for many values of t0, the model pro-

duces a relationship between N and t0. Figure 7 presents some statistics from a

series of such runs with N varying from near zero to about 22800. (The first de-

parture time ranges between zero and−8000.) The upper panel plots the maximal

queue length against total traffic N . Kinks are evident, due not only to capacity

thresholds but also to transitions to new regimes, such as the beginning of Regime

3 at aboutN=11200. The lower panel plots the resulting average cost as a function

of N ; this curve is convex and we conjecture that convexity is inevitable.
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Figure 6: Simulation run: cumulative departures and arrivals given t0 = −5000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

20
00

40
00

M
ax

im
al

 q
ue

ue
 le

ng
th

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

25
00

50
00

75
00

N

A
ve

ra
ge

 c
os

t

runmany.eps  10:23:55 13-Apr-2012
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(lower panel) as functions of N
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7 Concluding remarks

In this paper we have formulated an analytically tractable model of hypercon-

gestion that is consistent with some new results from traffic engineering. The

model relies of course on some stringent assumptions. Probably the most im-

portant such assumptions are that travelers are homogeneous in preferences and

travel distances; that the system is deterministic, with no uncertainty arising from

accidents or other sources of unexpected congestion; and that capacity depends

on network occupancy through a simple step function. Nevertheless, the model

leads to several insights that appear to depend on general features that would likely

remain even if those assumptions were relaxed.

First, the average cost for travelers in unregulated equilibrium is increasing

and convex as a function of traffic volume. The slope of the average cost curve is

related to the lowest capacity activated, but the relationship is not simple due to

the forces of equilibrium that partly compensate for lower capacity by reducing

the departure rate.

Second, there are two sources of benefit associated with tolling: the familiar

source from the Vickrey bottleneck model, namely that queueing can be reduced

without affecting travelers’ inclusive price; and a new source due to eliminating or

reducing the time during which capacity is reduced. This new source also applies

to a metering policy, which has not previously been analyzed in the context of

a single bottleneck. It can be very large if the unregulated equilibrium involves

severe hypercongestion.

Third, in contrast to the Vickrey bottleneck model, this model allows analy-

sis of metering as a policy instrument even for a single bottleneck. Metering can

be used to avoid the reduction of capacity, thereby achieving the second of the

benefits associated with tolling. Importantly, the benefit accrues directly to trav-

elers; there is no intervening step in which revenue has to be collected and used

beneficially.

Fourth, like the ideal time-varying toll, a coarse toll (one that varies in discrete

steps) also leads to the benefits both from queue reduction and from avoided ca-

pacity reduction. Furthermore, application of such a toll enables a substantially

larger traffic volume to be sustained without activating capacity reduction.

Our model opens further possibilities for analyzing new classes of policies that

could not be analyzed with such explicit attention to scheduling. One, already dis-

cussed, is metering. Another consists of measures designed to change the capacity

function, for example increased enforcement of regulations against blocking in-

tersections and increased storage space on turn lanes to prevent spillbacks. These

latter policies are frequently included in congestion management strategies, and

our model offers a way to analyze their systemic effects by changing the queue

threshold Q0 at which the lower capacity is activated.
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Tractability is the main challenge for models that deal with hypercongestion,

because the travel time of one traveler is determined by the decisions of other trav-

elers throughout the duration of the trip. Thus, generalizing to situation with more

general scheduling preferences, heterogeneous travelers, travel-time uncertainty,

and more realistic capacity functions will be difficult. It may be such generaliza-

tions will have to rely on simulation rather than on analytical results. It is also

possible that more radical deviations from the current model framework may turn

out to be fruitful. For example, one could consider equilibrium concepts other

than Nash equilibrium, or abandon the first-in-first-out principle.

What seems certain is that hypercongestion is a significant phenomenon at the

macroscopic level in real cities. Acknowledging and better understanding hyper-

congestion are fundamental to the assessment of policies that address congestion.
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A Unregulated solution: Regimes 2 and 3

As shown in the text, the queue will reach length Q0 if N ≥ N1. This appendix

establishes some properties of equilibrium in this case.

In these regimes, times tM , tdrop and tlift are defined by:

a (tM) = 0

a (tdrop) = inf {t|Q (t) ≥ Q0}
a (tlift) = inf {t|t > a (tdrop) , Q (t) < Q0} .

We begin by establishing some general properties of equilibrium.

Lemma 1 Suppose N > N1. Then: (a) Capacity drops before and lifts after the

departure that arrives just on time: i.e. a (tdrop) ≤ tM ≤ a (tlift); and (b) The

times when the queue exceeds the threshold Q0 form a single continuous interval.

Proof. (a) Considering the first inequality of part (a), suppose otherwise that there

is a t such that tM < t < a (tdrop) . The t can be chosen such that the queue

is increasing at time t, since the queue reaches Q0 for the first time at a (tdrop) .
But a′ (t) < 1 since t > tM . Hence Q′ (t) = [a′ (t)− 1]ψ0 < 0, which is a

contradiction.

Considering the second inequality, suppose otherwise that there is a t such

that a (tlift) < t < tM . This t can be chosen sufficiently close to a (tlift) that

the queue is decreasing at time t. But a′ (t) > 1 since t < tM . Hence Q′ (t) =
[a′ (t)− 1]ψ0 > 0, a contradiction.

(b) From consumer equilibrium, the queue must be rising for arrivals at times

a (t) < tM , and falling for times a (t) > tM . From (a), this means the queue is

first rising then falling between times a (tdrop) and a (tlift), so remains above Q0

throughout this interval. Also, it is rising before a (tdrop) and falling after a (tlift),

so cannot be above Q0 at any other time.

Note that tlift may occur either before or after a (tdrop). These possibilities

distinguish regimes 2 and 3. Finding the times that characterize these two regimes

requires solving some equations. We consider regime 2 first.

A.1 Regime 2

Recalling Lemma 1, regime 2 is defined by the following ordering of times.

t0 < tdrop < tlift < a (tdrop) < tM < a (tlift) < −
β

γ
t0 ≡ t1.
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This order is sufficient to identify the changes in R and Q that occur in intervals

between these points.

We can find a (tlift) in terms of t0 as follows. During the interval [a (tlift) , t1]
a number [t1 − a (tlift)] a

′
Lψ0 of travelers depart, during which time the queue

changes by [t1 − a (tlift)] (a′L − 1)ψ0. This change must equal −Q0 in order that

the queue be reduced from Q0 to zero. Therefore, using t1 = − (β/γ) t0:

−Q0 = [t1 − a (tlift)] (a′L − 1)ψ0

[t1 − a (tlift)] =
α + γ

γ
· Q0

ψ0

a (tlift) = −β
γ
t0 −

α + γ

γ
· Q0

ψ0

. (19)

Next we may use the condition that the queue length is identical at a (tdrop) and

a (tlift) in order to find a (tdrop). We do this by breaking this time interval into its

two parts, each with its own departure rate and and an arrival rate equal to ψ1, and

setting the cumulative change in queue equal to zero:

0 = [tM − a (tdrop)] (a′Eψ0 − ψ1) + [a (tlift)− tM ] (a′Lψ0 − ψ1)

= (a′E − a′L)ψ0

β

α
t0 − (a′Eψ0 − ψ1) a (tdrop) + (a′Lψ0 − ψ1) a (tlift) .

Solving, substituting (19), and simplifying yields:

a (tdrop) =
a′E − a′L
a′Eψ0 − ψ1

ψ0

β

α
t0 +

a′Lψ0 − ψ1

a′Eψ0 − ψ1

a (tlift)

=

[
a′E − a′L
a′Eψ0 − ψ1

ψ0

β

α
− a′Lψ0 − ψ1

a′Eψ0 − ψ1

β

γ

]
t0 −

a′Lψ0 − ψ1

a′Eψ0 − ψ1

· α + γ

γ
· Q0

ψ0

=

[
ψ0 − α−β

α+γ
ψ0

α∆ψ + βψ1

β −
α−β
α+γ

ψ0 − α−β
α
ψ1

α∆ψ + βψ1

αβ

γ

]
t0 −

α−β
α+γ

ψ0 − α−β
α
ψ1

α∆ψ + βψ1

· α (α + γ)

γ
· Q0

ψ0

=
β

γ
· (β − α) ∆ψ + γψ0

α∆ψ + βψ1

t0 −
α− β
γ
· α∆ψ − γψ1

α∆ψ + βψ1

· Q0

ψ0

(20)

where ∆ψ ≡ ψ0 − ψ1.

Using these results, we can identify the relationship between N and t0 by not-

ing that arrival rate A (t), which has kinks at a (tdrop) and a (tlift), must integrate

to N :
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N = (a (tdrop)− t0)ψ0 + (a (tlift)− a (tdrop))ψ1 + (t1 − a (tlift))ψ0

= [a (tdrop)− a (tlift)] ∆ψ − β + γ

γ
t0ψ0

=
β

δ
ψ0

{
β∆ψ

α∆ψ + βψ1

− 1

}
t0 +

α (β + γ)

γ

∆ψ

α∆ψ + βψ1

·Q0

= −βψ01

δ
· t0 +

β

δ

α∆ψ

α∆ψ + βψ1

·Q0

This equation is solved for t0 to yield equation (6) in the text.

Lemma 2 The slope

ψ01 ≡ ψ0

(α− β) ∆ψ + βψ1

α∆ψ + βψ1

of average cost as a function of N in Regime 2 satisfies ψ1 ≤ ψ01 ≤ ψ0.

Proof. The second inequality is obvious. The first inequality is equivalent to

ψ1 < ψ0

(α− β)ψ0 + (2β − α)ψ1

α∆ψ + βψ1

⇔ α
∆ψ

ψ0

+ β
ψ1

ψ0

< (α− β)
ψ0

ψ1

+ 2β − α

⇔ α

(
2− ψ1

ψ0

− ψ0

ψ1

)
< β

(
2− ψ1

ψ0

− ψ0

ψ1

)
But it can easily be verified that the function f (x) = 2− x− x−1 ≤ 0 for x > 0

and that f (x) = 0 only for x = 1. If ψ1 < ψ0, the first inequality is equivalent

to α > β, which we have assumed throughout. If ψ1 = ψ0, the definition of ψ01

shows directly that ψ0 = ψ01.

The time tlift itself can be found from the fact that the number of departures

during time interval [tlift, t1] is equal to the number of arrivals during [a(tlift), t1].
Breaking the first of these intervals into its two parts with different departure rates,

this equality is written:

a′Eψ0 · [tM − tlift] + a′Lψ0 · [t1 − tM ] = ψ0 · [t1 − a (tlift)]

from which, using (19) along with earlier results for tM and t1:
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tlift = tM +
a′L
a′E
· [t1 − tM ]− 1

a′E

[
α + γ

γ
· Q0

ψ0

]
=

β

α

(
1− α− β

γ

)
t0 −

(α− β) (α + γ)

αγ
· Q0

ψ0

. (21)

Note that this derivation does not depend on the relative positions of a (tdrop) and

tlift, so remains valid in Regime 3.

We can now demonstrate that the times a (tdrop) and tlift approach each other

as N increases, and equal each other at the critical value given in Section 3.3 of

the text. Combining (21) and (20), we find from the coefficients of t0 that:

αδ

β2 ·
d

dt0
[tlift − a (tdrop)] = 1− αψ0

α∆ψ + βψ1

=
(β − α)ψ1

α∆ψ + βψ1

< 0.

Given then dt0/dN < 0 from (6), we therefore know that d [tlift − a (tdrop)] /dN >
0 during Regime 2.

We can furthermore find the threshold N2 for which tlift = a (tdrop), marking

the boundary between Regimes 2 and 3, as the value for which tlift = a (tdrop).

Equating (21) and (20), and using (6) to eliminate t0, leads to:

N2 −N1

Q0

= 1 +
α− β
β

∆ψ

ψ1

as stated in (8) in Section 3.3 of the text. The derivation is tedious but straightfor-

ward, so we did not include it here but it is available on request.

A.2 Regime 3

Regime 3 is characterized by the conditions that

t0 < tdrop < a (tdrop) < tM < a (tlift) < −
β

γ
t0 ≡ t1

a (tdrop) < tlift

The times tdrop and a (tdrop) are simpler to derive than in regime 2. They are

determined by two conditions. First, the number of departures during interval
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[t0, tdrop] (which occur at rate a′Eψ0) is equal to the number of arrivals during

interval [t0, a (tdrop)] (which occur at rate ψ0). This yields:

a (tdrop)− t0 =
α

α− β (tdrop − t0) . (22)

Second, the critical queue length Q0, which by definition occurs at time a (tdrop),

is equal to the number of departures between tdrop and a (tdrop). (This is because

everyone already in the queue at time tdrop passes through it by time a (tdrop), by

definition of the latter.) These departures occur at rate a′Eψ1. Therefore:

Q0 =
α

α− β · [a (tdrop)− tdrop]ψ1.

Combining with (22), we obtain

tdrop − t0 =
Q0

ψ1

(α− β)2

αβ
(23)

and hence

a (tdrop)− t0 =
Q0

ψ1

(α− β)

β
.

This enables us to see how [tlift − a (tdrop)] varies withN for this regime, just

as we did for Regime 2. Combining the above equation with (21), which as noted

remains valid in this regime, we see from the coefficients of t0 that:

d

dt0
[tlift − a (tdrop)] =

β

α

(
1− α− β

γ

)
− 1

=
(β + γ) (β − α)

αγ
< 0.

As with Regime 2, this implies that [tlift − a (tdrop)] is increasing in N ; since it

begins at zero for N = N2, it must be greater than zero for N > N2, as stated in

the text.

To determine the relationship between N and t0, we combine (19) with (22)

to obtain:

a(tlift)− a(tdrop) = (t1 − t0)− α + γ

γ
· Q0

ψ0

− Q0

ψ1

(α− β)

β

= −β
δ
t0 −

(
1

ψ0

· α + γ

γ
+

1

ψ1

(α− β)

β

)
Q0

= −β
δ
t0 −

(
α + γ

γ
+
ψ0

ψ1

(α− β)

β

)
Q0

ψ0
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We then integrate A′ from t0 to t1, making use of the fact that (19) from Regime

2 applies also in this regime since it was derived from the arrival rate aftertime

a (tlift). The result is:

N = ψ0 · [a (tdrop)− t0] + ψ1 · [a (tlift)− a (tdrop)] + ψ0 · [t1 − a (tlift)]

=
ψ0

ψ1

(α− β)

β
Q0 −

β

δ
ψ1t0 −

(
α + γ

γ

ψ1

ψ0

+
(α− β)

β

)
Q0 +

α + γ

γ
Q0

= −β
δ
ψ1t0 +

[(
ψ0

ψ1

− 1

)
α− β
β

+

(
1− ψ1

ψ0

)
α + γ

γ

]
Q0

= −β
δ
ψ1t0 +

∆ψ

ψ0ψ1

[
(α− β)

β
ψ0 +

α + γ

γ
ψ1

]
Q0.

Solving for t0 yields (10).

B Coarse toll

We need to determine when the system with coarse toll (17), applied during the

optimal interval [t+, t−] given by (15) and (16), satisfies the requirement that the

queue never exceed Q0.

First, consider the queue faced by travelers paying the toll. Travelers in the

tolled group arriving exactly at the preferred arrival time experience the maxi-

mum queue in this group. To be in equilibrium with non-toll payers, whose aver-

age cost isNδ/ψ0, the time spent queueing must be worthNδ/ψ0−τ ∗; that is, the

queue duration must be (Nδ/ψ0 − τ ∗) /α. With a processing rate of ψ0, the max-

imum queue length in the tolled group is then Qmax
toll (τ ∗) = (Nδ − ψ0τ

∗) /α =
Nδ/(2α).

Next, consider the early group of non-tolled travelers. They depart starting

at time t0 at a rate greater than capacity. Their queue is steadily increasing and

reaches its maximum as they approach their last departure time, which is a−1 (t+),

i.e., the departure time allowing them to arrive just at time t+ when the toll kicks.

To find a−1 (t+) , we make use of three conditions:

1. Their departure rate is ρE = a′Eψ0, from (4), with a′E = α/ (α− β);

2. The earliest departure is t0 = −Nδ/ (βψ0), from the condition that the first

traveler has cost Nδ/ψ0, as stated above (15);

3. The total number of departures in the early group, ρE · [(a−1 (t+)− t0)] ,
equals the total number of arrivals from this group, ψ0 · (t+ − t0).
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Using these three conditions and substituting (15) for t+ and (17) for τ ∗, we

obtain a departure interval of duration

∆tE ≡ a−1 (t+)− t0 =
1

a′Eψ0

· δN
2β

Over the interval of departures, then, cumulative departures are

ρE∆tE =
δN

2β

while cumulative arrivals during that same time interval are

ψ0∆tE =
δN

2β
· 1

a′E
.

The difference is the maximum queue:

Qmax
early (τ ∗) =

Nδ

2α
,

showing that Qmax
early (τ ∗) = Qmax

toll (τ ∗).

Consider now late travelers who pay no toll. They begin departures at some

time tlate0 with corresponding arrival at time t−. Both tolled and late untolled

travelers depart at rate a′Lψ0 ≡ [α/ (α + γ)]ψ0 during this period. Thus the com-

bined departure rate for tolled and late travelers is ρL = [2α/ (α + γ)]ψ0, hence

their queue changes at rate (ρL − ψ0)/ψ0 = [2α/ (α + γ)− 1]ψ0. But α < γ by

assumption, so this rate is negative, that is, the queue is dissipating.

So with the optimal coarse toll and capacity at ψ0, the maximal queue is

Nδ/(2α) = (1/2)Q0 (N/N1) , and the maximum is attained both by early and

tolled travelers. Therefore the system remains in Regime 1, and hence solution

(17) is valid, providedN ≤ 2N1. To put the result another way, the optimal coarse

toll makes it possible to accommodate twice as many travelers without activating

the lower capacity as is the case with an unregulated equilibrium. This completes

the needed proof for Section 4.3.
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C List of Symbols

A Cumulative arrivals

a (t) Arrival time for departure at time t
a′E β/ (α− β)
a′L γ/ (α + γ)
N Total number of travelers

Q Queue length (in number of travelers)

Q0 Value of Q at which capacity drops

R Cumulative departures

t∗ Preferred arrival time: normalized to zero

t0 Time of first departure

t1 Time of last departure [= − (β/γ) t0]

tdrop First departure time for which lower capacity is encountered

by end of trip (Regimes 2 and 3 only)

tlift Last departure time for which lower capacity is encountered

by end of trips in (Regimes 2 and 3 only)

tM Departure time leading to arrival at time t∗ [i.e. a−1 (0) =
(β/α) t0]

α Utility loss per unit of travel time

β Utility loss per unit of early arrival

γ Utility loss per unit of late arrival

δ βγ/ (β + γ)
ρ Departure rate (travelers per unit time)

ψ (Q) Bottleneck capacity as function of Q
ψ0, ψ1 Higher, lower values of ψ, respectively

∆ψ ψ0 − ψ1
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