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Triadic configurations are fundamental to many social structural
processes and provide the basis for a variety of social network the-
ories and methodologies. This paper addresses the question of how
much of the patterning of triads is accounted for by lower-order
properties pertaining to nodes and dyads. The empirical base is
a collection of 82 social networks representing a number of dif-
ferent species (humans, baboons, macaques, bison, cattle, goats,
sparrows, caribou, and more) and an assortment of social rela-
tions (friendship, negative sentiments, choice of work partners, ad-
vice seeking, reported social interactions, victories in agonistic en-
counters, dominance, and co-observation). Methodology uses low
dimensional representations of triad censuses for these social net-
works, as compared to censuses expected given four lower-order
social network properties. Results show that triadic structure is
largely accounted for by properties more local than triads: net-
work density, nodal indegree and outdegree distributions, and the
dyad census. These findings reinforce the observation that struc-
tural configurations that can be realized in empirical social net-
works are severely constrained by very local network properties,
making some configurations extremely improbable.
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1. BACKGROUND

Network approaches to social structure view human and nonhuman an-
imal populations as systems of relations among interacting units—with
examples including communications, exchange of material resources,
expressions of affection, informal social interactions, kinship relations,
victories in agonistic encounters, exercise of authority, and provision
of social support. Relations among triads—triples of units—are funda-
mental to structural patterns in many of these relations and considerable
theoretical, empirical, and methodological work in the social sciences
concerns triads.

Simmel (1950) is often credited with the early insight that social
processes are fundamentally different when three rather than two people
are involved, thus focusing attention on the triad. The third person in
an interaction affords possibility for mediation between the other two,
the formation of coalitions, and advantages accruing through tertius
strategies such as brokerage. Appreciation of the importance of triadic
processes has been carried forward in a number of ways, and several in-
fluential social theories rest, at least in part, on triadic patterns. Theories
on cognitive balance (Heider 1946) and its generalization to structural
balance (Cartwright and Harary 1956) focus on the strain involved in
triads when sentiments are not consonant—for example when two close
friends are in strong disagreement about their evaluation of another per-
son or object. Granovetter’s (1973) classic strength of weak ties argu-
ment proceeds from the strong (admittedly overstated) assumption that
when an individual, A, has strong ties with two others, B and C, then the
tie between B and C should not be absent. A “forbidden triad” is one
that violates this assumption. Granovetter then follows the social struc-
tural implications of the absence of forbidden triads for the occurrence
of bridging weak ties, social integration, and information diffusion in
social networks. Related ideas are found in Burt’s (1992) structural holes
argument and its extensions. The argument is that efficiency and effec-
tiveness result from nonredundant ties. A person who has ties to others
who are not themselves tied bridges a structural hole. This pattern, which
often forms an open triangle, is an important locus for strategic action.
Triadic processes are also implicated in third-party effects on trust and
reputation (Burt and Knez 1995). Third parties can affect dyadic trans-
actions, in which they are not directly involved, by conveying (or being
in a position to convey) information about the actions of others, thus
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influencing their reputations. Third-party effects are also important in
interactions among nonhuman animals, and they have been most exten-
sively investigated in dominance encounters (Chase 1982; Chase, Tovey,
and Murch 2003). Empirical evidence demonstrates that the presence
of third parties affects the instability of dominance orderings and the
persistence of disadvantage from prior losses. Moreover, a triadic “by-
stander” effect might be necessary for development of dominance hi-
erarchies (Skvoretz, Faust, and Fararo 1996). Though in very different
contexts from Simmel’s (1950) original theoretical reasoning, these em-
pirical results similarly challenge an assumption that valid conclusions
about dyadic interactions can be reached by studying them in isolation.

These lines of research point to triadic configurations and in-
teractions among triples as important for larger social processes. Since
triads concern relations among social actors, most often they are stud-
ied using a social network formalization. Indeed, triads have been at
the heart of theoretical and methodological advances in social network
research for nearly half a century. Triads are implicated in many social
network theories, as noted above. Triads and properties of triples also
provide the basis for important social network methods—for example,
the triad census (Holland and Leinhardt 1970), random and biased nets
(Skvoretz, Fararo, and Agneessens 2004), the formal linkage between lo-
cal network processes and global social structures (Johnsen 1998), tran-
sitivity indices (Frank and Harary 1982), triad based role equivalence
(Burt 1990), and structural effects in many exponential random graph
models (Kalish and Robins 2006; Robins and Pattison 2005; Robins
et al. forthcoming; Snijders et al. 2006).

The importance of triads in social structural investigation can
hardly be overstated, as Holland and Leinhardt argue,

The essential issue of any notion of structure is how
the components are combined, not the components
themselves. . .this issue amounts to the proposition that
the lowest interesting level of structure. . .is the level of
triples of nodes—the triadic level (1979:66).

Holland and Leinhardt then recognize that nodal and dyadic
properties constrain possible triadic structures that might be realized
empirically, and they ask whether social network data contain any
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information beyond that expected from lower-level properties: con-
straints imposed by data collection methods (e.g., question format),
differences in popularity among actors, and a tendency for sociometric
choices to be reciprocated (Holland and Leinhardt 1979). The extended
investigations of triads by Holland and Leinhardt as well as others fol-
lowing their lead tackled these related questions, but at no point have
they answered the question: How much of the triadic structure is ac-
counted for by nodal and dyadic properties? This paper provides an
answer to that question and shows that more than 90% of the triadic
structure in a collection of diverse social networks is accounted for by
lower-order properties. The implications of this result are far-reaching.
If a substantial portion of triadic structure is explained by nodal and
dyadic features, then the theoretical and methodological importance of
triadic properties and processes are brought into question.

The analyses that follow extend the work of Skvoretz and Faust
on social network comparisons (Faust and Skvoretz 2002; Skvoretz and
Faust 2002) and especially the results of Faust (2006), demonstrating
that triad censuses for a collection of 51 social networks are largely
explained by linear and quadratic functions of network density and
dyad distributions. This paper uses a different sample of 82 social net-
works and a different methodological approach, comparing triad cen-
suses for these observed networks with censuses expected given four
different lower-order network properties: (1) network density, (2) the
outdegree distribution, (3) the indegree distribution, and (4) the dyad
census. The analysis employs low-dimensional representations of ob-
served and expected triad censuses followed by canonical redundancy
analysis to quantify the exact percentage of variance in the observed
triad censuses that is explained by triad censuses expected given the
lower-order network properties.

2. LOCAL STRUCTURE IN SOCIAL NETWORKS

A social network, represented as a graph or directed graph, consists,
minimally, of a set of nodes (also referred to as points or vertices) rep-
resenting social actors and a set of arcs (edges or ties) between pairs of
nodes, representing social relations between actors. A graph with node
set V and arc set E is denoted G(V , E). A social network with g actors
can be displayed in a g × g sociomatrix, X , in which rows and columns
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index actors, in identical order, and entries, xij, code the state of the arc
from actor i to actor j. This minimal social network may be elaborated
by allowing valued arcs, multiple relations, arcs that are nondyadic (i.e.,
that include more than two actors), have more than two sets of actors, or
have attributes for actors or arcs. In the following analyses, all networks
are directional and dichotomous (xij = 0 or 1), and self ties (reflexive
arcs, xii) are undefined.

Properties of social networks can be defined at different levels of
aggregation, from local measures for individual nodes or small subsets
to global measures requiring simultaneous information about the entire
graph. Local structural properties refer to network measures defined for
nodes, pairs of nodes, or triples of nodes. Nodal properties include, for
example, nodal outdegree—the number of nodes adjacent from the node
xi+ = ∑g

j=1 xi j —and nodal indegree—the number of nodes adjacent to
the node x+ j = ∑g

i=1 xi j . Network density, �, the proportion of possible
ties that are present in a network, can be expressed as a network-level
summary of nodal degrees:

� =

g∑
i=1

xi+

g(g − 1)
=

g∑
j=1

x+ j

g(g − 1)
=

g∑
i=1

g∑
j=1
j �=i

xi j

g(g − 1)
. (1)

2.1. Subgraphs, Dyads, and Triads

Dyadic and triadic social network properties are defined on subgraphs
of two or three nodes, respectively. A subgraph, GS(VS, ES), of a graph,
G(V , E), consists of a subset of nodes from graph VS ⊂ V along with
the arcs involving nodes within subset ES ⊂ E. A dyad is a subgraph
of two nodes and the states of the arc(s) between them. For a directed
graph with g nodes, there are ( g

2 ) = g(g−1)
2 dyads. A triad is a subgraph

of three nodes and the states of the arc(s) between them. There are
( g

3 ) = g(g−1)(g−2)
6 triads in a directed graph.

2.2. Isomorphism Classes and Subgraph Censuses

Summary measures of local structural properties are often based on
a census of subgraphs of a given size from a graph and rely on
isomorphism classes of these subgraphs. Two graphs (or subgraphs)
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are isomorphic if there is a one-to-one mapping between the nodes in
the two graphs that preserves adjacency. An isomorphism class is a set
of isomorphic graphs or subgraphs. Dyads in a directed graph must be
in one of three isomorphism classes: (1) mutual (M), (2) asymmetric (A)
ignoring the direction of the arc, or (3) null (N). The dyad census of a
network is a count of the number of dyads in each of the three isomor-
phism classes, and it is often labeled MAN. Triads in a directed graph
must be in one of 16 isomorphism classes, as presented in Figure 1.
This figure uses the standard labeling indicating the number of mutual,
asymmetric, and null dyads in the triad, along with an additional letter
for direction (U, D, C, or T) when necessary (Holland and Leinhardt
1970). The triad census for a network is summarized in a 16 element
vector, t:

t = (c003, c012, c102, c021D, c021U, c021C, c111D, c111U, c030T, c030C,

c201, c120D, c120U, c120C, c210, c300)

where c � is the count of the number of triads of type � in the network.
For small subgraphs (dyads or triads), a subgraph census provides sub-
stantial simplification of a network since there are relatively few iso-
morphism classes (Wasserman and Faust 1994). Moreover, the dyad
and triad censuses retain important information about local structural
properties, including graph density and the prevalence of mutuality in
the dyad census, and, additionally, about transitivity, intransitivity, and
three-cycles in the triad census.

Several important local social network properties are triadic, in-
cluding transitivity, intransitivity, and three-cycles. A triple of nodes i,
j, k is transitive if i → j and j → k implies i → k. A triple of nodes i,
j, k is intransitive if i → j and j → k but i �→ k (where �→ indicates the
absence of a tie from i to k). A triple is a cycle if i → j, j → k, and k → i.
A descriptive measure of the tendency toward transitivity is the num-
ber of transitive triples in a graph divided by the number of potentially
transitive triples—that is, the number of triples of nodes i, j, k, where
the condition i → j and j → k holds:

g∑
k=1

g∑
j=1

g∑
i=1

xi j xjkxik

g∑
k=1

g∑
j=1

g∑
i=1

xi j xjk

. (2)
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FIGURE 1. Triad isomorphism classes with MAN labeling.

3. TRIAD CENSUS, THEORY, AND METHODOLOGY

The triad census has been the workhorse of fruitful investigations of
local structure in social networks for many decades (Davis 1970, 1977,



216 FAUST

1979; Davis and Leinhardt 1972; Faust 2006; Frank 1988; Friedkin
1998; Hallinan 1974a, 1974b; Holland and Leinhardt 1970, 1971, 1972,
1973, 1976, 1979; Johnsen 1985, 1986, 1989a, 1989b, 1998; Skvoretz
et al. 2004; Wasserman 1977). Early work employing the triad census
investigated the presence of theoretically important triadic properties:
structural balance, clusterability, ranked clusters, and transitivity. The
triad census can also be used to investigate hierarchy or linear orders, as
described below. The usefulness of the triad census for these investiga-
tions arises from the formal linkage between posited global structures
and permitted or forbidden local triadic processes and patterns, reflected
in the triad census. As introduced in papers by Davis (1970, 1977, 1979)
and Holland and Leinhardt (1970, 1971, 1972, 1973, 1976, 1979), and
elaborated in the work of Johnsen (1985, 1986, 1989a, 1989b, 1998), spe-
cific global structural patterns imply the presence and absence of spe-
cific triadic configurations, just as the occurrence and nonoccurrence of
specific triadic patterns imply specific global structural configurations.
Thus, the triad census is useful for evaluating theories about linkage
between local processes and global structures because some theoretical
global structures are contradicted by specific configurations of triads.
Such a global theory is evaluated by examining empirical networks for
substantial occurrence of triads inconsistent with the theory.

The earliest work in this vein built on social psychological the-
ories of cognitive balance (Heider 1946), interpersonal similarity and
friendship formation (Homans 1950), and their implications for pat-
terns of positive sentiments among individuals. Structural balance
(Cartwright and Harary 1956) generalizes Heider’s cognitive balance
to a social structural property of a network, using a signed graph in
which edges have a positive or negative valence. As a global structure,
a balanced signed graph is one in which nodes can be partitioned into
two subgraphs, where all ties within each subgraph have positive signs
and all ties between the two subgraphs have negative signs. In a directed
graph (Johnsen 1985, 1986, 1998), mutual ties are treated as positive
and null ties as negative. A balanced directed graph has only mutual
ties within subgraphs and only null ties between subgraphs. A balanced
directed graph permits only two kinds of triads: {300 and 102}. Other
triads contradict the theory.

Davis (1967) extended structural balance to the more sociolog-
ically reasonable notion of clusterability, allowing more than two sub-
groups. In a clusterable signed graph, nodes can be partitioned into more
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than two subgraphs, with positive ties only within subgraphs and neg-
ative ties only between subgraphs. In a clusterable directed graph, with
mutual ties treated as positive and null ties as negative, three triads are
permitted: {300, 102, 003}. All other triads violate the theory. A clus-
terable directed graph for a positive sentiment relation could represent
patterns of friendship in a population with multiple friendship cliques,
where no friendships occur between members of different cliques.

If there is hierarchical ranking between subgroups, then the
ranked clusters model holds (Davis 1970; Davis and Leinhardt 1972).
The ranked clusters model extends clustering to allow directed (asym-
metric) ties between subgraphs, with orientation of the directed ties
consistent with hierarchical ordering of subgraphs in which ties are di-
rected from “lower” to “higher” subgraphs. The permitted triads for this
model are {300, 102, 003, 120D, 120U, 030T, 021D, 021U}. The ranked
clusters global model could represent a population with multiple friend-
ship cliques ranked in prestige or popularity, where friendships between
cliques are directed from lower to higher status clique members.

Transitivity is the most general global model and subsumes the
other models as special cases (Holland and Leinhardt 1971). If this
model holds, then, for all triples of nodes i, j, k, whenever the i → j
and j → k ties are present, the i → k tie must also be present. All tri-
ads that contain triples for which transitivity is violated are forbidden
by this model. For example, the 021C triad (i → j, j → k, and k → i)
lacks the required i → k tie and so violates the transitivity model, as
do other triads that contain such intransitive triples. The transitivity
model permits the following triads: {300, 102, 003, 120D, 120U, 030T,
021D, 021U, 012}. The global structure for transitivity allows multi-
ple, disconnected systems of ranked clusters in a population. It could
characterize friendships in a population where there is gender or ethnic
segregation, so different sets of people have distinct systems of ranked
friendship clusters.

Global structures associated with local processes in typically
asymmetric relations, such as dominance or victories in agonistic en-
counters, can also be expressed as permitted and forbidden triads. A
complete tournament recording wins and losses, with no ties, has only
asymmetric dyads (either i → j or j → i for all i and j) and so only per-
mits two triads: {030C, 030T}. If the tournament is incomplete (that
is, some dyads may be null) and also forms a linear order, then the
permitted triads are {003, 012, 021C}.
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Recent work on triads has extended the census to graphs with
more than one set of actors (Snijders and Stokman 1987), used local
triad censuses to measure role equivalence (Burt 1990), demonstrated
use of triads for studying biased networks (Skvoretz et al. 2004), devel-
oped efficient estimation procedures for large networks (Batagelj and
Mrvar 2001; Karlberg 1998; Moody 1998), and used triads to investigate
influence structures in scientific networks (Friedkin 1998).

Given the different local structural processes associated with dif-
ferent triadic global structures, it is reasonable to expect detectable tri-
adic differences among social networks, especially when networks are
formed from substantively different social relations. Thus, a heteroge-
neous collection of social networks of different kinds of relations is
suitable for investigating the question posed at the beginning of this
paper concerning how much of the triadic structure in social networks
is accounted for by nodal and dyadic properties.

4. ANALYSIS OVERVIEW

An important consideration in investigation of social network structure
is whether patterns observed at a given level of aggregation can be ac-
counted for by lower-order structural features. In the current case, the
question is whether the distribution of triads for a collection of social
networks can be accounted for by features of nodes and dyads. If so,
then a follow-up question concerns how much of the variability in the
triad censuses can be explained by these lower-order properties. These
questions are addressed in a multistage analysis.

First, triad censuses are found for a heterogeneous collection
of social networks. The unit of analysis is a social network, and the
collection of triad censuses for the networks is the object of further
study. Second, triad censuses that would be expected given lower-order
properties of the networks are calculated, using four lower-order prop-
erties: (1) network density, (2) the outdegree distribution, (3) the in-
degree distribution, and the (4) dyad census (MAN). Evaluating the
percentage of variance in the observed triad censuses that is explained
by the four lower-order structural features proceeds by comparing the
observed censuses with the expected censuses. Comparison is based on
low-dimensional projections from singular value decomposition (SVD),
and it uses canonical redundancy analysis (described below) to assess
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the percentage of the SVD of observed triad censuses explained by the
SVD of each of the expected censuses. Parallel analyses proceed for the
spaces of networks and triads. Third, adjustment is made for the fact
that low-dimensional SVD accounts for less than 100% of the observed
triad censuses, to arrive at a summary of the percentage of the ob-
served triad censuses that can be accounted for by each of four expected
censuses.

5. DATA

The empirical base for the analysis that follows is a collection of 82
social networks representing a number of different species (humans, ba-
boons, macaques, bison, cattle, goats, sparrows, caribou, and others)
and a variety of social relations (friendship, negative sentiments, choice
of work partners, advice seeking, reported social interactions, victories
in agonistic encounters, dominance displays, and co-observation). These
social networks were compiled from published sources in the social sci-
ences and in animal behavior, or as accompaniments to standard social
network software such as UCINET (Borgatti, Everett, and Freeman
2002). Descriptions of the networks are presented in Appendix A and
references to their sources are in Appendix B. All networks are between
individuals (rather than collectivities or aggregate units) and are treated
as directed, dichotomous relations. As can be seen from the descriptive
statistics in Table 1, the networks vary in size from 7 to 97 individuals
and differ in their density, proportions of mutual, asymmetric, and null
dyads, and tendency toward transitivity.

The triad census for each network was found (using a version of
the SAS program described in Moody 1998) and arrayed in a matrix,
denoted T0. This matrix has 82 rows indexing networks and 16 columns
indexing the triad isomorphism classes. Table 2 presents this matrix,
expressed in row percentages. These triad censuses show considerable
variability among the networks. Notably, in 13% of the networks there
are no 003 (all null) triads; however in networks #1 (rejection nomina-
tions by school children) and #28 (work choice partners) over 90% of
the triads are 003. In 34% of the networks there are no 030T (transitive)
triads, in contrast to networks #45 (dominance between finches) and
#49 (dominance between hens) in which over 90% of triads are 030T.
In 71% of the networks the 300 (all mutual) triad is absent, though in
network #51 (co-observation of kangaroos) it exceeds 40%.
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TABLE 1
Descriptive Statistics for Social Networks, N = 82

Proportion Proportion Proportion Proportion
Statistic Size Density Mutual Asymmetric Null Transitive

Mean 24.049 0.270 0.108 0.325 0.567 0.474
Standard 14.715 0.181 0.135 0.258 0.284 0.266

deviation
Minimum 7 0.012 0.000 0.000 0.000 0.000
Maximum 97 0.717 0.669 1.000 0.978 1.000
25th 16 0.125 0.022 0.121 0.375 0.272
50th 20 0.246 0.055 0.239 0.590 0.456
75th 28.250 0.376 0.162 0.521 0.810 0.665

Analyses now address the question of how much of the ar-
ray of observed triad censuses is explained by lower-order proper-
ties: graph density, indegree and outdegree distributions, and the dyad
census.

6. EXPECTED TRIAD CENSUSES, CONDITIONAL
ON LOWER-ORDER GRAPH PROPERTIES

The question of how much of the observed triad censuses can be ex-
plained by lower-order graph properties compares the 82 observed triad
censuses with those that are expected, given four lower-order graph
properties: (1) density of the network �; (2) the dyad census MAN;
(3) the outdegree distribution {xi+}; and (4) the indegree distribution
{x+j}. In each case, expected triad frequencies are calculated directly
(Wasserman 1977; Holland and Leinhardt 1976; Skvoretz et al. 2004).
Formulas for finding these expected triad censuses are presented
in Table 3.

Expected triad censuses, given network density, are found using
a Bernoulli directed graph model. In this case triad probabilities are
calculated as functions of the number of ties in a triad and the density
of the network (Skvoretz et al. 2004). For example, the 300 triad has six
ties, so its probability is �6. Similarly, the 012 triad has one asymmetric
dyad (with one tie), which may be in one of six location/orientation
combinations, and two null dyads, which means that its probability is
6� (1 − �)5.
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TABLE 3
Formulas for Expected Triad Censuses

Condition

Triad Densitya Dyad Censusb Outdegreesc

003 (1 − �)6 N(3) [000]
012 6� (1 − �)5 3AN(2) 2[100] + 2[010] + 2[001]
102 3�2 (1 − �)4 3MN(2) [110] + [101] + [011]
021D 3�2 (1 − �)4 3

4 NA(2) [200] + [020] + [002]
021U 3�2 (1 − �)4 3

4 NA(2) [110] + [101] + [011]
021C 6�2 (1 − �)4 3

2 NA(2) 2[110] + 2[101] + 2[011]
111D 6�3 (1 − �)3 3MAN 6[111]
111U 6�3 (1 − �)3 3MAN [210] + [201] + [120] + [102] + [021] + [012]
030T 6�3 (1 − �)3 3

4 A(3) [210] + [201] + [120] + [102] + [021] + [012]
030C 2�3 (1 − �)3 1

4 A(3) 2[111]
201 3�4 (1 − �)2 3NM(2) [211] + [121] + [112]
120D 3�4 (1 − �)2 3

4 MA(2) [211] + [121] + [112]
120U 3�4 (1 − �)2 3

4 MA(2) [220] + [202] + [022]
120C 6�4 (1 − �)2 3

4 MA(2) 2[211] + 2[121] + 2[112]
210 6�5 (1 − �) 3AM(2) 2[221] + 2[212] + 2[122]
300 �6 M(3) [222]

aProbability in Bernoulli digraph (Skvoretz et al. 2004).
bNumerators for probability, uniform given dyad census (MAN). The denominator

is ( g
2 )(3), using descending factorial notation where z(k) = z(z − 1) · · · (z − k + 1) (Holland

and Leinhardt 1970, 1976).

cWhere [di , d j , dk] =

(
2
di

)(
g − 3

xi+ − di

)
(

g − 1
xi+

)
(

2
d j

)(
g − 3

xj+ − d j

)
(

g − 1
xj+

)
(

2
dk

)(
g − 3

xk+ − dk

)
(

g − 1
xk+

) (Wasserman

1977).

Expected triads based on the other three lower-order proper-
ties are found using conditional uniform graph distributions. Such
distribution for a focal network has as its sample space all possible
graphs with the same number of nodes as the focal graph and the same
value(s) of the graph properties on which the distribution is conditioned
(Holland and Leinhardt 1976; Wasserman and Faust 1994).

Triad probabilities conditional on the dyad census (MAN) are
calculated from the numbers of M, A, and N dyads in the network
(Holland and Leinhardt 1976). To illustrate, the 300 triad has three
mutual dyads and no asymmetric or null dyads, so the numerator for its
probability is M(3) = M(M − 1)(M − 2) and the denominator is
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(
g
2

)(3)

=
[(

g
2

)
− 1

] [(
g
2

)
− 2

]
,

the number of ways of arranging the dyads. The descending factorial no-
tation is z(k) = z(z − 1) · · · (z − k + 1). The 012 triad has one asymmetric
dyad, which may be in one of three locations, and two null dyads. Thus,
the numerator for probability of this triad is 3AN(2) and its denominator
is ( g

2 )(3).
Expected triad censuses conditional on the outdegree distribu-

tion are found by considering the outdegrees of the three nodes in a
given triad (denoted di, dj, dk) and then calculating the probability of
three nodes with the specific outdegrees from all possible combina-
tions of three nodes from the graph, given their outdegrees xi+, xj+,
xk+ (Wasserman 1977). Expected triad frequencies are then found by
summing these probabilities across all combinations of three nodes. For
an ordered triple of nodes, the probability that they form a triad with
outdegrees di, dj, dk is

Pr[di , d j , dk] =


 2

di





 g − 3

xi+ − di





 g − 1

xi+





 2

d j





 g − 3

xj+ − d j





 g − 1

xj+





 2

dk





 g − 3

xk+ − dk





 g − 1

xk+




.

(3)

To illustrate, the 012 triad has one node with outdegree equal
to 1 and two nodes with outdegree equal to 0. The probability that the
ordered triple of nodes i, j, and k, with outdegrees xi+, xj+, xk+, form a
012 triad is

Pr[di , d j , dk] =


 2

0





 g − 3

xi+ − 0





 g − 1

xi+





 2

0





 g − 3

xj+ − 0





 g − 1

xj+





 2

1





 g − 3

xk+ 1





 g − 1

xk+




. (4)

Since the one arc in the 012 triad may be between any of three
pairs of nodes, and in either orientation, three quantities, [1,0,0], [0,1,0],
and [0,0,1], are summed across all combinations of three nodes in the
graph to find the expected frequency of the 012 triad in the graph.
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Expected triad frequencies, given the distribution of indegrees,
are found according to the same logic as that related to the outdegree
distribution but using the nodal indegrees and exchanging three pairs of
triads: 021D and 021U; 111D and 111U; 120D and 120U. As described
in Wasserman (1977) and elsewhere, density provides the least restrictive
condition. The other three conditional distributions include density plus
other constraints.

Expected triad censuses for the 82 networks, expressed as row
proportions, were found and arranged in four network-by-triad arrays,
denoted TE| �, where � refers to the lower-order property: (1) density
TE|�; (2) the outdegree distribution TE|xi+ ; (3) the indegree distribution
TE|x+ j ; and (4) dyad census MAN TE|MAN .

7. SINGULAR VALUE DECOMPOSITION

Information in a triad census array for a collection of networks is poten-
tially 16-dimensional (the number of triads). A low-dimensional repre-
sentation facilitates comparison and visual presentation. To accomplish
this, singular value decomposition (SVD) is used to produce a reduced
rank approximation of the characteristic structure of the matrix (Ben-
Israel and Greville 1974; Digby and Kempton 1987; Weller and Romney
1990). Parallel decompositions are done for the observed and expected
triad census arrays. For the observed triads censuses in TO, the SVD is
defined as

TO
82×16

= UO
82×16

DO
16×16

V′
O

16×16
, (5)

where UO and VO are the left and right singular vectors (respectively)
and DO is a diagonal matrix of singular values, λl. Columns of UO and
VO are orthogonal

U′
OUO = I

V′
OVO = I.

(6)

SVD also is used to find low-dimensional representations for
each of the four expected triad census arrays:
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TE| �
82×16

= UE| �
82×16

DE| �
16×16

V′
E| �

16×16

, (7)

where � denotes the particular condition. A full rank solution, W =
16, exactly reproduces the original data. Low-dimensional representa-
tions of TO or TE| � use fewer than the full set of 16 singular value and
singular vector sets and approximate the original matrices. Squared sin-
gular values express the quality of the reduced rank approximation in
the following way. The sum of the squared singular values is equal to
the matrix norm || || of TO (Ben-Israel and Greville 1974; Digby and
Kempton 1987):

W∑
l=1

λ2
l = ||TO|| = trace(TOT′

O). (8)

Thus, the goodness-of-fit of a reduced rank solution, w ≤ W , is
given by

w∑
l=1

λ2
l

W∑
l=1

λ2
l

(9)

and is interpreted as the proportion sum-of-squares accounted for by
the rank w approximation (Geenacre 1984). Since the left and right
singular vectors reproduce the original data, they can be employed in
further analyses that explain or account for the data. In the analyses that
follow, the observed triad census array, SVD of TO, will be compared
in turn to SVD of the triad census arrays expected given the four lower-
order graph properties, TE| �.

8. RESULTS

Squared singular values from SVD of the observed triad census array,
TO, are presented in column 2 of Table 4 and the first four left and right
singular vectors are in Tables 5 and 6, respectively. For graphic display,
singular vectors are multiplied by their singular values to emphasize the
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TABLE 5
Singular Value Decomposition of Observed Triad Array, Left Singular Vectors,

Scores for Networks

Network 1 2 3 4 5

1 0.204 −0.081 0.225 −0.021 0.040
2 0.143 −0.020 −0.020 −0.026 −0.032
3 0.137 −0.007 −0.052 0.037 −0.009
4 0.143 −0.034 0.016 −0.119 −0.057
5 0.060 0.037 −0.155 −0.043 0.018
6 0.072 0.022 −0.172 −0.109 −0.055
7 0.063 0.049 −0.116 −0.014 0.030
8 0.133 −0.021 −0.013 −0.071 −0.040
9 0.180 −0.046 0.096 0.041 0.026

10 0.032 0.058 −0.111 −0.044 0.134
11 0.115 0.023 −0.100 0.094 0.009
12 0.140 −0.012 −0.038 0.025 −0.012
13 0.087 0.032 −0.086 0.080 0.067
14 0.092 0.019 −0.155 −0.059 −0.051
15 0.174 −0.050 0.099 −0.024 0.000
16 0.182 −0.055 0.120 −0.013 0.009
17 0.176 −0.052 0.106 −0.032 −0.002
18 0.187 −0.055 0.127 0.027 0.029
19 0.197 −0.072 0.188 −0.016 0.029
20 0.052 0.053 −0.125 0.016 0.075
21 0.134 0.005 −0.053 0.093 0.014
22 0.028 0.053 −0.100 −0.063 0.182
23 0.161 −0.025 0.021 0.058 0.013
24 0.092 0.029 −0.165 0.024 −0.019
25 0.164 −0.030 0.039 0.060 0.024
26 0.180 −0.054 0.115 −0.016 0.006
27 0.163 −0.034 0.040 0.001 −0.008
28 0.203 −0.080 0.218 −0.025 0.035
29 0.157 −0.027 0.020 0.016 −0.006
30 0.089 0.012 −0.086 −0.072 0.019
31 0.067 0.017 −0.094 −0.120 0.052
32 0.158 −0.037 0.047 −0.065 −0.038
33 0.159 −0.038 0.049 −0.040 −0.022
34 0.180 −0.054 0.114 −0.017 0.005
35 0.175 −0.057 0.116 −0.064 −0.015
36 0.125 0.038 −0.055 0.123 −0.002
37 0.093 0.071 −0.079 0.126 −0.005
38 0.017 0.160 0.018 −0.003 0.065
39 0.010 0.113 0.004 −0.072 0.234
40 0.074 0.105 −0.107 0.132 −0.015

(Continued)
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TABLE 5
(Continued)

Network 1 2 3 4 5

41 0.051 0.144 −0.085 0.100 −0.028
42 0.045 0.129 −0.081 0.066 0.035
43 0.064 0.107 −0.114 0.105 −0.006
44 0.059 −0.009 −0.142 −0.494 −0.224
45 0.017 0.398 0.248 −0.094 −0.243
46 0.019 0.190 0.035 −0.006 0.070
47 0.089 0.056 −0.145 0.136 0.012
48 0.082 0.068 −0.146 0.130 0.011
49 0.017 0.386 0.241 −0.091 −0.235
50 0.021 0.004 −0.117 −0.389 −0.069
51 0.026 0.003 −0.108 −0.407 −0.032
52 0.029 0.216 0.025 0.032 −0.065
53 0.051 0.155 −0.081 0.112 −0.044
54 0.006 0.103 0.036 −0.136 0.490
55 0.050 0.141 −0.095 0.112 −0.023
56 0.044 0.118 −0.069 0.054 −0.022
57 0.013 0.237 0.117 −0.068 0.087
58 0.040 0.263 −0.006 0.060 −0.132
59 0.007 0.138 0.062 −0.119 0.398
60 0.075 0.021 −0.117 −0.078 0.008
61 0.186 −0.061 0.150 −0.010 0.025
62 0.067 0.019 −0.151 −0.149 −0.041
63 0.065 0.031 −0.152 −0.065 0.007
64 0.059 0.018 −0.162 −0.173 −0.051
65 0.033 0.087 −0.067 −0.038 0.120
66 0.094 0.021 −0.104 0.015 0.018
67 0.146 −0.016 −0.011 0.029 −0.002
68 0.070 0.035 −0.149 −0.026 0.019
69 0.052 0.050 −0.085 0.023 0.121
70 0.109 0.017 −0.097 0.060 0.006
71 0.128 −0.003 −0.056 0.034 −0.003
72 0.113 0.019 −0.119 0.037 −0.024
73 0.119 0.003 −0.085 −0.003 −0.023
74 0.115 0.005 −0.113 −0.034 −0.052
75 0.119 0.011 −0.092 0.071 0.000
76 0.135 −0.005 −0.036 0.044 −0.002
77 0.139 −0.005 −0.054 0.033 −0.017
78 0.041 0.154 −0.049 0.088 −0.027
79 0.015 0.287 0.152 −0.061 −0.037
80 0.051 0.139 −0.100 0.130 −0.031
81 0.014 0.251 0.119 −0.054 0.040
82 0.006 0.106 0.038 −0.112 0.450
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TABLE 6
Singular Value Decomposition of Observed Triad Array, Right Singular Vectors,

Scores for Triads

Triad 1 2 3 4 5

003 0.891 −0.212 0.384 −0.046 0.031
012 0.408 0.226 −0.657 0.373 −0.022
102 0.151 0.017 −0.392 −0.709 −0.296
021D 0.055 0.163 −0.184 0.186 0.036
021U 0.054 0.121 −0.148 0.111 0.078
021C 0.051 0.112 −0.159 0.110 0.061
111D 0.043 0.039 −0.163 −0.052 0.116
111U 0.025 0.036 −0.101 −0.054 0.100
030T 0.073 0.907 0.351 −0.102 −0.166
030C 0.002 0.014 0.002 −0.003 0.008
201 0.019 0.015 −0.124 −0.303 −0.006
120D 0.013 0.094 −0.002 −0.081 0.404
120U 0.009 0.093 0.020 −0.114 0.571
120C 0.007 0.033 −0.021 −0.025 0.150
210 0.014 0.066 −0.041 −0.124 0.561
300 0.012 0.025 −0.086 −0.392 0.149

relative importance of the dimensions. Two-dimensional plots of the left
singular vectors (for the social networks) are in Figure 2 and plots of the
right singular vectors (for the triads) are in Figure 3. As can be seen from
the squared singular values, triad censuses for the 82 social networks
are well represented using four dimensions, accounting for 94.766% of
the data.

The first two left singular vectors from SVD of the observed
triad census array (Figure 2 and Table 5) define a distinctly triangu-
lar space, and networks in different regions of this space have notably
different local structural properties. Networks in the upper left of the
plot in Figure 2 are dominance relations, characterized by asymmet-
ric or null dyads and the absence of mutual dyads (notably, networks
#45 finches, #49 hens, #79 sparrows, #58 wasps, #81 caribou, and #57
ponies). In the lower left of Figure 2 are networks of affiliation or co-
observation characterized by mutual or null dyads and no asymmetric
dyads (#50 howler monkeys, #51 kangaroos, and #44 dolphins). To-
ward the lower right are networks with the lowest density, ranging from
.01 to .05 (notably #1, #18, #19, #28 and #61, all sociometric choices
between humans). In addition Bernard, Killworth, and Sailer’s (1980)
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FIGURE 2. Singular value decomposition of triad census array, first two left singular vectors,
multiplied by singular values, N = 82 networks.

reported communication between ham radio operators (network #61),
which was previously shown to have a pattern almost completely de-
scribed by its degree distributions (Faust and Romney 1985), is found
in this corner of the space in Figure 2.

Plots of the first four left singular vectors are presented in Fig-
ure 4 and will be the basis for further comparisons. The first four left
singular vectors are largely interpretable using network density and lin-
ear or quadratic functions of dyad proportions. The first left singular
vector has a strong linear relationship with the proportion of null dyads
in network r2 = 0.92. The second left singular vector is linearly related
to the proportion of asymmetric dyads, r2 = 0.94. The third left sin-
gular vector is a quadratic function of the proportion of null dyads:
Y = −.17 + 1.24X − 1.28X2, with r2 = 0.87. Finally, the fourth left
singular vector has a moderate linear relationship with the proportion
of mutual dyads in network r2 = 0.64.

The right singular vectors for triads also reflect the local struc-
tural patterns observed for the left singular vectors (Figure 3 and
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FIGURE 3. Singular value decomposition of triad census array, first two right singular vec-
tors, multiplied by singular values, N = 16 triads.

Table 6). The 030T all asymmetric transitive triad is in the upper-left
corner of the plot, the 300 all mutual triad is in the lower left, and the
003 all null (lowest density) triad is in the lower right.

Squared singular values and percentages from singular value de-
compositions of the four expected triad census arrays are presented in
columns 4 through 11 of Table 4. Four dimensional solutions are ad-
equate for representing the data, accounting for over 95% of the sum
of squares in each case. As with the SVD of the observed triad array,
left singular vectors summarize patterns for the 82 networks and right
singular vectors summarize the 16 triad isomorphism classes. These vec-
tors are used in further analyses by comparing them with the left and
right singular vectors from the SVD of the observed triads, to examine
how much of the observed triad censuses they explain. Focusing on the
networks, plots of the first four left singular vectors are presented in
Figures 5, 6, 7, and 8. Visual inspection of these Figures, in compar-
ison with Figure 4 of the left singular vectors for the observed triad
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FIGURE 4. Singular value decomposition of observed triad censuses, first four left singular
vectors, N = 82 networks.

censuses, shows considerable similarity, especially between results for
the observed triad censuses and those expected given the dyad census
(MAN). Systematic assessment of this similarity is accomplished using
canonical redundancy analysis, as described in the next section.

9. CANONICAL REDUNDANCY

For two sets of variables X and Y, canonical redundancy R2
Y �X expresses

the extent to which linear combinations of one set (X, the explanatory
variables) explain the variability in linear combinations of the other set
(Y, the response variables) (Lambert, Wildt, and Durand 1988; Stewart
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FIGURE 5. Singular value decomposition of triad censuses expected, given network density,
first four left singular vectors, N = 82 networks.

and Love 1968). Canonical redundancy is interpreted as the proportion
of variance in Y explained by linear combinations of X. Calculation
of canonical redundancy can be expressed in terms of the matrices of
correlations between variables from the two sets, where RXX is the ma-
trix of correlations between the variables in X, RXY is the matrix of
correlations between variables in X and in Y, and RYX = R′

XY is the
matrix of correlations between variables in Y and in X. The proportion
of variance in Y explained by X is then given by

R2
Y �X = 1

p
trace

(
R−1

XXRXYRYX
)
, (10)
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FIGURE 6. Singular value decomposition of triad censuses expected uniform given network
outdegrees, first four left singular vectors, N = 82 networks.

where p is the number of variables in set Y and R−1
XX is the inverse of

RXX (Lambert et al. 1988).
Parallel analyses compare the first four left singular vectors, UO,

and right singular vectors, VO, from the SVD of the observed triad
census (equation 5) to their counterparts from the SVD of the expected
triad censuses UE| � and VE| � (equation 7). In the following canonical
redundancy analyses, variable set Y is UO or VO, the first four left or
right singular vectors from SVD of TO, and variable set X is in turn
UE| � or VE| � the first four left or right singular vectors from the SVD of
TE|�, TE|xi+ , TE|x+ j , or TE|MAN . Equations for the canonical redundancy
calculations are
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FIGURE 7. Singular value decomposition of triad censuses expected, uniform given network
indegrees, first four left singular vectors, N = 82 networks.

R2
UO �UE| � = 1

4
trace(R−1

UE| �UE| �RUE| �UO RUOUE| �) and (11)

R2
VO �VE| � = 1

4
trace(R−1

VE| �VE| �RVE| �VO RVOVE| �). (12)

Canonical redundancy results are presented in columns 2 and 4
of Table 7. To find the proportion of variance explained in observed
triad censuses, rather than the four dimensional solutions from SVD,
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FIGURE 8. Singular value decomposition of triad censuses expected, uniform given dyad
census MAN, first four left singular vectors, N = 82 networks.

the canonical redundancy must be discounted by the proportion of
the observed triad censuses explained by the first four singular value,
singular vector sets:

4∑
l=1

λ2
l

16∑
l=1

λ2
l

× R2
UO �UE| � or

4∑
l=1

λ2
l

16∑
l=1

λ2
l

× R2
VO �VE| � . (13)
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TABLE 7
Canonical Redundancy and Proportion of Observed Triad Census Array
Explained by Expected Triad Census Arrays, 82 Networks, and 16 Triads

Networks Triads

Lower-Order Proportion of Proportion of
Property for Observed Triad Observed Triad
Expected Censuses Censuses
Triad Census Canonical Array Canonical Array
Array Redundancy Explained Redundancy Explained

� 0.644 0.610 0.571 0.541
{xi+} 0.706 0.669 0.621 0.588
{x+j} 0.686 0.650 0.610 0.578
MAN 0.983 0.932 0.924 0.876

These proportions are shown in columns 3 and 5 of Table 7, for the
network and triad spaces respectively.1

To summarize these results, the dyad census (MAN) accounts
for 93.2% of the variance among social networks and 87.6% of the
variance among triad isomorphism classes for the 82 social networks,
confirming the visual similarity between configurations in Figures 4
and 8. Even simpler local features account for a substantial portion of
the variance. Network density accounts for 61% of the variance among
networks and 54.1% of the variance among triad isomorphism classes.

1 In addition, canonical variables for the relationship between the left sin-
gular vectors for observed triad censuses and those expected conditional on the dyad
census (MAN) were calculated using the coefficients for the linear combinations of
X and Y. Both sets of canonical variables are interpretable as linear and quadratic
functions of network density and dyad proportions. Focusing on the coefficients
for the left singular vectors from the SVD of the observed triad censuses, UO, there
is a substantial linear relationship between the first canonical variable and the pro-
portions of null dyads (r2 = 0.934) as well as asymmetric dyads (r2 = 0.923). The
second canonical variable is a moderate linear function of the proportion of mutual
dyads (r2 = 0.609); the third is a quadratic function of the proportion of asymmetric
dyads (r2 = 0.836); and the fourth is a quadratic function of network density (r2 =
0.718). The same pattern holds for the canonical variables for setUE|MAN , the left
singular vectors from the SVD of triad censuses expected conditional on the dyad
census (MAN).
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The indegree distribution accounts for 65% and 57.8%, and the outde-
gree distribution for 66.9% and 58.8% of the variance for networks and
triads respectively.

10. TRIADIC STRUCTURE?

The fact that the dyad censuses essentially reproduce the triad censuses
for the collection of 82 social networks raises the question of whether,
once we condition on the dyad census, there is any remaining triadic
structure in the networks. To examine possible triadic effects, observed
triad frequencies are compared to those expected conditional on the
dyad census (MAN) using the tau statistic, τ = cOk−cE|MANk

σck
(Holland

and Leinhardt 1970; Wasserman and Faust 1994), where cOk is the ob-
served frequency of triad type k for a given network, cE|MANk is the
expected frequency of triad type k for the network, given its dyad cen-
sus, and σck is the standard deviation of the expected frequency (equa-
tions for σck are found in Holland and Leinhardt 1970 and Wasserman
and Faust 1994). Tau statistics were calculated for each of the 16 triad
isomorphism classes and in each of the 82 social networks, resulting
in 82 × 16 = 1312 comparisons. These 1312 τ values are plotted, by
triad isomorphism class, as box plots in Figure 9. In these plots each
box shows the distribution of τ for 82 networks; the median is indi-
cated by a horizontal line and the edges of the box show the 25th
and 75th percentiles. Extreme observations, more than 1.5 or 3.0 box
widths from the upper or lower edges of a box, are indicated as open
circles or asterisks and labeled with the identification number of the
network.

Keeping in mind that the τ values for a given network are not
independent, several points are worth noting. A handful of social net-
works appear to have triadic patterning that departs from what is ex-
pected given their dyad censuses. Notably, three dominance networks—
#55 (macaques), #49 (hens), and #42 (bison)—have more 030T (tran-
sitive) triads than expected, and, for networks #49 and #55, fewer 030C
(cyclic) triads. Networks #60 and #61 (reported interactions between
humans in a fraternity and in a group of ham radio operators) have
more 300 (all mutual) triads and also more 003 (all null) triads than
expected.
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FIGURE 9. Box plots of tau statistics for discrepancy between triad frequency and expected
frequency given dyad census, N = 82 networks.

Importantly, networks that show triadic tendencies are, with the
exception of network #49, not the networks that anchor different cor-
ners of the triangular space defined by the first two left singular vectors
from SVD of the observed triad censuses (see again Figure 2). In other
words, triad censuses that are distinctive in comparison to censuses from
other networks do not necessarily exhibit substantial triadic tendencies,
beyond what is expected from their dyad censuses.

11. DISCUSSION

These results demonstrate that the vast majority of the variance in triad
censuses for a diverse collection of 82 social networks is explained by
properties that are more local than triadic—network density, the in-
degree and outdegree distributions, and the distribution of mutual,
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asymmetric, and null dyads. This clearly replicates and extends earlier
findings (Faust 2006) demonstrating that triad censuses for a wide range
of social networks are largely accounted for by linear and quadratic
functions of network density and dyad censuses proportions. Three
questions follow from these results. First, why is triadic structure in
social networks overwhelmingly described by very local network fea-
tures? Second, what are the implications for social network theory and
methodology? Third, what research should be pursued to further eluci-
date triadic structures in social networks?

11.1. Why Very Local Structure?

One key to understanding these results is that triad census probabilities
for a given network are largely circumscribed by the network’s density,
degree, and dyad distributions. This is consistent with previous work on
triad censuses (Faust 2006) and local effects on other graph-level mea-
sures (Anderson, Butts, and Carley 1999; Butts 2006). For many social
networks, lower-order properties severely limit the range of possible
triadic outcomes. Thus, in comparative perspective, local structural fea-
tures explain observed triad censuses for a collection of social networks.

To illustrate, consider four social networks that occupy different
regions of the two-dimensional SVD solution (Figure 2) and have dif-
ferent densities, outdegree, and dyad distributions. Network #49, dom-
inance relations between 32 hens, has only asymmetric dyads, which
means that only two triad configurations (030T and 030C) are possible;
all others are impossible. In this network 97% of the triads are 030T
and 3% are 030C. Given its dyad census, 75% are expected to be 030T
and 25% are expected to be 030C. Network #50, co-observations of
17 howler monkeys, has only mutual and null dyads, which means that
only four triad configurations (003, 102, 201, and 300) are possible:
These four configurations occur in 4%, 27%, 46%, and 23% of the tri-
ads in this network. These triads are expected to occur 5%, 26%, 44%,
and 24% of the time, given this network’s dyad census. Given the dyad
censuses for networks #49 and #50, it is impossible for them to have
any triadic configurations in common (though they share ten impossi-
ble configurations). Network #1, nominations of rejection between 97
schoolchildren, has the lowest density of the 82 networks in the sample
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(� = 0.01). Given this density, the probability of a 300 (all mutual) triad
is (.01)6 = .000000000001 and the probability of a 003 (all null) triad
is (.99)6 = .9983. There are no 300 triads in network #1 and 93% of
its triads are 300. Though 030T and 030C triads are not impossible in
network #1, in comparison to network #49, their occurrence must be
rare. Outdegree and indegree distributions also constrain possible triad
configurations that can be realized. As an extreme case, consider net-
work #28 in which each of 63 people nominated a single other person
they would like to work with, giving xi+ = 1 for all people and � = 0.02.
In this case only seven triadic configurations are possible: 003, 012, 102,
021U, 021C, 111D, and 030C. These configurations occur in 92%, 6%,
1%, 0.08%, 0.05%, 0.06%, and 0.002% of the triads in network #28, il-
lustrating the constraints that the combination of fixed degree and low
network density have on triad probabilities.

These four social networks illustrate the severe constraints that
very local graph properties place on possible triadic outcomes. There-
fore, when analyzed in aggregate, variation among triad censuses for a
collection of social networks is overwhelmingly explained by the net-
works’ states on these lower-order features. Stated more abstractly, al-
though information in the triad census array is potentially 16 dimen-
sional (the number of triad isomorphism classes), the possible location
of a particular network’s triad census in this space is extremely con-
strained by its nodal and dyadic properties.

11.2. Implications for Social Network Methodology and Theory

Several lines of research on social network methodology and theory
are impacted by these results. Research attempting to formulate exact
local-global structural theories based on specific permitted and for-
bidden triads is most directly in jeopardy, especially when such efforts
do not explicitly consider lower-order graph properties (Davis 1970;
Friedkin 1998; Johnsen 1985, 1986, 1989a, 1989b, 1998). That these
lower-order features are vexing for such theoretical formulations is seen
in the persistent statement of separate theoretical models for different
size networks (Davis 1970; Johnsen 1985, 1986, 1989a, 1989b, 1998) and
in observations that some triads should not be forbidden in large net-
works (Friedkin 1998). Network size affects the triad census through its



VERY LOCAL STRUCTURE 245

effect on network density, a point that needs to be addressed explicitly
in constructing social network theories.

Statistical models for social networks, including exponential ran-
dom graph models and their extensions (Pattison and Wasserman 1999;
Robins and Pattison 2005; Robins et al. forthcoming; Snijders et al. 2006;
Wasserman and Pattison 1996; Wasserman and Robins 2005) are also
affected by these results. Constraints that nodal and dyadic properties
imposed on possible triadic configurations underscore the importance
of including parameters for these lower-order effects in models exam-
ining triadic or higher-order effects.

11.3. Future Directions

In their 1979 paper Holland and Leinhardt demonstrated that the ex-
tent of intransitivity detected in social networks of positive sentiments
depended, in large part, on the conditional distribution used as referent
against which triadic structural tendencies were assessed. Presciently,
they chose the uniform distribution, conditional on the dyad census, as
the distribution for their comparisons. They concluded that “employ-
ing the higher level of conditioning revealed that, at least in some cases,
what was previously thought to be structure was spurious, the result of
lower level constraints operating on the digraphs” (1979:77). Despite
this bleak observation, work on triad distributions in social and other
networks continues to this day. However, the profound constraint that
lower-order properties impose on possible triadic outcomes is often un-
derappreciated. Future research should continue to address the exact
range of possible triad censuses and higher-order graph configurations
that can arise, given various lower-order structural properties, and how
these constraints impact other social network methodologies.

In conclusion, the results presented in this paper do not imply that
there are no differences between empirically observed triad censuses and
those expected given the four lower-order graph properties investigated
here. What they do demonstrate is that lower-order structural properties
so severely limit possible triadic outcomes that, in comparative perspec-
tive, differences among triad censuses for diverse social networks are
overwhelmingly explained by the lower-order properties. Open ques-
tions remain concerning exactly how, and to what extent, triadic pro-
cesses and properties vary across different kinds of social relations.
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APPENDIX A:
DESCRIPTION OF SOCIAL NETWORKS

Species Relation Size Source

1 Human Rejection 97 Smucker (1947:378)
2 Human Eating preference 25 Jennings (1937:114)
3 Human Lunch preference 16 Bronfenbrenner (1944)
4 Human Sociometric choice 25 Chabot (1950:133)
5 Human Like most 10 Katz and Powell (1960,

Table 3:304)
6 Human Who likes you most 10 Katz and Powell (1960,

table 3a:304)
7 Human Work partner choice 24 Holland and Leinhardt

(1978, fig. 5:248)
8 Human Positive choice 25 Moreno in Forsyth and

Katz (1946, fig. 3:345)
9 Human Rejection 25 Moreno in Forsyth and

Katz (1946, fig. 3:345)
10 Human Like to work with 23 Zeleny (1947:398)
11 Human Not like to work with 23 Zeleny (1947:398)
12 Human Seating choice 25 Taba (1955, table 4:5)
13 Human Friendship 13 Fine (1987, fig. 6.1:141)
14 Human Friendship 13 Fine (1987, fig. 6.2:144)
15 Human Friendship 25 French (1963, fig. 1:148)
16 Human Friendship 25 French (1963, fig. 2:148)
17 Human Friendship 23 French (1963, fig. 3:149)
18 Human Friendship 40 Weintraub and Bernstein

(1966, fig. 1:513)
19 Human Friendship 63 Weintraub and Bernstein

(1966, fig. 2:514)
20 Human Indifferent 29 McKinney (1948, table

1:358)
21 Human Rejection 29 McKinney (1948, table

1:358)
22 Human Acceptance 29 McKinney (1948, table

1:358)
23 Human Wood cutting partner 34 Sanders (1939:64)
24 Human Choice to sit with 14 Sandman (1952:413)
25 Human Choice not to sit with 14 Sandman (1952:413)
26 Human Friendship 41 Venable (1954:356)
27 Human Friendship 24 Grossman and Wrighter

(1948:353)

(Continued)
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APPENDIX A
(Continued)

Species Relation Size Source

28 Human Work choice 63 Faunce and Beegle
(1948:211)

29 Human Friend 14 Hayes and Conklin (1953:25)
30 Human Friend 13 Hayes and Conklin (1953:26)
31 Human Friend 12 Hayes and Conklin (1953:27)
32 Human Friend 23 Hayes and Conklin (1953:29)
33 Human Friend 24 Hayes and Conklin (1953:30)
34 Human Best friend 44 Cook (1944:252)
35 Human Best friend 42 Cook (1944:253)
36 Ants Dominance 16 Cole (1981:83
37 Ants Dominance 13 Cole (1981:84)
38 Baboons Dominance 10 McMahan and Morris

(1984:377)
39 Baboons Dominance 16 Gauthier and Strayer

(1986:124)
40 Big horn sheep Dominance 20 Hass (1991:513)
41 Big horn sheep Dominance 24 Hass (1991:514)
42 Bison Dominance 25 Lott (1979)
43 Cattle Dominance 28 Schein and Fohrman

(1955:49)
44 Dolphin Affiliation 13 Connor, Smolker, and

Richards (1992:422)
45 Finches Dominance 8 Marler (1955:111)
46 Geldings Dominance 9 deVries, Netto, and

Hanegraaf (1993:169)
47 Goats Dominance 21 Fournier and Festabianchet

(1995:1453)
48 Goats Dominance 30 Fournier and Festabianchet

(1995:1454)
49 Hens Dominance 32 Guhl (1953)
50 Howler monkeys Co-observation 17 Froehlich and Thorington

(1981)
51 Kangaroos Co-observation 17 Grant (1973:453)
52 Macaques Dominance 16 Strayer and Cummins (1980)
53 Macaques Win/loss 16 Strayer and Cummins (1980)
54 Macaques Win access to water 30 Strayer and Cummins (1980)
55 Macaques Dominance 62 Takahata (1991:125)
56 Orangutans Dominance 7 Utimai et al. (1997:917)

(Continued)
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APPENDIX A
(Continued)

Species Relation Size Source

57 Ponies Threats 17 Cluton-Brock,
Greenwood, and
Powell (1976)

58 Wasps Shares forage 7 Eberhard (1969:25)
59 Wolves Deference 16 van Hooff and Wensing

(1987)
60 Humans Reported interaction 58 Bernard, Killworth, and

Sailer (1980:211-212)
61 Humans Reported interaction 44 Bernard, Killworth, and

Sailer (1980:213-214)
62 Humans Reported interaction 40 Bernard, Killworth, and

Sailer (1980:215)
63 Humans Reported interaction 34 Bernard, Killworth, and

Sailer (1980:216-217)
64 Humans Reported interaction 18 Borgatti, Everett, and

Freeman (2002)
65 Humans Advice 21 Krackhardt

(1987:129-132)
66 Humans Friendship 21 Krackhardt

(1987:129-132)
67 Humans Advice 32 Coleman, Katz, and

Menzel (1966)
68 Humans Liking 17 Newcomb (1961)
69 Humans Not liking 17 Newcomb (1961)
70 Humans Disesteem 18 Sampson (1968:466)
71 Humans Dislike 18 Sampson (1968:465)
72 Humans Esteem 18 Sampson (1968:466)
73 Humans Influence 18 Sampson (1968:467)
74 Humans Like 18 Sampson (1968:465)
75 Humans Negative influence 18 Sampson (1968:467)
76 Humans Negative praise 18 Sampson (1968:468)
77 Humans Praise 18 Sampson (1968:468)
78 Sparrows Dominance 13 Moller (1987:1639)
79 Sparrows Dominance 10 Moller (1987:1639)
80 Sparrows Dominance 14 Moller (1987:1640)
81 Caribou Win/loss in interactions 20 Barrette and Vandal

(1986:125)
82 Caribou Win/loss in interactions 20 Barrette and Vandal

(1986:126)
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APPENDIX B: REFERENCES FOR SOCIAL NETWORK DATA

[The network numbers follow in brackets.]

Barrette, Cyrille, and Denis Vandal. 1986. “Social Rank, Dominance,
Antler Size, and Access to Food in Snow-bound Wild Woodland
Caribou.” Behaviour 97:118–46. [81, 82]
Bernard, H. Russell, Peter Killworth, and Lee Sailer. 1980. “Informant
Accuracy in Social Network Data IV: A Comparison of Clique-level
Structure in Behavioral and Cognitive Data.” Social Networks 2:191–
218. [60 fraternity, 61 ham radio operators, 62 office, 63 technical office]
Borgatti, Stephen P., Martin G. Everett, and Linton C. Freeman. 2002.
UCINET 6 for Windows Software for Social Network Analysis. Harvard,
MA: Analytic Technologies. [64]
Bronfenbrenner, Urie. 1944. “The Graphic Presentation of Sociometric
Data.” Sociometry 7:283–89. [3]
Chabot, James. 1950. “A Simplified Example of the Use of Matrix Multi-
plication for the Analysis of Sociometric Data.” Sociometry 13:131–40.
[4]
Cluton-Brock, T. H., J. P. Greenwood, and R. P. Powell. 1976. “Ranks
and Relationships in Highland Ponies and Highland Cows.” Zeitschrift
Tierpsychologie 41:202–16. [57]
Cole, B. J. 1981. “Dominance Hierarchies in Leptothorax Ants.” Science
212:83–84. [36, 37]
Coleman, James S., E. Katz, and H. Menzel. 1966. Medical Innova-
tion. New York: Bobbs-Merrill. Cited in Ronald S. Burt. 1991. Struc-
ture. New York: Center for the Social Sciences, Columbia University.
[67]
Connor, R. C., R. A. Smolker, and A. F. Richards. 1992. “Dolphin
Alliances and Coalitions.” Pp. 415–44 in Coalitions and Alliances in
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