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Many methods for the description of social network structural properties are concerned with 

the dual notions of social position and social role. Common goals of these methods are to 

represent patterns in complex social network data in simplified form, to reveal sets of actors who 

are similarly embedded in networks of relations, and to describe the associations among 

relations in multirelational social networks. Often these representations take the form of a 

blockmodel. In a blockmodel actors are assigned to positions and network relations are pre- 

sented among positions, rather than among actors, 

The literature on blockmodels is extensive and is overflowing with computation and applica- 

tions of blockmodels. However, there is a surprising lack of attention to two very important 

aspects of blockmodel analyses: the interpretation and evaluation of the results. The purpose of 

this paper is to focus on these topics, primarily reviewing and synthesizing the approaches to 

interpretation and evaluation currently in use. 

Positional analysis of social network data rests on the assumption that 
the role structure of the group and positions of individuals in the 
group are apparent in the measured relations present in a set of 
network data. To date, most research, most methodological advances, 
and most applications of role-positional analyses (beginning with the 
pioneering work of Lorrain and White 1971) have emphasized the 
descriptive aspects of these methods, both to formalize social concepts 
and to describe the structure of particular social networks. However, 
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integrating these notions into theories and process models requires 
going beyond description. 

The main purpose of this paper is to discuss the interpretation and 
evaluation of blockmodels. We begin with a general discussion of the 
steps one must undertake to do a complete positional analysis, 
particulary the latter steps involving representations, interpretations, 
and assessments. 

1. Overview of positional and role analysis 

There are two key aspects to the positional-role analysis of social 
networks: identi~ing social positions as collections of actors who are 
similar in their relations with others, and modeling social roles as 
systems of relations among actors or among positions. These two 
aspects are apparent in the foundational works by White et al. (1976) 
who focused on methods for partitioning actors, and Boorman and 
White (19761, who focused on models for collections of relations. In 
practice, however, many applications of these methods to substantive 
problems emphasize one or the other of these tasks. Most analyses 
emphasize the similarity of actors (that is, the identification of posi- 
tions) with considerably less attention to the relations among the 
positions. 

Multirelational 
Data { gmup Telataons} 

t Usual Role 
Analysis 

{$TO”p actors} {group actors} 

Usual Positional Roles and 
Analysis {group relalions} Positions 

Fig. 1. An overview of positional and role analysis. 
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Schematically one can present the task of a full positional and role 
analysis of social network data as in Figure 1 (see Sailer 1978; Pattison 
1982). Beginning with a set of network data consisting of a collection 
of relations (a multirelational data set), the ultimate goals are to 
“group” actors into positions based on relational similarity, and simul- 
taneously to describe the association among relations based on how 
they combine to link actors or positions (White et al. 1976; Boorman 
and White 1976; Sailer 1978; Breiger and Pattison 1986; Pattison 1982, 
1988). As shown in this figure, the alternative paths involve (from top 
to bottom) grouping actors, the standard positional analysis, and (from 
left to right) studying the associations among relations, the usual role 
analysis. A complete positional and role analysis would result in both 
an assignment of actors to positions and a model of the system of 
relations that link these positions. 

Let us think about the tasks of analyzing network positions and 
analyzing network roles separately for the moment. We will start with 
one set of actors and a collection of binary relations. 

First consider the positional analysis problem (the left path from 
top to bottom in Figure 1). The major task here is to locate sets of 
actors who are similar across the collection of relations. Similarity will 
be defined in terms of the equivalence of actors with respect to some 
formal mathematical property. The formal mathematical property 
specifies which actors will be “grouped” together in a network posi- 
tion A positional analysis, the vertical path on the left side of the 
diagram, maps actors into equivalence classes, where an equivalence 
class consists of all actors who are identical (or nearly identical) on the 
specified mathematical property. Structural equivalence, which we 
define shortly, is one such formal mathematical property for defining 
equivalence classes. 

Once equivalence classes (or positions) of actors have been identi- 
fied, the relations among these positions must be described. Repre- 
senting relations among positions is the task represented by the arrow 
from left to right on the bottom of the figure. Image matrices and 
density tables, as well as blockmodels (common representations of a 
positional analysis) are the primary tools for this task. 

Now, let us consider the usual role analysis. A role analysis is 
concerned with the associations among relations. Schematically, a role 
analysis will traverse the horizontal paths in Figure 1, either along the 
top or along the bottom of this diagram. The distinction between the 



top path and the bottom path is related in part to the distinction 
between “global” roles, which describe associations among relations 
for an entire group, and “individual” or “local” roles, which describe 
associations among relations from the perspectives of individual actors 
or subsets of actors. 

The path from left to right along the top of the diagram outlines 
one approach to role analysis. Starting with a collection of binary 
relations the task is to describe the association among the relations. 
For example, in an analysis of kinship relations, one might note that 
the combination of relations “mother of” and “sister of” gives rise to 
a meaningful compound relation - “mother’s sister” which (in stan- 
dard American English kinship terms) is labelled “aunt”. Modeling 
the association among relations is the basis for the network role 
system (Boorman and White 1976). 

The final step moving from top to bottom along the right side of the 
diagram requires grouping actors into equivalence sets based on the 
description of the role system resulting from the previous step. Here, 
as on the left side of the diagram, the critical decision is how to 
measure similarity among actors. The result is both a model of 
associations among relations (the network roles) and a partition of 
actors into equivalence classes that relate similarly to one another 
according to the roles. 

In terms of the scheme shown in Figure 1, blockmodels are the 
result of the vertical path on the left side of the figure. In order to 
interpret and evaluate a blockmodel we assume that the researcher 
has already located sets of equivalent actors from multirelational data. 
Our purpose here is to evaluate and interpret such a grouping. We are 
not concerned here with the lower horizontal path: describing role 
systems, based on a prior aggregation of actors using bloc~odels. 

2. Tasks of a positional analysis 

One of the major objectives of a positional analysis is to simplify the 
information in a network data set. This simplification consists of a 
representation of the network in terms of the positions identified by 
an equivalence definition, and a statement of how these positions are 
related to each other. In this section we focus on the steps that are 
required for a complete positional analysis. 
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In practice, a complete positional analysis requires at least four 
steps. Specifying the equivalence definition by which actors will be 
assigned to the same equivalence class is only the first step in a 
positional analysis. At the very least, we also need an assessment or 
evaluation of how good the representation is, as well as an interpreta- 
tion of the representation. These steps are: 

(1) a formal definitjon of equivalence; 
(2) a measure of the degree to which sets of actors approach that 

definition in a given set of n&work data; 
(3) a representation of the equivalences; and 
(4) an assessment of the adequacy of the representation. 

The equivalence definition specifies the formal mathematical condi- 
tions under which we will consider actors in a network to be equiva- 
lent. 

Structural equivalence is one such equivalence definition; others 
are explored in Breiger and Pattison (1986), Faust (1988), Mandel 
(1983), Pattison f1988), Wasserman and Anderson if987), Wasse~au 
and Faust (1992, Ch. 12), White and Reitz 09891, Winship (19881, 
Winship and Mandel(1983), Wu (19831, among others. In ali cases the 
equivalence definitions can be stated in terms of properties of rela- 
tional ties among actors in a network. 

However, in actual network data, it is unlikely that any actors will 
be exactly structurally equivalent. Therefore the second step requires 
measuring the extent to which actors are equivalent. Measuring equiv- 
alence allows us to decide, for any given equivalence definition, 
whether or not (and perhaps to what extent) sets of actors in a 
network are equivalent according to the given definition. 

The third step in a positional analysis is r~~r~s~~t~ti~~ of the 
equivalences, including the assignments of actors to equivalence 
classes, a statement of the relationships between and among the 
classes, and an interpretation of this representation. The most com- 
mon kind of representation is a discrete model, that provides a 
partition of the actors in the network into a collection of classes 
(subsets). Another important aspect of the representation of equiv- 
alences is a statement of how the positions relate to each other. The 
reduced graph, image matrix, and blockmodel are examples of repre- 
sentations. 
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The fourth component of a positional analysis is the assessment of 
the adequacy of the representation. Sometimes the assessment of 
adequacy (usually called goodness-of-fit) requires probability models. 

We now turn to a brief discussion of the four steps in a positional 
analysis, focusing primarily on the third and fourth. 

2.1. Structural equivalence 

The first step in a positional analysis is to adopt a formal definition of 
equivalence. Throughout this paper we will use structural equivalence 
(Lorrain and White 1971). Other papers in this volume discuss block- 
models for other equivalences, such as regular equivalence (Everett 
and Borgatti 1992; Batagelj et al. 1992b), or stochastic equivalence 
(Wasserman and Anderson 1987; Anderson et al. 1992). Actors in a 
social network are structurally equivalent if they have identical rela- 
tional ties to and from all other actors in a network. We will use the 
notation, &‘k to denote subsets of equivalent (or approximately equiv- 
alent) actors. 

More precisely, assume we have a collection 53’ = (,Y,, x2,. . . , ,yR}, 

containing R binary relations (indexed by Y = 1, 2,. . . , R). We will 
den$e the presence of a tie between actors i and j on relation x, as 
i -j. 

Formally, actors i and j are structurally equivalent if for all actors, 
k= 1, 2,..., g, k f i, j, actor i has a relational tie to k, if and only if j 
also has a relational tie to k, and i has a relational tie from k if and 
only if j also has a relational! tie from k. In other Xwords, i and &are 
structurally equival;,nt if i - k if and only if j - k and k - i 
if and only if k - j, for actors, k = 1, 2,. . . , g, k # i, j, and rela- 
tions r = 1, 2,. . . , R. 

Alternatively, the definition may be expressed using the more usual 
sociometric notation. Letting xii,. be the binary variable indicating the 
presence or absence of a relational tie from actor i to actor j on 
relation x,, then actors i and j are structurally equivalent if xikr =xjkr 
and xki,.=xklr for k=l,2 ,..., g, k#i,j, and r=l,2 ,..., R. If ac- 
tors i and j are structurally equivalent, then directed ties from i 
terminate at exactly the same actors as directed ties from j, and 
directed ties to i originate from the same actors as the directed ties to 
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Actors in a social network are almost never structurally equivalent. 
The second task of a positional analysis is a measure of the degree to 
which pairs or sets of actors approach structural equivalence. 

Doreian (1988) makes the useful distinction between the equiva- 
lence definition, and the procedure for detecting the property of 
equivalence (a “detector”). Pattison (1988) makes a similar distinction, 
between the “model” and the algorithm for fitting the model to data. 
In the following sections we will refer to the detector as a measure of 
equivalence. 

Measuring degree of structural equivalence is a problem of measur- 
ing the similarity (or dissimilarity) of the relational ties to and from 
pairs of actors on a given set of network data. It is, therefore, a 
specific instance of a more general issue of measurement of the 
similarity (or dissimilarity) of two data “profiles”. In analyzing net- 
work data, the “profiles” are the rows and columns in the sociomatri- 
ces corresponding to two actors’ relational ties. Numerous authors, 
both inside and outside the network community, have examined the 
relationships among alternative measures of similarity and dissimilar- 
ity. The relationship between correlation and Euclidean distance is 
well known (Cronbach and Gleser 1953; Coxon 1982; Fox 1982; Rohlf 
and Sokal 1965; Sneath and Sokal 1973; Sokal and Sneath 1963). 

Measures such as correlation or Euclidean distance, that are com- 
monly used to measure structural equivalence, do not always give the 
same results. The correlation between two actors may be equal to + 1, 
indicating perfect structural equivalence by that measure, while the 
Euclidean distance between the same two actors on the same 
relation(s), may be non-zero, indicating that the actors are not per- 
fectly structurally equivalent. Therefore, as detectors of structural 
equivalence, correlation and Euclidean distance differ in the ways that 
two actors in a social network may fail to have identical ties, and 
therefore not be measured as structurally equivalent. It is important 
to understand the formal properties of these measures in order to 
make an appropriate choice for a given application (see Faust and 
Romney 1985a, Burt 1986; and Wasserman and Faust 1992 for further 
discussion of this issue). 

We simply assume that some suitable measure of equivalence has 
been used and actors will be asigned to positions based on this 
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measure. So, the result of step two might be a g x g matrix of 
measures of pairwise actor equivalence (such as the correlations 
between actors rows and columns in the sociomatrices being studied). 

2.3. Representing equivalences 

The third step in a positional analysis is representation of the posi- 
tions, and a statement of how the positions are related to each other. 
The major goals of the representation are to present the information 
in a network data set in simplified form, and provide an interpretation 
for the results. The key step is to partition actors into subsets, so that 
actors within each subset are closer to being equivalent than are 
actors in different subsets. Subsets of (nearly) equivalent actors will be 
referred to as equivalence classes, or positions. This partitioning then 
leads to the problem of deciding how the subsets relate to each other. 
A density table (or density matrix), an image matrix, and a reduced 
graph are three ways to present the relational ties among positions. 

2.3.1. Partitioning actors 
If we look at the matrix of distances or correlations that measure 
structural equivalence, it is usually impossible to see any pattern in 
the values. In general, we seek a partition of the actors into subsets so 
that actors within each subset are more nearly equivalent, and actors 
in different subsets are less equivalent. 

Hierarchical clustering is one data analysis technique that is ideally 
suited for the task of partitioning actors. There are many hierarchical 
clustering algorithms, and computer routines are widely available. The 
input to a clustering program is (usually) a one-mode symmetric 
matrix in which the entries measure the similarity (or dissimilarity) of 
pairs of entities. A positional analysis using hierarchical clustering 
would use a matrix with measures of structural equivalence (either the 
correlation matrix or the matrix of Euclidean distances) as input. 

A second method, CONCOR (an acronym for CONvergence of 
iterated CORrelations) was specifically developed for analyzing social 
network data in order to identify subsets of equivalent actors. This 
method was first used for analyzing social network data by Harrison 
White and others (Breiger, Boorman, Arabie, Schwartz etc.) in their 
research on the application of social networks to the algebraic study of 
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roles (Breiger et al. 1975; White et al. 1976). Both hierarchical 
clustering and CONCOR give a partition of the actors in a network. 

Consider a hypothetical network represented by a sociomatrix. In 
this form, it is difficult, if not impossible, to see any regularities or 
patterns which might exist in the data. However, if we were to 
rearrange (permute) both the rows and the columns of the sociomatrix 
(in the same way), then we might be able to see considerable regular- 
ity in the relational ties among sets of actors. In such a permutation, 
one looks for subsets of actors that are similar with respect to sending 
and receiving ties. 

2.3.2. Relational ties between and among positions 
Once positions have been identified, the second task of a representa- 
tion is describing how the positions relate to each other. There are 
three common ways to represent the relational ties between and 
among positions: a density table, an image matrix, and a reduced 
graph. A starting point for representing relational ties between and 
among positions is to use the positions to permute the rows and 
columns of the original sociomatrix so that actors who are assigned to 
the same position are adjacent in the permuted sociomatrix. Rows 
(and columns) corresponding to actors in the same position are 
arranged so they are adjacent in the permuted matrix. If all actors 
within each position are structurally equivalent, then when the rows 
and columns of the original sociomatrix are permuted so that actors 
who are assigned to the same equivalence class are adjacent, the 
submatrices corresponding to the relational ties between and among 
positions are filled with either all zeros or all ones. 

If submatrices of a sociomatrix that contain relational ties between 
positions are filled completely with ones or completely with zeros the 
decision concerning whether a relational link exists between positions 
is straightforward. 

Another useful way to summarize the relational ties among posi- 
tions is in a density table (or density matrix). A density table is a 
matrix that has positions rather than individual actors as its rows and 
columns, and the values in the matrix are the proportion of “choices” 
that are present from the actors in the row position to the actors in 
column position. 

Often we would like to be able to summarize the relational ties 
among the positions in a more parsimonious way. An image matrix is 
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a summary of the relational ties between and among positions, so that 
each relational tie is coded as either present or absent between each 
pair of positions. The image matrix is constructed by allowing rows 
and columns to refer to positions, rather than individual actors. If we 
let R be the number of positions in the network, then the image 
matrix is of size B x B. A “1” in row k, column 1 of this matrix 
indicates that position ~33’~ has a directed relational tie to position 9[. 
When the model is perfect so that all submatrices are either filled 
with ones or filled with zeros, then there is no ambiguity about 
whether a relational tie exists between positions. 

When submatrices contain both zeros and ones, then not all actors 
in the position “choose” all actors in the other positions. In that case, 
the actors within the positions are not perfectly structurally equiva- 
lent, and the description of how positions relate to each other is less 
clearcut. 

It is important to note that image matrices are the starting point for 
a blockmodel of a social network data set. An image matrix (for a 
single relation), or a set of image matrices (one for each relation in a 
multiple relational analysis), along with a description of which actors 
are assigned to which positions is called a ~~ock~ude~. Blockmodels 
are the usual representations for the grouping of actors, based on an 
equivalence definition. 

A final useful way to present the relational ties between and among 
positions is in a reduced graph. A reduced graph has positions as 
nodes, and uses the relational ties in an image matrix to define the 
arcs between nodes. It therefore has fewer nodes and fewer lines than 
the original graph. We use the following rule to construct the reduced 
graph. It is easy to construct the reduced graph from the image 
matrix. A “1” in the image matrix indicates that there is an arc from 
the row position to the column position in the reduced graphs. So, in 
the reduced graph, there is an arc between the nodes representing 
positions 9k and ~8’~ if there is a relational tie between 3?k and 39, in 
the image matrix. 

2.4. Assessing the adequacy of the representation 

The last task of a positional analysis asks the researcher to determine 
how well a mathematical representation of the positions and the ties 
among the positions “fits” a given network data set. Such tasks are 



usually called goo~~e~~-o~-~~ problems in statistics. We will present 
several goodness-of-fit indices below, all of which are designed to 
measure the fit of a blockmodel to a given network data set. 

There have been two approaches to this goodness-of-fit task in the 
literature. The first uses a standard data analytic technique of compar- 
ing the observed data set (in this case, the R sociomatrices 
X,, X*,..., X,) to the predicted data set, which is based on the 
blockmodel to be evaluated. A number of measures for this compari- 
son have been presented in the literature. We discuss and illustrate 
several of these measures in this paper. Unfortunately, there is little 
consensus or agreement on such statistics. 

The second approach is more statisticat and model-based. One can 
first assume that a dyadic interaction model, described, for example, 
in Wasserman and Anderson (1987) and Chapter 15 of Wasserman 
and Faust (19921, is operating, and then postulate a stochastic block- 
model. This strategy then allows one to conduct likelihood-based, 
statistical tests for goodness-of-fit. Anderson et al. (1992) describe 
stochastic equivalence and stochastic blockmodels in their article in 
this issue. 

3. Bloc~odels 

Consider now how to model the relationships among the positions 
found by adopting a specific equivalence definition and measuring 
how well subsets of actors in a given data set adhere to this definition. 
The literature contains numerous discussions of blockmodel construc- 
tion (Arabie and Boorman 1982; Arabie et al. 1978, 1990; Breiger et 
al. 1957; Ennis 1982; Light and Mullins 1979; Panning 1982a, 1982b; 
White et al. 1976). We want to consider how to interpret the results of 
a positional analysis, when the results are presented in a blockmodel. 
As we will see, the most interesting and useful features of blockmod- 
els are their theoretical interpretations, the potential for validating 
structural theories, and their use for comparing structural patterns 
across groups. 

3.1. A definition 

We begin with a set of R binary relations defined on one set of g 
actors. A blockmodel consists of two things: 



(1) A partition of actors in the network into discrete subgroups - 
called positions, and 

(2) For each pair of positions a statement of the presence or absence 
of a relational tie within or between the positions on each of the 
relations. 

A blockmodel is thus a model, or a hypothesis (White et a/. 1976) 
about a multirelational network. It presents general features of the 
network, such as the relations among positions, rather than informa- 
tion pertaining to individual actors. 

We can define a bloc~odel more precisely in terms of a mapping 
of the actors in a network onto the positions in the blockmodel. We 
begin with a collection of R binary relations and their corresponding 
R binary sociomatrices defined on g actors in M. A blockmodel is a 
partition of ,.4’ into B positions, denoted .GS’,, 5&‘,, . . . , LBB, where 
B <g, and an onto mapping, #, from B onto the collection of 
positions, (#(i) =LSP~ if actor i is in position Sk). A blockmodel also 
specifies the relational ties among the B positions. Relations among 
positions are specified by a matrix B, whose entries (hklr) are equal to 
unity if there is a relational tie from position ~3’~ to position 3, on 
relation r, and equal to zero otherwise. 

Whereas the original relational data are presented in the usual 
g x g x R multirelational sociomatrix, the relational ties among posi- 
tions in the blockmodel can be presented in a smaller array that we 
denote by B. For a partition of the actors in .N into B positions, a 
blockmodel is a B x B x R binary array, with entries hkl,. indicating 
the presence or absence of a relational tie between positions ~3’~ and 
LB/ on relation r. 

The matrix B has also been referred to as a blockmodel, since it 
presents the presence or absence of relational ties among positions. 

A blockmodel thus has two components: the mapping, 4, that 
describes the partition of actors in a network into positions, and the 
matrix, B, which specifies the presence or absence of relational ties 
between and within positions on each relation. Each actor is assigned 
to one and only one of the positions, and the assignment is the same 
across relations. The relational ties are presented in a set of R, B X R 

binary arrays. There is one array for each of the R relations in the 
multirelational network, and each array is an image matrix describing 
the hypothesized relational ties between positions on the specific 
relation. 
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Each of the entries in the B X B X R matrix B is called a block. 
Each block, bklr , in the blockmodel corresponds to a submatrix of the 
original sociomatrix that contains the relevant interposition or intra- 
position relational ties. A block containing a one is called a oneblock, 
and indicates the presence of a relational tie from the row position to 
the column position. A oneblock may also be referred to as a bond 
(White et al. 1976). A block containing a zero is called a zeroblock, 
and indicates the absence of a relational tie from the row position to 
the column position. More formally, if there is a hypothesized rela- 
tional tie from position ~23’~ to position ~8, on relation r then bklr = 1 
in the blockmodel; bklr is a oneblock. If there is no hypothesized 
relational tie from position ~8~ to position 33, then bklr = 0 in the 
blockmodel; bklr is a zeroblock. 

4. Building blocks 

Assigning actors to positions is only one part of constructing a 
blockmodel. Further, before interpreting a blockmodel, one must also 
determine whether each block is a oneblock or a zeroblock. Suppose 
that we have permuted the rows and the columns of the sociomatrix 
for each relation so that actors who are assigned to the same position 
occupy adjacent rows, and columns, in the permuted sociomatrix. In 
the permuted sociomatrix, all entries (x,,) pertaining to relational ties 
between or within positions, will be contained in submatrices of the 
sociomatrix. Now, if all actors within each position are perfectly 
structurally equivalent, then all submatrices corresponding to rela- 
tional ties within and between positions, for all relations, will be filled 
either all with zeros or all with ones. In such a case, it is easy to 
determine whether a block should be a oneblock or a zeroblock. 
However, in real network data, pairs (or collections) of actors are 
seldom structurally equivalent. In the permuted sociomatrix the sub- 
matrices corresponding to inter- and intraposition relational ties will 
usually contain both ones and zeros. Therefore, determining whether 
a block in a blockmodel is oneblock or a zeroblock is not straightfor- 
ward. Constructing a blockmodel requires a rule which governs the 
assignment of a zero or one to the relational tie between positions in 
the model. 



There are several criteria which have proved useful for deciding 
whether a block should be coded as a zeroblock or a oneblock. These 
include: 
0 perfect fit (fat fit) 
l zeroblock (lean fit) 
l oneblock 
l cy density criterion. 

In any blockmodel, each of the B x B x R elements of B contains 
the hypothesized value of the relational tie from the row position to 
the column position on the layer relation. As described above, bklr 
denotes the value of the hypothesized relational tie from position ~3~ 
to position 9, on relation Y. If the block is a oneblock then bk,,_ = 1, 
and if the block is a zeroblock then bkIr = 0. The decision about 
whether a relational tie exists or not in each block of B depends on 
the observed values of the relational ties between actors in the 
positions. That is, bklr depends on the values of x,,, for i ES?~ and 
j ES’,. We will let g, be the number of actors in position LB~ and g, 
be the number of actors in position 9,. For distinct Sk and L%‘,, there 
will be g, x g, relational ties from members of position ~34~ to mem- 
bers of position 9,. For ties among members of the same position, 
there will be g, x (gk - 1) relational ties among actors in position ~3~. 
Note that in a blockmodel, relational ties from a position to itself are 
meaningful, and often quite important theoretically - in contrast to 
reflexive relational ties for actors and diagonal entries in a socioma- 
trix, which are often undefined. 

The most common criteria for defining oneblocks and zeroblocks 
are based on the density of ties within a block. The density of ties in 
block bklr will be denoted as Aklr and is defined as the proportion of 
relational ties that are present. For k f 1 this proportion is: 

for k = 1, 2,. . . , B, I= 1, 2,. . . , B, and r = 1, 2,. . . , R. The density of 
ties within a position, for example, in block bkkr, is equal to: 

A 
-ci t .Wkxj E .dkxijr 

kkr = 
gk(gk - ‘> 

for i #j. 
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We now specify more formally some useful criteria for defining 
zeroblocks and oneblocks in a blockmodel. More details on these 
criteria can be found in Chapter 10 of Wasserman and Faust (1992). 

Perfect fit (fat fit). The perfect fit blockmodel occurs if all actors in 
each position are structurally equivalent. This ideal situation would 
result in submatrices in the permuted sociomatrix that were filled all 
with ones or all with zeros. The criterion for a perfect fit blockmodel 
requires that the relational tie between two positions on a given 
relation is equal to one only if all actors in the row position have 
relational ties to all actors in the column position, and a relational tie 
between positions is equal to zero only if there are no relational ties 
from actors in the row position to actors in the column position 
(Breiger et al. 1975; C arrington et al. 1979/80). Specifically, 

0 
bk[r = 

if nij, = 0, for all i ~53~~ j EL& and, 

1 if x,,~ = 1, for all i Eak, j EL8~. 

Zeroblock (lean fit) criterion. The zeroblock criterion states that the 
relational tie between two positions on a given relation is zero only if 
there are no relational ties from actors in the row position to actors in 
the column position on the specified relation, otherwise the block is a 
oneblock. This criterion was first proposed by White et al. (1976) (see 
also Arabie et al. 1978; Arabie and Boorman 1982). Specifically, 

b 0 if Xijr=O,for all iEgk, jEBj _ 
klr - 

1 otherwise. 

Oneblock criterion. The oneblock criterion focuses on oneblocks 
rather than on zeroblocks. It requires that the submatrix of the 
sociomatrix corresponding to the intra- or interposition relational ties 
be completely filled with ones. All possible relational ties from actors 
in row position Sk to actors in COhnn position LZ?/ need to be present 
in order to define a oneblock, otherwise it is a zeroblock. We define 

bklr = 

1 ifx,j,=1,foralliE3Yk,jE5ZJ~ 

0 otherwise. 
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cx criterion. As we have noted, real social network data rarely contain 
(perfectly) structurally equivalent actors, thus blockmodels which are 
based on the property of structural equivalence are unlikely to contain 
blocks all of which are either perfect oneblocks or perfect zeroblocks. 
For various reasons we expect that oneblocks might contain some 
zeros and zeroblocks might contain some ones. Therefore it is reason- 
able to define some threshold density, cy, such that if the observed 
block density, Akl,., is greater than or equal to (Y then the block will be 
coded as oneblock, and if the observed block density is less than (Y 
then the block is coded as a zeroblock (Arabie et al. 1978). We define 
the (Y criterion as: 

0 
bk,,. = 

if Ax,,. < (Y 

1 if Aklrk (Y. 

One guideline for choosing a value of a is that it should depend on 
the density of the relations in the analysis. Two commonly used values 
are the overall (grand) density computed across all relations, or, since 
all relations are unlikely to have the same density, there could be R 
separate a’s, one for each relation (ayr = A,). 

5. Examples 

We will now analyze two examples in detail to illustrate these criteria. 
The examples are taken from Krackhardt (1987a) and Wasserman and 
Faust (1992). The two data sets consist of a network of relations 
linking some nations, and advice and friendship among a group of 
managers in a high-tech company. We will first describe each data set, 
and then illustrate blockmodels on each of these data sets. 

5.1. World systems data 

The actors in this network are nations, selected from a list of 63 
countries given in Smith and White (1988). We chose countries 
representing different categories from across several developmental 
classifications: Snyder and Kick’s (1979) core/periphery status, 
Nemeth and Smith’s (1985) alternative world system classification and 
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level of industrialization, and a historical economic base from Lenski 
(as reported in Breedlove and Nolan 1988). We also chose countries 
to both span the globe and to represent politically and economically 
interesting characteristics. Only countries for which data were re- 
ported in 1984 commodity trade statistics were eligible for inclusion. 
We attempted to reduce the number of shared borders between 
countries, though some politically interesting countries are included 
even though they share borders (Israel and Syria, for example). 
Because of data availability, less-developed nations (African nations in 
particular) are probably under-represented in this set. The 24 coun- 
tries represented as actors in this network are a geographically, 
economically, and politically diverse set, chosen to represent a range 
of interesting features and to span the categories of existing world 
system/development typologies. We will refer to these data as the 
“World system network”. 

In this paper we analyze three relations, two of them are economic 
and one is political. The relations are: 

l imports of crude materials, excluding fuel 
l imports of basic manufactured goods 
l diplomatic exchange. 

The first two relations are taken from the United Nations Commodity 
Trade Statistics (United Nations 1984). The third relation comes from 
The Europa Year Book (Europa Publications 19841, which lists for 
each country those countries that have embassies or high commissions 
in the host country. 

All three relations are binary and directional. The two economic 
relations were reported on a continuous US$ scale. The reported 
values indicate the amount of goods (of the specified type) in 100,000 
US$ imported by one country from the other. We note that the UN 
does not list trade amounts under US$lOO,OOO. In order to standard- 
ize the imports to control for the vastly different economy sizes across 
countries, we first standardized each value by dividing by the country’s 
total imports on that commodity. If the realized proportion was less 
that 0.01 percent, we coded the relational tie as absent. Otherwise, 
the tie was coded as present. This standardization actually had very 
little impact. Most of the relational ties that were changed from 
“trade present” to “trade absent” were large countries (US, Japan, 
UK) importing small amounts from very small countries (Madagascar, 



Liberia, Ethiopal. The diplomatic relation records a tie as present if 
one country has an embassy or a high commission in another country. 
These data are taken from the 1984 Europa Year Book (Europa 
Publications 1984). 

The data set also includes four attribute variables reflecting the 
economic and social characteristics of the countries. The first two 
attribute variables measure annual rates of change between 1970 and 
1981. They are: Annual population growth rate between 1970 and 
1981, and Annual growth rate in GNP per capita between 1970 and 
1981. The second two attribute variables measure rates of education 
and energy consumption. These variables are: Secondary school en- 
rollment ratio in 1980, and Energy consumption per capita in 1980 
(measured in kilo coal equivalent). Measurements on these four 
variables were taken from The World Bank (1983). 

Researchers using network data have constructed blockmodels of 
positions in the world system using data on trade, diplomatic ties, and 
military interventions for networks of most countries (Snyder and Kick 
1979; Nemeth and Smith 1985; Kick n.d.1 or for samples of developed 
(core) nations (Breiger 1981a). In addition, numerous researchers 
have attempted to validate these blockmodels using characteristics of 
countries and to compare the positions of countries resulting from 
blockmodels of relational data with alternative schemes for classifying 
countries (Snyder and Kick 1979; Kick n.d.; Nolan 1983, 1987, 1988; 
Lenski and Nolan 19841. Among the variables that have been used to 
study positions in the world system are four variables that we will use: 

0 population, annual growth rate from 1979 to 1981; 
l GNP per capita, annual growth rate from 1970 to 1981; 
* secondary school enrollment ratio in 1980; and 
0 energy consumption per capita (in kilo coal equivalents) in 1980. 

The blockmodel of the world system example is based on three 
relations: Manufactured goods, Crude materials excluding fuel, and 
Diplomatic ties. For this analysis we measured structural equivalence 
using the Pearson product-moment correlation coefficient, calculated 
on the rows and columns of the three sociomatrices. We used UCINET 
(MacEvoy and Fr eeman n.d.) to calculate the correlations. Positions 
were identified using complete link hierarchical clustering, in the 
program SYSTAT (Wilkinson 1987). In order to study the positional 
system in detail we will use a six position model. These six positions 
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and their members are: 

9,: Japan, United Kingdom, United States 
9*: China, Czechoslovakia, Indonesia, Spain, Yugoslavia 
B3: Argentina, Brazil Finland, New Zealand, Pakistan, Switzerland, 
Thailand 
gd: Algeria, Egypt, Syria 
s5: Ecuador, Honduras, Israel 
gh: Ethiopia, Liberia, Madagascar. 

The density tables for this partition are presented in Table 1. These 
tables show the proportion of relational ties that are present from 
countries in the row position to countries in the column position. 
Density tables, and image matrices were constructed using UCINET 
(MacEvoy and Freeman n.d.1. 

Notice that these density tables have some values that are equal to 
1.00 and 0.00, indicating that some submatrices corresponding to 
intraposition or interposition relational ties are either completely 
filled with ones, or completely filled with zeros. Therefore, it is 
possible to consider using either the zeroblock or the oneblock criteria 
to construct a blockmodel for these data. However, using the oneblock 
criterion gives a very sparse blockmodel, since only 21 of the 36 X 3 = 
108 submatrices have densities equal to one, and would thus be coded 
as oneblocks in the blockmodel. The zeroblock criterion gives a very 
dense blockmodel, since only 14 of the submatrices have densities 
equal to zero, and would be coded as zeroblocks. Therefore, it seems 
reasonable to use the (Y density criterion to construct the blockmodel 
image matrices. The densities of the three relations are: 

l imports raw materials from, density = 0.556 
l imports manufactured goods from, density = 0.562 
l diplomat resides in, density = 0.668. 

Since there is some variation in the densities of these relations, it is 
reasonable to choose (Y density cutoff values that are specific to the 
relations. Using the (Y density rule with relation specific (Y’S gives the 
set of five image matrices, in Figure 2. 

The collection of three image matrices, along with the assignment 
of countries to positions constitutes the blockmodel for these data. 
For the moment, notice that no two relations have the identical image 
matrices, though there are features common to all three image matri- 



Tahie 1 

Density tables for manufactured goods, crude materials and diplomatic ties 

Manufactured goods 
_- 

g I 9 2 

1 .ooo 1.000 

1.000 1 .ooo 

0.952 0.857 

0.444 0.400 

0.556 0.133 

0.222 0.067 

Crude materials 

23 a4 28 5 45 
0.952 1.000 1 .ooo 1.000 

0.914 0.933 0.467 0.533 

0.810 0.667 0.571 0.286 

0.095 0.000 0.000 0.111 

0.286 0.000 0.000 0.111 

0.000 0.000 o.ow 0.000 

Diplomatic ties 

$1 92 93 94 9 5 36 

2, 1.000 1 .ooo 0.952 1.000 1 .ooo 1.000 

23; 1 .ooo 0.900 0.943 1 .ooo 0.400 0.600 

=@x 0.952 0.857 0.714 0.714 0.429 0.238 

B 4 1 BOO 1.000 0.667 0.333 0.111 0.667 

9s 1.000 0.333 0.476 0.222 0x33 0.111 

3 b 0.889 0.267 0.000 0.333 0.000 0.333 

ces. In all image matrices all positions relate to block B,, and overall, 
positions ~3, and A!?* are involved in more relational ties than are the 
remaining positions. 

These data were gathered by David Krackhardt (1987al in a small 
manufacturing organization on the west coast of the US. This organi- 
zation had been in existence for ten years and produced high-tech 
machinery for other companies. The firm employed approximately 100 
people, and had 21 managers. These 21 individuals are the set of 
actors for this data set. We will refer to this example as “Krackhardt’s 
high-tech managers”. Krackhardt’s interest in these data focused on 
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Fig. 2. Blockmodel image matrices for three relations in the world system example. 

the perceptions of all 21 managers of the entire network of informal 
advice and friendship relations. Specifically, he was interested in the 
perceptions held by the actors of the structure of the entire group. 
Here, we are interested only in the reports made by each manager of 
their own advice seeking and friendships. 

Each manager was given a questionnaire and asked two questions: 
“Who would [you] go to for advice at work?” and “Who are your 
friends?” Each actor was given a roster of the names of the other 
managers, and asked (in a free-choice setting) to check the other 
managers with respect to advice seeking, and friendship. We will also 
study two actor attributes: Age, and Length of time employed by the 
organization. Both variables are measured in years. 

The blockmodel of Krackhardt’s high-tech managers is based on 
the two relations, advice and friendship. We split the actors into a 
four position blockmodel, using CONCOR in the program UCINET 
(MacEvoy and Freeman n.d.). These four positions are: 
. ~8~: 1, 8, 11, 12, 16, 17 
. 91: 3, 4, 5, 9, 15, 20 
. s3: 2, 6, 7, 14, 21 
. ‘@4: 10, 13, 18, 19. 



Table 2 

Density tables for advice and friendship 

Advice 

.S, 

0.200 

0.944 

0.200 

O.SLIO 

Friendship 

kz31 3, .S 4 

0.083 0.467 0.208 
0.367 0.900 0.625 
0.100 0.750 0.150 
0.708 0.500 0.750 

-- 

9, 0.500 0.389 0.300 0.208 
_q 0.278 0.133 0.233 0.167 

3 n 11.167 0.067 0.300 0.100 
k@ , 0.292 0.375 0.150 0.000 

These subsets show the mapping, 4(i) =z%‘~, for each of the 21 
managers. 

The second step in the blockmodel analysis is to describe the 
relational ties between and within positions. The density tables for the 
Advice and Friendship relations are presented in Table 2. Since the 
four criteria for assigning oneblocks and zeroblocks for the block- 
model all depend on the density of relational ties within and between 
positions, the density tables contain all of the information that is 
necessary for constructing the blockmodel. 

Let us consider the four criteria in turn. Notice that since the 
densities in the submatrices are not all equal to either zero or one, 
the perfect fit criterion will not yield a blockmodel for this partition of 
actors. Similarly, since there are no submatrices with density equal to 
one, the oneblock criterion would give an uninteresting blockmodel, 
one all filled with zeros. The zeroblock criterion also gives an uninter- 
esting blockmodel. Only the single block containing the relational ties 
within position Be on the advice relation has a density of zero. Thus, 
we will use the CY criterion, with LY, for each relation equal to the 
density of the relation, d,. The density of the Advice relation is equal 
to 0.452, so any submatrix with a density greater than or equal to 
cy, = A, = 0.452 will be coded as a oneblock in the Advice image 
matrix. The density of the Friendship relation is equal to 0.243, so any 
submatrix with a density greater than or equal to 0.243 will be coded 
as a oneblock in the Friendship image matrix. 
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Advice 

! 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 I 

Friendship 

Fig. 3. Blockmodel image matrices of the advice and friendship relations for Krackhardt’s 

high-tech managers. 

The image matrices for this blockmodel are presented in Figure 3. 
Each of these image matrices may also be presented in the form of a 
reduced graph, in which nodes represent positions, and the arcs are 
the relational ties between positions. Figure 4 gives these graphs. For 
the moment, simply notice that the image matrices and graphs for the 
two relations are quite different. We will examine these differences in 
more detail in the remainder of this paper. 

6. Blockmodel interpretation 

Blockmodels are hypotheses about the structure of relations in a 
social network. Although blockmodels may appear deceptively simple, 
in that they usually consist of rather small arrays of zeros and ones, 
the patterns of relations among positions can present important 
structural properties. Rules for interpreting blockmodels are quite 

Advice Friendship 

Fig. 4. Reduced graphs of advice and friendship relations for Krackhardt’s high-tech managers. 
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important. In the following sections we discuss three different ways to 
interpret a blockmodel: 

(11 validation of a blockmodel using actor attributes; 
(2) descriptions of individual positions; and 
(3) descriptions of the overall blockmodel. 

The first way to interpret a blockmodel uses exogenous actor 
attribute variables to describe the positions in the blockmodel. The 
later two ways provide statements about the form of the blockmodel, 
B, without reference to the attributes of the actors. 

6.1. Actor attributes 

One of the most straightforward ways to interpret a blockmodel is to 
use attributes of the actors to describe the positions. If there are 
systematic differences between positions in the characteristics of their 
members, then we have some external validation for the blockmodel. 

There are many examples of network analyses that have used actor 
attributes to help interpret blockmodels. Investigations of positions in 
the world economic and political system (via network models) have 
used growth in GNP per capita measured on countries to help 
understand the positional structure (Snyder and Kick 19791. Re- 
searchers studying scientific communities have used the date of a 
scientist’s professional degree, the number of articles each has pub- 
lished, the number of citations made to their published work, and the 
dollar amount of grant money they have received, to help understand 
the structure of scientific networks (Mullins et al. 1977; Breiger 1976). 
In his investigation of the social structure among prison inmates, 
Arabie (1984) used ethnicity, level of education, and drinking habits to 
validate a blockmodel, employing a discriminant analysis to study 
whether positional assignments could be predicted from the actor 
attributes. 

Depending on one’s theoretical orientation, one might argue that 
the characteristics of the actors are an important determinant of their 
network relations which then led to the observed positional structure. 
Or (on the other hand) that the structural positions of the actors (and 
network processes) were influential in determining the characteristics 
of the actors in the model. For example, world system theory argues 
that the position of a country in the world system influences the rate 



of development of the country. On the other hand, social psychologists 
might argue that similarity between actors in their characteristics 
leads to mutual attraction and the formation of relational ties among 
actors, and thus the structure of the group. In either case, the actor 
attributed are related to the network structure. 

61.1. Examples 
We will first examine the four position model of the corporation 
studied by Krackhardt, and then look at the six position model of the 
world system data. In each case we will present the average value of 
each attribute variable, calculated within each of the positions in the 
blockmodel. 

Krackhardt ‘s high-tech managers. In addition to relational data, 
Krackhardt recorded information about the characteristics of the 
managers in the corporation. This includes information about the age 
of each manager, and the number of years each manager had been 
with the company (tenure). One might reasonably expect that patterns 
of advice seeking would be related to the experience of the managers, 
and that experience would be reflected in the age of the managers 
and/or in their length of service (tenure) with the company. For the 
company as a whole the mean age is 39.71 years, and the mean length 
of service is 11.75 years. To examine whether age and tenure vary 
across positions we computed the mean and standard deviation of age 
and tenure for the managers within each of the positions. These 
statistics are reported in Table 3. 

Notice that members of position ~8~ are oldest on average (47.00 
years) and have the longest tenure in the company (18.236 years). 

Table 3 

Mean age and tenure of actors in positions from CONCOR analysis of advice and friendship 

relations, standard deviations in parentheses 

is I 9 ?. 9 3 Liz? 3 

Age 34.00 40.83 47.00 37.50 
(6.48) (10.93) (9.62) (7.33) 

Tenure 12.28 8.18 20.10 5.86 
(7.69) (3.60) (8.84) (4.26) 



Pasition 9, has, on average, the youngest members (34 years), but, 
they have the second longest tenure on average (12.28 years). Mem- 
bers of positions LZS’~, and L9b are intermediate in age, and have been 
with the company for the shortest time, on average. 

The world sysfem, Let us turn now to the world system example, and 
examine the ~ha~a&t~.r~st~cs of the countries in each of the positions. 
Considerable research has focused on whether, and how, the position 
of a country in the wurld system affects its social and economic 
development. One prediction is that dependency status within the 
world political and economic system affects the rate of economic 
development of countries. 

At the outset, we expect that that GNP per capita growth rate, 
secondary school enrollment ratio, and energy consumption per capita 
will be higher in core (industrialized) nations than in peripheral 
(developing) nations. In contrast, population growth rate is expected 
to be higher in peripheral developing nations than in core industrial- 
ized nations. Table 4 shows the means and standard deviations of 
these variables within each of the six positions. Notice that there. is a 
tendency for the means to be ordered across positions. Positions &3,, 
B2, and .J@~ have the lowest annual growth rate in population, the 
highest secondary school enrollment ratio, and the highest energy 
consumption. Positions LSd, ,!S5, and ~‘3’~ have the highest annual 
growth rate in population, the lowest secondary school ertrollment 
ratio, and the lowest energy consumption. Annual growth rate in GNP 

Table 4 
Means of variables within positions fur world system example 

Population 
Annual growth rate 

GNP per capita 
Annual growth rate 

Secondary school 
Enrollment ratio 

Energy consumption 

Per capita 

Position 

2, 

0.73 
(0.55) 
2.33 

(0.94) 
90.00 

(7.55) 

7217.67 

13838.70) 

AQ 
---~ 

1.30 
U~,63) 

4.30 

(1.83) 
57.00 

(26.37) 
2615.40 

CI625.32) 

is ‘7 

3.17 
(0.61) 
4.70 

(1.47) 

43.67 

(9.71) 
791.00 

fi85S7f 

9s 2B(, 

3.13 2.70 

(0.46) (0.76) 

2.20 - 0.57 

(2.18) (1.26) 

47.33 14.33 
(21.94) (4.93) 

1265.67 ZOO.00 

(1354.871 C262.73) 



per capita varies, but less systematically, across the positions, from a 
high of 4.3 for position LZ& to a low of -0.57 for position L?&. 

These examples have demonstrated that the positions of actors, 
identified on the basis of their relational ties, differ in the attributes of 
their actors. Exogenous attribute variables vary across the positions. 
However, a more complete interpretation of the blockmodel requires 
examining how the positions are related to each other. 

6.2. Describing individual positions 

A second way to interpret the result of a blockmode~ analysis is to 
describe how the individual positions relate to each other. This 
requires examining how the positions are involved in the relations, 
and how each position sends and receives relational ties in the 
blockmodel. One useful and informative strategy relies simply on the 
relational ties to and from the positions in the model (see Marsden 
1989; Burt 1976). Descriptive typologies of positions are useful for 
summarizing tendencies for positions to receive choices or to make 
choices within or outside the position. However, this approach does 
not allow the researcher to test whether these tendencies are statisti- 
cally large. 

Graph theorists have used the indegrees and outdegrees of nodes 
to describe types of nodes in a directed graph. We can use nodal 
indegrees and outdegrees to distinguish four different types of nodes 
(see Harary et al. 1965; and Marsden 1989): 

l isolates: nodes with neither indegree nor outdegree; 
l transmitters: nodes with only outdegree; 
l receivers: nodes with only indegree; and 
l carriers or ordinary points: nodes with both indegree and outde- 

gree. 

As Marsden (1989) has noted, this classification is also useful for 
describing positions in networks. Thus the same labels may be used to 
describe how positions relate to each other. 

These rather neutral labels refer simply to the presence or absence 
of relational ties to or from positions. If we also take into account the 
prevalence of “choices” that are made within a position, rather than 
to or from other positions, then the description can be more informa- 
tive. Burt (1976) provides a typology of positions that is useful for 



positively valued, affective, interpersonal ties, such as respect, liking, 
or esteem. His typology takes into account both whether the relational 
ties occur primarily within a position, and whether the ties are 
directed to the position from others. 

First, Burt distinguishes between positions that receive “choices” 
and positions that do not receive “choices”. Second, he distinguishes 
between positions that make less than half of their total “choices” to 
their own members, and positions that make half or more of their 
“choices” to their own members. By making these two distinctions one 
can determine whether each position receives “choices” or not, and 
whether each position makes more “choices” within the position 
rather than outside the position. These two distinctions result in a 
classification into four types of positions. Isolate positions neither give 
many “choices” nor do they direct many choices to other positions. 
Sycophants give more “choices” to other positions than to themselves, 
and do not receive many “choices”. Brokers both receive “choices” 
and send “choices” to other positions. The Primary position receives 
“choices” both from other positions, and from its own members. 

The use of an arbitrary cutoff value of 0.5 for the proportion of a 
position’s “choices” that are within the position is problematic, since 
the size of the position, g,, relative to the size of the group, g, affects 
the our expectation for the proportion of ties that are within the 
position. If a position is large relative to the size of the entire group, 
then one would expect many of the “choices” made by position 
members to be to other members of the position, simply because of 
their prevalence in the group, even if there were no ingroup bias in 
making “choices”. Similarly, a small position would be expected to 
have a low proportion of “choices” within the position, simply because 
there are relatively fewer actors in the position, It is therefore useful 
to consider the relative size of the position when examining the 
tendency for position members to make choices within the position. A 
reasonable value is the proportion of the total “choices” that are 
made within the position, compared to the proportion that would 
occur if there were no within or outside position bias in choices. 

Consider the “choices” made by members of position gk. If there 
are g, actors in position ~227~ then there are g, x (gk - 1) possible 
“choices*’ to be made within the position. In the whole group, there g 
actors, so there are g, x (g - 1) possible choices to be made in total 
by actors in position ~3’~ (recall that self choices are undefined). So, if 



K. Faust and S. Wasserman / Interpretation and eualuation 33 

Table 5 

Typology of positions, adapted from Burt (1976) 

‘2 2 1 l ah , t &Xl,, >g, 

P SK 
_ isolate 

g-1 
primary 

It Vk ,= lXt,r 
2 z: I t a,# , t x?Ax,,r g, -l 

8” 
sycophant broker 

2 reL& ,=1X,,, g-1 

there were no bias toward (or away) from making choices within the 
position, then we would expect that the proportion of a position’s total 
choices that are made within the position would be: 

gk x (8, - ‘> g, - l 

g, x (g - l) g-1. (3) 

One can use this proportion (rather than 0.5) as a baseline for 
evaluating the tendency for within position choices. Since this propor- 
tion depends on the number of actors in the position it will probably 
differ across positions. 

Table 5 summarizes the typology. The columns refer to the first 
distinction (receiving “choices” or not) and the rows refer to the 
second distinction (proportion of “choices” within the position). 

The labels, isolate, sycophant, broker and primary position, depend 
on the content of the relation. If the relation is negatively valued 
(blame, dislike and so on) then the primary position would be more 
appropriately interpreted as a scapegoat, or pariah. If the relation 
involved the flow of material goods (such as trade among nations, or 
buying and selling among corporations) then a position with a high 
ratio of “choices” made to “choices” received (in other words, rela- 
tively a high ratio goods sent) would be interpreted as a supplier or 
source, and a position with a relatively high ratio of “choices” re- 
ceived (in other words, relatively high ratio of goods bought) would be 
a consumer (Galaskiewicz and Krohn 19841, or enduser, and the 
brokers would be middlemen in the transaction. 

For communication networks, where the relation is usually the 
transmission of a message or information, Richards (1989) has pre- 
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sented a typology that is also based on indegree and outdegree 
conditions, and makes a similar distinction among positions. Since 
communication is often symmetric, it is likely to be represented as a 
nondirected graph. Richards distinguishes first between participant 
and nonparticipant positions. Nonparticipants are either isolates 
(neither indegree nor outdegree) or “tree nodes” (relate to only one 
other node); participants are liaisons (both indegree and outdegree, 
that is, they link two or more others) or group members. This typology 
is a fundamental part of the network analysis program NEGOPY 
(Richards 1989). 

Marsden (1989) has extended Burt’s (1976) typology by distinguish- 
ing between the level of “choices” made by a position, the level of 
“choices” receirled by a position, and the position’s ingroup preference. 
His typology combines features of the graph theoretic classification 
with the distinctions made in Burt’s typology. Making a binary (high 
versus low) distinction on each of these three dimensions, gives a 
typology with eight different kinds of positions. Marsden proposes log 
linear models for examining these three properties. 

Focusing on the level of indegree, outdegree, and within position 
relational ties can give a fairly interesting, and useful description of 
the positions that relies simply on the relational ties that each position 
is involved in. Since a blockmodel is likely to contain several relations, 
with quite different substantive meanings or contents arriving at a 
consistent description of a given position might be difficult. The 
“label” for a position (in one of the above schemes) might not be the 
same across the different relations. 

6.2. I. An example 
Now, let us look at an example to illustrate the typology of positions in 
Table 5. We will use the four position blockmodel of Krackhardt’s 
high-tech managers. In order to classify the positions, it is necessary to 
count the number of “choices” made by members of each position to 
other actors, both within and outside the position. These counts can 
be made by examining the sociomatrix with rows and columns per- 
muted so that actors in the same position are adjacent in the per- 
muted sociomatrix. Table 6 gives the frequency of “choices” within 
each block. 

First, notice that all positions receive at least some “choices” on 
both relations. Therefore on neither relation is there an isolate or a 
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Table 6 
Frequency of “choices” within and between positions for advice and friendship 

Advice total 

ST 
23; 

6 3 14 5 28 
34 11 27 15 87 

33 6 3 15 3 27 
34 f-2 17 10 9 48 

total 58 34 66 32 190 

Friendship total 

99, .S z 23 94 

A? 

3; 
15 14 9 5 43 
10 4 7 4 25 

3.x 5 2 6 2 15 
‘34 7 9 3 0 19 

total 37 29 25 11 102 

sycophant position (though position L?!?~ does receive relatively few 
friendship choices). Now, consider position LZ’~, and its ‘“choices” on 
the Advice relation. There are g, = 5 actors in this position, so we 
would expect that the proportion of their “choices” that would be 
within the position would be equal to (5 - 1)/(21 - 1) = 0.20. In fact, 
members of position ~8~ make 15 out of their total 27 Advice 
“choices” to their own members, for a proportion of 15/27 = 0.56. 
Since this proportion is higher than we would expect, this position is a 
Primary position on the Advice relation. In contrast, consider the 
Friendship “choices” made by members of position -iis,. We would 
expect that since there are g, = 6 actors in this position, that they 
would make 5/20 = 0.25 of their “choices” to their own members. 
However, only 4 of their 25 Friendship “choices” (a proportion of 
4/25 = 0.16) are to their own members. Thus, position ~8~ is a Broker 
on the Friendship relation. Table 7 gives the classification of the four 
positions on each of the two relations, using the typology in Table 5. 

Notice that position ~8~ is a Primary position on both relations, and 
position ~8~ is a Broker on both relations. Referring to Table 3, we 
see that position ~8~ has the oldest managers, and managers with the 
longest tenure, on average, whereas managers in position ~6’~ are 
intermediate on both attributes, 



Table 7 

Typotogy of positions for Krackhardt‘s high-tech managers 

Advice Friendship 

Broker Primary 

Broker Broker 

Primary Primary 

Primary Broker 

For the most part descriptions of single positions do not take into 
account the properties of the positions to which a given position is 
related. A Broker position gives and receives “choices” rather than 
making “choices” within the position, but the kinds of positions to 
which it is tied are unimportant. Similarly, a “transmitter” (a position 
with both in and outdegree) could be either at the bottom of a very 
long chain of command or pecking order, or toward the top. Thus, 
intermediate levels in a hierarchy would be indistinguishable (since 
they would have both indegree and outdegree). Although labels for 
kinds of positions, that we discussed in this section, are quite useful as 
a starting point for interpreting the results of a blockmodel analysis, 
they capture only a limited amount of information about the structural 
position of the given position. They do not describe the network as a 
whole. 

6.3. Image matrices 

The third way to study a blockmodel is in terms of the entire 
configuration of relational ties among positions that is expressed in 
the image matrix. Many structural theories posit patterns of relational 
ties among aggregates of actors. For example, the properties of 
balance and transitivity can be expressed in blockmodels. A network 
system with a center and a periphery, such as has been proposed for 
the world economic and political system (Snyder and Kick 19791, can 
be expressed in a blockmodel. Similarly, systems characterized by a 
hierarchy, the domination of one or more positions over others, or 
cohesive subgroups can be represented by blockmodels. We will 
describe and illustrate these patterns in this section. Theories that are 
expressed in terms of these patterns may be evaluated by examining 
the results of a blockmodel analysis to see whether the observed 
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blockmodel is consistent or inconsistent with the predicted pattern. 
This is approach is quite useful for describing overall patterns. 

6.3.1. Image matrices for two position blockmodels 
Some of the simplest possible blockmodels can give quite powerful 
representations of theoretical statements. For example, even a simple 
two position model, presented in a 2 x 2 image matrix, can represent 
quite interesting theoretical properties. In their introduction of block- 
models, White et al (1976) present the 16 possible arrangements that 
could arise in a two position blockmodel. Since there are two posi- 
tions, the image matrix for this blockmodel has 2 X 2 = 4 cells, each of 
which may be either a zero (zeroblock) or a one (a oneblock), so there 
are 24 possible arrangements of zeros and ones. Since the order of the 
positions is arbitrary, there are in fact only 10 distinct images (the 
others are isomorphic to one of these images). 

We begin by describing the images for 2 x 2 blockmodels, and then 
discuss some more complicated theoretical patterns that can occur in 
blockmodels with more than two positions. Figure 5 shows the 16 
possible image matrices for a two position model. 

Some of these patterns have clear interpretations in terms of 
structural theories. When there is a theoretical prediction about the 
arrangement of relational ties between positions, this gives rise to a 
posited image matrix. White et al. (1976) provide useful descriptions 
for many of these images. Image B, in Figure 5, is a single cohesive 
subgroup and an isolate position (assuming positive affective relation). 
Image C could indicate deference directed from members of one 
position to members of the other. In terms of individual position 
labels described in the previous section, these would be a sycophant 
and a primary position. Image D is “pure” reflexivity, and for a 
positive relation would indicate two cohesive subgroups. Image D 
could also represent an endogamous system in which all relational ties 
exist within subgroups, or homophily where all friendship choices are 
between actors with similar characteristics. In the context of world 
trade systems, Breiger (1981a) described this pattern as representing 
separate trading areas. Image E is “pure” symmetry. For a negative 
relation it would indicate opposition or hostility. Image E could also 
represent an exogamous system in which all relational ties are di- 
rected to members of another group (for example, “seeks a spouse 
from” in an exogamous system where marriages are between rather 



A. Null 

B, One reflexive arc 

C. One arc between positions 

D. Two arcs, r&exive 

E. Two arcs, symmetric 

G. Two ares, ref-%exive and %” 

H. Three arcs, 2 between positions 

I. Thee arcs, 2 reflexive 

J. Complete 

Fig. 5. Ten possible image matrices for a two position blockmodel. 

than within clans or villages). The combination of image I2 (for a 
positive relation) and E (for a negative relation) would be consistent 
with balance theory which predicts that a actors in a balanced system 
can be clustered so that all positive “choices” are within subsets and 
negative “choices” are between subsets. Image F distinguishes be- 
tween an “active” position and a “passive” position, in terms of 
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“choices” made. Image G combines aspects of a cohesive subgroup 
(image B) and a deference structure (C), and resembles a core-periph- 
ery system (again with one primary position, and a sycophant position). 
This pattern can also be interpreted as a hierarchy (Breiger 1981a). 
Image H is complete except for one reflexive tie. White et al. also 
interpret this as a center-periphery or hanger-on pattern. Image I is 
complete except for one directed relational tie from one position to 
the other. White et af. describe this form as a hierarchy, with 
deferential ties within each of the two levels of the hierarchy in 
addition to deferential ties from one position to the other. Image H is 
somewhat similar to image C, which has ties only between positions. 
Finally, image J is complete, and therefore shows no differentiation 
among positions. 

6.3.2. Image matrices with more than two positions 
Certainly not all blockmodels have only two positions. More interest- 
ing, but also more complex, systems arise when there are more 
positions. However, for a 3-position model there would be 2” = 512 
possible image matrices for a single relation, and 104 distinct image 
matrices (isomorphism classes). As the number of positions increases, 
the number of distinct image matrices increases rapidly. instead of 
enumerating all of the possible images for larger blockmodels, let us 
examine a few theoretically important, ideal images that display 
interesting structural properties. In particular we will illustrate images 
that display the properties of cohesive subgroups, a center-periphery 
structure, a hierarchy, a transitive system, and a centralized system. 
Figure 6 shows some of these ideal patterns. 

One of the most straightfo~ard patterns is a system that is com- 
posed of cohesive subgroups. Such a system will have an image matrix, 
for a single positively valued relation, that consists primarily of intra- 
position relational ties. Thus, the image matrix for a system of 
cohesive subgroups will have oneblocks on the main diagonal. The 
image matrix for a cohesive subgroup system is reflexive at the 
position level (even though at the level of individual-actor relational 
ties, self-self “choices” may be undefined). However, the positions in 
the blockmodel may not be graph theoretic cliques. Oneblocks may 
contain some zeros (they may not be complete subgraphs), and actors 
from one position may be connected to all of the actors in another 
position (the positions may not be “maximal”). 
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A. Cohesive subgroups 

B. Center-periphery 

/ 1 I 1 1000 1 10 1 1 1 0 0 1 I 

C. Centralized 

D. Hierarchy 

E. Transitivity 

Fig. 6. Some ideal images for blockmodels with more than two positions. 

Another common structural pattern to emerge is a center-periphery 
structure. This consists of a core position which is internally cohesive, 
and one or more other positions connected to the core position, but 
not to each other (Mullins ef al. 1977). The peripheral positions may 
or may not be internally cohesive. Examples of core-periphery systems 
include an elite position and hangers-on in a social group, or the 
proposed three “levels” in the world system consisting of the core, 
periphery and semiperiphery. In general, a center-periphery pattern is 
apparent in a blockmodel if the positions in the image matrix can be 
permuted so that the oneblocks are primarily in the upper left triangle 
of the image matrix, and the zeroblocks are primarily in the lower 
right triangle. The center-periphery pattern has been found, for exam- 
ple, in the trade relations in the world economic and political system 
(Snyder and Kick 1979; Breiger, 1981a). 
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A related pattern is a centralized system. A centralized system has 
all relational ties going toward (or away) from a single position. In an 
image matrix, all oneblocks would be in the same column (if all 
relational ties are to the same position), or all oneblocks would be in 
the same row (if all relational ties are from the same position). 
Reflexive ties may also be present. A centralized pattern was found by 
Doreian and Fararo (1985) in their study of citations among major 
journals in sociology. The most prestigious journals were in the central 
position and were cited by journals in all other positions. This pattern 
has also been found by Knoke and Rogers (1979) in their study of an 
interorganizational network. 

Another common pattern is a hierarchy. A hierarchy would appear 
as asymmetric, positive, relational ties directed from each position to 
one position immediately “above” it. A hierarchy could represent a 
chain of command in an organization. 

A system that is transitive at the level of the positions is similar to a 
hierarchy, but all interposition ties that are implied by the property of 
transitivity are also present. If there is a directed relational tie from 
position ~3~ to position 9, and there is a directed relational tie from 
S’, to Bm, then there is a directed relational tie from ~8~ to B,,,. In a 
fully transitive model, the rows and columns of the image matrix can 
be permuted so that all oneblocks are in the lower left triangle (or in 
the upper right triangle) of the matrix. Depending on the substance of 
the relation, a transitive image could indicate dominance or deference 
between positions. 

These patterns display aspects of theoretically “pure” or ideal 
structures. It is likely that any actual social network data blockmodels 
will show some variation around these patterns, or might combine 
features of two or more patterns. 

Examples. Let us first examine the image matrices for the three 
relations in the world system example. These images are displayed in 
Figure 2, and appear to show two different patterns. The image matrix 
for the Manufactured goods relation shows that positions Bi, S$, 
and ~8~ are the source of manufactured goods imported by all 
positions, whereas positions B4, z&, and B6 only import, but do not 
export manufactured goods. This is similar to a centralized system, 
with three positions in the center. The image matrices for Crude 
materials, and Diplomatic ties look similar to each other, and differ- 
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ent from the image matrix for Manufactured goods. Although neither 
of these two images perfectly matches one of the ideal types, both 
matrices are arranged so that the oneblocks are concentrated primar- 
ily in the upper left triangle of the matrix, and the zeroblocks are 
primarily in the lower right triangle. This pattern indicates a center- 
periphery system. In the world system example, position 9, is in the 
center, positions ~8~ and 9’h are on the periphery, and the other 
positions are intermediate. 

In the blockmodel for Krackhardt’s high-tech managers, the two 
relations, Advice and Friendship have different patterns. The advice 
relation is nearly transitive, at the level of the positions (the single 
“violation” is the reflexive tie at position 9J. If we think of positions 
seeking advice from other positions that are more prominent in the 
organization, then position ~27~ is at the top, followed by positions C!~,, 
B2 and ~8~. The pattern for Friendship is not as clear. Although 
positions ~8~ and 9, have intraposition Friendship ties, the system as 
a whole does not appear to be characterized by cohesive subgroups (at 
least for this blockmodel). 

6.3.3. Image matrices for multiple relations 
Interpreting blockmodels with multiple relations can be tedious. The 
researcher could propose separate interpretations for each image, but 
in the absence of a theoretical foundation, this seems ad hoc. One 
possible way to interpret multirelational blockmodels is to study pairs 
of image matrices to see whether they exhibit common kinds of 
multirelational patterns, such as multiplexity or exchange. Multiplexity 
of relations is the tendency for two or more relations to occur 
together. For example, “is a friend of” and “spends time with” are 
two relations that tend to occur together. Multiplex&y in a blockmodel 
would be apparent if two or more image matrices were identical (or 
nearly identical). Exchange occurs when one relation “flows” one way, 
and the second relation “flows” back. For example, “pays money to” 
and “delivers goods to” are two relations that form an exchange in an 
economic transaction. The property of exchange would be apparent in 
a blockmodel if one image matrix were the transpose of the other. 
This would indicate that whenever one kind of relational tie is present 
from the row position to the column position, the second kind of 
relational tie is present from the column position to the row position. 



K. Faust and S. Wasserman / ~nt~r~ret~tion and el~~~~~tion 43 

7. Bloc~od~l evaluation 

We now turn to the last question raised at the beginning of the paper. 
We want to measure the adequacy of a representation of a positional 
analysis. A blockmodel, one such representation, consists of a parti- 
tion of the actors in _M’ into positions and a statement of how the 
positions relate to each other. The adequacy of this construct can be 
studied with the methods presented here. 

There are two approaches for assessing how well a blockmodel, or 
another mathematical representation of the positions among a set of 
actors, fits. As mentioned earlier, one of these approaches is model- 
based, and the other is more descriptive. The model-based approach 
is more statistical, and certainly, more parametric. 

The primary difference between these two approaches lies at the 
center of a positional analyses. The definition of structural equiva- 
lence and the algorithms (such as CONCOR) commonly used to find a 
blockmodel, make no use of statistical ideas. Positional analysis is not 
a statistical method. This limitation prevents standard, parametric 
(that is, based on a specific parameterized family of probabili~ 
distributions) statistical tests and measures from being used to deter- 
mine directly how well a biockmodel fits a data set. Some researchers 
use blockmodel representations of a network data to summarize other 
aspects of a network data set; however, unless the blockmodel repre- 
sentation is independent of these other aspects, any statistical tests 
will not have accurate error rates. If statistical tests are desired in a 
network analysis, we recommend the use of statistical methods from 
the beginning of the analysis. Such methods can be used to find 
partitions of actors, and lead to proper statistical tests and measures 
of goodness-of-fit. 

There is a compromise between parametric statistical models and 
the positional analyses described earlier. Nonparametric tests can be 
used to test specific hypotheses. Some methodologists, such as Hubert 
and Schultz (1976), Hubert and Baker (1978), Arabie et al. (1978), 
Baker and Hubert (1981), Panning (1982a), and Noma and Smith 
(1983, propose the use of the common nonparametric randomization 
test in which all possible ways of placing g objects (or actors) into B 
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cells (or blockmodel positions) are considered. For each permutation 
of the data, an index can be computed, comparing the particular 
permutation to the blockmodel “prediction”. An index is then com- 
puted, measuring how close each permutation of the data is to the 
prediction (or in general, a “hypothesis” matrix), thus generating an 
entire distribution of indices (called the permutation distribution). 
One of these permutations is the observed blockmodel or partition, 
actually derived from the relational data. 

A permutation test of how well the predicted blockmodel or hy- 
pothesis fits the data is conducted simply by determining the fraction 
of the permutations that fit worse than the one actually observed (that 
is, the fraction of permutations that have indices indicating fits that 
are worse). The p-value for the test is this fraction, which is read from 
the permutation distribution as the tail probability beyond the index 
calculated for the observed blockmodel. This approach to data analy- 
sis, sometimes referred to as combinatorial data anaEy.sis (see Hubert 
and Schultz 1976; Hubert 1983, 198.5, 1987; and Hubert and Arabie 
1989), is quite similar to the approach to “testing” or evaluating 
blockmodels advocated by White et al. (1976) and White (1977), which 
is implemented by the BLOCKER algorithm of Heil and White 
(1976). Further, since permutation tests are nonparametric (that is, 
they make no assumptions about underlying distributions for the 
data), they can be used in a very wide range of network data analysis 
situations. Network researchers such as Laumann et al. (1974, 1977) 
and Krackhardt (1987b, 1988) have questioned the use of standard 
significance tests for the comparison of networks. Permutation tests 
are a nice response to these concerns. 

The second approach, as mentioned, is based on statistical theory 
for social network data. This idea uses a statistical or st~c~z~stic 
~~oc~~~~e~ to mathematically represent the equivalence classes de- 
fined on the actors. A stochastic blockmodel is a direct generalization 
of the pI class of probability models for social networks. This ap- 
proach was introduced by Holland et al. (1983) and Wasserman and 
Anderson (1987), and generalized by Breiger (1981b), Frank et al. 
(1985a, 1985b) and Wang and Wong (1987). 

Stochastic blockmodels use a different definition of equivalence. 
Specifically, they are based on stochastic equidence. In brief, one 
first assumes a random directed graph distribution, such as p,, and 
then focuses on the actor parameters. Two actors are stochasticaiiy 
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equivalent if we can interchange their parameters, without changing 
any of the probabilities of the distribution. Clearly, this approach is 
useful if a researcher is willing to assume that his or her data have 
been generated by a stochastic process; further, the task is simplified 
if he or she is willing to adopt p, for this stochastic mechanism. As we 
have mentioned, it is relatively easy to assess how well a stochastic 
blockmodel “fits” a data set, since goodness-of-fit statistics are a 
natural by-product of the statistical modeling process. 

We begin by introducing several goodness-of-fit indices for the fit of 
a blockmodel to a network data set. This methodology will be illus- 
trated on Krackhardt’s high-tech managers and the world system 
network. 

7.2. Go~dness~o~-at statistics for b~~ck~od~Is 

Consider a specific blockmodel, presented in a B X B X R matrix, 
labelled B, whose entries (denoted by {bkl,.)) tell how the positions are 
related on the various relations, This blockmodel B presents all the 
relational linkages among positions of approximately equivalent ac- 
tors. The quantity bk,r equals 0 if there is not (or 1 if there is> a 
linkage from position 95’k to position LZ$ on relation xr. A blockmodel 
also contains a mapping function defined on the actors, 4, that tells 
which position each actor belongs to. We will use this mapping 
function, as well as the blockmodel B in this section. 

One can view a blockmodel as an idealization, or an optimal model, 
in which actors in a specific position are predicted to be perfectly 
structurally equivalent. In practice, actors in a position are only 
approximately structurally equivalent. Nonetheless, we usually like to 
see how close to the ideal the actors actually are; in other words, how 
approximate are our approximate structural equivalences. If the opti- 
mal model holds, then all actors in a position are exactly structurally 
equivalent. 

There are two ways to evaluate the goodness-of-fit of a hypothe- 
sized blockmodel. The first way compares the blockmodel image 
matrices to the densities of relational ties within and among positions. 
The second way compares the observed relational ties among actors to 
the relational ties predicted by the blockmodel. 

Suppose we permute the original sociomatrices, so that the order of 
the actors matches the assignment of actors to positions, and then 
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consider the submatrices that arise due to the partitioning of the g 
actors into B positions. All of the actors with the same value of the 
mapping function C#J will be assigned to the same position. The first g, 
rows and columns of the permuted matrix will contain all the actors i 
with #b(i) -9r, the next g, rows and columns will contain all the 
actors with &it =G$, and so forth. Each submatrix, which in general, 
will be of dimension g, X g,, will have a density of ones, equal to the 
proportion of ties that are actually present between actors. If all 
actors are perfectly structurally equivalent, this density will be either 
zero or one, as specified (or predicted) by the blockmodel. The entire 
set of densities can then be compared to the blocks, or entries in the 
image matrices, to determine how well a blockmodel fits (that is, how 
close to optimal the blockmodel really is). 

If all the densities are zeros and ones, the blockmodel fits perfectly, 
since the actors within the positions are exactly structurally equivalent. 
In this instance, all blockmodel criteria (including fat fits, lean fits, 
and a blockmodels) yield exactly the same B. But rarely is this the 
case. To evaluate the fit of a blockmodel, we need methods and 
measures to compare the image matrices with the matrices of densi- 
ties. 

Alternatively, one can compare the original sociomatrices, which 
generate the image matrices, to their “predictions” under the block- 
model. Let us assume that actor i is in position Sk and actor j is in 
position 9,. The predicted value for the relational tie (on x,1 from 
actor i to actor j is equal to the link in the reduced graph from 
position S?~ to position 95’~. If this link is present, the predicted value 
is unity, then all the actors in 9k are predicted to have relational ties 
to the actors in position 99,; otherwise, if the arc is not present, the 
predicted value is zero. In this section, we discuss how to do these 
comparisons in order to evaluate how well a blockmodel fits a specific 
network data set. 

7.2.1. Comparing obserced densities to Q target bIockrnode1 
As mentioned earlier, the elements in the observed sociomatrices are 
usually aggregated across actors to yield the densities of ties within 
each of the positions. The density of ties within and between positions 
are given in Equations (1) and f2), above, and can be viewed as 
elements of a B x B x R matrix, A. The matrix A is the density table 
discussed earlier. 
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The first goodness-of-fit index for a blockmodel simply compares 
these densities to the blocks, or elements of the blockmodel B. 
Clearly the comparison of these two matrices, B and A, ignores which 
actors are in which positions; indeed, all that matters here is how well 
the image matrix (without the mapping function) models the average 
of the relational ties of the actors in the B positions (as reflected by 
the densities). Only when all the densities are 0 or 1, will a block- 
model fit perfectly. 

Thus, one measure of how well a blockmodel fits a data set is based 
on the differences between the elements of A, and the elements of B. 
If the blockmodel is constructed using the lean fit criterion, then a 
bklr = 0 only when the corresponding density Aklr = 0. Thus, any 
submatrices with ones become oneblocks. Lean fits are sometimes 
called “zeroblock” fits, since only zeroblocks are fit perfectly. A 
“oneblock” fit is the opposite of a lean fit: bklr = 1 only when the 
corresponding density Akl,. = 1. If the blockmodel is a fat fit, then the 
fit is a combination of a zeroblock and a oneblock fit: a bk,,_ = 0 only 
when the corresponding density Aklr = 0, and a bk,,. = 1 only when the 
corresponding density Aklr = 1. Clearly, fat fits are perfect structural 
equivalence fits. They fit exactly only when all actors within all 
positions are exactly structurally equivalent. We note that for a lean 
fit, bklr = 1 does not imply that the corresponding density Ak,r is 
actually 1; in fact, the density only needs to be greater than zero. And 
for a oneblock fit, bklr = 0 does not imply that the corresponding 
density Aklr = 0. These very strict definitions usually force most re- 
searchers to construct blockmodels using the more realistic cr-fit 
criterion. Regardless of the criterion chosen, it is rare for densities to 
be only zeros and ones, so that the b’s, which, by definition, can only 
be zeros and ones, will rarely exactly equal the A’s. 

A very simple goodness-of-fit index is the sum of the absolute 
differences between the elements of A and the elements of B. 
Specifically, we calculate 

This index, which varies from 0 to B X B X R = RB2 (the number of 
entries in B), attains the maximum if the fitted blockmodel is com- 
pletely reversed (O’s instead of l’s and l’s instead of O’s) from the 
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observed densities. The smaller it is, the better the fit. This measure is 
a crude indicator of fit. 

Another measure originated with Carrington et al. (1979/80), and 
Carrington and Heil (1981). Their index is constructed using a mini- 
mum chi-squared argument, and by considering the worst possible 
fitting blockmodel for a particular data set. Such a fit would have ones 
where zeros belong, and vice versa. This index is appropriate when the 
blockmodel is constructed from an a-fit criterion. The worst possible 
a-fit arises when the observed density for a given block is exactly equal 
to CX, since a slight change in the density necessitates that the “fitted” 
block value be changed from a 0 to a 1, or vice versa. The “goodness- 
of-fit” for a particular block then depends simply on how close Aklr is 
to CX. Details on the construction of this index can be found in 
Carrington et al. (1979/80), Carrington and Heil (1981) and Chapter 
18 of Wasserman and Faust (1992). 

Evaluatmg 6,, and related indices is difficult. There is no statistical 
theory or distribution for the indices. One could use a permutation 
test, permuting the actors to arrive at a different assignment of actors 
to positions, and hence, an entire collection of A matrices. There will 
be one A, and hence one Sh,, for every possible permutation of actors 
to positions. We have found that permutation tests are quite useful. 
Some of these tests are implemented in UCINET (Borgatti et al. 

1991). 
The methodology just discussed examines blocks, and the proper- 

ties of blocks, and ignores the relational ties among the actors. We 
now turn to the second approach for blockmodel goodness-of-fit, 
comparing the actual observed data to the relational linkages pre- 
dicted by a blockmodel. 

7.2.2. Comparing obserLled relational linkages to a target blockmodel 
Take the observed sociomatrices, with entries xIj,, and use the map- 
ping function for the blockmodel under consideration to arrive at the 
target, or “predicted” collection of relational linkages for each pair of 
actors on each relation. The blockmodel classifies actor i into position 
G’~Cij, and actor j into position 94Cj,, and the image matrix tells 
whether relational ties are present among and between positions. So, 
the “target” matrix is a hypothesized sociomatrix in which all actors in 
a position have identical ties to and from actors in other positions. 
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Thus, the predicted value, ~$1 for actors i and j on relation r is 

indicating whether the actors in the same position as i (~29~~~)) are 
predicted by the blockmodel to choose the actors in the same position 
as j (L~+~~J. We can view the x (‘j’s as elements of a target array (or 
hypothesis matrix), to which we compare the X’S, the actual socioma- 
trix entries. The superscript (t> indicates that the matrix (or its 
entries) is the “target” matrix, calculated from the blockmodel. We 
should note that this methodology is quite flexible, and can be used to 
compare x to any “hypothesis” matrix, even if the target or hypothesis 
matrix x(‘) is not generated from any particular blockmodel. Such is 
also the nature of permutation/ randomization tests. 

A number of goodness-of-fit indices exist for quantifying how close 
the observed x is to the target x (‘) Each index measures the similarity . 

(or dissimilarity) of the target and the actual relational data. The 
index of choice depends on the advantages and disadvantages of each, 
as we discuss below. We should note that there is no parametric 
statistical theory for any of them, but all can be evaluated using a 
nonparametric, randomization test approach, 

For example, we can calculate the sum of the absolute differences 
between the entries of the observed and target matrices: 

The value of 6,, is the number of entries in the observed sociomatrix, 
x that are not identical to their predicted values in the target matrix, 
x(“). It is thus a measure of dissimilari~ between the two matrices. As 
with ahl, shown in Equation (41, there is no statistical theory (except 
through the use of permutation tests) to evaluate the statistical signifi- 
cance of a particular value of a,,. The measure, 6Xl, comparing a 
sociomatrix to a target matrix, is a simple function of measure ljhl, 
given in Equation 4: 

a,, = g x (g - 1)&p (7) 

The network analysis program UCINET (Borgatti et al. 1991) calcu- 



lates a match coefficient, which we will denote axZ, which is very 
closely related to a,,. The match coeficient is the proportion of entries 
in x that are identical to x (I) Since there are g x (g - 1) entries in . 
the sociomatrix, the value of 6,, is: 

The measure, 6,, is a similarity measure; larger values indicate a 
closer fit between the observed sociomatrix and the target matrix. 

A third index is the “matrix correlation”, calculated using all the 
elements in x and the elements in x (t) (excluding diagonal elements). 
This index, which we will call Sxj, has been used by many researchers 
over the years (see Arabie et al. 1978). It was labeled T(X, XC”) by 
Hubert and Baker (1978). It is best utilized if the target sociomatrices 
are based on the lean fit blockmodel criterion since such fits yield 
targets containing more ones and fewer zeros (correlation coefficients 
are better measures of association if the data arrays do not contain 
too many zeros). As noted above, one can calculate EjxZ for any target 
or hypothesis matrix, and use it to evaluate the “hypothesis” that 
generated that particular xc’). 

Panning (1982a) and Noma and Smith (19851 recommend the use of 
the squared multiple correlation coefficient R2 as a goodness-of-fit 
measure to evaluate the fit of a blockmodel to data, and show how to 
use the statistic to find a “best-fitting” blockmodel. Both authors note 
that the predicted value for a specific submatrix from the original 
sociomatrices is either a 0 or a 1, and that the sum of squares of 
deviations of the entries in the submatrix from this predicted value 
can be used as a measure of fit. From the sums of squares for all 
submatrices or blocks, one can calculate both a within-block sum of 
squares and a sum of squares deviation from the grand mean (analo- 
gous to within-subjects and total sums of squares in a one-way analysis 
of variance). The index R2 is simply the ratio of these two sums of 
squares, subtracted from unity. The within-block or numerator sum of 
squares is the “total unexplained sum of squares”, and the measure 
increases as this quantity becomes small, relative to the total (or 
denominator) sum of squares. Illustrations of the use of this index can 



K. Faust and S. Wasserman / Interpretation and ecaluation 51 

be found in Panning (1982a, 1982b), and Norna and Smith (1985). 
Calculations are detailed by Panning (1982a). 

The utility of this index rests on an argument that blockmodeling is 
actually a form of an analysis of variance, in which the “independent” 
variables are the block densities, and the “dependent” variables are 
the observed entries within the sociomatrices. Hence, an “optimal” 
blocking should maximize the percent of explained variance, and lead 
a researcher to focus on R2, the statistic that has this property. 
Panning (1982a) gives a strategy for finding blockmodels that have 
maximal R2’s. We note that one can generate a permutation distribu- 
tion for this index (see Noma and Smith 1985) simply by considering 
all possible permutations of the actors to positions, and calculating R’ 
for each permutation. This leads to a valid, nonparametric statistical 
test for the goodness of an observed fit. The index is also easily used 
for multiple relation network data sets. 

However, as several authors have noted, neither 6,, nor R2 is 
well-suited for binary data, and thus, are not recommended. Carring- 
ton et al. (1979/80) comment on the suitability of the use of correla- 
tion coefficients (and hence squared multiple correlation coefficients, 
which are squares of correlation coefficients themselves) to compare 
two binary matrices. Faust and Romney (1985b) also comment on the 
use of correlation coefficients used to compare sociomatrices. 

Hubert and Baker (1978) show that for R = 1, the expected value of 
6,, is zero, where the distribution is taken over all possible permuta- 
tion assignments of the actors into the prespecified number of posi- 
tions, B. They also compute the variance of this index. These two 
results lead nicely to a permutation test which yields the significance 
level (or p-value) of the observed a,,. A good illustration of this 
approach is given by Baker and Hubert (1981). The advantages of this 
approach are discussed by Arabie et al. (19781, and include the fact 
that the number of actors partitioned into each of the B positions is 
constrained to match the position sizes actually observed. 

One disadvantage of this index is that the results of Hubert and 
Baker have not been extended to multiple relations, R > 1. Further, 
as noted by Arabie et al. (1978), lean fits and their filled-in oneblocks 
are usually a “poor assumption” about underlying social structure. 
Thus, indices built around them may not be very accurate. 

Other measures of association, comparing x to xc’), can be found in 
Katz and Powell (1953), Hubert and Baker (19781, Zegers and ten 



Berge (1985), and Wasserman (1987). Some of them are implemented 
in UCINET (Borgatti et al. 1991). Carrington ef a!.‘~ (1979/80) 
measure also falls into this category, since it can be written as a 
function of the observed data, rather than the observed densities (see 
Equation 7). For R = 1, one can view this problem as a birelational 
network analysis, where the two relations are the observed and the 
target. In this setting, Wasserman (1987) shows how to compare an 
observed to a target sociomatrix using dyadic interaction statistical 
models. 

~“~a?~~Ze.~. We will now iIlustrate blockmodel evaluation using a 
permutation test to compare the sociomatrix x to xc’). Calculations 
were done using the quadratic assignment program in UCINET 4.0 
(Borgatti et al. 1991). In each case we ran 1000 permutations of the 
rows (and columns) of the sociomatrix. Tables 8 and 9 report the 
calculated values of 6,, the match coefficient (Equation 81, and 13.~~ 
the matrix correlation for each of the examples. We also report the 
number of permutations out of 1000 in which the value of 6,: or a.,, 
was greater than the calculated value for x and xc’). 

The results in Table 8 show that for the World system example, for 
each relation, the ties predicted by the blockmodel image matrices 
(including the assignment of actors to positions, and the statement of 
relational ties among positions) are closer to the observed values of 
the relational variable than to any other assignment of actors to 
positions. So, for the World system example, the blockmodel image 
matrices are good representations of the relational ties among coun- 
tries. Similarly, the results for Krackhardt’s high-tech managers in 
Table 9 show that the blockmodels are good representations of the 

Table 8 

Comparison of observed relations to target blockmodels - world system example 

Relation Measure 

Manufactured goods 0.687 0.844 

(0.000) (0.000) 
Crude materials 0.59.1 0.799 

(r).OOO) (0.000) 
Diplomatic ties 0.588 0.801 

(0.000) (0.000) 
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Table 9 

Comparison of observed relations to target blockmodels - Krackhardt’s high-tech managers 

example 

Relation Measure 

Advice 

6 x3 6 x2 

0.512 0.752 

Friendship 

(0.000) (0.000) 
0.238 0.614 

(0.001) (0.001) 

relational ties among the managers. However, for the friendship 
relation there is one permutation of actors (out of the 1000 random 
permutations) that would better match the observed sociomatrix than 
does the proposed assignment of actors from the blockmodel. 

It is not surprising that, for both the World system example and 
Krackhardt’s high-tech managers, the relational ties predicted by the 
blockmodel are extremely similar to the observed relational ties. After 
all, the blockmodels were constructed from the relational ties in the 
first place. In an exploratory study, the researcher often seeks the 
“best” blockmodel of a given data set, In such a case if the permuta- 
tion test shows that there are one or more assignments of actors to 
positions that yield a better match between the observed data and the 
target blockmodel, then the researcher might be interested in studying 
this better assignment of actors to positions. This strategy of assigning 
actors to positions in order to optimize an objective function (such as 
6,Y, or ciX3), is an promising way to construct blockmodels. The direct 
construction of blockmodels has received considerable attention re- 
cently (Arabic et al. 1990; Batagelj et al. 1992a, 1992b). 

7.2.3. ~~~parin~ ~bseru~d relational linkages to a theoretical block- 
model 
Permutation tests can also be used to compare the observed relational 
ties in a set of network data to a blockmodel that represents a 
theoretical structure. Figures 5 and 6 present examples of blockmodel 
image matrices for some theoretically important structures, such as 
cohesive subgroups, a transitive structure, and a center-periphery 
structure. One can evaluate how well a specific theoretical structure 



represents a given set of network data by constructing the target 
sociomatrix, x (t) from the hypothesized theoretical structure. , 

Constructing the target sociomatrix, x(l), requires several steps, The 
first step is to partition actors into positions. This partition could be 
the result of a positional analysis in which approximately equivalent 
actors are assigned to the same position (for example, using hierarchi- 
cal clustering or CONCOR). The second step is to specify, for each 
pair of positions, whether a relational tie is present or absent, For 
some structures, such as cohesive subgroups, this decision is straight- 
forward, since in a cohesive subgroup structure, relational ties are 
hypothesized only within, and not between, positions. However, for 
other structures, such as a hierarchy, or a center-periphery structure, 
the hypothesized presence or absence of a tie between positions 
depends on where the positions are “located” in the structure. For 
example, in a hierarchy, relational ties are directed from “lower” 
positions to “higher” positions. Thus, the order of positions in the 
blockmodel is important. One way to arrive at an ordering is to 
consider theoretically important attributes of actors in the positions. 
For example, one could hypothesize that relational ties of advice in a 
blockmodel of an organization form a transitive system in which ties 
are directed from each position to all positions whose members have, 
on average, longer tenure in the organization. Thus, the positions 
would be ordered in term of the average tenure of members, Finally, 
the target sociomatrix is constructed, as usual, using equation 5. A 
relational tie is hypothesized to be present from actor i to ,j if there is 
a hypothesized relational tie from position 4(i) to position 4(j) in the 
theoretical structure that is being evaluated. 

Let us now turn to some examples to illustrate the evaluation of 
theoretical structures. 

Examples. We will look first at the advice relation for Krackhardt’s 
high-tech managers, and then study the three relations in the world 
system example. 

First, let us investigate the hypothesis that advice seeking among 
Krackhardt’s high-tech managers forms a transitive system in which 
members of each position seek advice from members of positions that 
contain managers with longer tenure in the company. Table 3 pre- 
sented the mean tenure in years for managers in each position. 
According to these means, members of position S8S have been with 
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the company longest on average, followed in order by positions 58’i, 
SZ, and gb, Thus, the blockmodel for the theoretical structure would 
be: 

i 0 0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 I 
Notice that the oneblocks do not occupy the upper right, or lower left, 
triangles of this image matrix, since the positions are not ordered from 
most to least tenure. 

The matrix correlation (S,,) between relational ties predicted by 
this transitive blockmodel structure, and the observed ties on the 
advice relation is equal to 0.269, and the match coefficient (6,K,) is 
equal to 0.460. Both of these are the largest values out of 1000 
random permutations of the rows and columns of the sociomatrix. 
Thus, the model of transitivity among positions, based on the average 
tenure of actors in the positions, fits the observed data quite well. 

Let us turn now to the world system example. As noted above, 
numerous authors have hypothesized that the world political and 
economic system is a center-periphery structure, in which more devel- 
oped nations occupy central positions, and less developed nations 
occupy peripheral positions. In the world system example we have 
already ordered the positions from most central, .S1, to least central, 
Se, based on the three image matrices presented in Figure 2. This 
ordering also appears to correspond well to the attributes of the 
positions, presented in Table 4. 

A permutation test can be used to compare the target sociomatrix 
based on a center-periphe~ structure with the observed relational ties 
for each relation in the world system example. The theoretical block- 
model image for a center-periphery structure was constructed with 
B = 6 positions, and oneblocks in the upper left triangle of the image 
matrix (see Figure 61. The target sociomatrix for this image matrix was 
then compared to each of the three relations. For the manufactured 
goods relation, 6, = 0.536, and S, = 0.772; both are the largest out of 
1000 permutations. For the crude materials relation, 6, = 0.532, and 
6, = 0.799; both are largest out of 1000 permutations. Finally, for the 
diplomatic ties relation, 6, = 0.513, and 6, = 0.759; both are the 



largest out of 1000 permutations. So, this assignment of countries to 
positions, and this ordering of positions, matches a center-periphery 
structure quite well. 

We turn now to a brief summary and discussion of the results, with 
a comparison of the various approaches to blockmodel interpretation 
and evaluation. 

8. Summary 

In this paper we have discussed and illustrated several approaches 
to the interpretation and evaluation of blockmodels. Ideally, the 
several approaches to blockmodel interpretation should yield comple- 
mentary insights into a network data set. This seems to be the case for 
the examples discussed in this paper. 

For Krackhardt’s high-tech managers, the blockmodel of the advice 
and friendship relations gives a consistent picture of positions within 
the corporation, Positions can be ordered in a transitive hierarchy, 
with position ~23~ at the top, followed by position gr, and then the 
other two positions. This is confirmed by the permutation test. Posi- 
tion g3, the “top” of the hierarchy, contains the oldest managers, and 
the managers with the longest tenure in the company. Furthermore, 
~8’~ and was identified as a Primary position on both the friendship 
and advice relations. Position ~23’~ contains the managers with the 
second longest tenure, on average. Position 9, was identified as a 
Primary position on the friendship relation. 

The world system example seems to be consistent with a center- 
periphery structure, as confirmed by the permutation test. The order- 
ing of positions from center to periphery is also related to the 
characteristics of the countries. Core positions (for example ~LZ’~, B2 
and LZ?J have lower rates of population growth, higher secondary 
school enrollment, and higher energy consumption per capita, whereas 
peripheral positions (for example, L+Y4, B5, and ~3~) have higher rates 
of population growth, lower rates of secondary school enrollment, and 
lower energy consumption per capita. 

Hopefully, a greater emphasis on interpretation and evaluation of 
blockmodels, as one part of a complete positional analysis, will allow 
researchers to employ blockmode1ling more effectively in substantive 
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and theoretical investigations, and to use blockmodels to evaluate 
structural theories. 
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