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Abstract 

 
 

This paper analyzes aggregate personal motor-vehicle travel within a simultaneous model of 
aggregate vehicle travel, fleet size, fuel efficiency, and congestion formation. We measure the 
impacts of driving costs on congestion, and two other well-known feedback effects affecting 
motor-vehicle travel: its responses to aggregate road capacity (“induced demand”) and to driving 
costs including those caused by fuel-economy improvements (“rebound effect”). We measure 
these effects using cross-sectional time series data at the level of US states for 1966 through 
2004. Results show that congestion affects the demand for driving negatively, as expected, and 
more strongly when incomes are higher. We decompose induced demand into effects from 
increasing overall accessibility of destinations and those from increasing urban capacity, finding 
the two elasticities close in magnitude and totaling about 0.16, somewhat smaller than most 
previous estimates. We confirm previous findings that the magnitude of the rebound effect 
decreases with income and increases with fuel cost, and find also that it increases with the level 
of congestion. 
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Induced Demand and Rebound Effects in Road Transport 

 

1. Introduction 

Transportation policies are accompanied by several feedback effects.  One of them is the 

“induced demand effect” for vehicle travel, whereby increases in highway capacity attract new 

traffic (Downs, 1962; Goodwin, 1996), possibly working against the intent of the capacity 

increase or at least causing new facilities to be unexpectedly crowded. Another effect is the 

“rebound effect” (Greening, Greene, and Difiglio, 2000), by which policies or technical 

improvements that raise fuel efficiency also decrease the per-mile fuel cost of driving and hence 

cause an increase in vehicle usage.  Because of the rebound effect, fuel efficiency improvements 

save less fuel than in the case of unchanged travel demand.  

Both feedback effects are instances of more general phenomena involving offsetting 

behavior. For example, making cars safer might increase their use for the same reason as fuel-

efficiency improvements, if people regard accident costs as part of the cost of driving. As for 

induced demand, any policy that reduces congestion without otherwise making driving more 

expensive, for example diverting some commuters to transit, will tend to attract new traffic that 

at least partially offsets the policy’s effect on congestion. Because of the rebound effect as just 

explained, fuel-efficiency improvements are one such policy, except working in the opposite 

direction. If fuel-efficiency improvements increase travel demand at locations and times where 

congestion is present, they will tend to worsen congestion, which will itself tend to deter travel 

by exactly the reverse of the mechanism that produces induced demand. Both feedback effects 

interact, and more specifically the rebound effect will be dampened by congestion. 

This paper simultaneously measures the induced-demand and rebound effects while 

taking into account endogenous urban congestion. In order to accomplish this, we directly model 

the simultaneous interaction between vehicle miles traveled (VMT) and congestion. We 

distinguish two sources of induced demand: that occurring in undeveloped areas when new 

locations are made more accessible, and that occurring in urban areas because increased capacity 

tends to reduce congestion, and this attracts increased traffic. Our modeling of congestion also 

provides a more accurate estimate of the rebound effect than earlier studies, and it enables us to 

estimate the congestion impacts of fuel-efficiency policies — which here we call the “congestion 

effect”.  
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Our model is an extension of that by Small and Van Dender (2007). They model the 

simultaneous determination of vehicle miles traveled, vehicle stock, and fuel efficiency; we add 

congestion. We also extend their 1966-2001 panel data set, aggregated at the level of US states 

(plus District of Columbia), to 2004. We estimate the model using three-stage least squares 

(3SLS) in order to account for the endogeneity of explanatory variables. Our results contain both 

short-run and long-run estimates because we allow for lagged effects within annual data. For 

VMT, the behavioral responses underlying short-run effects could include changes in travel 

mode, discretionary trips, destinations, or the combining of several trips into a single chain. 

Long-run responses might include changes in the vehicle stock, job or residential relocations, 

and changes in land use. Except for vehicle stock, we do not model these other decisions 

explicitly. The model enables one to calculate price elasticities of fuel consumption, and to see 

how they are determined by separate pathways involving changes in vehicle fleet size, vehicle 

usage, and average fuel efficiency. 

The results help assess policy. For example, Portney et al. (2003) argue that the US 

Corporate Average Fuel Economy (CAFE) standards increase urban congestion enough that the 

extra costs of congestion seriously erode or even reverse the benefits of less fuel consumption. 

However, newer evidence suggests that the rebound effect in the US today is considerably lower 

than in the past — mainly due to rising real incomes — and is therefore lower than previous 

estimates in the literature (Small and Van Dender, 2007). We confirm that result here while 

accounting for the role of congestion, which means it becomes less likely that increased costs of 

congestion outweigh the benefits of reduced fuel consumption.  

 We measure the two distinct sources of “induced demand” mentioned earlier through two 

different measures of road stock. The first source (accessibility) is measured as a direct response 

of travel to changes in total road length. The second is measured as an indirect response to 

changes in urban road capacity operating via endogenous congestion. Incorporating both of these 

sources, our estimate of the elasticity of state VMT with respect to total road length is 0.037 in 

the short run and 0.186 in the long run, calculated at the average values of variables in our 

sample in the year 2004. About 60 percent of this induced demand works through the path of 

increased accessibility and 40 percent through decreased congestion. (If only non-metropolitan 

rural road lengths or only urban road widths are increased, then just one of these pathways is 

applicable.) Because our geographical unit is a U.S. state (or the District of Columbia), our 
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measures net out some “induced travel” that is measured in studies of smaller areas or of 

individual corridors, namely, the travel that is diverted from nearby areas to ones whose 

accessibility or capacity is increased. 

 Our results on congestion permit us to examine how congestion impacts the rebound 

effect. We estimate the “congestion effect” — i.e. the elasticity of total congestion delay with 

respect to an exogenous increase in fuel efficiency — to be 0.012 in the short run and 0.060 in 

the long run, again in year 2004. Using current estimates of congestion costs from Schrank and 

Lomax (2005), this result implies that increasing the average fleet fuel efficiency by one mile per 

gallon would raise delay caused by congestion by a modest 1.1 minutes per adult per year in the 

long run. This increased congestion modifies the overall rebound effect by curtailing some of the 

incentive for travel, but we find that modification to be modest, changing the short-run rebound 

effect by a negligible amount and reducing the long-run rebound effect (as measured for year 

2004) from 0.135 to 0.131. 

 The paper is structured as follows. Section 2 reviews literature on induced demand for 

travel and the rebound effect. Section 3 describes our theoretical model. Section 4 presents the 

econometric model and data, while Section 5 describes estimation results. Section 6 concludes. 

 

2. Literature review 

 While a considerable amount of work has been done on induced demand and on the 

rebound effect, we know of no studies that jointly model both effects and their interdependence.  

For this reason, we review separately studies on induced demand and on the rebound effect. 

 

2.1  Induced demand for travel 

Transportation researchers have long recognized that any change in the transportation 

system that reduces congestion will, in the absence of some offsetting deterrent, cause travel on 

the congested facility to increase. This is in line with the common observation that the quantity 

demanded of a good increases as its price declines. Downs (1962), Smeed (1968), and Thomson 

(1977) suggest that such “induced demand” is so strong a phenomenon as to almost completely 

offset the congestion-reducing effect of a capacity improvement. For example, Smeed states that 

in British cities, “the amount of traffic adjusts itself to a barely tolerable speed” (p. 41) and he 

estimates that “if it were not for the inhibiting effects of congestion, we might well have 4 to 5 
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times as much traffic in Central London as we have now” (p. 58). Holden (1989) provides more 

formal modeling of the phenomenon.  Empirically, a report by the Standing Advisory Committee 

on Trunk Road Assessment (SACTRA, 1994) caused a major rethinking of road-expansion 

policies in the UK by demonstrating that traffic on a corridor responds significantly to road 

capacity. This and other evidence is reviewed by Goodwin (1996), who suggests from a broad-

brush analysis of elasticities of VMT with respect to travel time that the induced-demand effect 

should be about 0.10 in the short run and 0.20 in the long run.1 

A number of more recent studies have applied econometric techniques to a variety of data 

sources to determine the size of the induced demand effect. Hanson and Huang (1997) consider 

lane-mile additions to the California system of state highways, obtaining an elasticity of VMT 

with respect to lane miles of 0.6–0.9. Fulton et al. (2000) examine county-level data from 

selected mid-Atlantic areas in the US, while Noland (2001) uses a panel data set of US states to 

examine induced demand, modeling VMT as a function of lane-miles. Fulton et al. find best 

estimates of the elasticity of VMT with respect to lane miles to be 0.2–0.6. Noland finds similar 

values for short-run elasticities of travel on particular classes of highways, but smaller values for 

overall travel: using his best-performing estimate that distinguishes between short- and long-run 

effects, one obtains short- and long-run elasticities of VMT with respect to lane miles of 0.13 and 

0.41, respectively.2 Cervero and Hansen (2002) use a cross-sectional time series of 34 urban 

counties in California over 22 years to estimate a simultaneous-equations model of VMT and 

lane-miles. They argue that past studies have been plagued by simultaneity bias and propose a set 

of instrumental variables to eliminate it. Using these tools, they estimate the short- and long-run 

elasticities of VMT with respect to lane-miles to be 0.6 and 0.8. 

Cervero (2003) estimates a more elaborate model that explicitly accounts for congestion 

in the short run and for development activity in the long run. He examines 24 California freeway 

projects over a 15-year period and obtains much smaller net induced-travel elasticities with 

respect to lane miles: 0.10 in the short run and 0.39 in the long run. These estimates are very 

close to those of Noland (2001) just cited. Both are likely to somewhat overstate the induced 

demand over a large area such as an entire state: Cervero’s because, as he notes, his estimates 

                                                 
1 This is based on Goodwin’s text on p. 41, which appears to be referring to the response to a doubling of capacity. 
2 Noland (2001), Table 7, last column. The long-run elasticity is 0.128 / (1-0.690) = 0.413, where 0.690 is the 
coefficient of the one-year lagged value of the independent variable. 
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include some travel that is diverted from other nearby corridors, and Noland’s because his 

estimates do not account for the reverse causality whereby road building responds to actual or 

anticipated traffic. 

We conclude that prior literature best supports short-run elasticities of vehicle miles 

traveled with respect to total urban and rural lane-miles to be on the order of 0.1 and long-run 

elasticities on the order of 0.4. These appear to be conservative lower bounds on the elasticities 

found in the literature (which, as just indicated, may tend to overestimate the effect), with the 

exception of one study that finds essentially zero elasticity using vehicle trips rather than vehicle 

miles as its dependent variable (Mokhtarian et al., 2002). 

 
2.2 The rebound effect 

Prior research has measured the rebound effect for passenger transport using a variety of 

data sources and statistical techniques. Most but not all estimates lie within a range of 10 to 30 

percent (expressing the elasticity as an absolute value and as a percentage instead of a fraction).  

We refer to Greening, Greene, and Difiglio (2000) and Small and Van Dender (2007) for 

reviews. Here we just highlight a few key contributions. 

The great majority of estimates are based on one of three types of data. The first and 

probably least satisfactory is a single time series, either of an entire nation or of a single state 

within the U.S. Examples are Greene (1992) and Jones (1993). These studies have difficulty 

distinguishing between autocorrelation and lagged effects, and of course suffer from a small 

number of data points. 

Second, some studies have instead used state-level panel data, most often from the US 

Federal Highway Administration (FHWA). Haughton and Sarkar (1996), using such data from 

1970-1991, estimate the rebound effect to be 16% in the short run and 22% in the long run. They 

account for endogenous regressors, autocorrelation, and lagged effects. Small and Van Dender 

(2007) use similar data but for a longer time period, 1966-2001, estimating three equations 

simultaneously explaining VMT, vehicle stock, and fuel efficiency. They estimate the rebound 

effect to be 4.5% in the short run and 22.2% in the long-run on average, and find evidence that it 

has declined substantially over time due mainly to rising per-capita incomes. 

A third type of data is from individual households. Mannering (1986), using a US 

household survey, finds that how one controls for endogenous variables in a vehicle utilization 
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equation strongly influences the estimated rebound effect. He estimates the short- and long-run 

rebound effects (constrained to be identical) to be 13-26%. Goldberg (1998) estimates a system 

of equations using data from the Consumer Expenditure Survey for years 1984-1990. In a 

specification accounting for the simultaneity of the two equations, she cannot reject the 

hypothesis of a rebound effect of zero. Greene, Kahn and Gibson (1999) estimate the rebound 

effect to be 23% on average using a simultaneous-equation model of individual household 

decisions. 

The studies based on individual households in a single cross-section suffer from a limited 

range for fuel prices, a key variable for understanding the rebound effect. This disadvantage is 

partly overcome by Dargay (2007), who observes repeated cross sections of different individuals 

in the UK. She estimates short- and long-run rebound effects of 10% and 14%, respectively, but 

suggests that this long-run value may be an underestimate. 

Two recent reviews – Goodwin, Dargay, and Hanly (2004) and Graham and Glaister 

(2004) – provide systematic statistical analyses of various studies. Estimated short- and long-run 

rebound effects (based on fuel-price elasticities) average about 12 percent and 30 percent, 

respectively.  

 This short overview highlights the importance of model specification. How one deals 

with dynamics — by including lagged effects, autoregressive errors, both, or neither — can have 

a major impact. In addition, results of US studies seem to be sensitive to how they account for 

the influence of the US Corporate Average Fuel Efficiency (CAFE) standards, which went into 

effect in 1978. 

 

3. Theoretical framework 

We motivate our empirical specification with a model that simultaneously determines 

four variables: aggregate vehicle miles traveled, vehicle stock, fuel efficiency, and traffic 

congestion. Our simultaneous model formalizes the key relationships, both direct and indirect, 

among these four variables. We use these relationships to derive expressions for the rebound 

effect, the induced demand effect, the congestion effect (i.e., the elasticity of traffic congestion 

with respect to fuel efficiency), and other elasticities.  

First, we assume that VMT, denoted here by M, is a function of the vehicle stock V, the 

per-mile fuel cost of driving PM, traffic congestion C, accessibility-related road capital stock K1, 
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and exogenous factors XM. Note that PM (the fuel cost of driving a mile, equal to the price of fuel 

PF divided by fuel efficiency E) is endogenous. We assume that a state’s vehicle stock is a 

function of VMT, the price of a new vehicle PV, the per-mile cost of driving, and other factors 

XV. Consumers and manufacturers jointly determine vehicle fuel efficiency E, which we assume 

is a function of VMT, the price of fuel PF, regulations RE, and other factors XE.3 Finally, traffic 

congestion is a function of VMT, urban road capacity K2 (non-urban road capacity is assumed to 

be abundant), and other exogenous factors XC. Thus: 

                                                       

( )
( )
(
( ). ,2,

,,,
,,,

,1,,,

C

EEF

VMV

MM

XKMCC
XRPMEE
XPPMVV

XKCPVMM

=
=
=

)

=

                                               (1) 

This model is an extension of that by Small and Van Dender (2007). In their model, the 

effect of congestion is proxied crudely by including road-miles per adult as one of the variables 

in XM. Here we fully incorporate congestion into the structural system and construct a more 

direct measure of it, as explained in section 4.3. We also specify two different measures of road 

capital stock operating through two different pathways. 

 

3.1 Partially-reduced-form elasticities 

It is convenient to solve the structural equation in two steps, first eliminating all 

endogenous variables other than E, and finally eliminating E. The first step is useful in 

discussing rebound effects, which are normally defined in terms of variations in E. Thus Small 

and Van Dender measure the rebound effect by substituting the structural equation for vehicle 

stock into that for travel (M) and solving for M. This produces a partially-reduced-form usage 

equation in which travel is a function of PM (hence of E) plus exogenous variables. Here we 

create an analogous usage equation, )(~ ⋅M , which again is a function of PM (hence of E) and 

exogenous variables. We do so by substituting the equations for both V and C into that for M:  

                                                 
3 Some research has explicitly considered the separate roles of manufacturers and consumers in adjusting to changes 
in fuel prices or regulation – see for example Goldberg (1998), Langer and Miller (2008), and Busse, Knittel and 
Zettelmeyer (2009). Such analyses demonstrate a complex interplay of decision-making. Among other things, they 
show that changes in fleet fuel efficiency are slowed not only by the stock of existing vehicles, but by the stock of 
manufacturing assets that are devoted to particular model cars and cannot be quickly changed. Our results confirm 
that fuel efficiency is the slowest of the three lagged adjustment processes we measure. 
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where K=(K1,K2) and Z designates the variables in function )(~ ⋅M  other than PM. (Note Z is 

exogenous.) As a byproduct, we can also write partially-reduced equations for two other 

endogenous variables: 

 ]  ,  ,  ),,(~[),(~
VMVMM XPPZPMVZPV =  (2b) 

 ]X  2,  ),,(~[),(~
CKZPMCZPC MM = . (2c) 

 We derive the rebound effect in terms of the structural coefficients by differentiating the 

second of equations (2a) (in logarithmic version) with respect to log(PM), evaluating at the 

solution given by ˜ M , and solving the result for the elasticity of ˜ M  with respect to PM. This 

yields:4 

 
D

PMVVMPMM
PMM

,,,
,~

εεε
ε

⋅+
=  (3) 

where each of the ε’s on the right-hand side is a direct structural elasticity from (1), and where 

 D = 1− εM ,V ⋅εV ,M − εM ,C ⋅εC ,M . (4a) 

Thus fuel cost affects usage both directly through εM,PM (the elasticity of the first structural 

equation), and  indirectly through changes in the size of the vehicle stock as captured by the 

product εM,V⋅εV,PM. (These equations assume 0≤D<1; otherwise, a small shock to the dynamic 

path of M results in oscillatory or explosive responses, which would be unrealistic and call into 

question the validity of the empirical specification of the model.) 

 In the absence of congestion effects, we would have εM,C=0 and (4a) would become: 

 MVVMD ,,1 εε ⋅−= . (4b) 

                                                 
4 We write the equality as  and note that inside the square brackets is function V(⋅), which 
depends on M. We take logarithms of both sides and differentiate with respect to pm≡log(PM), using the chain rule 
and the fact that each of structural functions M[⋅] and V(⋅) depends on PM both directly and indirectly via its 
dependence on the other endogenous variable. The result is 

. Solving for  yields (3) and (4a). 

][log)(~log ⋅≡⋅ MM

PMMPMMMV ,,~, ) εε ++ PMMMCCMPMVVMPMM ,~,,,,,~ ( εεεεεεε +⋅= PMM ,~ε
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Equations (3) and (4b) give the rebound effect as derived by Small and Van Dender (2007). By 

computing (3) with the alternate denominators as given in (4a) and (4b) and comparing results, 

one can assess the impact of endogenous congestion on the rebound effect. 

 Our derivation of induced-demand effects proceeds similarly. We have two capacity 

variables. The first is road-miles per unit land area, K1; it measures accessibility of destinations 

and is entered directly in the structural equation (1) for M. The second is urban lane-miles per 

adult, K2; it measures urban road capacity and is assumed to affect travel via congestion.5 For 

each of these, the impact on M is determined similarly by taking the logarithms of (2a), totally 

differentiating with respect to the logarithm of a capacity variable Ki (for i=1,2), and solving for 

)(log/)(log,~ KidMdKiM ≡ε . The result is: 

 
D

KM
KM

1,
1,~

ε
ε =  ; 

D
KCCM

KM
2,,

2,~
εε

ε
⋅

=   (5) 

with D given by (4a). Again, to see what the elasticities would be if congestion had no effect on 

travel, we would simply use (4b) instead of (4a) to compute D. 

 Policy makers are also interested in knowing whether fuel-efficiency policies would add 

much to congestion — indeed, as already noted, this has been raised as a potentially serious 

disadvantage to such policies. In order to investigate this question, we report the elasticity of 

congestion with respect to fuel efficiency — what we have called the “congestion effect” — 

based on the partially-reduced function (2c). Both the rebound effect and the congestion effect 

therefore refer to responses to a change in fuel efficiency caused solely by a change in some 

exogenous variable like those represented as RE and XE in (1). To determine the congestion 

effect, we differentiate both sides of (2c) with respect to E (recalling that PM is a function of E), 

rearrange, and put into elasticity form to obtain: 

 PMMMCEC ,~,,~ εεε ⋅−= . (6) 

 

                                                 
5 We experimented with a third capacity variable, total lane-miles per adult, in the vehicle stock equation (in lieu of 
a variable measuring urbanization). This variable took a statistically significant but very small coefficient. We 
believe urbanization is a theoretically better explanatory variable for the vehicle stock, capturing many aspects of 
urban form and services that tend to affect vehicle ownership. We also considered whether variable K2 might be 
endogenous, by estimating the model with a fifth equation explaining K2 as a function of income, state and year 
dummies, and two political variables equal to that state’s number of Representatives and Senators, respectively, 
belonging to the majority party. This procedure made no important difference to our results, so it is not shown here 
for simplicity. 
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3.2 Fully-reduced-form elasticities 

 Although not the focus of this paper, we also report for completeness the elasticities of 

fuel efficiency, vehicle travel, and fuel consumption with respect to fuel price. These quantities 

are of interest in considering policies that affect fuel price, and also enable our results to be 

compared with an additional literature focusing on fuel price elasticities. To do so, we need to 

fully reduce our system to equations that are functions of exogenous variables only. This is the 

second step in the process already begun, and it uses the two-equation system consisting of the 

partially-reduced-form function )(~ ⋅M  from (2a) and the structural equation E(⋅) from (1). 

Substituting these into each other and solving for M and E yields the fully-reduced-form 

functions, which we denote by M*(⋅) and E*(⋅). Differentiating those defining equations with 

respect to fuel price and converting to elasticities, and defining fuel consumption as F*=M*/E*, 

yields: 

 
PMMME

PMMMEPFE
PFE

,~,

,~,,
, 1*

εε
εεε

ε
+

+
=   (7) 

 )1(
,,~

, ** PFEPMMPFM
εεε −⋅= ; 

PFEPFMPFF ,,, *** εεε −= . (8) 

The first of equations (8) describes how the elasticity of mileage is smaller when calculated in a 

fully-reduced form (which is needed to fully answer questions about effects of fuel prices on 

travel) than in a partially-reduced form (which is appropriate for questions involving a fleet with 

fixed average fuel intensity).6 

 

4. Empirical implementation 

 We now describe how this theory is implemented in a slightly generalized form, as an 

estimable econometric system. 

  

4.1 Econometric model 

We estimate the structural system (1), except that we work with fuel intensity rather than 

its inverse, fuel efficiency, and we generalize the system to account for dynamics. Thus in the 

vehicle usage, stock, and intensity equations we include both lagged effects and autoregressive 

errors. We justify including lagged effects by noting that vehicle usage, ownership, and fleet fuel 
                                                 
6 Equations (8) together imply that ( )

PFEPFEPMMPFF ,,,~
, *** 1 εεεε −−⋅= , also derived by USDOE (1996, p. 5-11). 
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intensity may only partially change from one period to the next due to behavioral inertia, 

transaction costs associated with vehicle sales, and other obstructions to adjustment.7 For the 

congestion equation, we assume there is neither autocorrelation nor a lag structure because 

congestion is assumed to be a technical rather than behavioral relationship.  

We specify the equations as linear in parameters with most variables expressed in 

logarithms. The empirical counterpart of system (1) above is therefore: 

  (9a) 
(vma)t = αm ⋅ (vma)i ,t−1 + αmv ⋅(veh)t + αmc ⋅(cong)t + β1

m ⋅( pm)t + βK1
m ⋅(cap1)t

+β3
m Xt

m + ut
m

  (9b) v
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v
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  (9d) c
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cm
t Xcapvmacong εββα ++⋅+⋅= 32 )2()()(

where 

 ut
k = ρ kut−1

k +ε t
k ,  k = m,v, f  (10) 

and where we have omitted the subscripts identifying the state. Here, lower-case notation 

indicates that the variable is in logarithms. Thus vma is the natural logarithm of VMT per adult; 

veh is the log of number of vehicles per adult; fint is the log of fuel intensity (i.e., fint = -logE); 

and cong is the log of hours of travel delay per adult.  Variable pf is the log of fuel price; hence 

log fuel cost per mile, pm, is equal to pf+fint. Variable pv is the log of a price index of new 

vehicles. The variable cafe is a measure of the strength of CAFE regulation; see Small and Van 

Dender (2007) for a complete description of how this variable is constructed. Variables cap1 and 

cap2 are the logarithms of K1 and K2 in system (1), namely, log total road miles per square 

kilometer and log urban lane miles per adult, respectively. The individual variables in each 

vector Xt
k  may be in either levels or logarithms. Subscript t designates a year, and u and ε are 

error terms assumed to have zero expected value, with ε assumed to be “white noise”. 

 

4.2 Short-run and long-run elasticities 

                                                 
7 Our specification ignores the role of expectations (e.g. about future prices), which arguably affect long run 
elasticities.  But since expectations may change over time, it is not clear that explicit treatment of expectations 
provides better policy-relevant estimates. 
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 Using (9), we can write the empirical counterparts to short-run elasticities (3) and (5)–(7) 

as: 

 ( ) Dvmvm
PMM /21,~ βαβε ⋅+=  (11a) 

  ;   Dm
KKM /11,~ βε = ε ˜ M ,K 2 = αmc ⋅ βK 2

c / D  (11b) 

   (11c) PMM
cm

EC ,~,~ εαε −=

 
PMM
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PMM

fmf

PFE
,~

,~1

, 1
*

εα

εαβ
ε

−

−−
=   (12) 

where 

 D = 1− αmv ⋅α vm − αmc ⋅αcm . (13) 

Equations (8) remain unchanged. Note that these elasticities describe changes occurring within a 

given year. 

 If αfm<0 (higher mileage lowers fuel intensity), there are two opposing effects on fuel 

efficiency in (12). A higher fuel price raises fuel efficiency directly by making consumers desire 

more to save fuel (i.e., <0), but it also makes them drive less, reducing their need to save fuel 

(αfm<0). Much empirical evidence suggests that the first effect is stronger, as we also find. 

f
1β

 The X  term in (9a) contains interactions between pm and other variables, and between 

congestion and other variables. To facilitate ease in interpreting the coefficients, we normalize 

these other variables (including pm and cong) at their sample means, so that structural elasticities 

εM,PM and εM,C are equal to coefficients 

t
m

β1
m  and αmc , respectively, when evaluated at the mean 

values of variables in our sample. At other values of the interacting variables, we must replace 

β1
m  and αmc  by these structural elasticities, computed as the partial derivatives of (9a), when 

computing (11)–(13) and later equations in this subsection. 

 Since we include lagged dependent variables in (9a,b,c), we can also derive formulas for 

long run elasticities. We do this by rewriting (9a,b,c) with steady-state values of endogenous 

variables (i.e., values that do not change over time); this allows us to eliminate the lagged term 

involving coefficient αk by instead multiplying the left-hand side by (1-αk), where k=m,v,f. We 

then carry out the same two-stage procedure as in section 3. (See Appendix E for details.)  

 In the first stage, we first substitute (E1b) and (E1d) into (E1a), thereby implicitly 

defining the endogenous variables as partially-reduced steady-state functions of pm and of 
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exogenous variables. We designate these implicit functions as vma~(⋅), veh~(⋅), and cong~(⋅) and 

differentiate their defining equations with respect to pm, cap1, cap2, or log(E). We then solve the 

resulting equations for the desired elasticities.  The results are the long run counterparts to (11): 

  21
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where 

 DL = 1− αm − αmvα vm − αmcαcm  (15a)  

 α vm =
α vm

1− α v ; β2
v =

β2
v

1− α v  (15b) 

and where we assume 0≤DL<1. 

 In the second stage, we solve explicitly for function vma~(⋅), substitute it into the steady-

state version of (9c), differentiate with respect to log fuel price pf (applying the chain rule), and 

solve for the long-run elasticity ≡∂(-fint)/∂(pf). The result is the long-run counterpart of 

(12): 

L
PFE ,*ε

 L
PMM

fmf

L
PMM

fmf
L

PFE
,~

,~1

, 1
*

εαα
εαβ

ε
−−

−−
= .  (16) 

The reasoning behind equations (8) applies to the long-run elasticities as well: 

 εM *,PF
L = ε ˜ M ,PM

L ⋅(1− εE* ,PF
L ) ≈

ε ˜ M ,PM

1− αm − αmvα vm
⋅(1− εE* ,PF

L ) (17a) 

 εF *,PF
L = ε

M * ,PF
L − ε

E* ,PF
L   (17b) 

where the approximation in (17a) results from neglecting products of small coefficients.8  

 Consider now the implications of equation (17a). It shows how the short-run response of 

travel to fuel cost, PMM ,~ε , is modified in the long run in two ways. First,  it is amplified by a 

factor approximately equal to ( ) 1
1

−
−− vmmvm ααα  to reflect the full response of the partial 

                                                 
8 With our estimates, the approximation is valid within 1.4 percent. Note also that (14)-(17) reduce to their short-run 
counterparts, namely (11)-(12) and (8), when αm=αv=αf=0. 
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adjustment mechanisms in vehicle-miles traveled and total vehicle stock. Second, it is diminished 

by the factor , which indicates the extent to which the price incentive is dampened by 

the long-run responsiveness of fuel economy to fuel price.

)1( ,*
L

PFEε−

9 In our empirical estimates, these two 

factors are 5.16 and -0.84, respectively. If we were to simulate the response of system (9) year by 

year, we could well find that the initial short-run response of mileage to fuel price ( PMM ,~ε ) is 

first amplified by the delayed responses working through lagged M, but later reduced by 

responses of fuel efficiency as they work their way through the system at a somewhat slower 

pace (since we find empirically that αf>αm). Intuitively, the initial mileage response is small 

because people have limited options; over time they can develop more options (e.g. change job 

locations or travel mode), but simultaneously their incentive to do so diminishes as they replace 

their fleet with more fuel-efficient vehicles. It could even happen that the long-run elasticity 

would be smaller in magnitude than the short-run elasticity, although we do not find this.

the 

                                                

10 

 

4.3 Variables and estimation method 

We use cross-sectional data at the state level for years 1966-2004. Most of our data 

comes from the Federal Highway Administration’s (FHWA) annual Highway Statistics 

Publications. We provide a brief description of our variables below. Appendix A contains 

lengthier descriptions and data sources.  

We acknowledge that some of the key variables used in this study are inherently difficult 

to measure on a state-wide basis, leading potentially to measurement error which could bias our 

estimates.11 In particular, we need to consider the vehicle miles traveled (VMT) variable, which 

 
9 If  were larger than one, a rising fuel price would even increase driving in the long run, although there is no 
empirical evidence that this is the case. 

L
PFE ,*ε

10 To complicate matters still further, the coefficients  and  in these equations change over time because, as 
noted earlier in this subsection, they are functions of interacting variables such as income. Thus the long-run 
elasticity is a theoretical construct defining a limit that would eventually be reached if all the interacting exogenous 
variables remained constant, but is not actually reached in practice. See Small and Van Dender (2005, sect. 6.2) for 
an example of such year by year simulations. 

m
1β mcα

11 Schipper et al. (1993) evaluate cross-national estimates of vehicle travel and fuel consumption, arguing that the 
methods used by various nations to separate travel and fuel consumption among vehicle classes are flawed. This 
critique includes US national data, although they do find that the FHWA travel estimates (which we use) are 
consistent with the National Personal Transportation Survey (NPTS), which they regard as a more reliable source. 
We cannot use NPTS because we require the state-by-state disaggregation performed by FHWA. Our measures of 
VMT and fuel consumption are for all road users, so faulty separation by vehicle class is less of a concern. We also 
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appears in all of our model's equations. One source of error in measured VMT arises from the 

manner in which the data are collected. Individual state DOTs (who initially supply travel 

estimates to the FHWA) do not directly measure VMT using odometer readings. Instead the 

states typically estimate travel using traffic counts.12 Although the FHWA examines the state 

reported data for errors and consistency, it does not mandate any particular method for 

estimating VMT. Given how VMT is calculated, it is not clear whether the FHWA data would 

more often over-report or under-report vehicle travel.  A study of US travel data by Lave (1996) 

finds close agreement between three independent estimates of annual vehicle travel, including 

the FHWA data and another data set based on actual odometer readings, wherever they overlap 

in coverage. This finding suggests that the VMT data are reliable in the later years of our sample.  

A second potential problem stemming from measurement error involves our calculation 

of statewide average fuel intensity, which we obtain by dividing statewide fuel consumption by 

statewide VMT.  Measurement error in VMT will thus also generate error in the fuel intensity 

variable. 

While measurement error clearly exists and must reduce the precision of our estimates, it 

would bias them only if the errors in the methods used by individual states are correlated over 

time with the exogenous explanatory variables in our study. Any persistent state-specific error 

should be removed because we account for state fixed effects in each of the model's equations. 

Furthermore, although the data generation process may induce some correlated measurement 

error across endogenous variables such as VMT and fuel efficiency, the three-stage least squares 

estimator that we use is specifically designed to alleviate the effects of such correlation on 

estimated coefficients.  

Perhaps the greatest danger is that persistent measurement error in a given state (across 

years) could cause an overestimate of the coefficient in a given equation on the lagged value of 

the dependent variable. This coefficient is crucial in estimating the relationship between short-

                                                                                                                                                             
note that their preferred solution, which is to combine survey data from individual households with aggregate data 
on vehicle fleets, requires numerous assumptions in order to provide the values of aggregate variables and would be 
unable to provide data for a long panel. 
12 According to TERA, Inc., Greene, and Loebl (1979), 39 states used traffic counts to estimate vehicle travel in 
1974 and 1975. Some states instead use measures of statewide fuel consumption along with independent estimates 
of vehicle fuel efficiency to estimate vehicle travel. The authors find evidence that estimates of VMT based on 
traffic counts are slightly more variable than those produced using the alternative technique, but do not find any 
evidence of systematic bias.  
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run and long-run elasticities. Thus the rather large difference we find between these elasticities 

(roughly a factor of five in the VMT equation) might be partly caused by measurement error. 

In Section 5.3 below, we discuss the results of a sensitivity analysis where we re-estimate 

our model using different subsets of the data. In one specification, we exclude potentially 

problematic data from before 1984, an  exclusion that also eliminates the need to impute data. In 

a second specification, we omit data from Alaska because we noticed inconsistencies across time 

in the road-mileage variable for that state. Finally, in a third specification, we allow a different 

coefficient on one of our capacity variables (labeled K1 and described below) for years 

beginning in 1997 because starting then the FHWA modified its methodology for calculating 

state road-mileage, resulting in minor changes to the reported data.13 The results of the 

sensitivity analysis, presented in Table 8, indicate that excluding questionable data points or tim

periods from our sample has little effect on the main set of re

e 

sults.  

We now turn to the specific variables used in this study. In the following description, the 

symbols denoting most variables are followed (in parentheses) by the names of their logarithms 

as used in the empirical equations. Table 1 provides descriptive statistics, which for ease of 

interpretation we show un-normalized and in levels rather than logarithms. All monetary 

variables and price indices are expressed in 1987 dollars. 

 

Dependent variables 

M (vma): Vehicles miles traveled, divided by the state’s adult population 

V (veh): Sum of the number of light duty automobiles and trucks in use, divided by the 

state’s adult population 

1/E (fint):  Average fuel intensity for the state’s fleet of passenger vehicles 

C (cong):  Total annual hours of delay, divided by the state’s adult population (see below for 

more details) 

 

Independent variables 

PV (pv): Index of new vehicle prices (1987=100) 

PF (pf): Price of gasoline (1987 cents per gallon) 

                                                 
13 For details, refer to the discussion at the beginning of Section V in the 1997 edition of Highway Statistics (US 
FHWA, 1998). 
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K1 (cap1): Total length of roads divided by state land area (miles per square mile) 

K2 (cap2): Urban lane miles per adult 

RE (cafe): Measure of the strength of CAFE regulation, which we define as the difference 

between desired and mandated fleet vehicle fuel efficiency. We estimate actual fuel 

efficiency for years 1966-1977, and then use the estimated coefficients to predict 

desired fuel efficiency for years 1978 and beyond. The variable cafe is defined as 

the difference between the logarithms of desired and mandated fuel efficiency, 

truncated below at zero. See Appendix B in Small and Van Dender (2007) for a 

more complete description. 

XM, XV, XE: See Table 1, the appendices, and Small and Van Dender (2007) for a full list and 

descriptions. Variables XM include pm2; interactions between normalized pm and 

other variables, which here include normalized log income per capita (inc) and 

normalized log congestion (cong); and the interaction pm⋅cong. Each equation 

includes state fixed effects, i.e., a distinct constant term for each state (including 

District of Columbia). 

XC: Population density (a proxy for the physical nature of the roads), and the percentage 

of vehicles that are trucks. The congestion equation includes both state fixed effects 

and year fixed effects. 

 

Derived endogenous variable 

PM (pm):  Per-mile fuel cost of driving (=PF/E) 

 

Congestion measure 

We construct our measure of travel delay using data from the annual report on traffic 

congestion constructed by Shrank and Lomax of the Texas Transportation Institute (TTI) — see 

e.g. Shrank and Lomax (2004). TTI has estimated congestion for 85 large urbanized areas, 

starting in 1982, using data from the Highway Performance Monitoring System database of the 

US Federal Highway Administration. 

The TTI measure of congestion that we use is annual travel delay, which is simply the 

aggregate amount of time lost due to congested driving conditions. TTI has sometimes been 

criticized for using this measure as an index of the nation’s congestion problem because it 

 17



includes congestion that would remain in an optimized system. Irrespective of the validity of this 

criticism, for our purposes the TTI measure is appropriate  because it describes the experience of 

the typical driver. The measure is constructed largely from assumed speed-flow relationships, but 

supplemented with speed observations on specific roads. As with other data in our study, it is 

probably more reliable in the more recent years. 

We aggregate congestion delay in all covered urbanized areas to the level of a state, then 

divide by the state's adult population to create a per-adult delay measure. So we implicitly 

assume that congestion outside these 85 urban areas is negligible, an assumption we believe to be 

warranted because congestion in the US is vastly more costly to drivers in large than small urban 

areas. Furthermore, since we measure data at the state level, it is appropriate that the congestion 

in the larger urbanized areas is, for most states, diluted by the lack of congestion elsewhere in 

our equations predicting statewide travel response. A further advantages of our use of total delay, 

rather than some measure of average congestion, is that it is relatively unaffected by possible 

differences in how boundaries are drawn for urban areas in different states. 

For the 14 urbanized areas that cross one or more state borders, we apportion their 

congestion to the constituent states based on population data, which exists for the 1980, 1990, 

and 2000 censuses; we linearly interpolate for intermediate years, and extrapolate the 1990-2000 

trend to 2004. Appendix B provides more details. 

 

Multiple imputation procedure 

The congestion and one of the highway capacity measures in the data set are available 

only as of 1982. Because other variables are available as far back as 1966, we do not want to 

restrict the entire study to this shorter time period. So we develop an imputation method to 

“predict” the congestion data for the years 1966-1981. Because this introduces an additional 

source of error in a dependent variable, we use the multiple imputation procedure of Rubin 

(1987) in order to generate consistent estimates of coefficients and their standard errors. The 

procedure follows Brownstone and Steimetz (2005) and is explained in Appendix C. 

The multiple imputation procedure enables us to incorporate the missing data in a 

statistically valid and computationally tractable way, providing measures of statistical precision 

and hypothesis tests with the usual interpretations. There is a cost in precision of using imputed 

rather than precisely measured data: the standard deviations of estimated parameters, derived in 
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Appendix C, are larger than they otherwise would be. As an additional check we re-estimated the 

model using data from 1984-2004, which eliminates the need for any imputation of the 

congestion or urban lane-mileage data. The estimates, presented in Table 8 and Table D2, are 

less precise but are otherwise quite similar to our key set of estimates. 

 

Instrumental Variables and Exclusion Restrictions 

 We estimate the system using three-stage least squares (3SLS), which is an instrumental 

variables estimator that normally uses all exogenous variables of the system as instruments. The 

3SLS method makes use of correlations among disturbances across our four equations to obtain 

more efficient parameter estimates than single-equation methods such as two-stage least squares. 

Such correlations may be expected due to common factors that influence two or more related 

choices but that we do not explicitly include. Because our equations include lagged endogenous 

variables, autocorrelation, and certain non-linear transformations of variables, we add to the set 

of instruments one lagged value of each exogenous variable, two lagged values of each 

endogenous variable, and predicted values for non-linear combinations of endogenous variables 

(the latter based on reduced-form equations explaining each endogenous variables in terms of all 

exogenous variables). The rationale for these choices is explained by Small and Van Dender 

(2007). 

Our judgments on which exogenous variables to include in each equation (the exclusion 

restrictions) are discussed in Small and Van Dender (2007) in the case of the first three 

equations. In the case of the congestion equation, we reason that congestion is a technical rather 

than a behavioral phenomenon and therefore many factors that might explain it should do so 

through the channels of traffic and road capacity. Hence we include just four explanatory 

variables for congestion: two measures of traffic (urban vehicle-miles per adult14 and the 

percentage of vehicles that are trucks) and two measures of capacity (urban lane miles per adult 

and population density, the latter viewed as a proxy for the physical nature of the roads). 

 

                                                 
14 This variable is approximated as VMT per adult multiplied by percent of population in urban areas. Taking its 
logarithm gives log (VMT per adult) + log (Urban) ≡ vma + urban. We tried allowing vma and urban to enter as two 
separate variables, but doing so imparted some instability to the estimation. 
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5. Estimation results 

In this section, we present the estimation results, derive some key implications, and provide a 

detailed account of the sources of difference between our induced-demand elasticities and those 

more commonly found in the literature, in particular those by Noland (2001). 

 

5.1  Key results 

 Table 2 shows the results for the structural equation (9a) explaining vehicle miles 

traveled per adult. We estimate all of the coefficients with a high degree of precision, obtaining 

plausible signs and magnitudes. The coefficients for the per-mile cost of driving and its 

interactions are all statistically significant and generally comparable in magnitude to those found 

by Small and Van Dender (2007).15 

 The coefficient for travel delay per adult (cong) is statistically significant and negative, 

suggesting that all else equal, congestion decreases vehicle usage for a state and year with 

sample-average income and per-mile driving cost. Furthermore, the coefficient for congestion 

interacted with income is negative, implying that congestion has a larger negative impact on 

vehicle usage when income is above average. For example, raising income to that for the average 

state in 2004, compared to its average over the entire sample, causes the effect of congestion on 

VMT to be 1.739 times as large as indicated by the coefficient of cong in Table 2.16 We find this 

plausible since people with higher incomes have a higher value of time and are more easily 

dissuaded from driving when faced with congestion costs.17 Nevertheless, our estimates suggest 

that the elasticity of vehicle usage with respect to congestion is small: approximately -.009 in the 

                                                 
15 The interacted variable pm*Urban is omitted here for simplicity because it is not statistically significant when 
included and it played an unimportant role in the earlier results 
16 Based on the calculation (-0.0092-0.0244⋅0.280)/(-0.0092) = 1.739, where 0.280 is the difference between inc 
averaged over 2004 and inc averaged over 1966-2004. Recall that inc is log of real per capita income. 
17 We also obtained a negative coefficient on the interaction between congestion and the per-mile cost of driving. 
This result has two separate interpretations. First, it suggests that the effect of the per-mile cost of driving on travel 
increases with the level of congestion, which is contrary to our prior beliefs. The other interpretation is that 
exogenous increases in traffic congestion have a greater deterrent effect on vehicle travel in states with higher fuel 
costs. This result seems reasonable, as vehicles in stop and go traffic are less fuel-efficient, and this differential is 
greater when fuel costs are high. Our model cannot determine which interpretation is more appropriate because it 
lacks an explicit depiction of how operating costs respond to congestion. 
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short run and -0.045 in the long run.18 We attribute the small elasticity to the fact that our 

measure of travel is statewide VMT, while congestion itself is a localized phenomenon.  

The ordinary income-elasticity of vehicle travel is 0.10 in the short run and 0.50 in the 

long run (at average values of interacted variables). We find roughly a 4 percent reduction in 

VMT in 1974 and 1979 compared to other years, all else equal. As in Small and Van Dender 

(2007), we find that the rebound effect diminishes in magnitude with income and increases in 

magnitude with fuel costs. Other results are also similar to Small and Van Dender’s. 

We obtain a large and significant coefficient for lagged VMT, giving support for a partial 

adjustment process. The autocorrelation coefficient rho is small, even though quite precisely 

estimated, leading us to believe we have not omitted any important autocorrelated independent 

variables. Still, we are reluctant to push our data into measuring yet further details of the 

dynamic processes at work. For example, we cannot be sure that the partial adjustment process 

takes place at the same rate when different exogenous variables are varied, as is assumed in our 

specification. Also, as noted earlier, there is some danger that persistence in measurement errors 

of VMT may have caused an overestimate of the coefficient for lagged VMT, and hence of the 

ratio of long-run to short-run elasticities. To the extent this is true, our key findings of small 

elasticities would be further strengthened. 

Table 3 shows the results from estimating the vehicle stock equation. We find that the 

amount of driving (vma), urbanization, and number of licensed drivers all have significant effects 

on the vehicle stock. We do not find significant effects for the price of a new vehicle, the interest 

rate, per capita income, or the per-mile cost of driving. As would be expected, there is evidence 

for a slow turnover in the vehicle stock, as the coefficient for lagged vehicle stock is strong and 

significant. Again, we obtain a low value for rho, the autocorrelation coefficient.  

Table 4 shows the results for the fuel intensity equation. We obtain the expected signs 

and significant coefficients for most of the variables in this equation. We find that CAFE 

regulation, the oil shocks of 1974 and 1979, and the price of fuel impact fuel intensity 

substantially and negatively. As in the other equations, the results suggest we have correctly 

controlled for dynamics: we obtain a small value for the autocorrelation coefficient rho. Since 

fuel intensity is mainly a property of the vehicle stock, factors that hinder adjustment of the 

                                                 
18 The short-run elasticity is approximately the coefficient on cong in Table 2. The long run elasticity is 
approximately this coefficient divided by (1-αm) = (1-0.7947).  
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vehicle stock will also prevent full adjustment of fuel intensity to its desired level, which 

explains the large coefficient for lagged fuel intensity. 

Table 5 presents the results from the congestion equation. We include year fixed effects, 

as noted earlier, but do not report their coefficients in order to simplify the table. (All four 

equations include state fixed effects, also not reported for simplicity.) As expected, we find that 

increased urban road capacity (urban-lane-miles/adult) reduces congestion while higher traffic 

volumes (vma) increase congestion. Furthermore, we find that higher population density 

increases congestion, presumably because it decreases the effective capacity of a lane-mile of 

highway, and also because when population density is growing it is likely to produce a mismatch 

between the locations of population and of roads. As expected, a higher fraction of trucks also 

increases congestion. 

 Table 6 presents some elasticities computed from the results presented in Tables 2–5 

using the equations in section 3. We find that induced demand operates through both of the 

posited channels. If total road mileage is expanded, so that both channels are applicable, the 

short-run elasticity (evaluated at sample-average values of variables) is 0.032. About 59 percent 

of this comes from increased accessibility and the other 41 percent from congestion relief. Long-

run induced-demand elasticities, calculated from equations (16), are about four times higher. 

Interaction effects imply that the elasticity working through congestion relief rose modestly and 

gradually in magnitude, reaching the value 0.018 by 2004 (Table 6), due mainly to rising 

incomes as captured by the coefficient on cong*inc in Table 2. The induced-demand elasticity 

for accessibility is constant, so the two channels are of approximately equal magnitudes if 

measured in 2004. 

 We also estimated the fraction of VMT growth attributable to road-capacity expansions. 

Using the results from our preferred specification (presented in Tables 2-5) we evaluated a 

counterfactual scenario in which the level of lane and road miles were held constant between 

1998 and 2004, while all of the other exogenous variables took their historic values. Using these 

inputs, we iteratively solved our simultaneous model out to 2004. Comparing actual VMT in 

2004 to counterfactual VMT, we found that road-capacity expansions accounted for 6.57 percent 

of the annualized VMT growth rate.  

 Our estimate of the average rebound effect across the states and years in our sample, 

stated as a positive percentage, is 4.7% in the short run and 24.1% in the long run. (That is, the 
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short- and long-run VMT elasticities with respect to fuel cost are -0.047 and -0.241.) As already 

noted, this effect declines drastically in magnitude over the duration of our sample, due mainly to 

rising real incomes. It also rises in magnitude with fuel costs (not shown in the table). 

Specifically, the coefficient on pm*pm in Table 2 implies that a 10 percent increase in the per-

mile fuel cost of driving translates into approximately a 0.25 percentage-point increase in the 

short-run rebound effect. These results are of similar magnitude and more precisely estimated 

than the results found by Small and Van Dender (2007). We estimate the “congestion effect” — 

the elasticity of congestion (travel delay) with respect to fuel efficiency — to be 0.022 in the 

short run and 0.111 in the long run. The overall price elasticity of fuel consumption, which 

accounts for changes in both VMT and fuel efficiency in response to fuel price, is estimated at 

-0.075 and -0.361 in the short and long runs respectively. Because this elasticity incorporates the 

VMT elasticity, it also declines to a smaller value in later years due to increased incomes. In all 

cases our elasticity estimates are significantly different from zero. 

 

5.2 Comparison with other estimates of induced demand 

 Our estimate of the induced-demand effect – about 0.16 in the long run – is at the low 

end of the range expected from our review of the literature. We expect a low value for the part of 

induced demand arising from capacity expansion, because we consider total traffic on a 

statewide level and most of the effects of capacity expansion would occur only in highly 

congested urban areas.  

 Other possible explanations for differences from other estimates include differences in 

control variables, time spans, capacity measures, and overall model structure compared to other 

studies. To test some of these possibilities, we take advantage of the fact that Noland (2001) uses 

a panel structure identical to ours, and data that overlap considerably with ours. We therefore 

first replicate the estimate of Noland (2001) that we consider the most reliable – namely, that 

explaining VMT per capita (non-local roads only) and including the lagged dependent variable 

as an explanatory variable. We then re-estimate the same model while systematically changing 

various features of its specification in the direction of our model – first by quantifying variables 

on a per adult rather than per capita basis, then extending the time period (using multiple 

imputations where necessary), and finally adding our other control variables and observations for 

the District of Columbia. 
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 Table 7 compares selected results in terms of the short-run induced demand effect. Rows 

numbered 1-6 show results from single-equation specifications for four different time periods; 

the capacity coefficient in these specifications gives the short-run elasticity of VMT with respect 

to road capacity. Row 7 shows results from our four-equation model, using two distinct measures 

of capacity. In all cases, the coefficient of lagged VMT is between 0.729 and 0.829, implying 

that the long-run elasticity is 3.7 to 5.1 times the short-run elasticity. The full set of parameter 

estimates for each single-equation specification shown in Table 7 (along with some other similar 

specifications) is presented in Appendix D.  

Rows 1 and 2 of Table 7 present our estimates using Noland’s specification that includes 

state dummy variables (excluding data from the District of Columbia, as does he), for time 

period (1984–1996). We closely replicate his results when we deflate income using the GDP 

deflator, as did he. When we switch to our measure of real income, which is deflated by the 

consumer price index (CPI), the coefficient of road capacity falls substantially, from 0.138 to 

0.086. This sensitivity is surprising, but may indicate that omitted variables (evidently correlated 

differently to the two measures of real income) are adversely affecting this rather simple 

specification. 19 

 Rows labeled 3-6 of Table 7 change the specification from that in the second row in small 

cumulative steps. In row 3, variables are measured per adult instead of per capita; the estimated 

induced-demand effect drops from to 0.086 to 0.078. In row 4, we see that extending the time 

period four years earlier and eight years later lowers the coefficient by more than half, to 0.036. 

For the regression presented in row 5, we use multiple imputations in order to extend the data set 

backward in time to year 1966, since values for non-local lane-miles are not observed before 

1980; this lowers the induced demand estimate a bit more, to 0.031.  The specification in row 6.a 

includes other exogenous variables from our vehicle-miles traveled equation; this lowers the 

estimate by more than a factor of two, to 0.012. We also tested the sensitivity of our results from 

this richer specification to deflating the income variable by GDP instead of the CPI, and we 

                                                 
19 This explanation seems possible because using our data, real income and the road-capacity measured are 
somewhat (negatively) correlated, with correlation coefficient -0.58. One other small difference between row 1 and 
other rows is that the Bureau of Economic Analysis has updated income data slightly since the time when Noland 
extracted them; except in row 1, we have used the updated series. We are grateful to Robert Noland for sending us 
his original data, enabling us to perform this comparison and to diagnose the reasons for differences between 
specifications. 
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obtain the same capacity coefficient in both cases. This result supports our claim that omitted 

variables may adversely affect the estimates in the sparse specification. 

Results from our four-equation model, estimated with three-stage least squares, are 

repeated from earlier tables in row 7. The total induced demand effect of 0.032 from increasing 

total road mileage is very close to the values in rows 4–5 of the table, while the portion of 

induced demand arising just from urban capacity is very close to the value in row 6. Thus while 

recognizing that the models are not strictly comparable, we think that most of the differences 

between our results and Noland’s arise from our using more control variables and a much longer 

time period, offset somewhat by our distinguishing between two types of induced demand. We 

also note that in our results, the total induced-demand effect rises in magnitude by 11–16 percent 

by the end of the sample period, to 0.037 in the short run and 0.186 in the long run, as shown in 

the last two columns of Table 6. 

 

5.3 Sensitivity Analysis 

To test the sensitivity of the results to recognized data problems and to our imputation 

procedure, we estimated three different versions of our base model. We limit the analysis to the 

problems most likely to affect our key results. Selected results from this analysis are presented in 

Table 8.  

One problematic state was Alaska, which had inconsistent road-mileage data, with the 

reported lane-mileage value increasing and decreasing by an implausible amount between 1982 

and 1984. Omitting data from Alaska had a small affect on the key results, reducing the short-run 

rebound effect from 4.7 percent to 4.2 percent and the total induced-demand effect from 0.032 to 

0.025.  

We also examined a potential problem with the road-mileage data. In 1997, the FHWA 

changed its methodology slightly for calculating state road mileage, which is one of our capacity 

variables used for analyzing induced demand. To account for this change, we estimated a 

specification of the model that allows a different coefficient on that capacity variable beginning 

in 1997 (in the VMT equation). As Table 8 shows, the resulting coefficient is statistically 

indistinguishable from zero, suggesting the change in methodology did not affect how this 

variable influences travel. 
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Using multiple imputations to account for missing data in the earlier years has a modest 

effect on the key results. For the most part, the point estimates are quite similar, but have larger 

standard errors. Finally, we estimated the model while restricting our sample to the years 1984-

2004, the longest time period for which we do not have to impute any data. Table 8 shows the 

results, with variables evaluated at their 1984-2004 mean values. Restricting the sample causes 

the short-run rebound effect to rise (from 2.8% to 4.8%); but due to a compensating change in 

the coefficient of lagged VMT,20 the long-run rebound effect changes only a little (from 14.3% 

to 15.9%). As for the total induced-demand effect of expansion in total road mileage, restricting 

the sample changes the short-run elasticity value only slightly (from 0.031 to 0.033) while it 

decreases the long-run elasticity substantially (from 0.159 to 0.114). A larger set of results is 

presented in Appendix Table D2. 

The upshot of this sensitivity analysis is that most results change very little, the exception 

being that certain long-run elasticities become even smaller – thus if anything adding further 

support to our overall findings. However, the 1984-2004 results suffer from considerably less 

precision in many of its estimated coefficients (see Appendix Table D2), as expected from 

eliminating nearly half the data, so we have more confidence in our baseline results.  

 

6. Conclusion 

We have shown that including a measure of congestion in an aggregate transportation 

demand model is feasible and that doing so helps clarify at least two phenomena of interest to 

methodology and policy. First, we can confirm an additional pathway in the responsiveness of 

travel to fuel prices or to fuel-efficiency regulations, namely, any increase in travel that 

otherwise would occur will be dampened slightly by the additional congestion it creates. Second, 

we can distinguish between two pathways by which induced demand occurs: one through the 

ability of new infrastructure to make more locations easily accessible, the other through its 

ability to reduce urban congestion. 

Our estimates of induced demand are lower than most others, partly due to our use of a 

longer time period and more control variables. But mainly we think it is due to our focus on a 

state-wide aggregate measure of vehicle travel, which of course dilutes the local impact of any 

increased capacity. Thus, our estimates do not necessarily conflict with results showing dramatic 

 26



increases in use of particular facilities when they are expanded, and both types of estimates are 

needed to fully describe the ancillary effects of policies that affect congestion. 

Quantitatively, we find the influence of congestion to be quite small, at least on the state-

wide aggregate measures that we use. The congestion pathway lowers the long-run rebound 

effect, as calculated with variables at their 2004 average values, from 9.2 percent to 9.0 percent 

(i.e., the elasticity is lowered in magnitude from -0.092 to -0.090). As for the estimated 

magnitude of the rebound effect itself, our estimates are very close to those found by Small and 

Van Dender (2007) using a three-equation model and data through 2001. Like them, we find a 

strong negative dependence of the rebound effect on real income and a smaller positive effect on 

fuel cost, with the net result that it was considerably smaller in the later years of the sample than 

when measured over the sample average. 

Thus our methodology illustrates some ways that feedback effects may be identified, 

measured, and separated into components. Such feedback effects typically show up as 

unintended consequences of policies, and thus tend to be viewed as problems. However, it is 

worth remembering that these unintended consequences have both costs and benefits — indeed, 

travel itself is a benefit, which is why we have transportation systems in the first place — so a 

full normative analysis of policies that have feedback effects requires a comprehensive measure 

of welfare. We believe that by measuring the specific pathways by which feedback effects work, 

the methods developed here will facilitate more complete and accurate policy evaluations. 
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Name Definition Mean Std. Dev. Min Max

Vma VMT per adult (000) 11.16 2.67 4.75 24.11

Vehstock Vehicles per adult 1.01 0.19 0.45 1.74

Fint Fuel intensity (gal/mile) 0.06 0.01 0.03 0.09

Cong Total hours of delay per adult 6.81 8.14 0.00 47.14

Pf Price of fuel (dollars/gal) 1.08 0.23 0.60 1.95

Pm Fuel price per mile (cents/mile) 6.62 2.29 2.78 14.20

Inc Income per capita (000) 14.94 3.50 6.45 30.76

Lane-miles/adult Lane miles per adult 0.08 0.09 0.00 0.77

Urban-lane-miles/adult Urban lane miles per adult 0.01 0.00 0.00 0.02

Road miles/land area Road miles per sq. mile of land area 2.09 2.71 0.01 25.01

Pop/adult State population per adult 1.41 0.09 1.23 1.74

Urban Fraction of population living in MSA 0.71 0.19 0.29 1.00

Pv Price index for new vehicles 1.04 0.21 0.70 1.49

Interest Interest rate for new car loans (%) 10.43 2.72 5.17 16.49

licenses/adult Licensed drivers per adult 0.91 0.08 0.60 1.17

Percent trucks Percent of vehicles that are trucks 0.30 0.12 0.04 0.64

Pop. density Population density (persons/sq. mile) 140.99 563.95 0.18 4948.96

Table 1. Descriptive Statistics

Notes: Variable names with capitalized names are presented in levels and are not normalized. All monetary values are in constant 1987 dollars.
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Variable Std. Error
rho -0.0757 (***) 0.0230
constant 1.8472 (***) 0.1253
inc 0.1031 (***) 0.0136
cong -0.0092 (***) 0.0026
cong*inc -0.0244 (***) 0.0059
cong*pm -0.0124 (***) 0.0031
d7479 -0.0435 (***) 0.0035
trend 0.0010 (***) 0.0003
vma(t-1) 0.7947 (***) 0.0126
vehstock 0.0340 (***) 0.0096
pm -0.0474 (***) 0.0043
pm*pm -0.0251 (***) 0.0074
pm*inc 0.0635 (***) 0.0156
pop/adult 0.2663 (***) 0.0431
Urban -0.1626 (***) 0.0526
road-miles/land-area 0.0186 (**) 0.0076

Observations 1938
Adjusted R2 0.982

Coefficient

Notes: (***),(**) and (*) indicate that the coefficient is statistically 
significant at the 1%, 5% and 10% level respectively. We estimate 
this equation using non-linear least squares. We adjust the point 
estimates and standard errors using a multiple imputation procedure.

Table 2. Vehicle Miles Traveled Equation
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Variable Std. Error
rho -0.1146 (***) 0.0263
constant -0.4355 (*) 0.1661
pv 0.0211 0.0334
interest 0.0028 0.0046
inc 0.0215 0.0166
Urban -0.1072 (***) 0.0582
licenses/adult 0.0625 (**) 0.0199
trend -0.0002 0.0007
vehstock(t-1) 0.8697 (***) 0.0146
vma 0.0452 (**) 0.0167
pm -0.0010 0.0070

Observations 1938

Adjusted R2 0.958

Notes: (***),(**) and (*) indicate that the coefficient is statistically 
significant at the 1%, 5% and 10% level respectively. We estimate 
this equation using non-linear least squares. We adjust the point 
estimates and standard errors using a multiple imputation procedure.

Table 3. Vehicle Stock Equation
Coefficient
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Variable Std. Error
rho -0.1468 (***) 0.0224
constant -0.1619 (**) 0.0779
(vma+pf) -0.0304 (***) 0.0062
inc -0.0078 0.0159
fint(t-1) 0.8465 (***) 0.0127
trend66-73 0.0008 0.0010
trend74-79 -0.0038 (***) 0.0009
trend80+ -0.0024 (***) 0.0004
d7479 -0.0108 (**) 0.0046
Urban -0.1118 (*) 0.0576
cafe -0.0910 (***) 0.0108
pop/adult -0.0249 0.0638

Observations 1938
Adjusted R2 0.962

Notes: (***),(**) and (*) indicate that the coefficient is 
statistically significant at the 1%, 5% and 10% level 
respectively. We estimate this equation using non-linear least 
squares. We adjust the point estimates and standard errors using 
a multiple imputation procedure.

Coefficient
Table 4. Fuel Intensity Equation

 

 

Variable Coefficient Std. Error
constant -8.4146 (***) 1.1556
urban-lane-miles/adult -1.4160 (***) 0.1563
vma+urban 0.4600 (**) 0.1078
pop. density 1.1647 (***) 0.0604
percent trucks 0.4636 (***) 0.2644

Observations 1938
Adjusted R2 0.946

Notes: (***),(**) and (*) indicate that the coefficient is statistically 
significant at the 1%, 5% and 10% level respectively. We estimate this 
equation using non-linear least squares. We adjust the point estimates 
and standard errors using a multiple imputation procedure.

Table 5. Congestion Equation
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Elasticity Short Run Long Run Short Run Long Run

Measures of induced demand
VMT with respect to road-miles per state 0.019 0.094 0.019 0.093
land area (0.008) (0.038) (0.008) (0.037)

VMT with respect to  urban lane mileage, 0.013 0.066 0.018 0.093
 working through congestion (0.004) (0.020) (0.004) (0.021)

Total induced demand effect:
from expansion in total road mileage 0.032 0.160 0.037 0.186
from expansion in urban lane widths 0.013 0.066 0.018 0.093

Other elasticities
Travel delay with respect to fuel efficiency 0.022 0.111 0.012 0.060

(0.005) (0.028) (0.004) (0.018)

Fuel consumption with respect to fuel price -0.075 -0.361 -0.055 -0.285
(0.005) (0.029) (0.007) (0.038)

VMT with respect to per-mile fuel cost:
using full model (Eq. 3 and 4a) -0.047 -0.241 -0.026 -0.131

(0.004) (0.023) (0.007) (0.034)
excluding congestion (Eq. 3 and 4b) -0.048 -0.246 -0.026 -0.135

(0.004) (0.024) (0.007) (0.035)

Evaluated at 1966-2004 mean 
levels of interacting variables

Evaluated at 2004 levels of 
interacting variables

Notes: Asymptotic standard errors are in parenthesis, computed using a Wald coefficient restriction test.

Table 6. Summary of Elasticities
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Measure of Capacity
Price index for 

deflating 
income

Time Period

Estimate (Std Err)

Single Equation Models - Noland Specification

1.  log(nonlocal lane miles per capita) GDP deflator 1984-1996 0.138 (0.029)

2.  log(nonlocal lane miles per capita) CPI 1984-1996 0.086 (0.027)

3.  log(nonlocal lane miles per adult) CPI 1984-1996 0.078 (0.026)

4.  log(nonlocal lane miles per adult) CPI 1980-2004 0.036 (0.009)

5.  log(nonlocal lane miles per adult) CPI 1966-2004 0.031 (0.004)

Single Equation Model with Additional Exogenous Control Variables

6.  log(nonlocal lane miles per adult) CPI 1966-2004 0.012 (0.004)
     log(nonlocal lane miles per adult) GDP deflator 1966-2004 0.012 (0.004)

Four Equation Model

7.  Two capacity measures: CPI 1966-2004

log(urban lane miles per adult) 0.013 (0.004)

log(road-miles per land area) 0.019 (0.008)

combined effect from expanding total road mileage 0.032 (0.008)

Short-run elasticity of 
VMT  with respect to 

capacity measure

Note: The specification for each of the single-equation models corresponds to the specification in Noland (2001), Table 7, 
column 2. The specification for the four-equation model is that in our Table 2. Long-run elasticities are 3.7 to 5.1 times the short-
run elasticites.

Table 7. Measures of Induced Demand
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Dependent variable: log VMT per adult. 1966-2004 1966-2004 1966-2004 1984-2004

Independent variable: Base Model Omit Alaska
Different road-

mileage 
coefficient after 

1997
No Imputation

Induced demand variables
log(congestion) -0.009 -0.008 -0.008 -0.007

(0.003) (0.002) (0.002) (0.003)
log(road-miles/land area) 0.019 0.015 0.019 0.024

(0.008) (0.007) (0.007) (0.008)
log(road-miles/land area)*post96 dummy -0.001

(0.001)
Other control variables

log(VMT per adult lagged) 0.795 0.810 0.800 0.708
(0.013) (0.012) (0.012) (0.017)

log(per adult income) 0.103 0.081 0.108 0.161
(0.014) (0.014) (0.014) (0.020)

log(cost of fuel) -0.047 -0.042 -0.044 -0.049
(0.004) (0.004) (0.004) (0.006)

log(population per adult) 0.266 0.213 0.248 0.095
(0.043) (0.040) (0.042) (0.091)

degree of urbanization -0.163 -0.100 -0.141 -0.058
(0.053) (0.050) (0.052) (0.083)

1974 1979 dummy -0.044 -0.042 -0.044
(0.004) (0.004) (0.004)

trend 0.0010 0.0009 0.0007 0.0000
(0.0003) (0.0003) (0.0003) (0.0004)

Endogenous variables
log(vehicle stock per adult) 0.034 0.031 0.033 0.030

(0.010) (0.009) (0.009) (0.010)
Fuel cost & interactions included included included included
Congestion interactions included included included included

Autocorrelation parameter  (rho) -0.076 -0.095 -0.081 -0.151
(0.023) (0.022) (0.026) (0.026)

Notes: We estimate these four specifications using nonlinear three-stage least squares to control for the endogeneity of vehicle stock and 
fuel intensity. We also use the same set instruments from the base model presented in Table 2.  In all specifications, we control for first-
order autocorrelated errors; Eviews 5 applies a standard transformation and estimates the resulting nonlinear equation using nonlinear 
least squares (Quantitative Micro Software 2004, eq 17.10).  For the specifications with pre 1982 data, we impute the capacity and 
congestion measures back to 1966, repeating multiple times to compute means and standard errors of coefficient estimates.

Table 8. Four-Equation Model Sensitivity Analysis
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Appendix A: Data sources 

Adult population  
Definition: midyear population estimate, 18 years and over.  
U.S. Census Bureau.  
  
Corporate Average Fuel Economy Standard (Miles Per Gallon)  
National Highway Traffic Safety Administration (NHTSA), CAFE   
Automotive Fuel Economy Program, Annual update 2004, Table I-1.  
 
Congestion (total hours of delay per adult) 
1982 –2003: Texas Transportation Institute 2004 Urban Mobility Report.  
Note: See text for a full description of how we generated the values for years 1966-1981 and 
2004. 
 
Consumer price index – all urban consumers  
Bureau of Labor Statistics (BLS), CPI (1982-84=100).  
Note: all monetary variables (gas tax, new passenger vehicle price index, price of gasoline, 
personal income) are put in real 1987 dollars by first deflating by this CPI and then multiplying 
by the CPI in year 1987. The purpose of using 1987 is for ease in replicating Haughton and 
Sarkar (1996).  
  
Highway Use of Gasoline (millions of gallons per year)  
1966-1995: FHWA, Highway Statistics Summary to 1995, Table MF-226.  
1996-2004: FHWA, Highway Statistics, annual editions, Table MF-21.  
  
Income per capita ($/year, 1987 dollars)  
Primary measure: Personal income divided by midyear population.  
Personal income is from Bureau of Economic Analysis (BEA).  
 
Interest rate: national average interest rate for auto loans (%)  
Definition: average of rates for new-car loans at auto finance companies and at commercial 
banks.  
Source: Federal Reserve System, Economic Research and Data, Federal Reserve Statistical 
Release G.19 “Consumer Credit”. Available starting 1971for auto finance companies, 1972 for 
commercial banks. For earlier years in each series, we use the predicted values from a regression 
explaining that rate using a constant and Moody's AAA corporate bond interest rate, based on 
years 1971-2004 (finance companies) or 1972- 2004 (commercial banks).  
 
New Car Price Index: price index for U.S. passenger vehicles, city average, not seasonally 
adjusted (1987=100)  
Source: Bureau of Labor Statistics web site.  
Note: Original index has 1982-84=100.  
  
Number of vehicles: Number of automobiles and light trucks registered  
1966-1995: FHWA, Highway Statistics Summary to 1995, Table MV-201.  
1996-2004: FHWA, Highway Statistics, annual editions, Table MV-1  
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Note: “Light trucks” include personal passenger vans, passenger minivans, utility-type  
vehicles, pickups, panel trucks, and delivery vans.  
  
Price of gasoline (cents per gallon, 1987 dollars)  
Data Set A: U.S. Department of Energy (USDOE 1977), Table B-1, pp. 93-94 (contains  
1960-1977).  
Data Set B: Energy Information Administration, State Energy Data 2000: Price and  
Expenditure Data, Table 5 (contains 1970-2000).  
2001-2004: Energy Information Administration, Petroleum Marketing Annual, Table A1.  
Note: We use Data Set B for 1970-2000, and for the earlier years we use predicted values  
from a regression explaining Set B values for overlapping years (1970-1977) based on a  
linear function of Set A values.  
  
Public lane mileage: Total number of lane miles in state  
1980-1995: FHWA, Highway Statistics Summary to 1995, Table HM-220.  
1996-2004: FHWA, Highway Statistics, annual editions, Table HM-20.  
  
Number of Licensed Drivers  

1966-1995: FHWA, Highway Statistics Summary to 1995, Table DL-201.  
1996-2004: FHWA, Highway Statistics, annual editions, Table DL-1C.  
Notes: Some outliers in this series were replaced by values given by a fitted polynomial of 
degree 3. 
 
Urban Lane Mileage (miles): Total municipal lane mileage  
1980-1995: FHWA, Highway Statistics Summary to 1995, Table HM-220.  
1996-2004: FHWA, Highway Statistics, annual editions, Table HM-20.  
  
Urbanization: Share of total state population living in Metropolitan Statistical Areas (MSAs), 
with MSA boundaries based on December 2003 definitions.  
Available starting 1969; for earlier years, extrapolated from 1969-79 values assuming constant 
annual percentage growth rate. Source: Bureau of Economic Analysis, Regional Economic 
Accounts  
 
VMT (Vehicle Miles Traveled),in  millions  
1966-1979: FHWA, Highway Statistics, annual editions, Table VM-2.  
1980-1995: FHWA, Highway Statistics Summary to 1995, Table VM-202.  
1996-2004: FHWA, Highway Statistics, annual editions, Table VM-2. 



Appendix B: Constructing the measure of congestion 

The Texas Transportation Institute (TTI) provides an annual measure of congestion for the 

85 largest urbanized areas in the US. Their data, which come from the FHWA’s Highway 

Performance Monitoring System database, begin in 1982. Please refer to the TTI’s technical 

documentation for more information on how they measured congestion. This section describes 

how we generated a statewide measure of congestion for years 1982-2004. 

Since the model uses statewide data, we simply aggregated the urbanized area numbers by 

state for each year then divided by adult population to create annual travel delay per adult. 

However, in order to do this, we first had to adjust annual travel delay for the 14 urbanized areas 

that cross one or more state borders. There were two sources of data we used to do this 

apportioning.  

First, the decennial census provides a breakdown of urbanized area population by state. The 

information for the 1990 and 2000 census was available online from the American FactFinder 

website. Similar data for the 1980 census is not online, but can be found in the Census report 

PC80-S1-14 "Population and Land Area of Urbanized Areas for the United States and Puerto 

Rico:  1980 and 1970".  

Unfortunately, annual population estimates are not available for urbanized areas and only 

exist at the MSA level. For the most part, MSAs are very similar to urbanized areas but the 

population estimates are not exactly the same. The MSAs tend to encompass larger geographical 

regions than the urbanized areas, usually including more suburbs. 

We ended up using the decennial census data (at the urbanized area level) to do the 

apportioning.  In order to find the intercensal population ratios, we linearly interpolated the 

missing data in between years 1980 and 1990 and 1990 and 2000 and used the year 2000 ratio 

for 2001-2004.  
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Appendix C: Multiple imputation procedure 

1. We start with regressions (“imputation equations”) of each of the two imputed variables 

(total delay per adult, lane-miles per adult) on all of the k exogenous variables in the four-

equation system, for years 1982–2004 (for which full data are available). From each 

regression i =1,2, where i indexes the imputed variable, we obtain a vector of estimated 

coefficients Bi and an estimated variance-covariance matrix Wi.  

2. Next we draw M=20 samples Bi
m  (m=1,…,M) from the sampling distribution of the 

estimated coefficients, which is multivariate normal with mean Bi and variance Wi.20 

3. For each draw Bi
m , we impute the missing data for years 1966–1981 using Bi

m  and the 

values of the exogenous variables in the imputation equations. We insert those imputed 

values into the rest of the data set and estimate the full simultaneous model as already 

described, obtaining estimated coefficient ˜ β m  and variance-covariance matrix ˜ Ω m . 

4. Finally, we compute our best point estimates β̂ and Ω̂  of the parameter vector and its 

covariance matrix, as explained by Brownstone and Steimetz (2005):  

ˆ β = 1
M

˜ β m
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Note that  is just the average of our simulated values β̂ ˜ β m , while Ω̂  takes account of both the 

usual sampling errors in each of the vectors ˜ β m , as estimated by the mean of matrices , and 

the simulation error in drawing only a finite number of those vectors, related to the squared 

deviations between 

˜ Ω m

˜ β m  and their average value.

                                                 
20 We obtain a single draw  in the following manner. First, we write Wi as m

iB iiΛΛ′  using the Cholesky 
decomposition, where  is a lower triangular matrix. Next, we draw a vector of length k from the standard 
univariate normal distribution, premultiply it by 

iΛ

iΛ , and add Bi. 

C-1 
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Appendix D: Results of other estimated models 

 

The tables that follow provide more fully the results performed for Sections 5.2 and 5.3. 
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Dependent variable: log VMT per capita 
(A-C ) or per adult (D-M ). 1980-1996

Independent variable: A B C D E F G H I J K L M

Induced demand variables
log(nonlocal lane miles per capita) 0.128 0.138 0.086

(0.030) (0.029) (0.027)
log(nonlocal lane miles per adult) 0.078 0.022 0.036 0.031 0.012

(0.026) (0.012) (0.009) (0.004) (0.004)
log(urban lane miles per adult) 0.055 0.058 0.041 0.042

(0.013) (0.012) (0.012) (0.012)
log(congestion) -0.009

(0.003)
log(road-miles/land area) 0.019

(0.008)
Other control variables

log(VMT per capita lagged) 0.690 0.708 0.741
(0.025) (0.024) (0.021)

log(VMT per adult lagged) 0.729 0.710 0.764 0.751 0.894 0.804 0.829 0.829 0.831 0.795
(0.022) (0.019) (0.014) (0.016) (0.009) (0.011) (0.014) (0.014) (0.014) (0.013)

log(per capita income) 0.333
(0.043)

log(per capita income) [see Note C ] 0.321 0.334
(0.038) (0.038)

log(per adult income) 0.340 0.261 0.184 0.153 0.107 0.098 0.080 0.091 0.092 0.103
(0.042) (0.030) (0.017) (0.018) (0.013) (0.011) (0.015) (0.015) (0.015) (0.014)

log(cost of fuel) -0.049 -0.034 -0.046 -0.044 -0.040 -0.042 -0.055 -0.024 -0.063 -0.055 -0.054 -0.054 -0.047
(0.012) (0.008) (0.014) (0.014) (0.009) (0.006) (0.006) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006)

log(population per adult) -0.036 0.000 -0.011 0.266
(0.042) (0.043) (0.043) (0.043)

degree of urbanization 0.001 -0.028 -0.033 -0.163
(0.052) (0.052) (0.052) (0.053)

1974 1979 dummy -0.048 -0.047 -0.047 -0.044
(0.004) (0.004) (0.004) (0.004)

trend 0.0002 -0.0004 -0.0004 0.0010
(0.0003) (0.0003) (0.0003) (0.0003)

Endogenous variables
log(vehicle stock per adult) 0.008 0.034

(0.012) (0.010)
Fuel cost & interactions included
Congestion interactions included

Autocorrelation parameter  (rho) -0.042 -0.039 -0.040 -0.076
(0.027) (0.027) (0.027) (0.023)

A : These are the printed results from Table 7 column 2 in Noland (2001).

D : Measuring both dependent & independent variables per adult instead of per capita
E,F,G : In these three specifications we extend the data set both forwards and backwards.
H-M , in these specifications we impute the relevant capacity measure back to 1966, repeating multiple times to compute means and standard errors of coefficient estimates.

M : This is the four equation model reproduced from Table 2. 

Table D1. Single-Equation Models of Induced Demand

I,K : Here we control for first-order autocorrelated errors and add other control variables from the VMT equation presented in Table 2. To handle autocorrelated errors, Eviews 5 applies a standard transformation and estimates the resulting nonlinear equati

L : Estimated using nonlinear  two-stage least squares to control for endogeneity of vehicle stock. We use the same set of instruments as in our three stage least squares model presented in Table 2. 

Notes: Models A-K are single-equation reduced-form specifications. Except in specifications J-K, the equation is estimated using ordinary least squares. Models A-L are estimated without observations for the District of Columbia a la Noland; adding those 
observations had a very small negative impact on the estimates of induced demand.

1980-20041984-1996 1966-2004

B : Our attempt to replicate Table 7 column 2 in Noland (2001) using our data set, except with his income data. One main difference from column A  is that we use population figures for 1991-1996 that were updated after the 2000 Census, whereas Noland had to 
use population estimates for those years based on the 1990 Census.

C : Same as B  except uses our income data, as do columns D-M . Noland's income data were extracted from the BEA website prior to 1999 and deflated using the GDP deflator. Ours were extracted in 2004 (after some updates) and deflated using the consumer price 
index for all urban consumers. 



Elasticity Short Run Long Run Short Run Long Run

Measures of induced demand
VMT with respect to road-miles per state 0.019 0.094 0.023 0.082
land area (0.007) (0.038) (0.011) (0.036)

VMT with respect to  urban lane mileage, 0.013 0.065 0.009 0.033
 working through congestion (0.002) (0.012) (0.002) (0.014)

Total induced demand effect:
from expansion in total road mileage 0.031 0.159 0.033 0.114
from expansion in urban lane widths 0.013 0.065 0.009 0.033

Other elasticities
Travel delay with respect to fuel efficiency 0.013 0.066 0.051 0.170

(0.004) (0.019) (0.015) (0.047)

Fuel consumption with respect to fuel price -0.057 -0.293 -0.054 -0.181
(0.007) (0.035) (0.012) (0.045)

VMT with respect to per-mile fuel cost:
using full model (Eq. 3 and 4a) -0.028 -0.143 -0.048 -0.159

(0.006) (0.033) (0.008) (0.029)
excluding congestion (Eq. 3 and 4b) -0.028 -0.147 -0.048 -0.163

(0.006) (0.033) (0.008) (0.028)
Notes: Asymptotic standard errors are in parenthesis, computed using a Wald coefficient restriction test.

Table D2. Summary of Elasticities

Sample: 1966-2004. 
Evaluated at 1984-2004 mean 
levels of interacting variables.

Sample: 1984-2004. 
Evaluated at 1984-2004 mean 
levels of interacting variables.
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Appendix E: Derivation of long-run elasticities 

 

 For stage 1 of the procedure, we rewrite equations (9) with steady-state values for the 

endogenous variables, using the notation: 

 m ≡ vmat = vmat-1;    v ≡ veht = veht-1;    c ≡ congt ;    logE ≡ -fintt = -fintt-1. 

Equations 9(a,b,d) can then be written as: 

 (1− αm )m = αmvv + β1
m ⋅ (pm)+ αmcc + βK1

m ⋅(cap1) + constants (E1a) 

  (E1b) constants)()1( 2 +⋅+=− pmmv vvmv βαα

  (E1d) constants)2(2 +⋅+= capmc c
K

cm βα

where here “constants” means anything that does not depend on variables pm, cap1, or cap2. 

Substituting the second and third of these equations into the first and solving for m yields the 

function m (⋅)≡vma~(⋅) giving m as a function of pm and of exogenous variables: ~

 
  
˜ m =

β1
m + αmv β2

v( )⋅ ( pm)+ βK1
m ⋅(cap1) + αmcβK 2

c ⋅(cap2)+ constants

DL  (E2) 

where definitions (15) apply. Long-run elasticities (14) are obtained simply by differentiating equation (E2). 

 Stage 2 involves solving the simultaneous system consisting of equations (E2) and (9c) 

for the two endogenous variables, m and logE≡-fint. Substituting (E2) into (9c), we obtain 

 constants)()(~log)1( 1 +⋅−⋅−=− pfmE ffmf βαα  (E3) 

where )(~ ⋅m  depends on logE and “constants” here indicates terms that do not depend on pf. 

Differentiating (E3) with respect to pf and solving for ∂(logE)/∂(pf) yields (16). Equation (17a) is 

obtained by applying chain rule for differentiating with respect to pm:  

 ( )L
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L
PMMpf
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pmm
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)( εε −⋅=
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∂
=

∂
∂  (E4) 

Equation (17b) is obtained by noting that the logarithm of steady-state fuel consumption is 

simply m-logE. 
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