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Canonical Analysis of the 
Composition and Structure of 
Social Networks 

Stanley Wasserman* and Katherine 
Faustt 

Developing network models that allow for simultaneous 
analysis of actor attributes and network relational structure 
provides a challenge for network researchers. Such models 
would allow one to look at the characteristics of actors and 

partners in a network and at the patterns of social relations 
at the same time. In this paper, we show how recent 
developments in the statistical analysis of categorical data can 
be used to analyze the structure and composition of a wide 
variety of network or relational data. The techniques we use 
are canonical analysis and its relative, correspondence analysis. 
Both are methods for studying two-way cross-classifications 
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that several researchers have recently applied to network data. 
We have found that these techniques allow network analysts 
to easily study aspects of social structure that, until recently, 
have been too difficult because of the reliance on "heavy" 
computational methods. We begin with an overview of network 
data sets and then show how such data can be organized into 
a special two-dimensional patterned matrix. We then present 
the canonical analysis model and show how it can be applied 
to the network pattern matrices, which highlight the relationship 
between actor and dyad attributes (the network composition) 
and relational structure. Canonical analysis allows us to test 
hypotheses about several interesting types of relationships, 
including associations among actor and partner characteristics, 
actor/partner attributes (i.e. network composition) and 
relational patterns (i.e. network structure), and multiple 
relations. 

The focus of this paper is on social network data, which give 
measurements on the actors and relations of a network. We will 
present models designed to study several interesting social network 
hypotheses that are not easily investigated using other approaches. 
Our models focus on the association between actor characteristics 
(network composition) and the strengths and patterns of social 
relationships (network structure). Hypotheses about the association 
between these two kinds of variables are of great interest to social 
networkers looking either at the impact of network structure on 
outcome measures pertaining to individuals or at the influence of 
individual characteristics on the development of network structure. 
These research questions require the incorporation of variables on 
both network structure and composition into a single model. The 
models that we will describe here also allow the researcher to test 
statistical hypotheses about network structure. 

We will discuss a variety of network data sets and will present 
a unified approach to the analysis of network data. The approach 
is based on a canonical analysis of a special two-way array 
constructed from the network data. First, we give an overview of 
the variety of network data sets, so that the reader can appreciate 
how diverse network studies can be. Following this overview, we 
will discuss how to construct a network pattern matrix, the two- 
dimensional matrix that highlights the relationship between the 

dyads, or pairs of network actors, the information that may be 
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measured on the actors themselves, and the relational information 
that is measured on the dyads. The statistical technique that we 
will then apply to these design matrices will be described at length, 
and we will illustrate it with several examples. 

1. NETWORK DATA 

Network data sets can contain a variety of information, but 
at a minimum, the data set must consist of a set of actors or nodes 
(to use the graph-theoretic network perspective) who send and 
receive relational information to and from the other actors. The 
classic network data set contains a square sociomatrix, which gives 
information on whether each of the g actors in the network "send 
relational information to" (or simply "choose") the other (g-1) 
actors. For example, a network may exist among a set of major 
publicly held corporations in a large metropolitan area. We may 
have information on whether a specific corporation purchases goods 
or services from any of the other corporations, and we may record 
this transaction as a binary variable: Xij = 1, if corporation i has 
a business transaction with corporation j, and 0, otherwise. Such a 
sociomatrix is a gxg binary array, with zeros along the diagonal 
(since it is conventional to ignore intra-actor information). Many 
methodologists have developed mathematical and statistical tech- 
niques to study such data sets. There is a very rich literature of 
methods for square, binary sociomatrices. Much of this literature 
has appeared in the serial Sociological Methodology (Holland and 
Leinhardt 1975; Schwartz 1976; Bonacich 1977; Erickson 1978; 
Bonacich and McConaghy 1979; Wasserman 1979; Fienberg and 
Wasserman 1981; Frank 1981; Winship and Mandel 1983; Wu 1983; 
Mizruchi et al. 1986). It will be convenient to view these methods 
as basically of three types: graph-theoretic (Harary, Norman, and 
Cartwright 1965), relational or algebraic (see Wu 1983 and Winship 
and Mandel 1983 for thorough reviews), and statistical (e.g., 
Holland and Leinhardt 1975; Fienberg and Wasserman 1981; see 
also the review by Frank 1981). Our focus here is on statistical 
methods, but our goals are quite similar to those researchers 
employing either the algebraic or the graph-theoretic approaches: 
Specifically, we search for the social structure of the network by 
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looking for cliques or blocks of equivalent actors and by understand- 
ing the associations among the measured relations. Our approach 
moves considerably beyond the description of social structure by 
incorporating characteristics of network actors into derived data 
condensations designed to summarize the inherent structure of the 
network. Further, our approach works in the reverse too: These 
methods allow social structural patterns to explain variation in actor 
characteristics. 

We are primarily interested in network data sets that contain 
more information than just a single relation existing among a single 
set of g actors. We might have more than a single relational variable. 
Or we may have information about the actors themselves. For 
example, our corporations may not only have business transactions 
with each other but also send information or exchange officers to 
serve on each other's board of directors. Each of these relations 
may be coded into a sociomatrix. If there are R measured binary 
relations, then we will let Xi denote the ith sociomatrix, and we 
will define X as the super-sociomatrix, of size gxgxR, containing 
the R two-dimensional sociomatrices as its layers. Multirelational 
data sets, consisting of the information in X, can be effectively 
analyzed with the blockmodeling techniques of White, Boorman, 
and Breiger (1976) and Breiger, Boorman, and Arabie (1975), with 
the statistical methods of Fienberg, Meyer, and Wasserman (1985), 
Wasserman (1987), and Iacobucci and Wasserman (1987), or perhaps 
even with the stochastic blockmodeling methods of Holland, Laskey, 
and Leinhardt (1983), Wasserman and Anderson (1987), and Wang 
and Wong (1987), which combine the first two approaches. One 
interesting type of multirelational network data set considers the 
relations as different realizations of a longitudinal network process, 
evolving over time. For example, we could record money transactions 

among the corporations for 1980, 1984, and 1988 and define X as 
the gxgx3 super-sociomatrix containing this sequentially measured 
relation (see Iacobucci and Wasserman 1988; Wasserman and 
Iacobucci 1988). 

Network data sets may contain information on transactions 
or flows from one set of actors to a second, completely different 
set. The first set of actors, the senders, which we will label lb, 
consists of actors that are defined to send relational information to 
a second set of actors, W, containing the receivers. The receivers, 
because of the nature of the relational variables measured in the 
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data set, cannot send information to either the senders or other 
receivers. Wasserman, Faust, and Galaskiewicz (1989) refer to such 
networks as two-mode, since the row actors (the first mode) in the 
sociomatrix are not the same as the column actors (the second 
mode). Specifically, with a single relational variable, we define X,i 
= 1 if actor i CE q "relates to" actor j E w, and 0 otherwise. 
Assuming that set q3 contains g actors and that set X contains h 
actors, the sociomatrix X is of size gxh. It will be rectangular, 
rather than square, if g$h. Such matrices and their super-sociomatrix 
generalizations (if more than one relational variable is measured 
from the actors in q' to the actors in W) require sophisticated, 
nonstandard analytical methods. A good example can be found in 
Galaskiewicz (1987) and Galaskiewicz and Wasserman (1988), 
who studied how the corporations in the Minneapolis/St. Paul 
metropolitan area supported the nonprofit organizations in the area. 
The relational variables in their study (gathered by Galaskiewicz 
1985) were the levels of monetary donations (coded to be discrete, 
on a scale from 1 to 9, rather than binary) for 1980 and 1984. The 
first mode of their two sociomatrices consisted of 96 corporations, 
and the second mode, 175 nonprofit organizations. This example 
also illustrates that one can study nonbinary, but still discrete 
(noncontinuous), relational variables using methods first proposed 
by Wasserman and Iacobucci (1986). Clearly, one or more of the 
relational variables can be discrete-valued in multirelational network 
data sets. 

Lastly, one can have information consisting of actor or dyadic 
characteristics, i.e., nonrelational information in network data sets. 
In fact, such variables are standard social and behavioral science 
fare and are usually organized into familiar n (actors or subjects or 
units) byp (variables) arrays. For example, we may have information 
about the corporations, such as their size, influence in the 
community, profitability (as measured by reported pre-tax income), 
etc. Or we may be studying a collection of married couples and 
how well the spouses in a couple communicate with each other. If 
we also study couples that are in marital "difficulty," then we could 
easily measure a variable for dyadic marital satisfaction. Note that 
such a variable is a function of the couple rather than one of the 
spouses. This would produce a binary dyadic rather than actor 
attribute variable. 

Social network analysis differs from the standard actor-by- 
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attribute approach of usual social and behavioral science, since the 
focus is primarily on the relational variables in network data sets. 
The introduction of actor or dyadic attribute information is important 
to network analysis, since researchers can use such attributes to 
understand the results of their network analyses. For example, why 
does this subset of actors choose that subset of actors? Is there 
something unique to these subsets that can be captured by studying 
how well the actor or dyadic characteristics model the partition of 
the actors into subsets? How associated are the attributes with the 
social structure found by analyzing all the relational variables? We 
have focused much of our statistical research in the past decade on 
methods to integrate relational and attribute information in analyses 
(see Fienberg and Wasserman 1981; Wasserman and Anderson 
1987). The techniques described in this paper should further this 
integration. 

Regardless of the variables measured on the actors and 
included in the network data' set, the primary unit of the data set 
is the dyad. Relational variables, or simply ties, are defined for 
dyads. Network data sets certainly may include attribute variables, 
defined for either the individual actors or the dyads, but these 
variables are not required for many network analytic techniques. 
We have borrowed a very nice terminology from Frank et al. (1986) 
and Frank et al. (1988), who refer to the collection of relational 
variables as the structure of the network and to the individual 
attributes as the composition. Thus, the goal of a network analysis 
must be to understand the relationship between the network 
structure and the composition of the dyads and actors. Frank et al. 

(1986), who present one statistical method for such an analysis, 
state this goal quite well: 

Ideally, [statistical] models would explain how the 
attributes of individuals affect their likelihood of 

being linked or how the attributes are affected 
by existing ties. [The models] would relate this 
interaction to the kinds of network patterns which 
are prevalent in a social system. [P. 3] 

To use our continuing example as an illustration, we would like to 
be able to predict why donative ties, of the various types and 
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perhaps for different periods of time, exist between the corporate 
actors and the nonprofit actors, using the composition variables 
such as size of corporation, the composition of corporate and 
nonprofit boards of directors, the prestige of the corporations and 
nonprofits within the community, etc. (see Galaskiewicz and 
Wasserman 1988 for such an analysis). Another example, taken 
from Wellman et al. (1987), focuses on the well-known East York 
(a suburb of Toronto, Ontario) study of community and support 
and shows how a multirelational network data set, containing many 
different types of ties (such as companionship, emotional aid, 
services, financial aid, and information) and even more attribute 
variables (age, marital status, sex, employment status, and edu- 
cation, to name just a few), can be modeled in full using sophisticated 
statistical methods. This dichotomy of network variables into these 
two types, structure and composition, is crucial to the analyses 
presented here and to the network pattern matrices that we will 
introduce below. 

Complete, rather than piecemeal, analyses of complicated 
data sets such as these are certainly welcome in the network 
literature. Unfortunately, the methods these authors employ are 
quite complicated, utilizing logistic regressions and independent 
dyadic choice models (as described in the appendix of Galaskiewicz 
and Wasserman 1988). The primary purpose of this paper is to 
present an alternative method for the analysis of such complicated 
data sets and to illustrate how easily it can be applied to study the 
composition and structure of network data. This technique, canonical 
analysis, which is quite similar to the more well known method of 
correspondence analysis, will be described after we show how to 
organize complicated network data sets into two-way structures that 
highlight the relationship of the network composition to its structure. 

2. NETWORK PATTERN MATRICES 

We begin with Q+R variables divided into two sets of 
variables: Q composition variables and R structure variables. A 
dichotomy of variables (here, into composition and structure) is 
quite common in data analysis, in which one frequently tries to 
predict one or more response variables as functions of a collection 
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of explanatory variables. We let ' refer to the composition variables 
and 9 to the structure variables. 

Following the terminology of Wasserman et al. (1989), we 
want to consider the variables measured on each of the g(g-1)/2 
dyads (in the case of a square or one-mode network) or the gh 
dyads (in the case of a rectangular or two-mode network). We will 
view the N pairs of possible inter-actor relationships (where N is 
either g(g-1) or gh) as the rows of a matrix and consider the 
variables that are measured on the N rows. To make this discussion 
easier, we will treat the two different types of network data 
separately, first describing the situation for two-mode networks, 
then for one-mode networks. 

2.1. Two-Mode Network Data 

We will assume that the Q attribute variables measured on 
the actors in a two-mode network can be split into Q, variables for 
the actors in S constituting the first mode and Q2 variables for the 
actors in (, the second mode. We first discuss the various states 
that the actors can fall into and then define SR as the set containing 
the possible states for the dyads. These states depend on the 
variables in I. 

Consider the first mode, i.e., the actors in 4. We have Q1 
variables measured for them, so these actors have a value for each 
of these variables (which we implicitly assume are all categorical 
or discrete). We define k, as the number of levels of the qth 
categorical attribute variable. For example, if we have a single 
attribute variable for actors in the first mode, then Q1 = 1. If k, 
= 2 levels, then actors in the first mode will fall into one of two 

subgroups defined by levels of the variable. If we also have a 
second attribute variable for these actors, then Q1 = 2. If k2 = 3 
levels (for example high, medium, and low prestige), then there 
are k, k2 = 6 subgroups defined by the combinations of the levels 
of the two actor attribute variables. We let K., be the product of 
the levels of these categorical attribute variables, across all Q, 
variables. To summarize the above example, Q- = 2, and k, = 2 
and k2 = 3. Thus, KC, the product of the number of levels 
associated with the sender composition variables, is 6. More 
generally, KcI = Hq kq. We do the same for the second mode to 
obtain K92, the product of the number of levels of the attribute 
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variables associated with the receivers, the second mode of the 
network. In simpler terms, K,. is the number of subgroups for the 
actors in the first mode as defined by the levels of the attribute 
composition variables, and K.2 is the number of subgroups for the 
second mode. 

Of most interest to us are the states of the dyads. Each 
sending actor falls into one of the K,1 actor subgroups defined by 
the cross-classification of the Q1 relevant sending attribute variables, 
and each receiving actor falls into one of the K,2 actor subgroups 
defined by the cross-classification of the Q2 relevant receiving 
attribute variables. For example, suppose that I has four variables, 
two for each mode, so that Q1 = Q2 = 2. If each variable has two 
levels, then there are 22 = 4 possible subgroups for the sending 
actors and 22 = 4 for the receiving actors. Thus, the dyads 
themselves can fall into 4 x 4 = 16 possible dyadic states. We 
define It as the set consisting of all possible dyadic states, which 
for this example has 16 elements, denoted by states (1,1) ..., 
(4,4), where the notation (r,s) implies that for the dyad (i,j), sending 
actor i E subgroup r, and receiving actor j E subgroup s. Clearly, 
in general, we will have K = K,,K,2 elements in Jf for two-mode 
network data. It is important to remember that the elements in ?f 
represent states for ordered pairs. The elements are all possible 
pairs of subgroups of the sending and receiving actors in the dyad. 

Consider now the structure or relational variables. We will 
let ? refer to the levels of the structure variables. For example, if 
we have a pair of structure variables, with 11 and 12 levels, 
respectively, then _ can take on one of L = 1l12 values, all possible 
combinations of the two structure variables. In general, we will 
assume that there are R relations measured on our N units and 
that associated with relation r is a g x h sociomatrix Xr, whose 
elements, measuring the strength of this type of tie from actor i 
to partner j, take on values from 0 to lr - 1. With Ir denoting the 
number of levels of the rth structural variable, we define L = ,rlr 
as the total number of levels associated with the structural variables. 
For binary relations, lr = 2. 

2.2. One-Mode Network Data 

As with two-mode networks, we will assume that we have 
Q discrete attribute variables, with levels k,, k2, etc. The product 
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of these levels gives us the total number of possible subgroups for 
the actors. For a one-mode network, actors fall into one of K,. = 

Hn, kq actor subgroups defined by the combined levels of the Q 
attribute variables. 

From these actor subgroups, we can form dyadic states. This 
task is simple, since the two actors in the dyad are from the same 
set and hence fall into the same collection of subgroups. We will 
let K denote the total number of states for the dyads, all possible 
pairs of actor subgroups defined by the composition variable(s). As 
mentioned above, these states are the elements of the set Mf. For 
an example of a single attribute variable with three levels, K = 
3x3 = 9, and Jf has elements (1,1), (1,2), (1,3), (2,1), . . ., (3,3), 
where the notation (r,s) implies that for dyad (i,j), actor i E 
subgroup r, and j E subgroup s. Dyads in general can fall into K 
= K.2 states. 

For the structure variables, we will let Ij refer to the levels 
of the structure variables. Each pair of actors constitutes a dyad. 
We will have two pieces of structural information for each relation: 
how the first actor in the dyad relates to the second, and how the 
second relates to the first. For one-mode networks, we will consider 
these two dyadic pieces of information (per relation) separately, so 
that we work with N=g(g-1) pairs, on which the structure variables 
are defined. The structure variables are therefore treated exactly 
the same as with two-mode relational data sets. To reiterate, we 
will assume that there are R relations measured on our N units and 
that associated with relation r is a g x g sociomatrix Xr, whose 
elements, measuring the strength of this type of tie from actor i to 
actor j, take on values from 0 to lr - 1. With Ir denoting the 
number of levels of the rth structure variable, we define L = Ilr lr 

as the total number of levels associated with the structure variables. 
Thus, in brief, we assume that we have Q composition and 

R structure variables. The composition variables define actor 
subgroupings, which are then paired to generate dyadic states, given 
by the elements of Jf. The structure variables produce a cross- 
classified set of L possible structural states. These states are entries 
of the set X, with elements f E S. Clearly, the elements of _ are 
the entries in an R-dimensional contingency table that cross-classifies 
the structure variables. Fienberg et al. (1985) and Iacobucci and 
Wasserman (1987) give several examples of such contingency tables. 
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We will refer to these sets {C and Y frequently throughout this 
paper and will give several examples of them later in this section. 

We should note that if we are interested in estimating 
individual actor effects, then the Q composition variables may 
include variables in the network data set that give the identification 
code of the individual actors. For example, in a one-mode network, 
the first composition variable may be simply the label associated 
with the individual actors. In a two-mode network, the first two 
composition variables could label the actors in ' and the actors in 
~W. This is exactly the approach taken by Wasserman et al. (1989). 

We now take the network data sets and the sets XK and E 
defined by the composition and structure variables, respectively, 
and consider how to reorganize the data to facilitate canonical 
analyses. To begin, we describe one such reorganization advocated 
by earlier researchers interested in correspondence analysis. 

2.3. Response Pattern Matrices 

Wasserman et al. (1989) employ a response pattern matrix 
with N rows and several sets of columns. This matrix is an indicator 
array, with one set of columns for each of the composition and 
structure variables. Indicator matrices such as this are frequently 
used in correspondence analysis (see Greenacre 1984), a technique 
closely related to canonical analysis. For example, we can examine 
the network of donative transfers from corporations to nonprofit 
agencies. This example is a subset of the network data set analyzed 
by Galaskiewicz and Wasserman (1988) and Wasserman et al. 
(1989). The subset consists of 75 corporations and 67 nonprofit 
agencies in the Minneapolis/St. Paul area. So, there are N = 75x67 
= 5,025 dyads, which form the rows of the response pattern matrix 
for this example. The single structure variable is the amount of a 
donative transfer from each corporation to each nonprofit agency, 
coded on a scale from 1 to 3, so that L = Ii = 3. We will consider 
two composition variables. For the corporations, the composition 
variable is the extent to which members of the various corporate 
boards of directors have ties to prestigious individuals in the 
community. This variable takes on one of three levels (high, 
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TABLE 1 

Composition and Structure Pattern Matrices for the Example of Donative Transfers from 
Corporations to Nonprofit Agencies 

Composition Structure 

Corporation Prestige 

Low Medium High 

Nonprofit Essential Rating Donation Level 

Dyad Low Med High Low Med High Low Med High 1 2 3 

(1,1) 0 0 0 0 0 0 1 0 0 1 0 0 

(1,2) 0 0 0 0 0 0 0 0 1 0 0 1 

(1,67) 0 0 0 0 0 0 0 1 0 1 0 0 
(2,1) 1 0 0 0 0 0 0 0 0 1 O O 

(75,67) 0 0 0 0 1 0 0 0 0 0 1 0 
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medium, or low). For the second mode, the nonprofit agencies, we 
code the extent (high, medium, or low) to which the agency is 
thought to offer essential and outstanding services. Thus, Q, = Q: 
= 1, and Q = 2. This gives K = 3 x 3 = 9 possible dyadic states. 
The set rX then has nine elements: (1,1), (1,2), (1,3), . . ., (3,3), 
where (r,s) indicates that for a specific dyad (i,j), the corporation 
i is in level r of the corporate prestige variable, and nonprofit j is 
in activity s. 

A portion of the response pattern matrix for this example is 
given in Table 1. The entire array contains N = 5,025 rows and K, 
+ L, = 9 + 3 = 12 columns. Notice that the matrix is composed 
of two submatrices. The first submatrix consists of the first nine 
columns and contains the coded network composition variables. 
The second submatrix consists of the next three columns and contains 
the network structure variable. We will call these submatrices M, 
and M, for the composition and structure pattern matrices, 
respectively. We will refer to the entire array as M. We now 
examine these two pattern matrices in more detail. 

2.4. Composition Pattern Matrices 

Consider first the pattern matrix for the network composition. 
We start with a set of Q categorical attribute variables. Recall that 
for one-mode networks, actors fall into one of Kc = In, k, subgroups 
defined by the combined levels of the Q attribute variables. Dyads 
then can fall into K = K2 states. 

For a one-mode network, the composition pattern matrix, 
M,., has one column for each entry in M{. There are g(g- 1) ordered 
pairs constituting the rows. Each row has a single 1, which indicates 
the compositional state of the pair of actors associated with that 
row. Thus, M,. is a dummy or indicator matrix coding the state of 
each dyadic pair; i.e., the subgroup to which actor i belongs and 
the subgroup to which actor j belongs are indicated by the row of 
M. associated with the ordered pair (i,j). 

Now consider a two-mode network. Senders and receivers 
will be described by different attribute variables. However, the 
composition pattern matrix is constructed in a way that is logically 
identical to the construction of the pattern matrix for a one-mode 
network. Recall that with Q, categorical sender attribute variables 
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and Q2 categorical receiver attribute variables, there are K.1 sender 
subgroups and K,2 receiver subgroups. This implies that there are 
K = Kc.I x K,.2 states for the dyads defined by the composition 
variables and therefore K columns for the composition pattern 
matrix coding the dyadic states. These are gh dyads constituting 
the rows. As above, a single 1 in each row codes the compositional 
state for each dyad in the matrix, M,. 

2.5. Structure Pattern Matrices 

The example discussed above, a network of donations from 
corporations to nonprofit agencies, is a two-mode network. For this 
example involving a single structure variable, as for other two- 
mode networks, the structure pattern matrix, M,, requires only a 
single structure variable, since the direction of the relational link 
in a two-mode network is unambiguous. Therefore, L = I, and the 
network structure pattern matrix has as many columns as there are 
levels of the structure variable. A single 1 in each row of this matrix 
indicates the level of the relation from actor i to partner j in the 
dyad (i,j). 

If we have more than one structure variable in a two-mode 
network, then we simply consider the cross-classification of the R 
structure variables. Such a cross-classification has L = HIr Ir cells, 
and we define L dummy variables to be the columns of the structure 
pattern matrix. These variables code which cell (in the R-dimensional 
contingency table) a specific dyad falls into. In this way, the 
structure pattern matrix can easily accommodate multiple relations, 
just as the composition pattern matrix could be generalized to 
networks with several categorical attribute variables. This will allow 
us to examine interesting higher-order network properties, such as 
multiplexity and exchange (see Fienberg et al. 1985; Iacobucci and 
Wasserman 1987). We note that this approach is exactly the same 
when we have a one-mode network. 

In a one-mode network, however, actors are both senders 
and recipients of relational ties. For example, computer users may 
send messages to each other over a computer network, or 
corporations may purchase goods and services from each other. To 
code the structure in a one-mode network, we must consider actors 
as both initiators and recipients of relations. This leads us to analyze 
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ordered pairs of actors. There are N = g(g-1) such pairs in a one- 
mode network. By coding relations for ordered pairs of actors, we 
can construct the structure pattern matrix for a one-mode network 
in the same way as for a two-mode network. Assuming just one 
structure variable, the structure pattern matrix for a one-mode 
network, then, has L = / columns and g(g-1) rows. We follow the 
rules given above for two-mode networks if we have more than 
one structure variable in a one-mode network. 

The advantage of the response pattern matrix is that it calls 
attention to the fact that we are modeling dyads. Consequently, it 
also allows us to estimate parameters for individual dyads. However, 
the size of the matrix places a large computational constraint on 
analyses. We do not recommend using these matrices unless one is 
interested in individual actor or dyad effects. To estimate the 
parameters of the canonical analysis models we describe below, 
and to completely study the composition and structure of network 
data, we will need to introduce a different and more parsimonious 
array: a two-way composition-by-structure response pattern matrix, 
or simply, the network pattern matrix. 

2.6. The Composition-by-Structure Network Pattern Matrix 

Since canonical analysis is designed for two-way contingency 
tables, and since we are interested in the relationship between 
network composition, described by the set of Q composition 
variables, and network structure, described by the set of R structure 
variables, we define another two-way array to examine this 
relationship. We will let Z be the cross-classification of the K dyadic 
states defined by the combined composition variables and the L 
levels of the combined structure variables. The rows of this K x 
L array are the dyadic states defined by the levels of the network 
composition variables, and the columns are the cross-classification 
of the network structure variables. Each pair in the network 
accounts for one observation in this array, so the total frequency 
of the table is either g(g-1) or gh for one- or two-mode networks, 
respectively. 

The Z = (Zkl) array, as we will label the network pattern 
matrix, is easily constructed from the composition and structure 
pattern matrices. If we let M,. be the N x K composition pattern 
matrix and Ms be the N x L structure pattern matrix, then we 
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TABLE 2 
Composition-by-Structure Network Pattern Matrix for the Example of 

Donations from Corporations to Nonprofit Agencies 

Composition Structure 

Nonprofit Donation Level 
Corporation Essential 
Prestige Rating 1 2 3 

Low Low 575 1 0 
Medium 501 2 1 

High 480 41 7 
Medium Low 585 9 6 

Medium 507 10 8 

High 450 53 47 
High Low 583 8 33 

Medium 486 23 37 
High 393 37 142 

have Z = M'. M, (where the superscript t indicates matrix 
transposition). This is the array we analyze in canonical analysis. 
Table 2 presents the Z array for the example of donations from 
corporations to nonprofit agencies. 

This matrix is an "ordinary" contingency table and should 
be more familiar to readers than the response pattern matrices of 
Table 1. It is also small and thus easier to analyze. However, we 
feel that an examination of response pattern matrices is quite 
informative, since these arrays are based on the basic unit of a 
social network data set - the dyad. We should mention that a 

simple canonical analysis of Z is identical to a canonical analysis of 
an M, except for a rescaling of the derived scores (see Gifi 1981; 
van der Heijden and de Leeuw 1985). 

3. CANONICAL ANALYSIS 

3.1. The Model 

Canonical analysis, first used by several researchers in the 
1930s (see Nishisato 1980; Gifi 1981; Greenacre 1984; Wasserman 
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et al. 1989), uses correlation coefficients to analyze the relationship 
between two polytomous variables, whose levels are arranged as 
the rows and columns of a two-way contingency table. The technique 
has recently become popular, primarily because of its relationship 
to correspondence analysis and to Goodman's association and 
correlation models for contingency tables. Goodman has called the 
canonical analysis model the RC correlation model (Goodman 
1985). Gilula and Haberman (1986, 1988) and Goodman (1985) 
were the first to give a thorough treatment of maximum likelihood 
(ML) estimation of the parameters of the canonical analysis models, 
standard errors, and likelihood-ratio tests. Gilula and Haberman 
(1988) has the most relevance to our research, since these authors 
were the first to consider canonical analyses of multiway tables. 

As we stated earlier, the array that we analyze is the K x 
L composition-by-structure (or simply, network) pattern matrix Z 
= M.M,. An examination of the network pattern matrix clearly 
shows that the elements of Sf (the dyadic states) and the 
possible values of ? (the structure variables) are in one-to-one 
correspondence with the rows and columns of Z. 

To define a canonical decomposition of the network data, as 
viewed via Z, we will let P(k,f) be the probability that a dyad, 
chosen at random, belongs to level k E JC of the dyadic states 
(defined by the composition variables) and that the structure 
variables, defined for this dyad, take on value f E -S. Further, we 
will let P,(k) be the probability that the dyad falls into state k, and 
we will let Ps(e) be the probability that the structure variables take 
on value f. We now define t as the smaller of K-1 and L-1. The 
canonical decomposition of Z is defined for constants P1 , P2 P 
.. . . p, , 0, which are the canonical correlations themselves, and 
for functions x,, x2, . . ., x,, defined on If, and functions y,, Y2, 
..., y,, defined on -T: 

P(k,f) = P.(k) Ps() [ + > p,x1, (k) y, (). 

The elements of x,, and y,, have zero means (for all u), variances 
of unity (for all u), and 

E[xu(k) x,,()] = E[y,,(f) y,,(f) = 0 (for u#v). 
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The most important fact about these functions is that the p's are 
the correlations between these canonical functions: 

E[x,,(k) y,,( )] = p,, (for all u). (3) 

The correlations between the elements of x,, and y,. (if u#v) are 
zero. As long as the correlations are distinct and nonzero, then the 
x's and y's are unique, except for possible changes in sign. Replacing 
x,,(k) by -x,,(k) and y,,(t) by -y,,() clearly does not change (1). 

This canonical decomposition of a two-way cross-classification 
has been known since the work of Hirschfeld (1935), Lancaster 

(1957, 1958) and Guttman (1959). We can view this canonical 

decomposition as a canonical correlation analysis of a two-way 
contingency table; specifically, if we ask what scores should be 
allocated to the rows and columns of the table to maximize the 
correlation coefficient between the linear combinations of the 
variables defined by the scores, then the answer is exactly x, and 

y,. The maximal canonical correlation is p,, and the remaining 
scores are orthogonal to (uncorrelated with) all the scores with 
lower indices, while still maximizing correlations. There can be only 
t canonical correlations, since the rank of the Z array is at most t. 
The linear combinations, defined by the x's and y's, are canonical 
variables. Lancaster (1957) proves the existence of this decompo- 
sition, where the table arises by grouping bivariate Gaussian 

frequencies. The best exposition of canonical decompositions and 
related theorems (that we have found) is in Kendall and Stuart 

(1973, ch. 33). A related result following from (1) is that Pearson's 
X2 statistic is N (the total of the frequencies in the table) times the 
sum of squares of the canonical correlations. Thus, the squared 
canonical correlations are sometimes referred to as components or 

partitions of X2. We also want to note that this decomposition has 
been termed the saturated RC canonical correlation model by 
Goodman (1985). 

This canonical decomposition (1) uses all the available degrees 
of freedom in a two-way table and hence does not provide a very 
parsimonious model for the table. The most logical way to obtain 

special cases of (1) is to assume that the correlations for u > w, 
where w is less than t, are all zero; i.e., we assume that the smallest 
t-w correlations are zero. In this case, we have only w nonzero 
correlations. We will refer to this special case as the CA(w) model. 
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Goodman (1985) labels this model the RC(w) canonical correlation 
model, and Gilula and Haberman (1986, 1988) label it simply C,,. 
CA(t) is the full, saturated canonical decomposition, and CA(O) is 
complete independence of the composition and structure variables. 
Specifically, we have 

P(k, f) = PJ(k) Ps() [1 + p,, x() y,,() ( < t), (4) 
L u=l J 

where the x's and y's still have all the properties of (2) and (3). 
Given N dyads and the composition and structure variable 
measurements for each, if we assume independent dyads (as is 
commonly done in the dyadic independence models of Holland, 
Leinhardt, Fienberg, and Wasserman et al. [see also Frank and 
Strauss 1986]), then we can estimate the parameters in CA(w): (a) 
the w canonical correlations, (b) the w sets of K scores for the 
dyadic composition variables (xI, x2, . . ., x^,, each of which has 
one score for each element of rX), and (c) the w sets of L scores 
for the structure variables (yi, Y2, . ., Yw, each of which has one 
score for each level f E f, the levels of the structure variables). 
These parameters have considerable substantive interest. We will 
discuss how to interpret them in terms of standard network concepts 
later in this section. Clearly, there are many parameters in a CA(w) 
model if w is large. One should choose the value for w carefully; 
fortunately, it is straightforward to test the goodness of fit of CA(w) 
versus CA(w*), where w < w*. Goodman (1985) and Gilula and 
Haberman (1986) discuss ML estimation of these parameters, and 
Gilula and Haberman (1986, sect. 4) give a thorough description 
of an ML algorithm. Gilula and Haberman justify significance tests 
for these models by the large-sample theory given in section 5 and 
Appendices A and B of their important paper. 

3.2. Related Models 

Before discussing estimation and testing of CA(w), we want 
to point out the relationship between this class of canonical 
correlation models and related models for two-way cross-classified 
categorical data. First, we should mention that there is another 
class of models, known as association models, that is quite 
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similar to the canonical models discussed here. An association 
decomposition assumes that 

P(k, ) = exp [ O + a,(k ) + f() + l, () v,( )], (5) 

where all the parameters are unknown. Conditions for the existence 
of these parameters are given in Goodman (1985) and Gilula and 
Haberman (1986). Unsaturated or parsimonious versions of this 
model arise by including fewer than all t terms in the sum in (5). 
Goodman (1985) refers to this unsaturated model as the RC(w) 
association model, where w is the number of terms in the sum, i.e., 
the number of nonzero lambdas and hence the number of 
components in the multiplicative interaction. Association models 
have been more popular than canonical models, perhaps because 
of their similarity to standard loglinear models, but also because 
the logarithms of the cross-product ratios arising from the two-way 
array depend on multiplicative differences of the i's and v's. Of 
course, the canonical models would appeal to researchers more 
interested in expressing relationships (in this case, between the 
composition and structure variables) using correlations. Many 
authors have discussed association models, and versions of these 
models appear in the well-known categorical data analysis texts of 
Fienberg (1980) and Agresti (1984) in the context of methods for 
discrete variables with ordered categories. Goodman (1981) and 
Haberman (1981) give the first thorough treatment of models such 
as (5), and Becker and Clogg (1989) present a very readable 
discussion of the relationship between the association and canonical 
models. Several researchers have described association models for 
multiway tables (Clogg 1982a,b; Agresti and Kezouh 1983; Becker 
1985; Goodman 1986; and Becker and Clogg 1989). 

The association models coincide with the CA(w) models 
when w is either 0 or t. We can show that the association model 
for a specific w (denoted by A,, in Gilula and Haberman 1986) is 

approximately the same as CA(w) when p, is small. Thus, we can 
think of the association models as approximations to the canonical 
models, and vice versa (see Goodman 1985). The models may give 
quite different fitted values, however, as several researchers, 
particularly Clogg (1986), have pointed out. 

20 



CANONICAL ANALYSIS OF SOCIAL NETWORKS 

We prefer the canonical correlation models over the associ- 
ation models because of their similarity to correspondence analysis. 
Evidence of this similarity, and a good sociological discussion of 
these models, can be found in Goodman (1987). Further, the 
canonical models (and correspondence analysis, too) contain 
parameters that have straightforward sociological interpretations 
(more on this later). Goodman (1985, 1986) takes CA(w) and 
reparameterizes it as 

P(k, ) = Pc(k) P() 1 + x(k) y() / (6) 

to obtain the RC(w) correspondence analysis model. With the 
definitions 

x'(k) = p,, x,,(k) 
(7) 

y(ef)= Pu y(e), 

we can easily see the equivalence of (4) and (6). Further, either of 
these models can be written 

P(k,) - P,.(k)P,() "' 
= x'(k) y'(e) p,, (8) 

Pc() P(s ) \I 

which looks surprisingly like a spectral decomposition of a matrix 
consisting of the elements given by the left-hand side of (8). 

Let us work with the full model in which w = t. From (8), 
simple algebra (see Goodman 1986, eqs. (2.9) - (2.10)) shows that 
(a) we can decompose X2 into the sum of squares of the correlations 
(as we mentioned earlier), (b) each squared correlation can be 
partitioned further into the subcomponents x',,(k) Pc(k) or the 
subcomponents y',(#) Ps(e), and (c) the x' parameters are weighted 
averages of the y parameters, with weights P(k, f)/Pc(k), and the 
y' parameters are weighted averages of the x parameters, with 
weights P(k, e)/Ps(f). These facts are exactly the objectives achieved 
by a correspondence analysis of a two-way contingency table, as 
described by many authors, including Wasserman et al. (1989). 
Correspondence analysis has been applied to sociometric data by 
several researchers in recent years. As the reader can see, the 
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CA(t) model is equivalent to a complete correspondence analysis 
of the Z array. This is exactly why we prefer canonical models over 
association models. We comment further on this relationship below. 

3.3. Estimation, Testing, and Approximations 

As described in Goodman (1985, 1986) and in Gilula and 
Haberman (1986, 1988), the parameters of the CA(w) model can 
be estimated using ML. We assume that we are given independent 
observations (k,,, f,,), n = 1, 2,..., N, i.e., a dyadic composition 
state and a value of the structure variables for each pair of actors. 
Each observation is recorded in the network pattern matrix, Z. 
We also assume that these independent observations follow a 
multinomial distribution, with probabilities governed by model (4). 
ML estimates of the parameters of CA(w) [p,, u = 1, 2 . . ., w; 
x,(k), u = 1, 2, . . ., w, and k E MC; and y,,(f), u = 1, 2, . .., w, 
and t E ?] can be calculated using standard algorithms. We used 
the scoring algorithm described in Gilula and Haberman (1986), 
which can also give restricted ML estimates if constraints are placed 
on the model parameters (see section 3.4). We refer the reader to 
section 4 of Gilula and Haberman (1986) for algorithmic details. 

Estimated asymptotic standard errors can also be calculated, 
allowing the researcher to place confidence intervals on the p's, x's, 
and y's (using normal distribution approximations). Likelihood- 
ratio tests are also possible, as shown by the large-sample theory 
presented in Gilula and Haberman (1986). Specifically, Pearson's 
chi-squared statistic, 

X2 = E E (Zk - N Pk,)2 (N Pk), (9) 

and the likelihood-ratio chi-squared statistic, 

G = Zkl log [Zk/l (N Pk)], (10) 

where Pk, is the ML estimate of P(k,f) under CA(w), are 

asymptotically equivalent and have approximate X2 distributions 
with (K-w-1) (L-w-1) degrees of freedom. It is important to note 
that if any of the w p's is zero, then customary approximate 
distributions are not correct. 

Of most interest to us are conditional likelihood-ratio tests 
that allow us to test goodness of fit of CA(w) for specific values of 
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w. For example, we can fit both CA(2) and CA(1), and if CA(2) 
provides an adequate description of the data (i.e., if the statistic 
(10) is not statistically large), then we can examine the difference 
of the likelihood-ratio chi-square statistics. This difference is 
approximately X2 with (K-2)(L-2) - (K-3)(L-3) = K + L - 3 

degrees of freedom. Such conditional tests are very useful in data 
analysis. 

We have alluded to the relationship between correspondence 
analysis and canonical analysis throughout this paper. Correspon- 
dence analysis (see Wasserman et al. 1989, and references therein) 
is a technique for the decomposition of a two-way contingency 
table. Computer programs for correspondence analyses of contin- 
gency tables are becoming available, such as Nishisato's (1986) 
DUAL3 and Greenacre's (1986) SIMCA. The technique is quite 
important in Europe, particularly in France, but it has made slower 
"in-roads" in the U.S. 

Escoufier and Junca (1986) show that the scores from 
correspondence analysis, which yields sets of all t eigenvalues and 
associated eigenvectors for both the rows and columns of a two- 
way table, can be viewed as least squares approximations to the 
ML estimates from the CA(w) model (for any w less than t). 
Goodman (1986) shows, as we have discussed in this section, 
that the saturated CA(t) model is equivalent to a complete 
correspondence analysis of the two-way table. If we focus on fewer 
than all t eigenvalues arising from a correspondence analysis (say, 
just w of them), then we can view these w eigenvalues and their 
associated eigenvectors as approximate canonical analysis model 
parameter estimates. The importance of Escoufier and Junca's 
statement is that the results of a correspondence analysis can be 
used as approximate canonical analysis parameters. The availability 
of correspondence analysis software should allow network 
researchers to utilize the models presented here more frequently. 
One simply must keep in mind that the scores derived from 
correspondence analyses are just approximate canonical analysis x's 
and y's. 

We should note that canonical analysis of social network data 
can be a valuable exploratory tool even when the assumptions 
necessary for ML estimation are not valid. In such circumstances, 
one can simply use the eigenvalues and eigenvectors mentioned 
above as least squares approximations to the ML estimates. One 
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should refrain from significance tests and use canonical analysis 
simply to summarize the data. In our specific application, the 
assumption of independent dyads could be questioned. If one is 
concerned substantively that this assumption might not hold, then 
"least squares canonical analysis" is recommended. Further research 
into the instances when "ML canonical analysis" is inferior to least 
squares canonical analysis is certainly needed. Stability of parameter 
estimates could be studied, using techniques such as jackknifing 
and bootstrapping. 

3.4. Restricted Canonical Analysis 

As we have mentioned, CA(w) has w + wK + wL 
(unconstrained) parameters: w canonical correlations, w sets of x's 
(each x is a vector of K components), and w sets of y's (each y is 
a vector of L components). Even with small w's, the number of 
parameters could be large. We can place linear constraints on 
these scores to obtain restricted canonical models and thereby 
simultaneously reduce the number of parameters to be estimated 
and increase the degrees of freedom for goodness-of-fit tests. Gilula 
and Haberman (1988) refer to such models as restricted canonical 
models, and we will denote them by CA'(w). 

For example, we might have a single structure variable. If 
the L = 1 levels of this variable correspond to ordinal, equally 
spaced categories, then we might want to impose the constraint on 
the first y (the scores associated with this structure variable) that 

yl(f+1) - y,(t) = yl(+2) - y(ft+1), ( = 1, 2,..., L-2). 
(11) 

In general, we can place constraints on any of the sets of scores. 
Further, these constraints are in the form of linear combinations 
of the x's and y's, which are then set equal to zero. For the above 
example, if L=6, then the constraints (11) consist of four linear 
combinations defined on the six scores for y, (the first set of 
scores for the structure variable). The coefficients for the linear 
combinations constrain the spacings between levels e and e + 1 to 
be equal to the spacings between levels t + 1 and t + 2. The 
coefficients are 1, -2, 1, 0, 0, 0 (for t = 1); 0, 1, -2, 1, 0, 0 (for 
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e = 2); 0, 0, 1, -2, 1, 0 (for t = 3); and 0, 0, 0, 1, -2, 1 (for e 
=4). 

The model CA'(w) assumes that the model CA(w), defined 

by (4), holds and that the x's and y's are constrained as in equations 
(2) and (3). We further assume that 

K 

ak,nu,x(k)=0 (n= 1,2, . ., n,;u= 1,2,. . .,w) (12) 
k= 

and that 

L 

>bt, y1,(l) = 0 (n = 1, 2,.. n,; u = 1, 2,. . ., w). (13) 
!=1 

The a's define the linear combination constraints placed on the x's, 
and the b's define those placed on the y's. There are linear 
combinations defined for all w x's and y's. Note that there are n,, 
constraints for the uth set of scores for the x's (and nyu for the uth 
set of scores for the y's) so that the number of constraints may 
depend on which set of scores we are studying. In the above 

example, there are ny,, = 4 constraints for u = 1, and ny2 = ny3 = 

. . . = nw = 0. Remember that u denotes which set of scores is 

being studied, so that u can be anywhere from 1 to w, where w is 
the dimension of the model. Also remember that w must be between 
1 and t. The coefficients {ak,,1,} and {b,,L,} must sum to zero for each 
of the constraints and for each of the sets of scores: 

K 

E akn, =O(n= 1,2,. . .,nx;u= 1,2,. . .,w) (14) 
k= 

and 

L 

b, = 0(n= 1,2,. . .,ny,; u = 1,2,. . .,w). (15) 
/=1 

For each set of scores u, the nx, vectors of coefficients (al,,, a2,,, 
. ., aKn,)' must be linearly independent (i.e., orthogonal), and 

the nyu vectors of coefficients (b,,,, b2,,, , bLn,,,)' must also be 

linearly independent. 
Gilula and Haberman (1986) discuss how to estimate the 
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parameters of CA'(w), which are subject to the constraints (12) 
and (13). There are y = E_i [n,,, + n,,,] total constraints. If we 
make the same assumptions about the data and the p's as we do 
with CA(w), then ML estimates of the parameters are asymptotically 
normal and X2 and G2 are asymptotically distributed as X2 random 
variables with (K-w-l)(L-w-1) + y degrees of freedom; i.e., 
we gain an additional y degrees of freedom for testing goodness of 
fit because of the addition of y constraints placed on our parameters. 
We can test whether the constraints are important by comparing 
the likelihood-ratio statistic for CA(w) with the statistic for CA'(w). 
As Gilula and Haberman (1986) show, the difference in these 
statistics is asymptotically distributed as a X2 random variable. 
Goodman (1985) also discusses estimation of RC canonical corre- 
lation model parameter subject to linear constraints. 

One could argue that restricted canonical analysis models are 
not appropriate if ML canonical analysis is invalid because of 
restrictive statistical assumptions. We believe that the benefits of 
ML estimates greatly outweigh the costs here. The advantage of 
furthering our understanding of network composition and structure 
is very real; furthermore, the evidence (see Goodman 1986, 1987) 
shows that ML estimates and least squares estimates are virtually 
equal in most circumstances. 

After a short discussion about why these canonical models 
should be useful to social networkers, we will illustrate their 
usefulness with two examples. 

3.5. Why Canonical Analysis for Social Network Data? 

In the last decade or so, interest in social network (sometimes 
called structural) approaches to social and behavioral science has 
grown in the mainline research community. However, the application 
of network concepts and models to more standard substantive and 
theoretical questions has been hindered by several problems. Two 
of the more important problems are that (a) there are few easily 
computable models that allow the researcher to incorporate network 
properties into more standard actor attribute studies, and (b) 
standard network methods are often limited to descriptive con- 
clusions. Moving beyond mere description of structural properties 
is a necessary advance if network concepts are to continue to be 
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an important and influential part of social and behavioral science 
thinking. Canonical analysis using the models described here 
provides one resolution. 

There are also several interesting social network hypotheses 
that may be addressed using the models we have described. We 
note the following as being of special interest to social network 
researchers. First, the canonical analysis model gives as standard 
output the canonical correlations (or square roots of the eigenvalues) 
Pi, P2, ? . , p. These parameters may be interpreted as the canonical 
correlations (or approximate correlations) between combinations of 
the row and column variables. In the analysis of network structure 
and composition, p, may be interpreted as the overall association 
between actor characteristics (composition) and relational strength 
(structure). Second, the canonical scores themselves have interesting 
network interpretations. Scores for values of the structural variables 
(y's) give information about relational strength. Restricted canonical 
analysis models (which we have just described and which we 
illustrate in section 4.3) allow us to test hypotheses about 
spacing, linearity, and homogeneity of relational response categories 
(something other network approaches do only in an ad hoc way, if 
at all). Third, inspection of compositional and structural scores 
together gives insight into the relative strength of relations among 
pairs of actors with different combinations of characteristics or 
attributes. This interpretation may be used either in exploratory 
analyses (as advocated by Frank et al. 1986) or to make significance 
tests. 

While canonical analysis provides a great advance in the 
kinds of network data and substantive questions that may be 
addressed, there are some limitations that should also be mentioned. 
First, canonical analysis relies on a number of assumptions that the 
researcher may be unwilling (or unable) to make. The model is 
assumed to be correct, and the dyads are assumed to be independent 
and identically distributed. But assumptions of models such as (1), 
(4), and (6) are usually considerably less severe than those of 
normal theory linear models. Second, since we have presented ML 
estimates of canonical analysis parameters, the parameter estimates 
are dependent upon good (i.e., computationally stable and efficient) 
ML algorithms. It is well known that these algorithms may 
misbehave when data arrays are sparse (when many cells in 
contingency tables such as Z are near zero). This may be a problem 
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for some network pattern matrices. In such instances, we recommend 
using correspondence analysis, which is not subject to this problem 
and which many have found to give good approximations to 
canonical analysis scores. On the whole, we believe these canonical 
analysis models will be quite useful to network researchers. 

4. EXAMPLES 

In this section we use the canonical analysis models described 
above to analyze two quite different network data sets. First, we look 
at a two-mode network consisting of donations from corporations to 
nonprofit agencies. We then turn to a one-mode network of 
electronic mail computer communications among researchers in an 
emerging scientific specialty. 

4.1. A Two-Mode Network of Donative Transfers 

In this example we look at a single relation and two attribute 
variables defined for a two-mode network. The example consists 
of information on contributions made from major publicly held 
corporations in the Minneapolis/St. Paul area to not-for-profit 
agencies. The data come from a long-term study conducted by 
Galaskiewicz (1985) of an urban grants economy. These data are 
described in detail in Galaskiewicz and Wasserman (1988) and in 
Galaskiewicz (1985). In the current example, we focus on a subset 
of 75 corporations and 67 nonprofit agencies. We look at a single 
relational variable: the level of the donation from each corporation 
to each nonprofit agency. This variable takes on three levels: (1) 
no donation, (2) a donation of up to $1,000, and (3) a donation of 
$1,000 or more. 

In addition, we look at two attribute variables, one for 
corporations and one for nonprofit agencies. For corporations, we 
consider the degree to which corporations are linked to prestigious 
members of the local business elite. This variable is a combination 
of the degree to which prestigious community members know 
corporate officers or board members and the degree to which chief 
executive officers belong to the same clubs and cultural boards as 
the business elite. Details on how this variable was constructed can 
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be found in Galaskiewicz and Wasserman (1987). This variable 
takes on three levels: (roughly) low, medium, and high. For 
nonprofit agencies we code the degree to which corporate giving 
officers recognize the nonprofit agencies and perceive them as 
providing essential and outstanding services. This variable takes 
three levels: low, medium, and high. Again, details on how this 
measure was constructed can be found in Galaskiewicz and 
Wasserman (1988). So, using our notational system, R = 1 structure 
variable and Q, = Q2 = 1 attribute variable for each mode, and 
L = 3 levels for the structure variable and K = 3x3 = 9 dyadic 
states. We note that the form of the M,. and M, matrices is shown 
in Table 1. 

The network pattern matrix (Z) for these data is presented 
in Table 2. Canonical analysis of this two-way array gives the scores 
presented in Table 3. These results show that donations at medium 

TABLE 3 
Canonical Analysis of Corporation Prestige, Nonprofit Essential Rating, and 

Donation Level 

A. Structure 

Donation Level 

1 2 3 

-0.329 2.320 3.436 

B. Composition 

Nonprofit Essential Rating 
Corporation 
Prestige Low Medium High 

Low -0.876 -0.837 -0.187 
Medium -0.677 -0.581 0.693 
High -0.251 0.117 2.329 

Canonical correlation = 0.364 
X2 = 59.767 
7 df 
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and high levels are most likely to be made from high-prestige 
corporations to those nonprofit agencies perceived as offering a 
medium or high level of essential services and from medium-prestige 
corporations to those nonprofit agencies perceived as offering the 
most essential serivces. Absence of donations is most likely from 
corporations with low prestige to nonprofit agencies that are not 
perceived as offering essential services. An additional observation 
is that scores for both network composition variables are ordered, 
each within the levels of the other composition variable. Scores for 
levels of the structure variable are also ordered. 

The interpretations of the estimates in Table 3 are made by 
simultaneously examining the scores for the levels of the composition 
variables (the x's) and scores for the levels of the structure variables 
(the y's). A glance at equations (1) and (8) shows that canonical 
analysis scores can be viewed as a multiplicative decomposition of 
the residuals from CA(0), the model of complete independence. 
Using this interpretation and the unsaturated canonical analysis 
model (4), we can see that the estimated probability that a dyad 
falls into level ? of the structure variables and level k of the 
composition variables depends loglinearly on the product x(k)y(f). 
When this product is positive, the estimated probability exceeds the 
expected probability calculated under an assumption of indepen- 
dence. 

We note that the CA(1) model does not fully account for the 
data, since X2 = 59.767 with 7 degrees of freedom. One could 
consider fitting CA(2) to these data, but this is a saturated model 
and would fit perfectly (remember that t=2 for these data). We 
also note that CA(2) is identical to a full correspondence analysis. 
The best-fitting model might be a restricted version of CA(2), 
CA'(2). However, we have not fit such a restricted model to this 
network because the Z matrix is so sparse that the likelihood-ratio 
test statistics may not be distributed asymptotically as X2 random 
variables. Even though Z is sparse, the ML estimated scores from 
CA(1) given in Table 3 appear to be good estimates because they 
closely match scores obtained from correspondence analysis of the 
same data. As we have emphasized, the correspondence analysis 
scores are approximations to ML estimates of the CA(1) scores. 
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4.2. A One-Mode Network of a Computer Conference among 
Scientific Specialists 

Our second example comes from a computer conference 
among researchers working in the emerging scientific speciality of 
social network research. These data were collected as part of a 
study of the impact of the Electronic Information Exchange System 
(EIES) housed at the New Jersey Institute of Technology. Fifty 
researchers interested in social network research participated. We 
focus here on the 32 people who completed the study. These 
researchers included a wide range of social scientists, among them, 
sociologists, anthropologists, and mathematicians. As part of the 
conference, a computer network was set up and participants were 
given computer terminals and access to a network for sending 
electronic mail messages to other participants. We note that this 
study was done prior to the widespread use of BITNET and other 
popular computer networks that are widely available to academics 
today; consequently, this study involved a novel way for researchers 
to communicate. For more details of this study, see Freeman and 
Freeman (1979, 1980) and Freeman (1986). 

Of particular interest to us are network data arising from the 
study. As part of this project, the computer system recorded all 
message transactions, specifically, the origin and destination of the 
message, the day and time, and the number of lines in the message. 
Records were kept for several months. We therefore have a record 
of the number of messages sent from each participant to every 
other participant. An examination of these data reveal that while 
people differed in the degree of message exchange, most pairs who 
exchanged messages did so repeatedly. We therefore chose not to 
consider the number of messages but rather to define a binary 
variable indicating whether or not a message-sending relationship 
existed between each participant and every other participant. We 
use this sending relational variable as our first structure variable 
and note that it has l, = 2 levels. We constructed a second relational 
variable from a sociometric question. At the beginning and at the 
end of the project, participants were asked to fill out a questionnaire 
that included, among other things, the following network question. 
Each participant was asked to indicate, for every other participant, 
whether she/he (1) did not know the other, (2) had heard of the 
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TABLE 4 
Network Pattern Matrix for the Example of Recognition (Citations), Messages, and Acquaintanceship on a 

Computer Network 

Messages 

No Yes 

Citations Acquaintanceship 

Heard Heard 
Actor Partner Unknown of Met Friend Unknown of Met Friend 

Low Low 67 11 38 15 6 4 58 41 
High 50 29 52 13 10 5 65 32 

High Low 59 20 47 11 20 6 63 30 
High 18 25 71 26 3 6 55 36 
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other but had not met him/her, (3) had met the other, (4) was a 
friend, or (5) was a close personal friend. We use the results of the 
second administration of the question, and because of the sparseness 
of responses in the last two categories, we combine levels (4) and 
(5) to create a category "friend." Our second structure variable has 
four levels (12 = 4). 

The attribute variable we used indicates how well each 
participant is recognized by the social science community. This is 
measured by recording the number of citations of the researcher's 
work in the Social Science Citation Index for the year 1978 (when 
the research started). This variable is coded as binary, distinguishing 
between the most cited half and the least cited half of the 
participants. Thus, in this example, there are two relations (R=2) 
and one attribute variable (Q=1), and L = 2x4 = 8 cells in the 
cross-classification of the two structure variables and K = 2x2 = 
4 dyadic states defined by the single binary composition variable. 

The network pattern matrix for this example is presented in 
Table 4. Since the interpretation of the entire table is complicated, 
we first present analyses of several of the marginal tables. We note 
that the composition of the two members of a dyad is independent 
of the structural variable of sending messages, since CA(O) yields 
G2 = 1.322 and X2 = 1.321 with 3 degrees of freedom. Participants 
with higher or lower recognition are neither more likely nor less 
likely to send messages to others of high or low recognition. 
However, from the second marginal table, we see that there is a 
relationship between the recognition of pair members and their 
acquaintanceship: CA(O) fit to these data yields G2 = 59.254, and 
X2 = 52.616 with 9 degrees of freedom. Since CA(O) does not 
adequately describe the association in this table, we fit CA(1). 
Table 5 presents the CA(1) canonical analysis of the K = 2x2 
composition by L = 4 structure marginal table of recognition by 
acquaintanceship. All participants, regardless of recognition, are 
likely to be unaware of others with relatively low recognition. 
Furthermore, participants with relatively high recognition are more 
likely to have heard of, to have met, or to be friends with other 
participants of high recognition. 

We next looked at the association between just the two 
relations, ignoring the single composition variable. Acquaintanceship 
and sending messages are (clearly) not independent, since CA(O) 
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TABLE 5 
Canonical Analysis of Recognition (Citations) and Acquaintanceship on a 

Computer Network 

A. Structure 

Acquaintanceship 

Unknown Heard of Met Friend 

-1.7862 0.9506 0.4656 0.5214 

B. Composition 

Citations 

Partner 
Actor 

Low High 

Low -0.8595 0.0552 
High -0.7949 1.6484 

Canonical correlation = 0.2121 
G2 = 9.577 
X2 = 9.577 
4 df 

has X2 = 160.421, and G2 = 171.149 with 3 degrees of freedom. 
The CA(1) scores for analysis of acquaintanceship and recognition 
are presented in Table 6. Not surprisingly, people are more likely 
to send messages to others they have met or with whom they are 
friends. 

Finally, a canonical analysis of the entire composition by 
structure network pattern matrix shows aspects of all of these 
relationships. First note that the independence model, CA(0), does 
not fit these data (G2 = 80.484 and X2 = 77.269, with 21 degrees 
of freedom, CA(1) does provide a reasonable model for these data 
(G2 = 19.382 and X2 = 19.056, with 12 degrees of freedom). The 
results are presented in Table 7. 
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TABLE 6 
Canonical Analysis of Messages and Acquaintanceship on a Computer 

Network 

Acquaintanceship 

Unknown Heard of Met Friend 

-1.3823 -1.2285 0.4665 1.1904 

Messages 

No Yes 

-0.8928 1.1201 

Canonical correlation = 0.4021 
0 df 

4.3. Restricted Canonical Analysis of a Computer Network of 
Scientific Specialists 

In this section we briefly illustrate the use of restricted 
canonical analysis models to test substantively interesting hypotheses 
about the structure and composition of the computer network 
analyzed in the previous section. Looking at the scores for the 
CA(1) model of these data (presented in Table 7), we see that we 
may be able to understand patterns of message sending without 
including all four levels of the structure variable of acquaintanceship; 
i.e., it might be possible to fit a more parsimonious model than 
CA(1). Note that the scores for three levels of acquaintanceship, 
"heard of," "met," and "friend," within each level of message 
sending are quite close. Apart from whether one person is unknown 
to another, distinctions among levels of acquaintanceship may not 
be important. 

From this observation, we considered a class of restricted 
models which assume that CA(1) was appropriate, as well as various 
restrictions on the scores. These restrictions imply that except for 
actor and partner recognition (i.e., citations), there are few 
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TABLE 7 
Canonical Analysis of Recognition (Citations), Messages, and Acquaintanceship 

on a Computer Network 

A. Structure 

Acquaintanceship 

Messages Unknown Heard of Met Friend 

No -1.5572 0.9665 1.0076 1.3111 
Yes -1.7007 0.4004 -0.1042 0.0590 

B. Composition 

Citations 

Actor Partner 

Low High 

Low -0.8614 -0.0048 

High -0.7527 1.6694 

Canonical correlation = 0.2378 
G2 = 19.382 
X2= 19.056 
12 df 

distinctions among the levels of acquaintanceship. These restricted 
models can be tested by comparing CA(1) to a CA'(1) restricted 
canonical analysis model that sets some of the canonical scores 

equal to each other. 
We examined the restricted model which assumes that apart 

from the scores for the "unknown" category, there is no distinction 

among the three levels of acquaintanceship. This model places the 

following restrictions on CA(1): 

y (i,2) = y,(i,3) = y (i,4), for i=1,2. (16) 

The coefficients for the linear combinations constraining the equality 
of these three levels of the structure variable are 0, -1, 1, 0, 0, 0, 
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0, 0; 0, 0, -1, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, -1, 1, 0; and 0, 0,0, 0, 
0, 0, -1, 1. There are two sets of coefficients (with eight elements 
in each combination), since we constrain acquaintanceship scores 
within each level of the structure variable "message sending." We 
can test this restricted model against the unrestricted CA(1) model, 
which has X2 = 19.056 and G2 = 19.382, with 12 degrees of 
freedom. The restricted model yields X2 = 19.543 and G2 = 19.958, 
with 16 degrees of freedom. Clearly, this model fits the data. 
Further, the difference between CA(1) and the restricted model 
CA'(1), which contains these four restrictions, is statistically small; 
thus, it is valid to conclude that the categories of this variable can 
be collapsed into two. 

This restricted model makes no distinction among the 
acquaintanceship variable categories "heard of," "met," or "friend" 
of a communication partner. Table 8 presents the CA'(1) scores 
for this model. Other restricted models-for example, those equating 
levels of the other structure variable "message sending" or levels 
of the composition variable "citations"-do not fit well. Therefore, 
the levels of these variables should not be collapsed, as indicated 
by the restrictions shown in the table. These other variables, with 
all their unrestricted levels, are important in understanding the 
structure and composition of this communications network. 

Other restricted models, which we do not present here, could 
be used to test more complicated network relationships. For 
example, we could examine the slope of the levels of one or more 
ordered categorical variables. We leave applications such as this for 
future research. 

5. CONCLUSION 

We have discussed the wide variety of social network data 
and have described how such data sets can be organized into special 
pattern matrices. These matrices consist of collections of indicator 
variables and code the values of the dyads, for which we have data, 
on two types of variables: composition variables and structure 
variables. From these matrices, one can easily construct a composit- 
ion-by-structure network pattern matrix, which can then be analyzed 
with either canonical or correspondence analysis. One of the most 
fascinating features of relational data is that they can be viewed in 
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TABLE 8 
Restricted Canonical Analysis of Recognition (Citations) Messages and 

Acquaintanceship on a Computer Network 

A. Structure 

Acquaintanceship 

Messages Heard of & Met 
Unknown & Friend 

No -1.5678 1.0607 
Yes -1.6957 -0.0236 

B. Composition 

Citations 

Partner 

Actor Low High 

Low -0.9128 0.0318 

High -0.7267 1.6540 

Canonical correlation = 0.2380 
G2 = 19.958 
X' = 19.543 
16 df 

many different ways and modeled with many different strategies. 
Our network pattern matrices and the canonical analysis models 
that can be applied to them provide a novel, and in some ways 
unique, approach to social network analysis. 

We have actually described two kinds of canonical analysis 
models: unrestricted CA(w) models, very similar to correspondence 
analysis models, and restricted canonical analysis models, which we 
labeled CA'(w). Because of the expositional tone that we have 
adopted in this paper, we have not devoted enough space to the 
latter models, nor have we shown in depth how they can be applied 
to specific examples. We hope that other researchers will see how 
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useful both classes of canonical analysis models can be and will 
devote their resources to a further exposition of the restricted 
models. We feel that the CA'(w) models have tremendous utility 
in social network analysis, particularly when network data sets 
include multiple relational variables. With these models, one should 
be able to study the higher-order relational effects, such as exchange 
and multiplexity, that are so important to a complete understanding 
of the social structure of a closed group. At present, the analysis 
of such effects (as described by Fienberg et al. 1985; Iacobucci and 
Wasserman 1987) is hindered by the complexity of the independent 
dyadic choice models that contain such effects and the overpowering 
notational system of these models. However, canonical models are 
so straightforward and intuitive that the problems inherent in dyadic 
choice models may now be easily overcome. 
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