
8
LOGIT MODELS FOR AFFILIATION
NETWORKS

John Skvoretz*
Katherine Faust*

Once confined to networks in which dyads could be reasonably
assumed to be independent, the statistical analysis of network data
has blossomed in recent years. New modeling and estimation strat-
egies have made it possible to propose and evaluate very complex
structures of dependency between and among ties in social net-
works. These advances have focused exclusively on one-mode
networks—that is, networks of direct ties between actors. We gen-
eralize these models to affiliation networks, networks in which ac-
tors are tied to each other only indirectly through belonging to
some group or event. We formulate models that allow us to study
the (log) odds of an actor’s belonging to an event (or an event
including an actor) as a function of properties of the two-mode
network of actors’ memberships in events. We also provide illus-
trative analysis of some classic data sets on affiliation networks.

1. INTRODUCTION

Affiliation networks represent actors’ ties to events. The events may refer
to well-defined collectivities like membership in country clubs or on cor-
porate boards of directors or to more ephemeral collections like the guests
at a party or spectators at a sporting event. Much of network analysis,
including the statistical analysis of relational ties, focuses on one-mode

We appreciate the comments of two anonymous reviewers, the editors, and our
colleagues in the USC Structuralist Group: Vicki Lamb, André Mizell, and Shelley
Smith.

*University of South Carolina

253



networks—that is, networks in which the ties are from actors to actors or
from collectivities to collectivities. In contrast, affiliation networks are
two-mode networks because the ties link together different types of enti-
ties, actors, and collectivities. Affiliation networks have theoretical signif-
icance, despite the fact that they are not at the center of network analysis.

Social theorists have long recognized the importance of individu-
als’affiliations with groups, including both informal social encounters and
more institutionalized memberships in organizations. Simmel (1950, 1955)
forcefully contends that people are defined socially by the intersection of
the various collectivities (family, occupation, neighborhood, voluntary or-
ganizations) to which they belong. Others have argued that participation in
these collectivities heightens the likelihood of direct linkages emerging
between pairs of individuals (Feld 1981, 1982; McPherson and Smith-
Lovin 1982). Patterns of memberships not only define individual social
identities and facilitate linkages between pairs, but overlapping member-
ships constrain individual action and provide the basis for social control
(Breiger 1990).

From a different perspective, Homans (1951) argues that the iden-
tity of social groups emerges from the patterns of informal interactions
among collections of people. Such groups can be located by examining
patterns in people’s participation in informal social activities. Variation in
levels of participation and in comemberships among subsets of people
indicates internal divisions defining important groups within a population
(Breiger 1974; Davis, Gardner, and Gardner 1941; Doreian 1979; Free-
man and White 1993; Homans 1951). From the perspective of the collec-
tivities, individuals’overlapping memberships allow for flow of information
between groups and for potential coordination of groups’ activities. Com-
mon members who produce interlocks between organizations allow orga-
nizations to monitor one another’s actions, to coopt potential competitors,
or to coordinate multifaceted production activities by linking together dif-
ferent kinds of organizations.

Affiliation networks, consisting of a set of actors and a collection of
“events” (or social occasions) with which subsets of actors are affiliated,
have been used to investigate the empirical implications of these theoret-
ical insights (Breiger 1974). They have been used in a wide variety of
substantive studies, including the following: interlocking boards of direc-
tors (Allen 1982; Bearden and Mintz 1987; Levine 1972; Mariolis 1975;
Mintz and Schwartz 1981a, b; Mizruchi 1982; Sonquist and Koenig 1975);
voluntary organizations (Bonacich 1978; McPherson 1982); informal so-
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cial gatherings (Bernard, Killworth, and Sailer 1980, 1982; Breiger 1974;
Davis, Gardner, and Gardner 1941; Freeman and Romney 1987; Freeman,
Romney, and Freeman 1987; Freeman, Freeman, and Michaelson 1989;
Homans 1950); common political activities (Schweizer 1991, 1996); and
ceremonial events (Foster and Seidman 1984; Schweizer, Klemm, and
Schweizer 1993).

Affiliation networks—also called membership networks (Breiger
1974, 1990), hypernetworks (McPherson 1982), or dual networks
(Berkowitz 1982)—differ in important ways from the usual social net-
works mapping linkages between pairs of actors. First, affiliation net-
works consist of two different kinds of entities: actors and events. Thus
affiliation networks are two-mode networks. In addition, pairs of actors
are not directly linked via dyadic ties; rather ties are recorded on subsets of
actors (the members of the events or collectivities) and link these actors to
the events or collectivities to which they belong. Because affiliation net-
works are two-mode, nondyadic networks, methods designed to study one-
mode networks are not generally appropriate for studying affiliation
networks. Furthermore, because of the duality in the relationship between
actors and events, appropriate methods for affiliation networks permit one
to study the linkages between people through shared memberships, the
linkages between groups through common members, and the relationship
between people and the groups to which they belong.

Although methodology for one-mode social networks has devel-
oped rapidly over the past several decades, there has not been similar de-
velopment of methods for studying affiliation networks. Graphical displays
using concept lattices have been proposed for studying the relationships
between actors and events simultaneously (Freeman and White 1993;
Schweizer 1991, 1996; Wasserman and Faust 1994). Centrality measures
for affiliation networks have been explored (Bonacich 1991; Borgatti and
Everett 1997; Faust 1997; Mizruchi, Mariolis, Schwartz, and Mintz 1986),
as have methods for finding positions in two-mode networks (Borgatti and
Everett 1992).

Despite the theoretical significance of affiliation networks, tech-
niques for their statistical analysis have typically lagged behind those for
the analysis of one-mode data. In an early generalization of models for
one-mode networks, Snijders and Stokman (1987) extended Holland and
Leinhardt’s (1970, 1975) U6MAN model for triads to two-mode networks.
One of the first statistical models for one-mode network data was Holland
and Leinhardt’sp1 model (1981). It was an “independent dyad choice”
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model and it proposed that the probability of a tie fromi to j depended on
node level parameters measuring the expansiveness and attractiveness of
nodes and on the tendency for choices to be reciprocated. It was well-
known in the literature before similar models for two-mode network data
were published by Galaskiewicz and Wasserman (1989), Iacobucci and
Wasserman (1990), and Wasserman and Iacobucci (1991). These models,
reviewed below, shared thep1 model’s assumption of dyad independence—
that is, that the occurrence of a tie betweeni andj was independent of the
occurrence of a tie betweenj andk, or i andk, or any other dyad.

More recent advances in the statistical analysis of one-mode data
discard the assumption of dyadic independence in favor of more compli-
cated and hence more realistic structures of dependency between dyads.
These models, termedp* models by Wasserman and Pattison (1996), can
be expressed in logit form and estimated approximately by logistic regres-
sion techniques, as demonstrated by the pioneering work of Strauss and
Ikeda (1990). Frank and Strauss (1986) provided one early type ofp*

model that they called “Markov” graphs. More recently, Wasserman and
Pattison (1996), Pattison and Wasserman (1999), Robins, Pattison, and
Wasserman (Forthcoming), andAnderson, Wasserman, and Crouch (Forth-
coming) have given general form and characterization to these models. In
all of this recent development, however, little attention has been paid to
two-mode networks.

We generalize these logit models to the analysis of affiliation net-
works. These models allow us to study the (log) odds (orlogit) of an ac-
tor’s belonging to an event or an event including an actor as a function of
properties of the two-mode network of actors’ memberships in events. We
begin with a review of the “independent dyad choice” models for affilia-
tion data and then introduce the basics of logit models for one-mode data.
We then generalize the approach to two-mode data. Finally, we analyze
some classic examples of affiliation networks using the new modeling
techniques and demonstrate how properties of affiliation networks can be
incorporated into these models to yield useful insights into the structural
features of these networks.

2. INDEPENDENT DYAD CHOICE MODELS FOR
TWO-MODE NETWORKS

Following the notation of Wasserman and Faust (1994), we denote the set
of actors byG and the set of events byH whereg andh denote the number

256 SKVORETZ AND FAUST



of actors and events, respectively. The matrix representing the affiliation
network is denoted byX ~G H!+ Actors may belong to events atc different
levels of intensity or participationm 5 0,1, . . . ,c2 1. We let P~xij 5 m!
denote the probability that actori belongs to eventj at levelm. Following
Iacobucci and Wasserman (1990), under the assumption that the dyads are
independent, a simple dyad choice model has the following log-linear form

log P~xij 5 m! 5 l ij 1 um 1 ai ~m! 1 bj ~m! (1)

for eachm, subject to the constraints

(
m50

c21

P~xij 5 m! 5 1

(
i

ai ~m! 5 0

(
j

bj ~m! 5 0 + (2)

The parameters are also constrained as follows: whenm 5 0, um 5 0,
ai ~m! 5 0, andbj ~m! 5 0. The parameterai ~m! measures the tendency for
actori to belong to events at levelm, net of other factors—i.e., holding the
other parameters constant, larger values ofai ~m! increase the probability
that actori belongs to eventj at levelm. The parameterbj ~m! measures the
tendency for eventj to be belonged to by actors at levelm, net of other
factors. The$um% parameters measure general strength effects related to
the overall frequency with which actors belong to events at levelm. The
$lij % parameters, finally, are technically required terms that ensure the first
equality in equation set (2) is satisfied. This model is similar to thep1

model in that it assumes the occurrence of a tie at levelm between actori
and eventj is independent of the occurrence of a tie at levelm' between
actori ' and eventj ' .

Certain special cases of equation (1) are immediately apparent. For
instance, one could assume homogeneity (i.e., equality) of either thea
parameters or theb parameters, or both, for a fixed level of participation at
level m. An important simplification arises if actors or events or both can
be “blocked” or partitioned into subsets within which equality of the rel-
ative parameters is assumed. Usually these subsets are defineda priori
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based on actor or event characteristics, as we illustrate below.1 More im-
portantly, though, all of these models are “independent dyad choice” mod-
els. This means that the joint probability distribution of the affiliation matrix
is a product of the dyadic probabilities (recognizing that certain dyads—
namely, all pairs of events and all pairs of actors—are constrained to take
on value 0 with probability 1).

The assumption of dyadic independence is often regarded as sus-
pect in analyses of one-mode networks. But, until the work of Frank and
Strauss (1986) on Markov graphs, there was little choice but to make this
assumption in order to have statistical models of network data. The as-
sumption is equally dubious for affiliation networks, despite the much
simpler structure of the basic independent dyad choice model. One can
think of reasons why one actor’s level of involvement in a particular event
may not be independent of another actor’s level of involvement in that
event and vice-versa. One can also think of various reasons why an actor’s
level of involvement in one event may not be independent of his or her
level of involvement in another event. These plausible but more complex
dependency structures can be addressed within the framework of Markov
graphs and logit models for network data. We now turn to a development
of these ideas for affiliation networks.

3. LOGIT MODELS, MARKOV GRAPHS, AND
PSEUDO-LIKELIHOOD ESTIMATION

Moving beyond “independent dyad choice” models required innovations
in model building and in estimation. Both of these innovations are sug-
gested, but not fully developed, in the work of Frank and Strauss (1986) on
Markov graphs. Full development of the modeling approach is set out in
Wasserman and Pattison’s (1996) work onp* logit models for social net-
works. Strauss and Ikeda (1990) provide the innovation in estimation, the
use of pseudo-likelihood functions and logistic regression estimation pro-
cedures. We outline these innovations beginning with thep* modeling
framework.

Thep* modeling framework uses a log-linear model to express the
probability of a graphG as a function of vector of parametersu and an
associated vector of graph statisticsx~G!, and a normalizing constantZ~u!:

1Parameter estimates could also be useda posteriorito define subsets of sto-
chastically equivalent actors (Wasserman and Anderson 1987).
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P~G! 5
exp~u 'x~G!!

Z~u!
+ (3)

The normalizing constant simply ensures that the probabilities sum to unity
over all graphs. Theu parameters express how various “explanatory” prop-
erties of the graph affect the probability of its occurrence. These param-
eters must be estimated. However, estimation via maximum likelihood
techniques is very difficult because ofZ~u! in the denominator of equation
(3). We first describe somep* models, and then return to the problem of
estimation at the end of this section.

The approach, proposed by Strauss and Ikeda (1990) and elaborated
by Wasserman and Pattison (1996), first converts equation (3) into an ex-
pression for the log of the odds, orlogit, a form that does not involve the
normalizing constant. We use a mathematical identity that specifies the
probability thatxij 51 given the rest of the adjacency matrix. We useG2ij

to denote this complement graph—that is, the graph including all adjacen-
cies except thei, j th one. The graphG1 is defined as the adjacency matrix
plusxij 51 whileG2 is defined as the adjacency matrix plusxij 5 0. Then
with P~G1) the probability ofG1 andP~G2! the probability ofG2, the
identity is

P~xij 5 16G2ij ! 5
P~G1 !

P~G1 ! 1 P~G2 !
+ (4)

Basically this equation expresses the probability thatxij 51 conditional on
the rest of the graph. Note that it does not depend on the normalizing
constant because upon rewriting we get

P~xij 5 16G2ij ! 5
exp~u 'x~G1 !!

exp~u 'x~G1 !! 1 exp~u 'x~G2 !
+ (5)

If we consider the odds of the presence of a tie fromi to j to its absence, we
get

P~xij 5 16G2ij !

P~xij 5 06G2ij !
5

exp~u 'x~G1 !!

exp~u 'x~G2 !!
+ (6)

From equation (6) we can then derive a simple form for the log of the odds
or logit model:

logit P~xij 5 16G2ij ! 5 u ' @x~G1 ! 2 x~G2 !# + (7)
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The quantity in brackets on the right side is the vector of differences in the
relevant graph statistics whenxij changes from 1 to 0.

The specification of ap* logit model requires a selection of network
properties that area priori assumed to affect the log odds of a tie being
present to absent. A particularly simple case is thep1 model expressed in
logit form:

logit P~xij 5 16G2ij ! 5 u 1 rxji 1 ai 1 bj + (8)

The parameters of this model include expansiveness parametersa and
attractiveness parametersb. The expansiveness parameters relate to an
actor’s tendency to initiate ties and the attractiveness parameters relate to
an actor’s tendency to receive ties. In addition, the model includes a reci-
procity parameterr that expresses any tendency for a tie fromj to i to be
returned by a tie fromi to j at greater (or lower) than chance levels. Fol-
lowing Wasserman and Pattison (1996), the vector of parameters and the
associated vector of graph statistics for this model are

u 5 ~u,a1, + + + ,ag,b1, + + + ,bg,r!'

x~G! 5 ~L, x11, + + + , xg1 , x11, + + + , x1g,M !' + (9)

L is the number of edges in the digraph,M is the number of mutual dyads,
and the remaining graph statistics are the set of outdegrees and the set of
indegrees. It is easy to calculate the difference vector of graph statistics for
this simple model.

The same logic works for “dependent dyad choice” models, such as
those proposed in the Markov graph framework by Frank and Strauss
(1986). A Markov graph is a random graph with a particular kind of de-
pendency structure among its possible edges. The dependency structure
obeys the following rule: If two dyads are node-disjoint (that is, they do
not share a node), then they are conditionally independent (Frank and
Strauss 1986:835). The idea is that the presence or absence of tie in one
dyad is independent of the presence or absence of a tie in another dyad only
when the dyads have no nodes in common. If they share a node, then the
presence or absence of a tie in one may depend on the presence or absence
of a tie in the other. In contrast to the basic assumption of independent dyad
choice models, only some dyads are assumed to be independent in a Mar-
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kov graph—namely, those that are node-disjoint. The Markov property
generalizes in an obvious way to digraphs (Frank and Strauss 1986).

One of the simplest models proposed by Frank and Strauss is the
rst homogeneous Markov graph model, also called the triad model. Ho-
mogeneous models assume that nodes area priori indistinguishable and so
no node-specific parameters are necessary. The triad model is a further
simplification of the basic homogeneous Markov model for graphs. In the
basic model, the probability of a graph is given by a log-linear function of
effects pertaining to various tie configurations in which different ties have
nodes in common. In particular for a nondirectional relation, the relevant
tie configurations are triangles and stars from degree 1 up to degreeg21.
A triangle is a subset of three nodes where all three ties are present and a
k-star is a subset ofk11 nodes where one node has a tie to the remaining
k nodes. The basic homogeneous Markov model is

P~G! 5

expStt 1 (
k51

g21

skskD
Z~t,s1, + + + ,sk!

, (10)

whereZ~t,s1, + + + ,sk! is the normalizing constant,t is the count of trian-
gles andsk is the count of stars of degreek. The rst model makes the
simplifying assumption that stars of degreek $ 3 have no effect on the

probability of the graph beyond the effect of theSk
2D 2-stars and thek

1-stars embedded in them. Specifically,

P~G! 5
exp~tt 1 rr 1 ss!

Z~t,r,s!
, (11)

wherer is the number of edges inG—i.e., 1-stars—ands is the number of
2-stars. The quantitiesr, s, andt are the sufficient statistics for the model.
Frank and Strauss (1986:836) note that an equivalent set of sufficient sta-
tistics is any three of the set of triad counts ofG—that is, the number of
subgraphs of size 3 having 0, 1, 2, or 3 ties.

Strauss and Ikeda (1990:206) give the logit form of this model as

logit P~xij 5 16G2ij ! 5 r 1 sDS1 tDT , (12)

whereDSis the change in the number of 2-stars whenxij changes from 1 to
0 andDT is the change in the number of triangles. For a directed graph,

LOGIT MODELS FOR AFFILIATION NETWORKS 261



they note how this model can be made more complicated by including the
expansiveness, attractiveness, and reciprocity parameters of thep1 model

logit P~xij 5 16G2ij ! 5 r 1 cxji 1 ai 1 bj 1 sDS1 tDT , (13)

whereDSandDT change interpretation now that the underlying graph is
directed.2 Finally, they propose a blockmodel form of the basic triad model
in which 2-stars and triangles are counted within blocks andb is the block
indicator:

logit P~xij 5 16G2ij ! 5 r 1 s~b!DSij
~b! 1 t~b!DTij

~b! (14)

Finally, Wasserman and Pattison (1996) propose entire family mod-
els, referred to asp* models, with various structural aspects of networks as
conditioning factors. Possible parameters for logit models of graphs in-
clude the triangles and stars already mentioned but, in addition, overall
graph connectivity, various measures of graph centralization, and paths of
varying length. In fact, any graph property is a candidate for inclusion.
They note that some of these quantities assume a more complicated de-
pendency structure than the simple Markovian one. For instance, a model
with a parameter fork-paths assumes that all edges on paths of lengthk are
conditionally dependent, even though pairs of these edges may have no
node in common.

Estimation of thep* models relies on pseudo-likelihood estimation,
due to difficulty of maximum-likelihood estimation arising from Z(u) in
the denominator of equation (3). Z(u) is a normalizing constant, given by
the equation

Z~u! 5 (exp$u 'x~G!% , (15)

where the summation is over all 2g~g21! graphs (Strauss and Ikeda 1990:205).
For small values ofg, Z~u! can be calculated directly. However, asg in-
creases (above about 6), direct calculation is all but impossible.

One possibility is to simulate a number of random graphs, each with
the same number of nodes and lines as in the observed network, and esti-
mate theu parameters as a function of observed graph statistics, as sug-

2Note that Frank and Strauss’s notation for the reciprocity effect and for the
overall density effect differs from that of Wasserman and colleagues.
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gested and illustrated by Frank and Strauss (1986) and Strauss (1986).
However, given the computation intensity, this approach is not really prac-
tical (Frank and Strauss, 1986).

To estimate thep* model, we use pseudo-likelihood estimation, a
strategy hinted at by Frank and Strauss (1986) and elaborated by Strauss
and Ikeda (1990) and Wasserman and Pattison (1996). The pseudo-
likelihood function is defined as

PL~u! 5 ) P~xij 6G2ij ! (16)

The idea is to maximize equation (16) with respect to the parameters,u,
where the maximum pseudo-likelihood estimator (MPE) is a value ofu
that maximizes equation (16) (Strauss and Ikeda 1990:207). As Strauss
and Ikeda note, “the pseudolikelihood function is simply the product of the
probabilities of the@xij # with each probability conditional on the rest of the
data” (p. 204). This strategy is analogous to the procedure proposed by
Besag (1974) in the context of spatial models and rectangular lattices,
where pseudo-likelihood estimation is widely used in estimations that also
involve difficult normalizing constants (Hjort and Omre 1994).

The estimation method proposed by Strauss and Ikeda (1990) forms
a pseudo-likelihood function for the graph in terms of the conditional prob-
abilities forxij as follows:

PL~u! 5 )
iÞj

P~xij 5 16G2ij !xij P~xij 5 06G2ij !12xij + (17)

Strauss and Ikeda prove that equation (16) can be maximized using max-
imim likelihood estimation of the logistic regression, equation (7), assum-
ing thexij ’s are independent observations. Thus thep* family of models
can be estimated, albeit approximately, using logistic regression routines
in standard statistical packages.3 However, since the logits are not inde-
pendent, the model is not a true logistic regression model and statistics
from the estimation must be used with caution. Goodness-of-fit statistics
are pseudo-likelihood ratio statistics, and it is questionable whether the

3The data array hasg3 ~g21! rows, one column for the dependent variablexij

and the remaining columns express the change in the graph statistics that constitute the
independent variables in a model. The extraordinary flexibility ofp* models means
that care must be taken that the vector of independent variables does not unintention-
ally have a logically determinate relationship to the dependent variable.
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usual chi-square distributions apply; in addition, standard errors have only
“nominal” significance (see Crouch and Wasserman 1998).

In sum, much progress has been made, and made recently, toward
statistical models for networks that abandon the restrictive assumption of
dyadic independence. More complicated dependency structures can be for-
mulated and estimated approximately by logistic regression techniques.
However, all of this development takes place in the context of one-mode
graphs or digraphs. In the next section, we extend these models to two-
mode affiliation networks.

4. MODELS FOR AFFILIATION NETWORKS

Our models for affiliation networks focus on simply the presence or ab-
sence of a tie rather than its strength. Hence, in terms of earlier notation the
number of levels of intensity,c, equals two.4 The first model we consider
adapts the basic triad model of Frank and Strauss (1986). However, be-
cause an affiliation network is a bipartite graph—the nodes can be parti-
tioned into two subsets and all ties are between the two sets, so that all
triples of nodes are constrained to have at most two ties—the adaptation
produces a model whose entire structure depends simply on the degree
sequences—that is, on the marginals of the adjacency matrix (see footnote
5 later). This model has some merit as a basic “baseline” model from which
to address the question of whether a particular affiliation network displays
any “interesting” structure. This question of “interesting structure” was
first framed by Holland and Leinhardt (1979) who argued that any network
in which higher-order properties could be adequately modeled using only
the properties of nodes or dyads had no social structure. By “adequately
modeled” they meant that the higher-order properties took on values within
the range expected given chance variation as constrained by the lower-
order properties (Skvoretz, Faust, and Fararo 1996). Thus if a particular
affiliation network is fit well by the triad model, its higher-order properties
are simply expected consequences of the lower-order degree sequences.
We then propose additional models that use higher-order properties as
“explanatory” variables in predicting the log odds on the presence of a tie.

Frank and Strauss’s triad model has as sufficient statistics the triad
census of the graph. For an undirected graph, there are four triad equiva-

4We note thatp* models for one-mode networks have been extended to valued
relations in Robins, Pattison, and Wasserman (forthcoming).

264 SKVORETZ AND FAUST



lence classes: the nonisomorphic three-subgraphs with zero, one, two, or
three edges. But for an affiliation network (and bipartite graphs in gener-
al), the census has three, rather than four, equivalence classes since there
can be no triads with three edges because there are no ties between actors
or between events (Snijders and Stokman 1987). Furthermore, the triads in
an affiliation network can be further distinguished by the number of actor
and event nodes in the triad. All triads with three actors or three events are
empty since ties cannot be present between nodes within the same set.
Triads in which ties may be present must contain either two actors and one
event or two events and one actor, and each triad may have zero, one, or
two ties. Thus, once we distinguish between actors and events in an affil-
iation network, there are six equivalence classes of triads.

Our extension of the homogeneous triad model for an undirected
graph (Frank and Strauss 1986) estimates separate parameters for the “two
actor one event” and the “two event one actor” triads. As noted by Frank
and Strauss (1986:836), for a given network, the sum of the counts of triads
with zero, one, two, and three edges is a constant, the total number of triads
in the network; therefore only three of four counts are needed as sufficient
statistics. For an affiliation network, further dependencies among these
counts mean that only a single count within each of the two sets is needed:
We select the configurations with two edges depicted in Figure 1—2-stars
with actors at their centers (actor 2-stars) and 2-stars with events at their
centers (event 2-stars). Our model is homogeneous within each of the two
sets because actors are interchangeable in one set and events in the other.

The direct generalization of the homogeneous triad model has the
logit form

logit P~xij 5 16G2ij ! 5 u 1 sa DSa 1 seDSe , (18)

FIGURE 1. Actor 2-stars and event 2-stars.
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whereu is an overall density effect and the twos parameters refer to the
impacts that actor 2-stars and event 2-stars have on the logit.5 Apositivesa

effect means that the log odds ofxij being present are increased if the
absence of the tie disrupts links between eventj and other events that are
created through actors’ participation in events. A positivese effect means
that the log odds ofxij being present are increased if the absence of the tie
disrupts links between actors that are created through an event’s inclusion
of multiple actors. These parameters are responsive to the ideas that an
actor’s involvement in a particular event may depend on other actors’ in-
volvement in that event (captured by the event 2-star count) and that an
actor’s involvement in one event may depend on his or her involvement in
another event (captured by the actor 2-star count).

As Wasserman and Pattison (1996) have noted, a wide range of
network structural effects can be incorporated intop* models. Even pa-
rameters in the relatively simple Markov random graph models embody
important structural properties. Consider the frequent observation that in
an affiliation network actors are linked to one another through joint mem-
bership in events, and events are linked through joint participation of ac-
tors (Breiger 1974). Joint membership for actors is captured in the event
2-stars (equivalently in the count of triads with two lines and two actor
nodes). The parallel effect for event overlap is captured in the actor 2-stars
(equivalently in the count of triads with two lines and two event nodes).

The event 2-star effect parametrizes how multiple shared member-
ships for actors affect the likelihood of a single actor-event tie. If actori
belongs to many events with other actors, we might hypothesize that these
multiple memberships influence the probability of actori ’s membership in

5As a reviewer pointed out, the number of actor 2-stars and the number of event
2-stars are simple functions of sums of degrees and sums of degree squares. It is easy
to verify that

Sa 5 (
i

xi1
2

2
2 (

i

xi1

2

Se 5 (
j

x1j
2

2
2 (

j

x1j

2
,

and sinceu is a function of the number of edges in the graph,x11 , the probability
distribution depends only on the average degree and the variance of actor degrees and
the event degrees. Therefore the triad model for two-mode networks is a model about
dispersion of degrees rather than about structure defined as pattern within the adja-
cency matrix conditional on the marginals.
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the events shared by these other actors. As a general tendency for actors,
this effect is captured in the parameter for event 2-stars. Similarly, we
could consider the extent to which multiple overlapping members among
a set of events would affect the probability of an event-actor tie. This is
captured in the parameter for the actor 2-stars. All of these structural ef-
fects of actor comemberships and event overlaps are incorporated in the
Markov graph model for affiliation networks with nonhomogeneous 2-star
effects, or equivalently with nonhomogeneous triad parameters distinguish-
ing between actor 2-stars and event 2-stars.

Some obvious extensions to the basic Markov model include the
following ideas. First, we can investigate the effect of higher-order sub-
graphs on the presence0absence of tie. That is, we can add parameters that
express the effects of various 3-stars, 4-stars, etc., following the full ho-
mogeneous Markov graph model proposed by Frank and Strauss (1986).
But as Frank and Strauss note, since lower-order stars are embedded in
higher-order stars, interpretation of the parameters is problematic.

Second, we can relax the homogeneity assumption to allow for spe-
cific actor and event effects related to the overall number of events an actor
participates in and to the overall number of actors an event attracts. There
are three possibilities:

logit P~xij 5 16G2ij ! 5 u 1 ai 1 sa DSa (19)

logit P~xij 5 16G2ij ! 5 u 1 bj 1 seDSe (20)

logit P~xij 5 16G2ij ! 5 u 1 ai 1 bj 1 sa DSa 1 seDSe (21)

whereai parametrizes actori ’s expansiveness andbj parametrizes event
j ’s attractiveness. However, these models are not well-formed and cannot
be estimated since the logits will assume the value1` for ties that are
actually present and2` for ties that are actually absent.6

6Echoing the caution in footnote 3, we note that in each case, there is a logically
determinate relationship between the observed value ofxij and the corresponding vec-
tor of graph statistic differences used as independent variables. For instance, consider
equation (20). The vector of difference statistics is of lengthh 1 2. If xij 51, then the
vector equals~1,0, + + + ,1, + + + ,0, x1j 2 1!: the first position equals 1, the change in the
overall number of ties asxij goes from present to absent; there are 0s in all but thej th

location in the nexth positions (corresponding to the fact that only the degree of thej th

event changes—and by 1—asxij goes from present to absent), and the last position
equals the degree of eventj minus 1, the number of changes in event 2-stars asxij goes
from present to absent. Ifxij 50, then only the last entry changes. The last position now
equals just the degree of eventj, since ifxij were to be present,x1j additional event
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Third, we may consider subgroup effects within the basic Markov
model for affiliation networks. A specific model we estimate in the next
section blocks only on events. This block diagonal model includes effects
for actor 2-stars when the events are in the same block:

logit P~xij 5 16G2ij ! 5 u 1 (
b

sa
~b! DSa

~b! 1 seDSe (22)

Of course, one could add parameters of the off-diagonal blocks or make
the assumption that the effect parameters for the various blocks are equal
or build an analogous model for blocking on actors. The parameters cap-
ture the idea that it is the extent to which multiple overlapping members
among a block of events, rather than the entire set of events, affects the
probability of an event-actor tie.

Finally, we illustrate models that condition on higher-order proper-
ties of an affiliation network. We examine two properties of interest, both
of which have been argued to be theoretically important features of affil-
iation networks. The first property is called “subgroup overlap,” or in our
context either “actor overlap” or “event overlap.” We use a measure pro-
posed by Bonacich (1972).7 Events overlap to a greater degree when more
actors participate in both of them. Actors overlap to a greater degree when
they both jointly participate in many events. Bonacich’s measure of over-
lap is logically independent of the size of the events or the number of
events attended by the actors. Event overlap varies from 0 if no actors
jointly participate in the two events, to 1 if all actors attending one event
attend the other (and vice versa). Actor overlap varies from 0 if the two

2-stars would be created. We can select values for the parametersu,b1, + + + ,bh, andse

such thatxij becomes a determinate linear function of the difference vector. For in-
stance, if we letbj 5 u 2 x1j and letse 5 21, it is easy to see that

xij 5 u 1 ~u 2 x1j !~1! 1 (
kÞj

~u 2 x1k!~0! 1 ~21!~x1j 2 xij !+

7Bonacich’s measurer is defined as

r 5
n11n22 2 #n11n22n12n21

n11n22 2 n12n21

if n11n22 Þ n12n21

5 0+5 otherwise,

wheren11 is the number of actors belonging to both groups or events,n22 is the number
belonging to neither group0event,n12 is the number belonging to the first group0event
but not the second, andn21 is the number belonging to the second but not the first.
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actors attend no events together, to 1 if the two attend exactly the same set
of events. We explore models that condition the occurrence of a tie on the
averageamount of overlap between events and theaverageamount of
overlap between actors. In logit form, the log odds of the presence of a tie
is modeled as a function of the change in the average amount of overlap
between events (or between actors) when the tie goes from 1 to 0.

The second property of interest also takes two forms depending on
whether we consider paths from events to events or paths from actors to
actors. We consider the path length between actors and between events as
measured by theaveragenumber of events on the shortest path between
two actors and by theaveragenumber of actors on the shortest path be-
tween two events. Prevalence of short paths between pairs of actors or
pairs of events is indicative of system-level integration, whereas preva-
lence of long paths can indicate a tendency for segregation into subgroups
with little connection between them (Granovetter 1973). In logit form, the
log odds of the presence of a tie is modeled as a function of the change in
the average path length when the tie goes from 1 to 0. Note that the change
will always be zero or negative—that is, removing a tie will either leave
the average path length unchanged or increase it. This is not true for the
first property—removing a tie can increase the average amount of mea-
sured overlap.

One reason to examine these properties is that they are not deter-
mined by the degree sequences—i.e., by the marginals of the affiliation
matrix. It is possible to construct two affiliation networks with the same
degree sequences but with different values for average event or actor over-
laps and for the average path lengths. Furthermore, both of these proper-
ties imply that the underlying graph is not Markovian: Models based on
these properties postulate dependencies between dyads that do not share a
node. However, such effects can be easily parametrized and approximately
estimated by a logit model of thep* family. Thus these properties give us
an opportunity to illustrate the application ofp* models to affiliation
networks.

5. TWO ILLUSTRATIONS

We illustrate various models on two data sets. The first is Davis, Gardner,
and Gardner’s (1941) classic affiliation network of the participation of 18
Southern women in 14 social events (see also Homans 1951 and Breiger
1974). The second is Galaskiewicz’s (1985) data on the board and club

LOGIT MODELS FOR AFFILIATION NETWORKS 269



memberships of corporate executive officers (CEOs) in Minneapolis–St.
Paul. We use the subset of data on 26 CEOs and 15 boards0clubs reprinted
in Wasserman and Faust (1994). This second example includes a four-
category subgrouping variable for the type of board or club: country club,
metropolitan club, board of FORTUNE 500 firms or FORTUNE 50 banks,
and board of cultural or religious organizations.

Table 1 presents the pseudo-likelihood ratio statistics for the fits of
models to Davis, Gardner, and Gardner’s Southern women data. The sim-
plest interesting model has a homogeneous effect for 2-stars (model 2).
Models 3 and 4 consider, separately, effects of event 2-stars and actor
2-stars (respectively) ignoring the other type of 2-star. Model 5 includes
nonhomogeneous effects for type of 2-star. Interestingly, this model is not
an improvement over the homogeneous effect of 2-stars (model 2). Thus
for these data there is no advantage in distinguishing between actor-
centered and event-centered 2-stars.

Table 2 gives the parameter estimates for models 2 and 5 for the
Davis, Gardner and Gardner data. The parameter estimate for the effect of

TABLE 1
Logit Models of Data for Davis, Gardner, and Gardner (1941)

Model
Number of
Parameters

Pseudo-Likelihood
Ratio Statistic

1. Choice 1 327.292
2. Choice1 2-stars 2 305.328
3. Choice1 event 2-stars 2 308.273
4. Choice1 actor 2-stars 2 325.618
5. Choice1 event 2-stars1 actor 2-stars 3 304.784

TABLE 2
Parameter Estimates for Models 2 and 5 from Table 1

Parameter Estimate
Effect Model 2 Model 5

Choice 22.503 22.374
2-stars 0.175
Event 2-stars 0.186
Actor 2-stars 0.131
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2-stars is positive, indicating that the greater the number of 2-stars dis-
rupted by the absence of a particular actor-event tie, the greater the log
odds that the tie is present versus absent. Clearly the type of 2-stars that
have this enhancing effect are event 2-stars. This indicates that it is coat-
tendance at events over pairs of actors that is primarily responsible for the
positive 2-star effect.

Table 3 presents fits of models to Galaskiewicz’s CEOs and boards0
clubs network. In this example we fit the same models as for the Davis,
Gardner and Gardner data but also include models with a blocking of the
events. This blocking operates on the actor 2-stars and captures whether or
not the two events in the actor 2-star are in the same block (for blocks 1
through 4) or whether they are in different blocks (regardless of the spe-
cific blocks).

First consider the models without event blocking. In contrast to the
results for Davis, Gardner, and Gardner’s data, the addition of nonhomo-
geneous effects distinguishing actor 2-stars and event 2-stars provides an
improvement of fit for Galaskiewicz’s CEOs and boards0clubs network
(compare models 2 and 5 in Table 3). Table 4 gives the parameter estimates
for model 5 for these data. Actor 2-stars and event 2-stars have contrasting
effects on the likelihood of a tie; actor 2-stars decrease whereas event
2-stars increase this probability. Comparing models 3 and 4 with model 1
suggests that event 2-stars provide more leverage than do actor 2-stars.

Models 6 through 9 in Table 3 add event blocking to the actor 2-stars.
These event blockings are added separately for within block (model 6) and

TABLE 3
Logit Models for CEOs and Boards0Clubs Network (Galaskiewicz 1985)

Model
Number of
Parameters

Pseudo-Likelihood
Ratio Statistic

1. Choice 1 439.717
2. Choice1 2-stars 2 400.878
3. Choice1 event 2-stars 2 391.940
4. Choice1 actor 2-stars 2 429.746
5. Choice1 event 2-stars1 actor 2-stars 3 387.013
6. Choice1 actor 2-stars within blocks 5 403.777
7. Choice1 actor 2-stars between blocks 2 437.480
8. Choice1 actor 2-stars within

and between blocks
6 401.136

9. Choice1 actor 2-stars within
and between blocks1 event 2-stars

7 369.700
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between block (model 7) actor 2-star effects and then for both within and
between block actor 2-star effects (model 8). Finally event blocking of
actor 2-stars is considered in combination with event 2-stars (model 9).
Comparing model 8 with model 4, and model 5 with model 9 shows the
additional effect that the event blocking has on the actor 2-stars. In both
cases event blocking improves the fit of the model. Parameter estimates
for model 9 are in Table 4.

Recalling that block 1 is composed of two country clubs, the large
negative effect of actor 2-stars for this block of events means that mem-
bership in the clubs tends strongly to being mutually exclusive—that is,
actors belong either to one club or to the other, but not both. The next
largest effect is in block 3, which is composed of boards of Fortune 500
firms or Fortune 50 banks. Again the tendency here, although it is not as
strong, is for memberships on some of these boards to depress the likeli-
hood of membership on others. The negative effect means that the greater
the number of actor 2-stars that would be created by a tie from an actor to
a board, the lower is the probability of the tie being present. So there is a
“ceiling effect” on total number of memberships on boards within a block—
the more boards of a given type to which an actor belongs, the lower is the
likelihood that he belongs to one more. That the effect of event 2-stars is
positive indicates the tie connecting an actor to clubs or boards with rela-
tively many members is a “stronger” tie than one connecting the actor to
relatively small clubs or boards. The first tie creates relatively many event
2-stars and so, as compared with the condition in which it is absent, the log
odds of it being present are increased substantially. The second tie creates

TABLE 4
Parameter Estimates for Models 5 and 9 from Table 3

Parameter Estimate
Model 5 Model 9

Choice 21.338 21.284
Event 2-stars 0.154 0.144
Actor 2-stars 20.238
Blocked actor 2-stars:
Block 1 27.210
Block 2 20.512
Block 3 21.102
Block 4 20.031
Between blocks 20.142
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relatively few event 2-stars and so the “force” of its presence (as measured
by the log odds) is not as strong.

The next set of estimated models condition on the average overlap
between events and between actors and0or the average minimum path length
between actors and between events. Table 5 presents zero-order correla-
tions between relevant variables for the two data sets. The cases here are
the~g3h! dyads, and the variables are the dyad change scores correspond-
ing to the independent variables in our models. In both data sets, there are
substantial positive correlations between the change in actor 2-stars and
the change in event overlap and between the change in event 2-stars and
actor overlap. There is also a substantial negative correlation between the
change in the average distance between actors and the change in actor
overlap. The latter, however, is not paralleled by the correlation between
the change in the average distance between events and the change in event
overlap. While these correlations are substantial, they are not perfect, in-
dicating that the overlap and distance measures are not simple linear func-
tions of the 2-stars and the underlying degree sequences. Finally, we note
that in both data sets there are moderate positive correlations between the
presence of a tie (the dependent variable) and event 2-stars and actor over-
lap. In the Davis, Gardner, and Gardner data, there is a moderate positive
correlation between the dependent variable and the average distance be-
tween events while in the Galaskiewicz data, this correlation is essentially
zero.

The p* models we estimate for these data sets are presented in
Tables 6 and 7. We begin with the basic model that includes both actor and
event 2-stars and then add the overlap and distance measures. The best
fitting model for the Davis, Gardner, and Gardner data includes effects for
event overlap and for the distance between events as measured by the
number of actors on the shortest path between them. The best fitting model
for the Galaskiewicz data only includes an effect for the distance between
events. Parameter estimates corresponding to the basic model and the best-
fitting models are present in Tables 8 and 9. Interpretation of these effects
can be made either in terms of how the change in the corresponding inde-
pendent variable affects the log odds on the presence of a tie or, preferably,
in terms of the underlyingp* models in which the independent variable
impacts the probability of a tie being present.

In the Davis, Gardner, and Gardner data, we find that event overlap
has a negative effect on the presence of a tie. The size of the coefficient
reflects the scale of the independent variable—in this data set the change
score varies from20.011 to 0.028. The negative effect means that as be-
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TABLE 5
Zero-order Correlations forp* models (Davis, Gardner, and Gardner [1941] above diagonal, Galaskiewicz [1985] below diagonal)

Actor 2-stars Event 2-stars Actor Overlap Event Overlape-on-a Path a-on-e Path Tie Present

Actor 2-stars — 20.11 0.12 0.81 0.36 0.19 0.08
Event 2-stars 20.15 — 0.79 0.05 20.55 0.15 0.28
Actor overlap 20.08 0.86 — 0.21 20.74 0.10 0.25
Event overlap 0.74 20.20 20.06 — 0.19 0.17 20.06
e-on-a path 0.26 20.77 20.95 0.17 — 0.09 20.12
a-on-e path 0.00 0.27 0.23 20.01 20.22 — 0.28
Tie present 20.16 0.37 0.31 20.16 20.32 20.03 —
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tween two ties—say,xij andxkl—the one that has the higher probability of
occurrence is associated with a lower amount of event overlap. Net of
other considerations, this effect has the consequence that an actor would
be less likely to add a tie to an event if the actors already tied to that event
are ones to whom the focal actor is not already tied via coparticipation in
other events. Adding such a tie would increase overlap between events
more than adding a tie to an event attended mostly by other actors to whom
the focal actor is already tied via common participation in other events.
The positive effect of average distance between events means that as be-
tween two ties,xij andxkl , the one that has the higher probability of oc-
currence is associated with a longer average path length between events. In
effect, these data exhibit an “anti-bridging” tendency—a tie from an actor
to an event that would create shorter paths is less likely to occur than a tie

TABLE 6
p* Models for Davis, Gardner, and Gardner Data

Model
Number of
Parameters

Pseudo-Likelihood
Ratio Statistic

1. Choice1 event 2-stars1 actor 2-stars 3 304.784
2. 11 actor overlap 4 304.698
3. 11 event overlap 4 279.092
4. 11 actor overlap1 event overlap 5 279.035
5. 11 a-on-e path 4 286.170
6. 11 e-on-a path 4 304.783
7. 11 a-on-e path1 e-on-a path 5 285.835
8. 11 event overlap1 a-on-e path 5 263.979

TABLE 7
p* Models for Galaskiewicz Data

Model
Number of
Parameters

Pseudo-Likelihood
Ratio Statistic

1. Choice1 event 2-stars1 actor 2 stars 3 387.013
2. 11 actor overlap 4 386.804
3. 11 event overlap 4 386.711
4. 11 a-on-e path 4 378.833
5. 11 e-on-a path 4 386.989
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that would create longer paths. In the Galaskiewicz data, the effect of the
average distance between events is negative, indicating that these data
exhibit a “bridging” tendency. That is, in these data, as between two ties,
the one with a higher probability of occurrence is associated with a shorter
average path length between events.

We can explore this effect inspecting the event overlap matrices. In
the Davis, Gardner, and Gardner data, there are 91 pairs of events; 25 have
zero overlap—that is, there are no actors who attend both events—7 pairs
overlap at just one actor, and the rest overlap from 2 to 9 actors. The zero
and one overlap pairs are critical since a change in the value of a single tie
could increase or decrease the distance between events. Since the zero
cases are much more numerous than the one cases, there are more occa-
sions where adding a tie would decrease path distance than there are oc-
casions where deleting a tie would increase path distance. In addition, the
zero cases predominately fall between two blocks of events. The fact that
such critical ties arenotpresent is the “anti-bridging” tendency, a tendency

TABLE 8
Parameter Estimates for Models 1 and 8 from Table 6

Parameter Estimate
Effect Model 1 Model 8

Choice 22.374 24.238
Event 2-stars 0.186 0.232
Actor 2-stars 0.131 0.612
Event overlap 2158.177
a-on-e path 2.376

TABLE 9
Parameter Estimates for Models 1 and 4 from Table 7

Parameter Estimate
Effect Model 1 Model 4

Choice 21.338 21.837
Event 2-stars 0.154 0.180
Actor 2-stars 20.238 20.245
a-on-e path 20.797
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consistent with the frequently observed “clique” structure in these data
(Homans 1951; Breiger 1974). In the Galaskiewicz data, there are 105
pairs of events; 35 have zero overlap, but 33 overlap at one actor; the zero
cases do not appear to fall between entire blocks of events. Consequently,
these data display a different tendency with respect to the probability of
bridging ties, one where ties tend to create short paths or bridges between
events.

6. CONCLUSION

We show that recent advances in the statistical analysis of one-mode net-
work data can be extended to two-mode data from affiliation networks.
The models we have proposed and evaluated do not exhaust the possible
model structures. Our models begin with the basic idea of Markov graphs
by postulating dependencies between dyads only if they share a node. Be-
cause of their nature, certain simple homogeneous Markov graph models
simplify further when applied to affiliation networks. However, they be-
come more complex in one respect—there is a natural heterogeneity be-
tween types of triads depending on whether they contain two actors and
one event or one actor and two events. That these configurations can have
empirically different effects is documented in our illustrative analyses.

Finally, by using measures for average path length and for actor and
event overlap, we show how non-Markovian models can be proposed and
estimated via thep* framework. These models uncover both “bridging”
and “anti-bridging” tendencies in the formation of affiliation networks. In
the Davis, Gardner, and Gardner data set of Southern women, actors’ ties
to events appear to differentiate them and push them apart, whereas in the
Galaskiewicz data set of CEOs, events appear to integrate actors and pull
them closer together.
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