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CORRELATION AND 
ASSOCIATION MODELS FOR 
STUDYING MEASUREMENTS ON 
ORDINAL RELATIONS 

Katherine Faust* 
Stanley Wassermant 

This paper describes and illustrates correlation models (corre- 
spondence analysis and canonical correlation analysis) and as- 
sociation models for studying the order and spacing of catego- 
ries of ordinal relational variables. Both correlation models 
and association models study departures from independence in 

two-way contingency tables. One result of fitting these models 
is the possibility of assignment of scores to the categories of the 
row and/or the column variables to reflect the relative spacing 
of these categories. If the model fitting is done using statistical 
procedures, then restricted versions of these models allow one 
to test hypotheses about the spacing, linearity, or equality of the 
categories. Correlation and association models are especially 
useful for studying discrete ordinal variables, which arise quite 
frequently in the social and behavioral sciences. 

We illustrate correlation and association models using 
two empirical examples in which respondents used ordered 
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categories to rate the strength of their liking for, or acquain- 
tance with, others in a social network. In this paper we describe 
how to use both correlation models and association models to 
test specific hypotheses about the spacing of these response 
categories. 

1. INTRODUCTION 

This paper describes and illustrates correlation and association mod- 
els for studying the order and spacing of categories on ordinal rela- 
tional variables. Both correlation and association models study the 
nature and strength of the relationship between rows and columns in a 
contingency table. Correlation models (including correspondence 
analysis and canonical correlation models) and association models 
have been the focus of considerable research in the last decade or so 
(Anderson 1992; Becker and Clogg 1989; Becker 1990; Bockenholt 
and Bockenholt 1990; Clogg 1982a, 1982b, 1986; Gilula 1986; Gilula 
and Haberman 1986, 1988; Goodman 1979, 1981a, 1981b, 1985, 1986, 
1991; Greenacre 1984; Haberman 1981; Nishisato 1980; van der 
Heijden and de Leeuw 1985, 1989; van der Heijden and Meijerink 
1989). 

Correlation and association models both study departures from 
independence in contingency tables; however, the models differ in 
how they measure the strength and nature of the relationship between 
the rows and columns. Correlation models focus on departures from 
independence using the correlations between row categories and col- 
umn categories. Both correspondence analysis and canonical correla- 
tion analysis are often referred to as correlation models. Alternatively, 
one could study departure from independence using other measures 
of the relationship between rows and columns, such as odd ratios for 
two-by-two subtables in a two-way cross-classification. Such models 
are referred to as association models. We describe both correlation 
and association models in detail below. 

Correlation models and association models involve the assign- 
ment of scores to the categories of the row and column variables in 
order to maximize the relevant measure of relationship (the correla- 
tion coefficient in the correlation models or the measure of intrinsic 
association in association models). One can then use the scores per- 
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taining to the row or column categories to study the order and spacing 
of these categories. Both models are especially interesting when the 
row and/or column variables are ordinal. A few examples of substan- 
tive problems for which these models have been used to study ordinal 
variables include: measures of well-being or happiness (Clogg 1982a, 
1982b; Goodman 1985, 1986) attitudes toward treatment of criminals 
(Clogg 1982b), socioeconomic status (Goodman 1985; 1991), and lev- 
els of donations from corporations to not-for-profit agencies (Wasser- 
man, Faust, and Galaskiewicz 1990). 

Restricted versions of correlation and association models 
place constraints on the values of the scores assigned to the row and/ 
or the column categories. If the model fitting is done using statistical 
procedures, one can then use the restricted models to test specific 
hypotheses about the dimensionality of the solution (the number of 
sets of scores needed), and about the spacing of row and/or column 
categories (such as their equality, uniform spacing, or other a priori 
spacing). 

In this paper we describe and illustrate both correlation mod- 
els and association models, including versions of these models that 
place restrictions on the scores for the row and/or column categories. 
The specific problem that we focus on is the assignment of scores to 
peoples' ratings of the strength of their acquaintance or friendship 
with others in a social network. The goal is to use models of correla- 
tion and association to study the order, spacing and equality of re- 
sponse categories that respondents use to indicate their degree of 
acquaintance or friendship. We use two social network data sets: one 
on observed and reported interactions among members of a frater- 
nity (Bernard, Killworth, and Sailer 1979-80) and the second on 
friendship and message sending among members of a computer net- 
work (S. Freeman and L. Freeman 1979; L. Freeman and S. Free- 
man 1980; L. Freeman 1986). In both cases we use the measures of 
interactions among people as predictors of the strength of their 
friendship or acquaintance. We conclude the paper with a general 
comparison of correlation and association models. 

Our illustrations use the specific example of ordered relational 
variables measuring the strength of ties among actors in a social 
network. However, it is important to note that the correlation and 
association models described here are applicable to any two-way 
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contingency table of counts or frequencies, not just to social network 
data. We begin by describing our application before moving on to a 
discussion of the models. 

2. ORDERED RELATIONAL VARIABLES 

In recent decades social network analysis has become widely accepted 
as an approach for modeling social systems as collections of relational 
ties linking actors. The actors in the network are social units (such as 
people, nations, corporations, and so on), and the relational ties are 
substantive connections among the actors (such as friendships among 
people, imports and exports among nations, or interlocking boards of 
directors among corporations). The ties among actors may have val- 
ues or strengths indicating the intensity, frequency, closeness, or 
amount of the relational tie between a pair of actors. Valued relational 
variables are almost always discrete and are often measured on an 
ordinal scale. 

When actors are people in a group, relational ties can be 
measured by having people evaluate the strength of their ties to 
others within the group. An important question is how the various 
responses people give in evaluating the strength of their relational 
ties to others indicate the relative intensity of the relational ties. In 
this paper we describe models for studying these responses directly. 

Researchers have considered the strength of network ties from 
several perspectives. Authors such as Granovetter (1973), Winship 
(1977), and more recently Freeman (1992), among others, consider 
the implications of the distribution of strong and weak ties for social 
structural patterns and processes. Other authors, notably Marsden 
and Campbell (1984) and Friedkin (1990) have considered factors 
that influence whether strong versus weak ties will occur between 
people. Relatively less attention has been paid to studying the 
strength of ties directly (however, see Burt and Guilarte 1986). In 
this paper we take this third perspective, by proposing and illustrat- 

ing models to assign scores to categories of tie strength so that we can 

study directly the strength of relational ties. 
Granovetter (1973) was among the first to discuss the theoreti- 

cal importance of tie strength, distinguishing between strong, weak, 
and absent ties. He argued that 
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The strength of a tie is a (probably linear) com- 
bination of the amount of time, the emotional inten- 
sity, the intimacy (mutual confiding), and the recipro- 
cal services which characterize the tie. (1973, p. 348) 

Granovetter also discussed the implications of tie strength for social 
structural processes such as the diffusion of novel information and 
community integration. Following the arguments of Granovetter, 
certain patterns of strong and weak ties are permitted, or forbidden 
within a network. For example, if actor i has a strong tie to actor j, 
and actor j in turn has a strong tie to actor k, then the tie from actor i 
to actor k should not be absent. Freeman (1992) argues that one way 
to determine which level of tie is strong versus weak is to describe 
properties of networks that hold at each level of a valued relation. 
Theoretically important properties (for example, transitivity) should 
hold for strong ties but not necessarily for weak ties. 

In their discussion of how to measure the strength of relational 
ties, Marsden and Campbell (1984) distinguish between indicators 
and predictors of tie strength. Indicators are "actual components of 
tie strength" (p. 485) as specified by Granovetter, whereas predictors 
are variables such as context and attribute similarity that are related 
to the strength of ties. Friedkin (1990) argues that components of tie 
strength (discussion, seeking help, and friendship) form a Guttman 
scale, rather than an additive function (as argued by Granovetter) in 
that "the claim of friendship implies the claims of help seeking and 
frequent discussion; the claim of help seeking implies the claim of 
frequent discussion" (p. 250). 

Few studies have focused directly on the strength of relational 
ties linking pairs of individuals. A notable exception is Burt and 
Guilarte (1986), who studied tie strength in the General Social Sur- 
vey ego-centered network data by looking at reported properties of 
ties from respondent to the alters named, and among pairs of alters 
named by the respondent. In these data, respondents evaluated the 
relational tie between each pair of alters named as "especially close," 
"acquainted," or "strangers." 

Burt and Guilarte (1986) propose that response categories 
indicating the strength of relational ties can be scaled by considering 
how the probability of a given level of a second variable changes 
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across categories of the relational variable that is being scaled. For 

example, if one is scaling categories of friendship strength, then one 
could compare the probability of a specific amount of behavioral 
interaction across the several categories of friendship. In Burt and 
Guilarte's model, the spacing between two friendship categories 
would be proportional to the difference in the probabilities of a 

specific level of interaction between the friendship categories. Their 

paper includes details on how to estimate these values. 

Using this method to scale response categories for acquain- 
tanceship in the General Social Survey network data, Burt and 
Guilarte concluded that "the middle category of interalter relations 
lies about 0.2 of the distance from total strangers to people being 
especially close" (p. 391). On the other hand, they found that respon- 
dents make no distinction between alters with whom they are "espe- 
cially close" and alters to whom they are "equally close," whereas 
alters who are "less close" are about 0.7 the strength of "especially 
close" or "equally close" (p. 395). Thus their method results in a set 
of scale values describing the spacing or intervals between response 
categories on an ordinal relational variable. The models we describe 
in this paper provide an alternative method for assigning scores to 
the categories of an ordinal relational variable. 

An important property of a relational variable is whether it 
is dichotomous (taking on only two values) or whether it is val- 
ued. Valued relational variables usually have values indicating the 

strength, intensity, or frequency of the relational tie. 
Social network data are often collected by asking respondents 

to rate the strength or intensity of their relational ties to others in the 

group (for example, their degree of friendship or respect for each 

person in the group). Responses may take the form of labeled catego- 
ries, for example "close personal friend," "friend," "acquaintance," 
"someone I have met," "someone I have heard of but not met," 
"someone I have not heard of" (for example, see S. Freeman and L. 
Freeman 1979; L. Freeman and S. Freeman 1980). Or, the responses 
may be numerical values indicating the intensity of the relational tie. 
Whether verbal labels or numerical values are used, the resulting 
relation is measured by responses on a number of ordered response 
categories. 

It is important to contrast the rating response format, where 

respondents use a limited number of response categories, with a 
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complete rank order format. In a complete rank order format, respon- 
dents typically are asked to rank order the other people in the net- 
work from most to least in terms of the intensity of the respondent's 
relational tie to each other person. If there are g people in the group, 
then respondents are asked to use all integers from 1 to g - 1 to rank 
order the strength of their ties to others. By contrast, in a rating 
format the response categories may be reused by a respondent. In 
fact, if the number of response categories, C, is less than the number 
of other people in the group, g - 1, then a respondent must reuse 
some response categories.1 

Consider the example of the five ordered response categories 
for measuring friendship that we described above. Although it seems 

likely that degree of friendship is ordered from "close personal 
friend" through "someone I have met" to "someone I have not heard 
of," it is important to study the relative spacing of these categories. It 

might be the case that respondents see very little difference between 
"a friend" and "a close personal friend" but both responses are quite 
different from "a person I have met." One of the results of the 
models described here is the assignment of scores to response catego- 
ries of ordinal relational variables to reflect the order and spacing of 
the categories. 

Let us consider a respondent choosing among the response 
categories on a given relation to indicate the strength of her rela- 
tional tie to each other person in the group. In complete social net- 
work studies, each respondent judges her own relational ties to all 
other people in the group. For example, each respondent judges her 
degree of friendship with each member of the group. We assume that 
individuals are presented with stimuli (relational ties) that vary in 
terms of important determinants of degree of the response relation 

'In order to aggregate responses across people, we are assuming that all 
respondents use the response categories in the same way. For example, if a 
rating of "1" means that a person is disliked by the respondent, then this re- 
sponse should tend to go with infrequent interactions for all respondents who 
use the response category "1." However, in a full rank order format all respon- 
dents are forced to use the category "1" for their least-liked person in the group, 
regardless of their absolute degree of liking for, or frequency of interaction with, 
that person. Thus responses from a full rank order format are not expected to be 
associated with predictor relational variables in the ways required by our ap- 
proach. In a more general context, Nishisato (1980) discusses correspondence 
analysis models for rank order data coded as paired comparisons. 
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(say friendship). A given respondent, when presented the list of 
others in the group, is faced with people whom they have known a 

long time, people they have met recently, and others they have never 
met (ties vary in duration). In addition, there are some people whom 
the respondent sees quite often, and others whom the respondent 
sees only occasionally (ties vary in frequency of contact). Also, some 
of the people may be the respondent's family members, coworkers, 
or neighbors (ties vary in context). Thus duration, frequency, and 
context are also properties of the relational ties to which the respon- 
dent is assigning an evaluation of strength of friendship. 

We assume that a respondent's assessment of strength of a 
relational tie depends primarily on properties of the relational tie 
from respondent to alter, and not on the attributes of the respondent 
or of the alter. Thus the response category that is used by a respon- 
dent to describe the strength of their relational tie should be associ- 
ated with other aspects of the relationship from respondent to alter. 
For example, the degree of friendship expressed by a respondent for 
alter is likely to be associated with the length of time they have 
known each other, the frequency with which they interact, and so on 

(see Marsden and Campbell 1984). 
It seems unreasonable to assume that all respondents have the 

same degree of friendship with a specific other person. Thus we do 
not assume that all respondents will use the same response category 
(for example, "friend") for a given person. Rather, we assume that in 

general people use the same response category on a relational vari- 
able to describe relational ties that are similar on other relational 
variables. These other relational variables are considered to be pre- 
dictors of the strength or value of a relational tie (Marsden and 

Campbell 1984). Therefore, in order to study response categories on 
a given relation, we must have (at least) a second relational variable 
measured on the same pairs of actors. We will distinguish between 
the relational response variable (whose categories we are attempting 
to scale), and the relational predictor variable(s) that we use to under- 
stand the response categories on the response relation. 

For example, we can study response categories for different 

degrees of friendship by examining how the categories are associated 
with categories for other predictor relations, such as the frequency, 
duration, intensity, and context of the relational tie. 
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3. NOTATION AND DATA ARRAYS 

Both correlation and association models study contingency tables. 
We will denote the contingency table as F, where fk is the observed 
frequency in row k column I of F. Commonly, the frequencies in F 
record the responses from g respondents to two (or more) question- 
naire items. All of the models described in this paper can be used to 
study such a contingency table. However, to study social network 
data, the particular example we will use, it is necessary to focus on 
pairs of people, rather than individual respondents. In this section 
we describe the particular data arrays that are required to study 
social network data. 

We begin with a set of g actors, and two (or more) relations X1, 
X2, . .., XR, defined on these actors. We will designate X1 as the 
relational response variable, whose response categories we are study- 
ing. In addition we will have X2 (and possibly other Xs) as relational 
predictor variable(s). There are R relations in total. Let xijr be the 
value of the relational tie from actor i to actor j on relation Xr. We 
will assume that these values are ordered and discrete. In general, we 
let Cr be the number of levels of relational variable Xr. 

The most common data representation for social network data 
is a sociomatrix. A sociomatrix for a single relation, X = {xij}, is a 
matrix with g rows and g columns, indexing actors and partners. The 
(i, j)th entry of X codes the value of the tie from row actor i to 
column actor j. However, when the focus of the analysis is the 
strengths or values of the relational ties, a sociomatrix is not the 
appropriate data array to analyze. In this section we describe a two- 
way array that codes the relational ties among a set of actors on two 
or more relations, which will allow us to fit proper models. (The 
appendix to this chapter describes in detail the relationship between 
this array and other common data arrays that are used for fitting the 
models that we describe in later sections.) 

We are interested in studying the distribution of relational 
response categories for ties defined on ordered pairs of actors, across 
different levels of one (or possibly more) predictor relations. The 
idea is to code the state of each of the g(g - 1) dyads (or ordered 
pairs of actors) defining the relational ties in a network data set. This 
state is defined by two quantities: the category (or strength) of the 
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relational response variable and the combination of categories of the 
relational predictor variables. 

First, consider the state of an ordered pair of actors on the 
relational response variable, X1. Since this variable has C3 categories, 
each ordered pair of actors can be in one of C1 states on this variable. 
Now consider the number of states for the relational predictor vari- 
able(s). This number depends on the number of relational predictor 
variables that are included and the number of categories of each. We 
will let L be the total number of states on the relational predictor 
variables. In the simplest case there is a single relational predictor 
variable, X2, with C2 levels, and there are as many possible states as 
there are levels of X2: namely, L = C2. If there is more than one 
relational predictor variable, then we consider the combination of 
possible states on all predictor variables. This state can be coded by 
the cross-classification of these predictor variables. In general, there 
are R -1 relational predictor variables, X2, X3, . . ., XR, with C2, 

C3, . . ., CR categories, respectively. The state of an ordered pair of 
actors on these variables is given by the cross-classification of these 
variables, and the number of possible states is equal to the number of 
entries in the cross-classification. Since there are C2 x C3 x . . . x 

CR cells in this cross-classification, there are L = C2 x C3 x . . . x CR 
possible states for an ordered pair of actors on the relational predic- 
tor variables. 

To study the state of an ordered pair of actors on both the 
relational response variable and the relational predictor variable(s), 
we focus on the cross-classification of the relational variable whose 

response categories we are studying, with one or more other rela- 
tional predictor variables. For example, we can look at the cross- 
classification of level of friendship and frequency of contact for pairs 
of actors in a group. This cross-classification, which we denote by F, 
has C1 rows coding the state of the ordered pair on the relational 
response variable and L columns coding the state of the ordered pair 
on the relational predictor variable(s). 

The F array is a C1 by L table, whose entries code the state of 
each ordered pair of actors. Since there are g(g - 1) ordered pairs of 
actors, there are g(g - 1) observations classified in F. For a single 
relational predictor variable, the entry in cell (k,l) of F counts the 
number of times xij = k and Xij = 1, for i,j = 1,2 . . . ,g, and i f- j: the 
number of times response category k is used at level I of the rela- 
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tional predictor variables. For R - 1 relational predictor variables 
with L = C2 x C3 x . . . C states, each entry in F counts the 
number of times category k of the relational response variable is used 
for each state of the combined relational predictor variables. 

We will now describe correlation models (correspondence 
analysis and canonical correlation analysis), including restricted ver- 
sions of these models, and illustrate how these models can be used to 
study the spacing, linearity, and equality of relational response cate- 
gories. We then describe and illustrate association models. 

4. CORRELATION MODELS: CORRESPONDENCE AND 
CANONICAL CORRELATION ANALYSIS 

In this section we present a general description of the mathematics of 
correlation models, including both canonical correlation analysis and 
correspondence analysis for a two-way contingency table. More exten- 
sive discussions of correspondence analysis and canonical correlation 
analysis can be found in Gilula and Haberman (1986, 1988), Good- 
man (1985, 1986), Greenacre (1984), van der Heijden and de Leeuw 
(1985, 1989), van der Heijden and Meijerink (1989), Wasserman and 
Faust (1989), and Wasserman, Faust, and Galaskiewicz (1990). 

We define: 

* F = {fkl} a two-way cross-classification, with C1 rows and L col- 
umns, 

fkl * Pkl = - the probability that an observation is in row k, column 1, 
f++ 

* Pk. f+ the probability that an observation is row k, 
f++ 

* P.i = the probability that an observation is in column 1, 
f + 

t = min(Cl - 1,L - 1). 

The {Pkl} probabilities are observed, rather than theoretical probabili- 
ties. The canonical decomposition of F is defined as: 

Pkl= Pk.P.l[1 + 
PmUkmVlm]. (1) 

m=l 
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We will refer to this as the C(t) model. Goodman (1986) refers to the 
theoretical version of this as the saturated RC canonical correlation 
model. 

Canonical correlation analysis of F results in three sets of 
information: 

* A set of C1 row scores, {ukm} for m = 1,2, ... t, 
* A set of L column scores, {vlm} for m = 1,2, . . . t, 
* A set of t principal inertias (squared canonical correlations), {p}2 

for m = 1,2, . . . t; Pm measures the correlation between the row 
scores, Ukm, and the column scores, vm. 

The canonical variables um and vm are constrained as follows: 

C1 L 

I UkmPk?= E VlmP. 0 (2) 
k=l /=1 

C1 L 

E UkmPkP = V.i =P 1. (3) 
k=l 1=1 

When scaled in this way, the u's and v's are referred to as standard 
coordinates (Greenacre 1984). For distinct m and m', um and um, are 

uncorrelated, as are vm and vm,: 

C1 L 

EUkmUkm'Pk? =V lmVm'PI = 0, for m if m'. (4) 
k=l 1=1 

For a given m, the correlation between canonical variables um 
and vm is equal to the canonical correlation Pm. The canonical correla- 
tion, Pm, can be expressed as: 

C1 L 

Pm = E PklUkmVlm' (5) 
k=l 1=1 

The canonical variables um and vm are the scores for the rows and 
columns, respectively, that maximize the correlation, Pm, in equation 
(5). It is important to note that the scores for the row categories are 

optimal with respect to maximizing the correlation with the specific 
column variable being studied, and vice versa. 

A rescaling of the canonical scores in equation (1) is equiva- 
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lent to Goodman's (1986) saturated RC correspondence analysis 
model. We will denote these rescaled canonical scores by u and v, 
where: 

C1 L 

E ikmPk? = ilmP.I 0 (6) 
k=l 1=1 

C1 L 

UkmPk' mP?l =Pm (7) > A=ieA^ > ~2(7) 
k=l 1=1 

for each set m = 1,2, . ,t. When the row and column scores are 
scaled as in equations (6) and (7), they are referred to as principal 
coordinates (Greenacre 1986, 1984). The relationship between the 
principal coordinates and the standard coordinates is straightforward: 

Ukm UkmPm 

vjm = 
vjmPm. (8) 

Therefore equation (1) can be rewritten in terms of principal coordi- 
nates as: 

Pkl = 
PkP.P.[1 

+ kmlm PmJl (9) 
[ m=l l 

The advantage of the principal coordinates scaling is that the 
variance of each set of scores, within each of the t sets, is equal to the 
principal inertia, p2, for that dimension. This scaling is standard out- 
put of Greenacre's correspondence analysis program, SIMCA (Green- 
acre 1986). 

Correspondence analysis or canonical correlation analysis of 
the F array results in scores that pertain directly to the categories of 
the row and column variables. When the rows of F code the state of 
the relational response variable and the columns code the state of the 
relational predictor variable(s), then the row scores, ukm for k = 
1,2, . . . ,C1 and m = 1,2, . . . ,t pertain to the C1 categories of the 
relational response variable and the column scores, vlm for 1 = 
1,2, . . . ,L and m = 1,2, . . . ,t pertain to the L states of the rela- 
tional predictor variable(s). The canonical correlations, Pm, describe 
the correlation between the scores for the relational response catego- 
ries and the scores for the relational predictor categories. 
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5. AN EXAMPLE 

We illustrate correspondence analysis for studying the response cate- 
gories on an ordinal relational variable using a data set collected by 
Bernard, Killworth, and Sailer (1979-80). Bernard et al. measured 
liking, observed interactions, and reported interactions among 58 
students in a fraternity. There are three relations in this data set: 

* X1-liking: rating by a fraternity member of how well he likes each 
person in the group, on an 11-point scale, where 11 means most 
liked, and 1 means least liked; C =- 11. 

* X2-observed interactions: recorded as the number of times each 
pair of actors was observed interacting over a several week period. 
The modal number of interactions is 0, the median is 1, and 75 
percent of all pairs of actors were observed interacting 2 times or 
less. We have recoded this variable to C2 - 5 levels: 
-0 
- 1 
-2 
-3 or 4 
- 5 or more. 

* X3-reported interactions: rating by each fraternity member of their 
recalled amount of interaction with each member of the group, 
measured on a five-point scale, where 5 means most and 1 means 
least amount of interaction; C3 = 5. 

We will focus on the 11-point rating of liking as the relational 

response variable. We would like to study how people use these 11 

categories of liking, across the combined levels of observed and re- 

ported interactions. For this analysis, L = 5 x 5 = 25-the cross- 
classification of observed and reported interactions. The F array for 
this example is the 11 by 25 cross-classification of liking by the combi- 
nation of observed and reported interactions. This array is given in 
Table 1. 

Results of correspondence analysis of the data in Table 1 (us- 
ing SIMCA, Greenacre 1986) give p2 = 0.4917, p2 = 0.1915, and p2 = 

0.0652, and account for 59.90, 23.32, and 7.95 percent of the total 
inertia, respectively. The complete model has t = 11 - 1 = 10 sets of 
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TABLE 1 

Fraternity Liking by Reported and Observed Interactions 

Observed Interaction 

') 

Reported 
Interaction 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

0 6 4 0 0 

0 10 2 0 0 

0 8 1 3 0 

0 2 5 1 0 

0 8 17 6 0 

1 24 44 26 7 

1 7 48 36 8 

1 8 46 42 20 

8 5 22 59 42 

9 1 8 41 49 

43 1 7 13 29 

0 1 4 0 

0 1 2 0 

0 0 3 0 

0 1 3 2 

1 3 4 2 

2 9 28 15 

0 1 19 25 

3 0 17 44 

8 2 9 30 

14 0 2 22 

48 0 2 8 

n 

LIKING 

1 20 

2 15 

3 8 

4 16 

5 28 

6 88 

7 28 

8 25 

9 18 

10 3 

11 2 

2 3 

6 1 

5 0 

7 4 

30 9 

124 83 

105 65 

92 92 

55 93 

27 81 

8 17 

0 

0 

0 

0 

0 

9 

7 

8 

36 

56 

33 

0 

0 

0 

0 

0 

5 

5 

9 

34 

31 

18 

0 3 

0 0 

0 0 

0 2 

0 1 

0 4 

0 0 

0 1 

8 0 

12 0 

27 0 

2 0 

0 0 

0 0 

1 1 

6 2 

15 12 

7 13 

9 12 

1 18 

4 18 

0 4 

0 

0 

0 

0 

1 

2 

0 

8 

24 

20 

9 

0 1 

0 0 

0 3 

0 2 

0 1 

1 6 

2 0 

0 0 

7 0 

9 0 

25 0 

2 1 0 

2 0 0 

1 2 0 

3 0 1 

3 2 0 

12 10 3 

18 24 8 

8 29 13 

6 30 44 

2 29 43 

1 5 37 

0 

0 

0 

0 

0 

2 

1 

1 

12 

40 

132 

O 

132 
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TABLE 2 
First Set of Scores from Correspondence Analysis Correlation Model for 

Fraternity Data 

Liking ul 

1 1.10085 
2 1.11731 
3 1.01451 
4 0.91727 
5 0.81895 
6 0.64371 
7 0.45940 
8 0.32805 
9 -0.15377 

10 -0.50014 
11 -1.34569 

Observed Interactions 

0 1 2 3 to 4 5 or more 

Reported 
1 0.88209 0.94399 0.91409 1.14852 1.16942 
2 0.52737 0.52306 0.65881 0.68777 0.63951 
3 0.16311 0.05563 0.12204 0.05411 0.06372 
4 -0.63474 -0.50832 -0.51014 -0.46958 -0.64389 
5 -1.40720 -1.30854 -1.32189 - 1.22053 -1.49746 

scores; however, the last seven sets of scores account for only 8.83 

percent of the total inertia. Table 2 presents only the first set of 
scores (corresponding to p2) for the 11 categories of liking, and the 
25 categories of the cross-classification of observed and reported 
interactions. Although these results show negative scores for high 
levels of liking and high levels of reported interactions (and positive 
scores for low levels of these variables), equivalent solutions exist in 
which the signs of all scores are reversed. The first set of scores for 
the 11 categories of liking is displayed in Figure 1, where it is clear 
that the 11 levels of liking are, with one reversal, ordered from 
most to least. However, they are not equally spaced. There are 

relatively small distinctions among the lowest levels of liking (levels 
1, 2, 3, 4 and 5) and there are larger distinctions among the higher 
levels (9, 10, and 11). 
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1 
11 10 9 8 7 6 5 4 3 

i i- I i i 1 i ti. 
FIGURE 1. Scores for fraternity liking response categories, from correspondence analysis. 

The canonical correlation, P,, measures the correlation be- 
tween the friendship response categories and the combination of 
observed and reported interactions. For this fraternity example, 
higher levels of liking are associated with higher levels of reported 
interaction and with higher levels of observed interaction, but liking 
appears to be more strongly related to reported interaction than to 
observed interaction. 

In this example we used correspondence analysis to study a 
two-way table constructed by "stacking" levels of a three-way array. 
As van der Heijden and de Leeuw (1985) have noted, there are many 
ways to use correspondence analysis to study three-way problems by 
analyzing two-way tables derived from the three-way array by differ- 
ent aggregations. As they note, some of these approaches are equiva- 
lent, or are equivalent when the derived row/column scores are ap- 
propriately rescaled. Other methods are difficult to compare. 

Consider the C1 by L = C2 x C3 array, F. This array is identical 
to "stacking" the C1 by C2 cross-classification of variables X, by X2 
next to each other for each of the C3 levels of variable X3. Correspon- 
dence analysis of this array gives scores for the C1 categories of 
variable X1, and the L = C2 x C3 categories of the cross-classification 
of variables X2 and X3. As van der Heijden and de Leeuw (1985) and 
van der Heijden and Meijerink (1989) have observed, correspon- 
dence analysis of this array can be interpreted as a decomposition of 
the residuals from the log-linear model of the independence of vari- 
able X1 from X2 and X3 jointly: [1][23]. 

Thus we can interpret correspondence analysis of the relation- 
ship between liking response categories and the cross-classification of 
observed and reported interactions (Table 2) as a decomposition of 
the residuals from the log-linear model of the independence of liking 
ratings and the joint effects of observed and reported interactions. 

Now let us turn to more parsimonious versions of correlation 
models. 
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6. RESTRICTED CANONICAL CORRELATION ANALYSIS 

The canonical decomposition described in equation (1) completely 
describes the data in F. It is a saturated model and uses all available 

degrees of freedom. As noted above, we refer to this as the C(t) 
model. Goodman (1985) refers to theoretical versions of this model 
as the saturated RC(t) canonical correlation model. 

In this section we will consider restricted versions of C(t) that 
describe F in a considerably more parsimonious manner. First, we 
will describe models that use fewer than t dimensions (or sets of 

scores). We will then describe models that place restrictions on the 
scores for the categories of the row and/or column variables. These 
restricted models have natural and interesting interpretations, and 

they are most useful for studying the order, spacing, equality, and 

linearity of the response categories on ordinal relations. Restricted 

correspondence analysis and restricted correlation models are de- 
scribed in Gilula (1986), Gilula and Haberman (1986, 1988), Bocken- 
holt and Bockenholt (1990), and Takane, Yanai, and Mayekawa 
(1991). Theoretical versions of these models can be fit using statisti- 
cal methods, such as maximum likelihood estimation as in Gilula and 
Haberman's program CANON, (Gilula and Haberman, 1986; Gilula 

1986). One can then compare the fit of these restricted models with 
the saturated model, to see whether the more restricted model pro- 
vides an adequate description of the data. 

Standard statistical theory, including the use of maximum like- 
lihood estimation, assumes that observations are independent and 

identically distributed. Thus, as is standard in many statistical analy- 
ses of social network data (Holland and Leinhardt 1975; Fienberg 
and Wasserman 1981, and so on), we assume that dyads (ordered 
pairs of actors along with the relational ties between them) are inde- 

pendent. In the following sections we report parameter estimates 
and goodness-of-fit statistics (X2 and G2), but not the p-values for the 

hypotheses tested by these statistics. Researchers who are uncomfort- 
able with the assumption of dyadic independence can, nevertheless, 
use correspondence analysis and related approaches to study net- 
work data in an exploratory vein (as in Gifi 1990). 

First, let us consider models with fewer than the full t sets of 
scores in the saturated model C(t) presented in equation (1). 
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6.1. Fewer Than t Dimensions 

The simplest restricted models take equation (1), but they include 
fewer than the full set of t canonical correlations. So, for w < t we 
have model C(w): 

Pkl= Pk.P[l + pPmUlkmVlml (10) 
m=l 

C(w) has (C1 - 1 - w)(L - 1 - w) degrees of freedom. Canonical 
correlations pw+l, . ,Pt are equal to 0 in this model. The same 
conditions and interpretations of the canonical correlations and ca- 
nonical scores hold as in the saturated model C(t) (see equations (2) 
and (3)). The model C(0) implies independence of the rows and 
columns. 

When statistical procedures, such as the maximum likelihood 
estimation procedure described by Gilula and Haberman (1986, 
1988) and Goodman (1987), are used to fit C(w), one gets the usual 
goodness-of-fit statistics, Pearson's X2 and the likelihood-ratio test 
statistic G2. One can then test whether the data may be modeled by 
the more parsimonious model, C(w), compared to C(t). 

Of more interest for studying response categories on ordinal 
variables are models that place restrictions on the scores associated 
with the response categories. We will describe three such models: 
equality of response categories, uniform spacing (linearity) of catego- 
ries, and a priori scores for categories. 

6.2. Equality of Response Categories 

The model for equality of response categories examines whether two 
(or more) categories of the row (or column) variables are equivalent in 
terms of the conditional distributions within the equivalent rows (or 
columns). This model stipulates that the canonical scores for equiva- 
lent row categories (k and k'), or column categories (1 and 1'), are 
equal. Specifically, for m = 1,2, . . . ,w, we have for row categories 

Ukm = Ukm k = k, (11) 

and for column categories 

Vim = Vl,m 1 '.I 
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This restriction (equating two categories on w sets of scores) has w 

degrees of freedom associated with it. In terms of the probabilities of 
observations in F, stating that two rows, k and k', have equivalent 
scores, Ukm = Uk,m, stipulates that for a given column, say 1, differences 
between cell probabilities, Pkl and Pk,,, are attributable to differences 
in marginal row probabilities, Pk. and Pk'. If row categories k and k' 
have equivalent scores, then Pkl k. = Pk'l /Pk' for / = 1,2 . L. 
For example, a model equating two categories of friendship ratings 
would stipulate that a difference in probabilities of levels of interac- 
tion (a predictor relation) across equivalent friendship categories is 
due to different marginal probabilities of the friendship response 
categories. 

Goodman (1981b) and Gilula (1986) have used this model to 

study the homogeneity of rows or columns in a table. 

6.3. Uniform Spacing (Linearity) of Response Categories 

This model states that the interval between adjacent row (or column) 
categories is constant. For rows 

Un-k Un,k+l - d, (k = 1,2, .. ,C- 1), (13) 

or for columns, 

Vml- Vn,l+l -d ( = 1,2,...,L- 1), (14) 

where du and dV, are constants. For restrictions on the rows, this 
model has (Cl - 1 - w)(L - 2 - w) + (Cl - 2) degrees of freedom; 
for restrictions on the columns, it has (Cl - 1 - w)(L - 2 - w) + (L 
- 2) degrees of freedom; and for restrictions on both rows and 

columns, it has (C1 - 1 - w)(L - 2 - w) + (Cl - 2) + (L - 2) 
degrees of freedom. 

Uniform spacing of both row and column canonical scores 

implies that C(w) (equation (10)) may be restated as: 

Pk = 
Pk.P.[1 + E p,nkld.d . (15) 

Goodman (1987) refers to this as the U or uniform RC correlation 
model. One could use this model to test whether response categories 
on an ordinal variable are equally spaced. 
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6.4. A priori Scores for Response Categories 

Instead of equal spacing between row (column) scores, one might 
have a prior hypothesis about the spacing. In this model a priori 
scores are proposed for row (and/or column) categories to reflect the 
relative spacing of these categories. For example, scores ukm and ulk,m 

can be assigned to row categories k and k' respectively so that 

ukm = a + bikm and k,m = a+ buk,m (2 - k - Cl,k 7 k'). (16) 

There are C1 - 2 degrees of freedom associated with the restrictions 
on the C] row scores. This model implies that 

Ukm - Ulm ~k m 1- flm 

Uk'm - Ulm Uk'm U- lm 

The model of uniform spacing, described above, is a special case of 
the model of a priori scores in which all intervals between adjacent 
categories are specified to be equal. 

One could use the model of a priori scores to study hypotheses 
about the intervals among relational response categories. For exam- 
ple, we illustrate this model by evaluating both suggestions by Burt 
and Guilarte (1986) about the spacing: first, that a relational tie 
described as "less close" is about 0.7 the strength of the relational tie 
described as "especially close"; and second, that the middle level of 
ties between alters is 0.2 of the distance from "strangers" to "espe- 
cially close." 

Restricted versions of correlation models place constraints on 
the values of the canonical scores in equations (1) and (10). These 
models are more parsimonious than unrestricted correlation models 
in that they use fewer degrees of freedom. If one model is a restricted 
version of another, then the fit of the more restricted model may be 
compared with the fit of the less restricted model in order to assess 
whether the restricted model provides an adequate description of the 
data. Using maximum likelihood estimation techniques, the associ- 
ated goodness-of-fit statistics from the more and less restricted models 
can be compared (with the degrees of freedom equal to the difference 
between the degrees of freedom associated with the two models). We 
have found Gilula and Haberman's (1986) program CANON to be 
useful for fitting restricted correlation models. 

197 



KATHERINE FAUST AND STANLEY WASSERMAN 

7. AN EXAMPLE 

Now let us consider a different example to illustrate restricted ver- 
sions of correlation models. We will illustrate these models using 
data collected by Freeman from a computer conference among social 
science researchers, the Electronic Information Exchange System 
(EIES) (S. Freeman and L. Freeman 1979; L. Freeman and S. Free- 
man 1980; Freeman 1986). There are two relations measured on 32 

people in this group: 

X* -friendship: a person's reported friendship with each member of 
the group on a five-point scale: 
- "Unknown" 
- "Person I've heard of" 
- "Person I've met" 
- "Friend" 
- "Close personal friend." 

* X2-messages: the number of messages sent from a person to each 
other person. The median number of messages is 0, and 75 percent 
of all ordered pairs of people sent 12 or fewer messages. We have 
recoded this to three levels: 
-0 
-1 to 11 
- 12 or more. 

Table 3 presents the cross-classification of Friendship and Mes- 

sage sending for Freeman's EIES data (the F array). Since there are 
L = 3 levels of message sending, and Cl = 5 levels of friendship, this 

TABLE 3 
EIES Messages and Friendship 

Messages 

Friendship 0 1 to 11 12 or more 

Unknown 228 68 46 
Heard of 96 25 16 
Met 168 70 122 
Friend 51 24 36 
Close personal friend 9 4 29 
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TABLE 4 
Correlation Models for EIES Messages and Friendship 

MODEL X2 G2 df pi P2 

(1) C(2) (saturated) 0 0 0 0.322 0.049 
Restrict number of dimensions 

(2a) C(1) 2.647 2.775 3 0.313 
(2b) C(0) (independence) 105.153 102.337 8 - - 

Restrict canonical scores C(1) 
(3) Uniform spacing of response 20.603 22.040 6 0.274 

categories 
Equality of response categories 
C(1) 

(4a) Unknown = Heard of 2.991 3.113 4 0.313 
(4b) Met =' Friend 2.675 2.805 4 0.313 
(4c) Unknown = Heard of and 3.020 3.143 5 0.313 

Met = Friend 
A priori scores C(1) 

(5a) A priori scores (0 0 .7 .7 1) 11.102 11.266 6 0.296 - 
(5b) A priori scores (0 0 .2 .2 1) 17.054 16.812 6 0.301 - 

5 x 3 table is completely explained by t = 3 - 1 sets of scores. Thus 
C(2) is a saturated model for this table. 

Table 4 presents the results of several restricted correlation 
models of the relationship between friendship and message sending 
from Table 3. We first consider models that include fewer than the 
full t = 2 sets of scores. The independence model, C(O), does not fit 
these data; therefore, there is some relationship between friendship 
and message sending in this group. The model with a single set of 
scores, C(1), does fit these data. 

Scores for the friendship response categories, and message 
sending levels for C(1) (model 2a in Table 4) are presented in Table 
5. The scores for the Friendship response categories from this model 
are displayed in Figure 2. 

Now, consider placing restrictions on the set of scores for the 
relational response categories from C(1). We present the goodness- 
of-fit statistics for several models in Table 4 (even though a glance at 
Figure 2 leads us to expect that some of these are unlikely to fit well). 
First, consider uniform (equal) spacing of the response categories. 
This model stipulates that the interval between adjacent categories is 
a constant. This model (model 3) does not fit these data. 
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TABLE 5 
Scores from Correlation Model C(1) of EIES 

Messages and Friendship 

Friendship ul 

Unknown -0.8761 
Heard of -1.0200 
Met 0.6808 
Friend 0.6149 
Close personal friend 3.0006 

Messages v1 

0 -0.6934 
1 to 11 -0.2100 
12 or more 1.6983 

Some models for equality of response categories fit quite well. 
Model (4a) equating Unknown with Heard of, model (4b) equating 
Met with Friend, and model (4c) equating Unknown with Heard of 
and Met with Friend at the same time, all seem to fit these data quite 
well. Model (4c) suggests that the five response categories of friend- 

ship can be summarized in three levels: {Unknown or Heard of}, 
{Met or Friend}, and {Close personal friend}. In addition, collapsing 
the five levels of friendship to three levels suggests that we could 
combine the corresponding rows in F, and represent the frequencies 
in a smaller, 3 x 3 table (see Gilula 1986). However, model (4c) does 
not specify the relative spacing of these three levels of friendship. 

The spacing of the response categories, shown in Figure 2, 
suggests that the middle level of friendship (Met and Friend) is about 

midway between the lower level (Unknown and Heard of) and the 

higher level (Close personalfriend). We thus fit both of the models of 
a priori scores suggested by Burt and Guilarte:(0, 0, 0.7, 0.7, 1); and 
(0, 0, 0.2, 0.2, 1). These models both equate the two lowest catego- 
ries of friendship (Unknown and Heard of), and the two middle 

Heard of 
{Unknown 
, 

Met 
Friend 

k 

Close personal 
friend 

l 
FIGURE 2. Scores for EIES friendship response categories, from correlation model C(1). 
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categories (Met and Friend). The first model proposes that the mid- 
dle level of friendship is 0.7 of the distance from the lowest to the 
highest level; the second model proposes that the middle level of 
friendship is 0.2 of the distance from the lowest to the highest. Mod- 
els (5a) and (5b) in Table 4 show that neither set of a priori scores 
provides a good fit for these data. 

The next section describes association models and restricted 
association models. Following that, we return to the EIES data and 
illustrate these models. 

8. ASSOCIATION MODELS 

Models of association study the relationship between rows and col- 
umns in a cross-classification using odds-ratios. We let Fkl be the 
expected frequency under the model, and denote the odds-ratio by 0, 
where: 

FklFk'l' 
kl, k'l-- (18) 

Fk'lkl' 

This focus on odds-ratios (rather than the correlation p) gives rise to 
models of association. There has been considerable research on mod- 
els of association since the late 1970s (Goodman 1979, 1985, 1986, 
1991; Haberman 1981; Clogg 1982a, 1982b, 1986; Gilula and Haber- 
man 1988; Becker and Clogg 1989; Becker 1990). 

As above, we have the cross-classification of observed frequen- 
cies, F = {fkl}. In addition, for association models, we define: 

* TrR) for k = 1,2,. . . ,C1, a set of row effects, 
* rC), for I = 1,2, . . . ,L, a set of column effects, 
* r, an "overall" effect. 

The r's are main effects for the rows, the columns, and the sample 
size, respectively, and are of little substantive interest. The model of 
association for F is defined as: 

Fkl = 7rTkR r)exp( OMm.lkmVlm). (19) 
m=l 
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One can also express the model in equation (19) in terms of the 
natural logarithm of Fkl. Letting A(R) = logr(R), A?C) = logrIC, and A = log 
r, and taking natural logarithms of both sides of equation (19), gives: 

log Fkl = A + A _) + AlC) + m .kmllm (20) 
m=l 

We will refer to either model (19) or model (20) as the A(t) associa- 
tion model. 

Association analysis of F results in three important sets of 
information: 

* A set of C1 row scores, {gLkm} for m = 1,2, . .., t, 
* A set of L column scores, {Jim} for m = 1,2, . . . , t, 
* A set of t measures of intrinsic association, Pm for m = 1,2, . . ., t, 

that measure the association between the row scores Lakm, and the 
column scores, vIm. 

The row and column variables Pum and vm are scaled as follows: 

C1 L 

Z g'kmPk = I VlmP'-= 0 (21) 
k=l 1=1 

>2,kmPk. = 1 EmPI i = 1, (22) 
k=l /=1 

for all m. In addition, for distinct m and m', Pm and Pm, are 
uncorrelated, as are vm and vm,: 

C1 L 

EALkm km'kP k =Z Im 'P lm 
= 0, for m ? m'. (23) 

k=l /=1 

Goodman (1991) refers to the theoretical version of the association 
model with row and column scores scaled as in equations (21) and 

(22) as the weighted association model, where the weights are the 

marginal row and column proportions (Pk. and P,l). Association mod- 
els with other weights are also possible (see Becker and Clogg 1989 
and Anderson 1992, for example). The scaling in equations (21) and 
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(22) is most useful for comparing results of correlation and associa- 
tion models. 

The intrinsic association, i,, can be expressed as: 

C1 L 

Om = > E(log Pkl)Pk.P.lkmvlm. (24) 
k=1 1=1 

Scores Pm and 1Um, for rows and columns respectively, maximize the 
intrinsic association Om in equation (24). 

One can also consider the natural logarithm of the odds-ratio 
as a function of the intrinsic association, im, and the relevant row and 
column scores. For the two-by-two subtable of rows k and k' and 
columns I and 1', log 0kl, k' can be expressed as a function of the 
intrinsic association, im, and the differences between the row cate- 

gory scores for rows k and k' and between the column category 
scores for columns 1 and ': 

log Okl,k'l' = (m(lkm- k'm)(lm' vlm). (25) 
m=l 

From equation (25) we see that the intrinsic association, Om, can be 
interpreted as the expected log-odds-ratio for the two-by-two sub- 
table comparing rows and columns that are one unit apart (Goodman 
1986). 

The A(t) model, equations (19) or (20), is a saturated model. 
As with the correlation models, we can consider more parsimonious 
versions of A(t) that either include fewer than the full set of t sets of 
scores, or place restrictions on the row scores, the /Lm'S, and/or the 
column scores, the vm's. These models are parallel to the restricted 
correlation models that we described in Section 6. More extensive 
discussion of restricted association models can be found in Clogg 
(1982a, 1982b), Goodman (1981a, 1985, 1986, 1991), Gilula (1986), 
and Gilula and Haberman (1988). 

When statistical procedures, such as maximum likelihood esti- 
mation described by Gilula and Haberman (1986, 1988) and Good- 
man (1987), are used to fit restricted association models, one obtains 
the usual goodness-of-fit statistics, Pearson's X2, and the likelihood- 
ratio test statistic G2. One can then test whether the data may be fit 
by more parsimonious models. 
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8.1. Fewer Than t Dimensions 

The simplest restricted association models take equation (19), but 
include fewer than the full set of t dimensions. For w < t, we have 
model A(w): 

Fkl=rr ) ) exp( mll,kmPlm). (26) 
m=l 

Model A(w) has (Cl - 1 - w)(L - 1 - w) degrees of freedom. 
Intrinsic associations w+i, ? ? ? ,t are equal to 0 in this model. The 
model A(0) is the model of independence. 

Now let us consider models that place restrictions on the row 
and/or the column scores. We will describe three models that are 
parallel to restricted correlation models described above: equality of 
response categories, uniform spacing (linearity) of categories, and a 
priori scores for categories. It is important to note that the interpreta- 
tions of these restricted association models are similar to, but not 
identical to, the restricted correlation models. (We discuss these dif- 
ferences below.) 

8.2. Equality of Response Categories 

The model for equality of response categories examines whether two 
(or more) categories of the row (or column) variables are equivalent 
in terms of their odds-ratios. This model stipulates that the scores for 
equivalent categories are equal. Specifically, for row categories, 

Akkm = k'm k 4 k, (27) 

and for column categories, 

Vim = Vm / 1, (28) 

for all m. A restriction such as one of the two above, equating two 
categories across w sets of scores, has w degrees of freedom associ- 
ated with it. Goodman (1981b) has used this model to study the 
homogeneity of row (or column) categories in a cross-classification. 

Returning to equation (25), we can see that stating that two 
rows, k and k', have equivalent scores, Lkm, = ',lkm, stipulates that all 
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odds-ratios involving rows k and k', Oklk'l', are equal to one, for col- 
umns I = 1,2, .. ,L - 1. 

A model equating two categories, k and k', of a relational 
response variable stipulates that the odds of response k to response 
k' is the same for all values of the predictor relational variable(s), 1 
and l'; Fk/Fk,l 

= Fkl/Fk, for 1 = 1,2, . . . ,L - 1. For example, a 
model equating two categories of friendship ratings with respect to a 
relational predictor variable (for example, amount of interaction) 
would stipulate that the odds of using one friendship response cate- 
gory to the other equivalent friendship response category is the same 
across all levels of interaction. 

8.3. Uniform Spacing (Linearity) of Response Categories 

This model states that the interval between adjacent row (or column) 
categories is equal to a constant. For rows, 

,mk- [lm,k+1 
= d, (k = 1,2,. . . C - 1), (29) 

or for columns, 

vml - zm,l+l = dv (1= 1,2, ... ,L - 1) (30) 

for all m. For restrictions on the rows, this model has (C1 - 1 - w)(L 
- 2 - w) + (C1 - 2) degrees of freedom. For restrictions on the 
columns, this model has (C1 - 1 - w)(L - 2 - w) + (L - 2) degrees 
of freedom. And, for restrictions on both rows and columns, this 
model has (C1 - 1 - w)(L - 2 - w) + (C1 - 2) + (L - 2) degrees of 
freedom. Uniform spacing of both row and column scores in the 
association model constrains odds ratios between adjacent rows/ 
columns to be a constant: Okl,k+ll+1 = 0 for k = 1, . . . ,C1 - 1, and = 
1,... ,L-1. 

For uniform spacing of both row and column scores, A(w) 
(equation 19) may be restated as: 

w 

Fkl= T(R)(C)exp( mkld,d,). (31) 
m=l 

This model has been referred to as the U, or uniform RC association 
model (Goodman 1986, 1987; Clogg 1982a). 
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8.4. A Priori Scores for Response Categories 

A priori scores can also be proposed for the row and/or column 

category scores to reflect the relative spacing of these categories (for 
example, see Clogg 1982b). We will let scores ,km, and fik,m be assigned 
to row categories k and k', respectively, so that 

bLkm = a + btkm and Lk'm 
= a + bLk'm (2 < k - Cl, k : k'). (32) 

There are C1 - 2 degrees of freedom associated with the restrictions 
on the C1 row scores. 

The association model with these a priori scores assigned to 
row categories k and k' implies that ratios of differences of scores are 
fixed; that is, 

[lkm - Ilm Akm 
- lm (3 (33) 

- k'm- ilm 1k'n - \lm 

for all k, 1, and m. Such constraints affect the interpretation of fitted 
models. 

As with the correlation models, restricted versions of associa- 
tion models place constraints on the values of the row and column 

category scores in equations (19), (20), or (26). These models are 
more parsimonious than unrestricted association models in that they 
use fewer degrees of freedom, so that conditional tests can be made 
to test for parsimonious, nested models. For fitting these models, we 
have found Gilula and Haberman's program ASSOC (Gilula and 
Haberman 1986) and Eliason's program CDAS (Eliason 1990) to be 

quite useful. 

9. EXAMPLE 

Let us return to Freeman's EIES example of friendship and message 
sending (the cross-classification in Table 3) to illustrate association 
models. Table 6 presents results of restricted versions of association 
models. From the analysis of these data using the correlation model, 
we already know that the model of independence does not fit these 
data (C(0) and A(0) give identical results). The association model 
with a single dimension, A(1), (model 2a in Table 6) does fit these 
data. The scores for row categories, the ,um's, and the scores for the 
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TABLE 6 
Association Models for EIES Messages and Friendship 

MODEL X2 G2 df b1 b2 

(1) A(2) (saturated) 0 0 0 0.327 0.033 
Restrict number of dimensions 

(2a) A(1) 0.791 0.804 3 0.331 

(2b) A(0) (independence) 105.153 102.337 8 - 

Restrict canonical scores A(1) 
(3) Uniform spacing of response 17.865 18.731 6 0.301 - 

categories 
Equality of response categories 
A(1) 

(4a) Unknown = Heard of 1.231 1.245 4 0.330 - 
(4b) Met = Friend 0.827 0.837 4 0.332 
(4c) Unknown = Heard of and 1.265 1.281 5 0.329 

Met = Friend 
A priori scores A(1) 

(5a) A priori scores (0 0 0.7 0.7 1) 8.197 8.362 6 0.326 - 

(Sb) A priori scores (0 0.2 0.2 1) 21.972 20.562 6 0.297 - 

column categories, the vm'S, are presented in Table 7. The scores for 
the friendship response categories from model A(1) are displayed in 

Figure 3. 

Comparing the results of the association models (Table 6) with 
the results of correlation models (Table 4), we can see that for this 

TABLE 7 
Scores from Association Model A(1) of EIES 

Messages and Friendship 

Friendship ul 

Unknown -0.8736 
Heard of -1.1311 
Met 0.7338 
Friend 0.6785 
Close personal friend 2.7203 

Messages v1 

0 -0.7266 
1 to 11 -0.0848 
12 or more 1.6757 
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Heard of Met Close personal 
Unknown Friend friend 

FIGURE 3. Scores for EIES friendship response categories, from association model A(1). 

example the results are quite similar. The model with a single dimen- 
sion fits these data using either the association model, A(1), or the 
correlation model, C(1). In addition, the model that equates the 
friendship responses Unknown with Heard of, and Met with Friend, 
fits these data, using either the asociation model or the correlation 
model. Neither set of a priori scores fits these data, using either the 
correlation or the association model. 

We turn now to some general comparisons of correlation and 
association models. 

10. COMPARISON OF CORRELATION AND ASSOCIATION 
MODELS 

Several recent papers have compared models for association and 
models for correlation (including correspondence analysis and ca- 
nonical correlation analysis), and they have commented on situations 
in which the two models would be expected to give similar results, 
and situations in which the two models would be expected to give 
different results (Goodman 1981a, 1985, 1986, 1991; Clogg 1986; 
Gilula and Haberman 1988; Gilula, Krieger, and Ritov 1988; Haber- 
man 1981). We summarize some of these comparisons in this section. 

First, consider the parameters in each model. The Pm in the 
correlation model, equation (1), measures the correlation between 
row variables and column variables in terms of the Pearson product 
moment correlation coefficient. As Goodman (1991) shows, for a 

two-by-two table, p, is equal to the correlation between the variables: 

FllF22- F12F21 
Pi 

= 
/FF2. F(34) 

In the correlation model, the row scores {um} and the column scores 
{vm} maximize the correlations Pm, defined in equation (5). 

On the other hand, the measure of intrinsic association, ), in 
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the association model, equation (19) or (20), is based on the log- 
odds-ratio for the two-by-two subtables within the table. For a two- 
by-two table, Goodman (1991) shows that: 

log 011,221 
= . *(35) 2 

Goodman (1991) gives examples of tables that have the same value 
of 01 but different values of Pl, and of tables that have the same value 
of p, but different values of 01. 

Both the correlation models and the weighted association 
model are sensitive to marginal distributions; 0 and p are not invari- 
ant under multiplicative changes in row/column marginal totals. How- 
ever, unweighted association models-in which Pk. and P.l in equa- 
tions 19 and 20 are replaced by unity-are "margin free" (Goodman 
1991; Clogg 1986; Clogg and Rao 1991). 

Consider the models of independence, C(0) and A(0). In the 
association model, /m = 0 for m = 1,2, . .. ,t, and similarly in the 
correlation model, Pm = 0 for m = 1,2, . . . ,t. Models C(0) and A(0) 
are identical. 

If we now consider models C(w) and A(w), with 1 - w < t, 
both association models and correlation models study departures 
from independence (Clogg 1986; Clogg and Rao 1991; Goodman 
1985, 1986, 1991). However, the two models represent this departure 
in different ways. The correlation model focuses on the residuals from 
the model of independence (van der Heijden and de Leeuw 1985; 
Goodman 1991 and commentary following). On the other hand, asso- 
ciation models represent the "intrinsic" association present in the 
entire table using odds-ratios (Clogg 1986; Goodman 1991). 

Goodman (1991) describes conditions under which the associa- 
tion model is especially appropriate. If the row and column variables 
are assumed to adhere to a bivariate normal distribution (or one that 
can be transformed to a joint normal distribution by separately trans- 
forming the marginal distributions), and if the "discretizations" of 
the row and column variables are not too coarse, then the association 
model gives a better approximation to this distribution than does the 
correlation model. 

Several authors have noted that fitting the association model is 
somewhat easier than fitting the correlation models, in that the asso- 

209 



KATHERINE FAUST AND STANLEY WASSERMAN 

ciation model cannot give rise to negative fitted values. Certain con- 
straints on the u, and v,, equation (10), are necessary in order to 
avoid negative fitted values in the correlation models (Goodman 
1985). 

Finally, in practice, association models often seem to give bet- 
ter fits (lower G2 and X2) than do correlation models. For example, 
our results on the EIES data on friendship and message sending 
show slightly better fits for the association models for all but model 
(5b) specifying a priori scores (0, 0, 0.2, 0.2, 1) (compare Tables 4 
and 6). 

On the other hand, computer programs for correspondence 
analysis are more readily available than are computer programs for 
association models. In addition, correspondence analysis (a correla- 
tion model) is widely used in exploratory analysis. In this context, 
correspondence analysis can be used to study many different kinds of 
data arrays, including data arrays that are not contingency tables of 
counts or frequencies (such as incidence matrices, response pattern 
matrices, and so on; see Nishisato 1980, Greenacre 1984, and Weller 
and Romney 1990, for example). Correspondence analysis results 
are also more likely to be used for graphical displays of the row and 
column scores (see Carroll, Green, and Schaeffer 1986; and Green- 
acre and Hastie 1987, for example). Association models are less 
widely used for graphical display (but see Goodman 1991; Clogg 
1986; and Clogg and Rao 1991). 

11. DISCUSSION 

In this paper we have described the use of correlation models, includ- 

ing both correspondence analysis and restricted versions of canonical 
correlation analysis and association and restricted association models 
for directly studying the order and spacing of response categories of 
ordinal relational variables. These models were illustrated on two 
social network data sets. Correspondence analysis of the 11-point 
rating scale of liking from Bernard et al.'s (1979-80, 1982) study of a 

fraternity showed that respondents make greater distinctions among 
the higher levels of liking than among lower levels of liking. In the 
second example, restricted versions of correlation models and re- 
stricted versions of association models using maximum likelihood 
estimation on ratings of friendship from Freeman and Freeman's 

210 



CORRELATION AND ASSOCIATION MODELS 

(Freeman 1986; S. Freeman and L. Freeman 1979; L. Freeman and 
S. Freeman 1980) study of an electronic information exchange net- 
work, showed that five levels of friendship could be well represented 
by just three levels. 

APPENDIX 

In this paper we have described correspondence and canonical corre- 
lation analysis of the matrix F, the cross-classification of the rela- 
tional response variable, and the relational predictor variable(s). 
However, in previous papers we have argued that the most appropri- 
ate array for (multiple) correspondence analysis of social network 
data is a response pattern matrix, also called an indicator matrix, that 
codes the state of each of the dyads in a network data set (Wasser- 
man and Faust 1989; Wasserman, Faust and Galaskiewicz 1990). In 
addition, many general discussions of multiple correspondence analy- 
sis use the indicator matrix (Greenacre 1984; van der Heijden and de 
Leeuw 1989; van der Heijden and Meijerink 1989). Thus it is impor- 
tant to note that correspondence analysis and canonical correlation 
analysis of the F array are equivalent to analysis of a specific indica- 
tor matrix coding the state of each case in a data set. 

An indicator matrix, denoted M, has cases (here ordered pairs 
of actors) defining the rows and indicator variables defining the col- 
umns. The appropriate indicator matrix for a social network with g 
actors has g(g - 1) rows, and two sets of columns. The first set of 
columns is a collection of C1 indicator variables, coding the state of 
the relational tie from actor i to actor j on the relational response 
variable. A single entry of "1" in the appropriate column codes the 
level of the relational tie from actor i to actor j on the relational 
response variable (there are "O"'s in the remaining C1 - 1 columns). 
The second set of columns codes the state of the ordered pair of 
actors on the relational predictor variable(s). As described above, 
the state of an ordered pair of actors on these variables is given by 
the cross-classification of the R - 1 relational predictor variables, 
with L = C2 x C3 x . . . x CR cells. Thus the second set of columns 
in the indicator matrix is a collection of L indicator variables. A 
single "1" in this set of columns codes the state of the ordered pair of 
actors on the relational predictor variables. 

Thus there are C1 + L columns in M. The state of each or- 
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dered pair of actors is coded by two entries in its corresponding row 
of M. All row marginal totals of M are equal to 2. The column 
marginal totals indicate the total number of ordered pairs of actors in 
each state or level of the relational variables. 

The matrix M consists of two submatrices: Ml, a g(g - 1) x C1 
matrix coding the state of the relational response variable, and M2, a 
g(g - 1) x L matrix coding the state of the relational predictor 
variables. Schematically, we can represent this matrix as: 

M = [M,M2]. 

Occasionally correspondence analysis is described for a 
"Burt" matrix, which we denote by B. There are simple relationships 
among the indicator matrix, M, with submatrices M, and M2, the 
"Burt" matrix, B, and the cross-classification, F: 

* Indicator matrix, M = [M1IM2], of size g(g - 1) x (C1 + L), 
* Cross-classification, F = M[M2, of size Cl x L, 
* "Burt matrix", B = M'M, of size (C1 + L) x (C1 + L). 

In addition, if we denote the row and column marginal totals 
of F as f+, and f+j, respectively, we can then construct two diagonal 
matrices: a C1 x C1 matrix C = diag(fi+), with row totals of F on the 

diagonal and zeroes elsewhere, and an L x L matrix L = diag(f+1), 
with column totals of F on the diagonal and zeroes elsewhere. The 
"Burt" matrix has the form: 

rcF1 
LF' L 

The indicator matrix, M, or some function of it, is one of the most 
common data arrays for multiple correspondence analysis (van der 
Heijden and de Leeuw 1989; van der Heijden and Meijerink 1989), 
and it is useful when one is interested in studying individual cases 

(here, ordered pairs of actors). However, when one is not interested 
in individual cases, equivalent scores are obtained from correspon- 
dence analysis or canonical correlation analysis of F, M, or B (once 
scores are appropriately scaled). 

Correspondence analysis (or canonical correlation analysis), 
of F, M, or B results in equivalent sets of scores for the C1 categories 
of the relational response variable, and the L states of the relational 

212 



CORRELATION AND ASSOCIATION MODELS 

predictor variable(s), once scores are rescaled within sets. Thus, 
when one is not interested in scores for the individual cases (here the 
ordered pairs of actors), analyzing the C1 x L array F is likely to be 
more efficient than analyzing the g(g - 1) x (C1 + L) array, M. 
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