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COMPARING NETWORKS ACROSS
SPACE AND TIME, SIZE AND
SPECIES

Katherine Faust*
John Skvoretzt

We describe and illustrate methodology for comparing networks
from diverse settings. Our empirical base consists of 42 networks
from four kinds of species (humans, nonhuman primates, nonpri-
mate mammals, and birds) and covering distinct types of relations
such as influence, grooming, and agonistic encounters. The gen-
eral problem is to determine whether networks are similarly struc-
tured despite their surface differences. The methodology we propose
is generally applicable to the characterization and comparison of
network-level social structures across multiple settings, such as dif-
ferent organizations, communities, or social groups, and to the
examination of sources of variability in network structure. We first
fita p* model (Wasserman and Pattison 1996) to each network to
obtain estimates for effects of six structural properties on the prob-
ability of the graph. We then calculate predicted tie probabilities for
each network, using both its own parameter estimates and the esti-
mates from every other network in the collection. Comparison is
based on the similarity between sets of predicted tie probabilities.
We then use correspondence analysis to represent the similarities
among all 42 networks and interpret the resulting configuration
using information about the species and relations involved. Results
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show that similarities among the networks are due more to the kind
of relation than to the kind of animal.

1. INTRODUCTION

Much of social network analysis examines a single network at a time.
Commonly the analyses comprise case studies of network properties or
processes within a single community. For example, dominance relations
among chimpanzees are described and the structure of the network ana-
lyzed. Or the liking and disliking relations among novices in a monastery
are described and the patterning in these networks related to observations
about group structure and dynamics. The problem of comparing networks
arises more rarely, and when it does the usual context is that of comparing
two relations mapped on the same population during the same time period.
For example, possible associations between friendship and advice seek-
ing among corporate managers may be studied by comparing the two
relations.

In this paper we expand the scope of comparison by describing a
general way in which two, three, ..., many networks can be compared
at the same time even though they differ widely in size, type of rela-
tion, species of the units, and time and space of the observations. The
general question concerns determining whether the networks are simi-
larly structured despite their surface differences. The method we pro-
pose and illustrate allows us not only to compare two networks at a
time but to look at the overall patterning of similarities among a large
collection of networks from diverse settings. Our empirical base con-
sists of 42 different networks from four kinds of speci@simans, non-
human primates, nonprimate mammals, and bjrdarying in size from
7 to 103 units, and covering distinct types of relations such as influ-
ence, grooming, and agonistic encounters. Although we illustrate the
methodology on a collection of relatively exotic networks, it can be eas-
ily applied to a wide range of more familiar substantive situations, such
as comparing advice networks among managers in different firms, friend-
ships among schoolchildren in different classrooms, referrals between
service agencies in various communities, and so on.

Six of these networks are diagrammed in Figure 1. The diversity in
our collection is apparent from the figures. All are directed graphs. In
some, the original data refer to counts. We dichotomize these data, regard-
ing any nonzero count as indicating the presence of a tie. Netw@k 1
derives from the observation of agonistic encounters between red deer: A
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(a) Red deer, dominance (b) U.S. Senate 1973—-1974, cosponsorship

(c) Patas monkeys, grooming (d) Silvereyes, victories in encounters

(e) Krackhardt’s managers, advice (f) Cows, social licking

FIGURE 1. Graphs of six networks.

tie exists from animai to animalj if the first defeated the second in an
encountefAppleby 1983. Network 1(b) diagrams the cosponsorship ties
among U.S. senators in the Ninety-third Congrd€53-1974% Atie exists
from senatoii to senatoj if the first cosponsored at least one bill intro-
duced by the secondurkett 1997. Network 1(c) graphs grooming rela-
tions among patas monkeys: The presence of a tie from monkey
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monkeyj indicates that the first groomed the second at least GRaplan

and Zucker 198D Network 1(d) depicts victories in encounters among
birds called silvereyes: The presence of a tie froto j indicates that
silvereyei was victorious in at least one encounter witKikkawa 1980.
Network 1(e) graphs the advice relations among a group of high-tech man-
agers: There is a tie from managdo managey if i reports going tg for
advice(Krackhardt 198Y. Finally, network 1f) diagrams social licking
among cows: There is a tie from cavio cow;j if the first licks the second
(Reinhardt and Reinhardt 1981

Our problem of the comparison of networks can now be posed
rather dramatically: Is the network of cosponsorship among senators
structurally more similar to the network of social licking among cows,
the network of grooming among monkeys, or the network of advice
among managers? Or, are the networks of victory in encounters among
silvereyes and of dominance among red deer similarly structured? Such
guestions are substantively interesting and theoretically provocative, but
they cannot be addressed systematically without general methods for the
comparison of networks. Such methods would enable us to answer cer-
tain questions: What structural features are similar or different among
networks of different kinds of organisms or different kinds of relations?
Which kinds of networks tend to be similarly structured and which tend
to be different? The present work contributes to research on these deeper
issues.

In the next section we review the relatively sparse literature on the
comparison of networks. We then outline the formal background for our
approach. We use the pnodeling framework to build and estimate mod-
els for the probability of a graph as a function of its structural properties.
The estimates from these models, in turn, form the basis from which the
similarity or dissimilarity of pairs of networks is calculated. Correspon-
dence analysis provides a way of representing the similarities among all
networks under consideration. We then interpret the resulting configura-
tion using information about the networks and their structural properties.
We apply this strategy to 42 networks and discuss the results.

2. COMPARING NETWORKS

The vast majority of social network studies are case studies of individual
communities. Nevertheless, comparison of networks can, and does, pro-
ceed along several lines. The most straightforward case is the comparison
of two networks over the same set of actors. For instance, two different
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relations could be measured on the same set of actors or the same relation
could be measured on one set of actors at two time points. Methodology
for comparison of two relations measured on the same set of actors dates
to the early years of social network analy&i&atz and Powell 195B8and
has been elaborated by Hubert and colleagues in a matrix permutation
context(Hubert and Baker 1978; Baker and Hubert 1984oreover, sta-
tistical models for multiple relations are well develog®dsserman 1987;
Pattison and Wasserman 199%here are also models for longitudinal
networks, where the same relation is measured on the same set of actors at
two (or more points in time(Wasserman and lacobucci 1988; Snijders
1996; Snijders and VanDuijn 1997

Another type of comparison, replication, arises when the same rela-
tion is measured on tw@r more different sets of actors. Researchers are
usually concerned with whether the networks exhibit similar structural
properties or relationships or whether nonnetwork properties of the groups
are associated with network-level properties. Examples include both clas-
sics, such as Laumann and Pappi’s study of elite networks in the commu-
nities of Altneustadt and TowertowfLaumann and Pappi 19Y@&nd
Hallinan’s (1974 studies of sentiment structures in school groups, and
more recent studies such as Shrader, Lincoln, and Hoffnia8&9 study
of networks in 36 agencies, Johnson and Boster’s study of winter-over
research teams at the South P@ehnson, Boster, and Palinkas n.the
National Longitudinal Study of Adolescent Health replication of friend-
ship networks across schogBearman, Jones, and Udry 199@nd Rind-
fuss and Entwisle’s studies of networks of kinship and social and economic
relations in 51 villages in Nang Rong District, Thaila(Rindfuss et al.
2000. Until recently, methodology for the comparison of replicated net-
works was primarily descriptive. For example, Breiger and Pattison’s com-
parison of elite structures in two communities used joint homomorphic
reduction of the semigroup algebras in the two communisiger and
Pattison 1978 Recently, however, Anderson et @999 and Martin
(1999 describe statistical approaches that evaluate whether a common
set of parameter estimates provides adequate fit to two or more networks.

A fourth type of comparison arises when data on roughly similar
relations are available from different settings with different sets of actors.
Unlike the situation just described, which is “pure” replication, relations
in this case are only roughly comparable. The classic series of studies by
Davis (1979 and by Holland and Leinhard1978 using the sociometric
data bank of several hundred sociomatrices is a case in point. The studies
asked whether sociometric data from diverse sources tended to exhibit



272 FAUST AND SKVORETZ

greater than chance tendencies for transitivity, balance, or clustering. They
calculated standard transitivity statistics on each network and then exam-
ined the distribution of the scores. Another example is studies of infor-
mant accuracy in different setting®r example, Bernard and Killworth
1977; Bernard, Killworth, and Sailer 198Q@vhere observational data were
collected in different ways depending on the settieg)., monitoring radio
transmissions among ham radio operators, or observing interactions in
the office or fraternity. Similarly, Freemar1992 compiled examples of
observations of interactions among people in seven different communi-
ties to explore the question of which of two alternative grouping models
was more consistent with the observed interactions. In these examples of
comparison, interest centers on whether hypothesized structural patterns
or relationships are found across a range of roughly similar settings.

Common to the examples cited is the fact that the comparisons
involve communities of identical actor types, usually humans. Only rarely
have comparisons been made between networks of different kinds of
organisms—for example, different animal spedi®ade and Dow 1994
Anotable exception is Maryanski'4987) comparison of weak and strong
ties in gorilla and chimpanzee social networks.

A more abstract and methodologically more challenging type of
comparison arises when networks not only have different actor sets but
also vary greatly in size, have substantively different relations, and include
actors that are different kinds of organisms. The methods we propose
address this problem. Our overarching question is whether pairs or sets of
networks are similarly structured despite being based on substantively dif-
ferent relations measured on quite different kinds of organisms. An impor-
tant contrast between our approach and previous methods for network
comparison is that it measures directly the similarity between pairs of net-
works rather than simply determining whether to what degreeeach
exhibits specific structural tendencies. That is, our method provides an
index, akin to a correlation coefficient, that quantifies the degree of
similarity between two networks. An additional contrast with previous
methods derives from the number of networks our method compares simul-
taneously. In the most straightforward case of comparison—two net-
works over the same set of actors—several measures of association can
be calculated and evaluated—for example, using matrix permutation tests
(Hubertand Baker 1978; Baker and Hubert 1p&destimating multiplex-
ity parameters in statistical models for multiple relatiowasserman 1987;
Pattison and Wasserman 199Extending comparisons to more than two
networks requires calculating similarities between all pairs of networks
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and analyzing these simultaneously. In the method we propose, the idea is
to represent the similarities among all networks in the set being compared
via scaling or clustering techniques to depict graphically the similarity
space of networks.

In overview, our approach consists of four stefd$:We character-
ize each network in terms of a set of structural properties using a statisti-
cal model for the probability of the grapf2) we measure the similarity
between networks based on parameter estimates for the structural proper-
ties in the models as they predict network tie probabiliti@swe repre-
sent the similarities among the networks using a spatial modelZanee
interpret the resulting spatial configuration using information about the
networks. Each of these steps involves decisions about possible alterna-
tive approaches, which we discuss as they arise in our description below
and consider in detail in the discussion.

3. FORMAL BACKGROUND

Our aim is to assess whether two, three, . . ., many networks are similarly
structured despite their surface differences. We argue that two networks
are similarly structured to the extent that they exhibit the same structural
tendencies, to the same degree. Obviously there are numerous structural
tendencies that could be used to characterize networks, and selection cen-
ters on which properties are argued to be theoretically important for char-
acterizing the networks at hand. Some widely used properties provide the
basis for our comparison: mutuality, transitivity, cyclical triples, and star
configurationg(in-stars, out-stars, and mixed staras illustrated below.

To be precise, we focus on predicting the probability of a network from a
profile of structural properties of the network. Two networks are similarly
structured to the extent that the probabilities of both networks depend on
the same set of structural properties, used as predictor variables in the
models, and on each property to the same degree.

We draw upon recent developments in the statistical modeling of
networks—in particular, the development of models known‘ampdels
(Anderson et al. 1999; Crouch et al. 1998; Pattison and Wasserman 1999;
Wasserman and Pattison 1996; Robins, Pattison, and Wasserman 1999
Statistical models for networks were long based on the assumption of
dyadic independence. Dyadic independence means that the presence or
absence of a tie in thgdyad is independent of the presence or absence of
atie in any other dyad. It is widely recognized that this assumption clearly
oversimplifies matters. As one example of the inappropriateness of the
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dyadic independence assumption, triadic effects such as the presence of

anij tie being significantly more likely if there are several othkrsho

have ties to and toj abound in real social networks. Modeling these

effects is beyond the capability of statistical models that assume dyadic

independence. The new statistical approaches, thfamily of models,

explicitly model nonindependence among dyads by including parameters

for structural features that capture hypothesized dependencies among ties.
In the p* framework, the probability of a digraph G is expressed as

a log-linear function of a vector of paramet#san associated vector of

digraph statistics(G), and a normalizing consta#{(@):

0'x(G
p(@) - IS, &

The normalizing constant ensures that the probabilities sum to unity over
all digraphs. The parameters express how various “explanatory” prop-
erties of the digraph affect the probability of its occurrence. Different mod-
els use different profiles of digraph properties. Our models use a profile
of six structural properties: mutuality, out 2-stars, in 2-stars, mixed 2-stars,
transitive triples, and cyclical triples, as diagrammed in Figure 2.

Taken together, these effects constitute a Markov graph model
(Frank and Strauss 1986 which the probability of thdj tie depends
only on other ties in which andj might be involved but not on ties that
involve neitheli norj. This model includes substantively interesting dyadic
and triadic effects and provides a base to which higher order network prop-
erties(such as subgrouping or graph connectivityight later be added.
These effects are assumed to be homogeneous. The homogeneity assump-
tion means that a particular structural property has the same effect regard-
less of the specific individual nodes involved. Obviously when comparing
networks of different individuals the homogeneity assumption is desir-
able. Under the assumption of homogeneity, then, our model stipulates
that the probability of a graph is a log-linear function of the number of
mutual dyads, the number of out 2-stars, the number of in 2-stars, etc. If
the resulting parameter estimate for a specific property is large and posi-
tive, then graphs with that property have large probabilities. For example,
if the mutuality property has a positive coefficient, then a graph with many
mutual dyads has a higher probability than a graph with few mutual dyads.
Or, if the cyclical triple property has a negative coefficient, then a graph
with many cyclical triples has a lower probability than a graph with few
cyclical triples. Thus, the resulting parameter estimates associated with
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(a) Mutual
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(b) Out 2-star
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(c) In 2-star

>
>

(d) Mixed 2-star
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(e) Transitive triple

.\4*/.
[
(f) Cyclic triple

FIGURE 2. Network properties included in the pnodels.

the structural properties capture the importance of their respective prop-
erties for characterizing the network under study.

Conceptually, the models are easy to understand. The real diffi-
culty comes in trying to estimate the effect coefficients. Consider the
estimation problem. Suppose we assigned a set of values to the effect coef-
ficients. Then for each digraph realization over the set of all digraphs for a
particular node set of sizg, we could calculate the numerator of equa-
tion (1). Summing the numerator over all realizations yields the normal-
izing constant in the denominator of equatidn. The probability of a
particular digraph realization is then given by the ratio of its numerator to
the normalizing constant. One particular realization is the observed
digraph. The estimation problem can be thought of as finding an assign-
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ment of values to effect coefficients that maximizes the probability of the
observed digraph. Conceptually, of course, these are the maximum-
likelihood estimates of the effect parameters. One could imagine estima-
tion by a numerical search procedure through an orthogonal space of
parameter values. But the number of combinations to be searched and the
number of digraph realizations to be calculated on each pass are so huge
for even relatively small networks that such a procedure is simply not
practicable. Clearly, direct analysis via the solution of simultaneous dif-
ferential equations for values that maximize equafiris equally out of

the question.

The literature proposes a way of out of this impasse. The estima-
tion approach, suggested by Strauss and 1K&880 and elaborated by
Wasserman and Pattis¢h996), uses equatiofil) to express the proba-
bility of tie, conditional on the rest of the digraph:

P(G")
P(G")+P(G™)’

P(x; =1|G™) = (2
whereG ™1 is the digraph including all adjacencies except itfj' one.

The digraphG* is defined by the adjacency matrix plgs= 1 while G~

is defined as the adjacency matrix pkjs= 0. This equation expresses
the probability thak; = 1 conditional on the rest of the graph. Note that
equation(2) does not depend on the normalizing constant because upon
rewriting we get

exp(6’'x(G™"))
exp(0'x(G1)) + exp(8'x(G™))’

P(x; = 1|G™") = )

The conditional odds of the presence of a tie frioto versus its absence
is expressed by

P(x; = 1|G™1) _ exp(8'x(G"))

= . 4
P(xj =0|G™) exp(0'x(G")) @

From equatior{4), we derive the log of the odds @ogit model:
logit P(x; = 1|G™") = 0'[x(G") — x(G7)]. (5)

The quantity in brackets on the right side is a vector of differences in the
profile of structural propertie@vhich are assumed in equati@l) to affect
the probability of the digraphwhenx; changes from 1 to 0. Finally, we
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can derive an equation for the probability tixgt= 1, conditional on the
rest of the digraph, from equatidb):

exp(6' (x(G") = x(G")))
1+ exp(d'(x(G*) —x(G™)))’

P(x; =1|G™") = (6)

The estimation method proposed by Strauss and IKE2R20 forms
a pseudolikelihood function for the graph in terms of the conditional prob-
abilities forx; as follows:

PL(#) = TTP(x; = 11G )P (x; = 0]G )™ (7)
ij

Strauss and Ikeda prove that equation 7 can be maximized using maximum-
likelihood estimation of the logistic regression, equatié) assuming
thex;;’s are independent observations. Thus thdgmily of models can

be estimated, albeit approximately, using logistic regression routines in
standard statistical packages. However, since the logits are not indepen-
dent, the model is not a true logistic regression model and statistics from
the estimation must be used with caution. Because goodness-of-fit statis-
tics are pseudolikelihood ratio statistics, it is questionable whether the
usual chi-square distributions apply, and standard errors have only “nom-
inal” significance(see Crouch and Wasserman 129%hese reservations
have little or no importance in our use of thé fpramework. We are not
concerned with exactly how good a fit a particular model has to a partic-
ular network. Nor are we concerned with identifying just those coeffi-
cients that are statistically “significant.” Instead we use estimates from
the model in conjunction with the calculated changes in graph statistics to
calculate an estimated probability for edghie in the network.

For each of our data sets, we estimaté aypdel that expresses the
probability of a tie being presetonditional on the rest of the grapas a
function of the six structural properties diagrammed in Figure 2. Fitting
the p* model results in estimates @5 for the effects of each of the graph
properties hypothesized to affect the likelihood of a tie. These estimates
express the importance of the properties for the probability of the graph,
but they can also be usédia equation(6)) to calculate the probabilities
of the individual ties in the network. We use all parameter estimates to
calculate predicted probabilities regardless of their level of statistical
significance.

With these considerations in hand, we may return to the question
of whether two networks are similarly structured. Consider two networks,
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A and B, in which thed's from the g* model(equation(6)) are similar in
direction and magnitude. We would argue that these two networks are
similarly structured in that the same structural tendencies are important,
and important to the same degree, in predicting tie probabilities in both
networks. In such a case we should be able to predict the tie probabilities
in one network not only from its own parameter estimates but also from
the parameter estimates of its “twin.” On the other hand, this would not be
the case if the pmodels for two networks resulted in quite different esti-
mates of the’s.

An important general principle for comparison is that the magni-
tudes of the effects should be independent of scale differences in the
explanatory variables in the models. The networks we compare vary
widely in size and density, leading to distributional differences in the
explanatory variables—the change statisti¢6*) — x(G™). Thus, for
comparison, the effects should be expressed as standardized logistic
regression coefficients. Two networks are similarly structured if net-
work structural properties have the same impact, net of distributional
differences in the explanatory variables; that is, if the impact is the same
in standardized terms.

Comparison can now proceed at different levels. First, we could
directly compare the standardized parameter estimates from models for
different networks. Alternatively, we could use sets of parameter esti-
mates to get predicted tie probabilities for the networks and then compare
these predicted probabilities. We use the second mode of comparison for
three reasongl) We are interested in the collection of structural effects
that characterize the network rather than individual parameter compari-
sons;(2) we are fundamentally interested in the structure of the network
as manifested in the tie probabilities predicted by the network structural
effects; and3) resemblance between networks based on predictions from
the parameter estimates may be asymmetric; parameter estimates from
network A may predict ties in network B better than parameter estimates
from B predict ties in A.

The task of comparing networks proceeds by using the standard-
ized parameter estimates for one data set to predict tie probabilities for
every other data set in the collection, in a pair-wise fashion. Predictions
are made using equati@6) but entering the standardized parameter esti-
mates from one network and the standardized change stafistiGs ) —
X(G7)) from the network that is being predicted. We do this for each pair
of networks. The result is a set of predicted tie probabilities for each net-
work, one based on its owri" parameter estimates and the rest based on
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the estimates from the other networks. The next step assesses the relative
similarity between one set of parameter estimates and another set of esti-
mates via their predicted tie probabilities. We now turn to a description of
this step in the comparison process.

4. DATA AND METHODOLOGY OF COMPARISON

Table 1 lists the 42 data sets we use to illustrate our methodology of com-
parison. The networks range in size from 7 red deer stags to 104 U.S.
senators. The ties composing the networks also vary from grooming rela-
tions and advice seeking to victories in agonistic encounters. Each of the
networks that we compare is represented by a 0,1 adjacency riagix
ated by dichotomizing all nonzero entries equal 1 if the original relation
was valued. More details about each of the data sets can be found in the
Appendix.

The strategy of comparison consists of four stépsfor each data
set, we estimate a‘pnodel that expresses the conditional probability of a
tie as a function of six structural factors: mutuality, out 2-stars, in 2-stars,
mixed 2-stars, transitive triples, and cyclical triplgsnce we use stan-
dardized estimates there is no intergep2) we use these standardized
parameter estimates and the standardized change scores in these struc-
tural factors to calculate the predicted probability of a tie in dagpair
in each data set using as coefficients the parameter estimates from its own
model and from each of the remaining 41 models. Thus for each data set,
we have 42 sets of predicted probabilities, one from each set of parameter
estimates including the set of estimates from the focal data set itself. The
third step calculates @lis)similarity score between the predicted proba-
bilities from the estimates on the focal data set and each of the other 41
sets of predicted probabilities. The fourth and final step uses correspon-
dence analysis to represent the proximities among all of the networks,
using as input the 42 by 42 matrix @is)similarity scores. To illustrate
the methodology, we can follow through the steps for the six networks
diagrammed in Figure 1.

For these six networks, the results of thiermpodel estimation are
displayed in Table 2. The estimates vary considerably and many of the
coefficients are not statistically significant at thep.05 level. However,
all estimates are retained in the prediction equation regardless of their
nominal statistical significance. In one case, “cows, licking,” the full model
cannot be estimated due to multicolinearity among the predictor vari-
ables. In that case and three others like it, we use the model that is estima-
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TABLE 1
List of Networks

p* parameter profile

Label Network Relation mut trans cycle ostar mstar
1.s93 U.S. Senate, 1973-74 Influepficesponsorship + - + + 103
2.s594 U.S. Senate, 1975-76 Influepficesponsorship + + + 101
3.s95 U.S. Senate, 1977-78 Influepicesponsorship + + + 104
4.s96 U.S. Senate, 1979-80 Influepicesponsorship + + + 101
5.s897 U.S. Senate, 1981-82 Influepcesponsorship  + + + 101
6.s98 U.S. Senate, 1983-84 Influepcaesponsorship  + + — - 101
7.s99 U.S. Senate, 1985-86 Influepicesponsorship + + — — 102
8.s100 U.S. Senate, 1987-88 Influeroesponsorship + + — 101
9.s101 U.S. Senate, 1989-90 Influeprmasponsorship  + + — - 102

10. krack Krackhardt's managers Advice + + + 21

11. sampin Sampson’s Monastery Influence, positive + + + 18

12. sampnin Sampson’s Monastery Influence, negative + - - 18

13. sampnpr ~ Sampson’s Monastery Blame + - + + + 18

14. samppr Sampson’s Monastery Praise + — 18

15. ua02 Athanassiou & Nigh TMT 2 Advice + 12

16. ue02 Athanassiou & Nigh TMT 2 Worked together + 12

17. ua06 Athanassiou & Nigh TMT 6 Advice 11

18. ue06 Athanassiou & Nigh TMT 6 Worked together - + 11

19. chimpl Chimpanzees Pant grunt calls - + 9

20. chimp2 Chimpanzees Agonistic - 9

21. chimp3 Chimpanzees Grooming + 9

22. macaca Macaca mulatta Grooming + + 16
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23.
24,

25

29

37

41
42

macaqga
macaqgb

. macagc
26.
27.
28.

macaqd
macaqu
patasf

. patasg
30.
31.
32.
33.
34.
35.
36.

vervetla
vervetlm
vervet2a
vervet2m
cowg
cowl
hyenaf

. hyenam
38.
39.
40.
. sparrow
. tits

ponies
reddeer
silver

Macaca sylvanus

Macaca sylvanus

Macaca sylvanus

Macaca sylvanus

Macaca artaides

Patas monkeys, female
Patas monkeys

Vervet monkeys, juveniles
Vervet monkeys, juveniles
Vervet monkeys, juveniles
Vervet monkeys, juveniles
Cowsbos indicus

Cowspos indicus

Hyaena, femalerocuta crocuta
Hyaena, malerocuta crocuta
Highland ponies
Red deer stagsrvus elaphus L.
Silvereyesosterops lateralis
Harris’ sparrows

Willow tits

carries baby away from
leaves baby yj
Ww/baby approachgs
\v/baby approached by
Aggression
Fight
Groom
Aggresgsidbmissive
Aggresgaugmissive
Aggresgsihmissive
Aggresgaugmissive
Grazing preference
Licking
Dominance
Dominance
Threat
Dominance
Victory in encounter
Dominance
Dominance
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TABLE 2
p* Parameter Estimates for Six Networks
Senate Cows,
Red Deer 93 Patas Silvereyes Managers  Lick

Intercept 4.291 —5.773* —2.308* 3.801 —3.676* —4.179*
Mutual 6.520* —0.074 1.813* 1.057 1.714* 2.032*
O-Star —0.795 0.061* 0.152* —0.347 0.260* 0.115
|-Star —8.482 0.066* —0.045 —0.741 0.249* 0.488*
M-Star 2.689 0.002 -0.131 —0.443 —.152* —0.458
Trans 2.085 0.007* 0.092 0.450 0.039 1.402*
Cycle —-5.973 —0.017* 0.647* 0.180 0.102

*Significant at p< .05

ble and contains the greatest number of original structural factors. The
omitted ongs) are set equal to zero. Inspection of the parameter estimates
reveals several similarities and differences. For instance, mutuality has a
positive effect in all six networks but “Senate 93rd”. Transitivity has a
positive effect in all six networks—that is, completing a triple transitively
tends to be an important property in all of them, although the size of the
effect varies considerably from one network to another.

Table 3 presents six sets of predicted tie probabilities for a portion
of the red deer network, one made by its own parameters and the others by
the estimates from the other five networks. In general, if another network
has a structure similar to the “red deer” network, then its model should
provide predicted probabilities that are close to the probabilities predicted
from the “red deer” model itself. That is, we would expect the average
difference between predictions to be small.

To calculate the dissimilarity between the predicted probabilities,
we use the Euclidean distance function:

1]

dit,y) = ; €S)

G(g—1)

wherep(i, j) is the standardized tie probability for pdirj) predicted
from the target networks model,p (i, j ) is the standardized tie probabil-
ity for pair (i, j) predicted from network’s model, andg, is the number
of nodes in network. Results for our six illustrative networks are given
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TABLE 3
Predicted Tie Probabilities for Red Deer Dominance

Model Providing Predictions

Senate Cows,

i j Obsx;; Red Deer 93rd Patas Silvereyes Managers  Lick

1 2 1 0.99097 0.60750 0.80128 0.78903 0.75413 0.50732
1 3 1 0.96682 0.60753 0.69805 0.66990 0.82355 0.59876
1 4 1 0.99978 0.32027 0.66999 0.66996 0.60650 0.40379
1 5 1 0.99535 0.61614 0.74646 0.74403 0.76769 0.53816
1 6 1 0.98674 0.32624 0.38869 0.38818 0.37927 0.3266
1 7 1 0.87031 0.63108 0.40235 0.41386 0.58531 0.48569
2 1 1 0.99264 0.80810 0.70941 0.74697 0.78741 0.63561
2 3 1 0.37954 0.52914 0.56319 0.63587 0.53177 0.47484
2 4 1 0.99802 0.24093 0.66128 0.68044 0.57629 0.42665
2 5 1 0.99847 0.54663 0.65779 0.72511 0.70561 0.56147
2 6 0 0.59946 0.62525 0.43461 0.47461 0.66197 0.54392
2 7 1 0.69987 0.54721 0.40736 0.51333 0.56865 0.53659
3 1 1 0.60305 0.55773 0.56403 0.44505 0.45961 0.47982
3 2 0 0.69020 0.65131 0.65062 0.64060 0.66261 0.59907
3 4 0 0.39391 0.35465 0.44473 0.47845 0.24874 0.35147
3 5 1 0.89568 0.27196 0.64230 0.70525 0.44261 0.48479
3 6 0 0.35590 0.36566 0.32775 0.41485 0.34780 0.46709
3 7 0 0.13754 0.68110 0.35404 0.52912 0.56595 0.65571

in Table 4. We find, for instance, that the model that best predicts the “red
deer” target(other than the “red deer” model itselfs the model for
encounters between silvereyes. The model of social licking among cows
best predicts, as a target, cosponsorship among U.S. senators in the Ninety-

TABLE 4
Distances Between Networks

Model Providing Predictions

Target Senate Cows,
Network Red Deer 931 Patas Silvereyes Managers  Lick

Red Deer 0 0.07082 0.05098 0.04568 0.05477 0.06412
Senate 93rd 0.00505 0 0.00232 0.00229 0.00117 0.00128
Patas 0.01969 0.01186 0 0.00714 0.00680 0.00706
Silvereyes 0.03438 0.02214 0.00724 0 0.01861 0.01610
Managers 0.02386 0.00580 0.00997 0.00977 0 0.00616

Cows, Lick 0.01678 0.00565 0.00427 0.00662 0.00533 0
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Third Congress. However, that network of cosponsorship ties is best pre-
dicted by the model for advice seeking between managers, among the five
alternatives. Note that the matrix of distances is not symmetric. In fact,
there is no reason to expect symmetry—theg) cell expresses the dis-
tance between the predicted probabilities of target netwsries from
networkj’s model, while the j, i) cell expresses the distance between the
predicted probabilities of target netwojrk ties from network 's model.

The final step takes the full matrix version of Tablgtdansformed to
similarities and scales it using correspondence analysis. These results are
reported and interpreted in the next section.

5. REPRESENTING SIMILARITIES AMONG NETWORKS:
CORRESPONDENCE ANALYSIS

We use correspondence analysis to represent the similarities among the
networks. Correspondence analy${Sreenacre 1984; Weller & Rom-
ney, 1990 is a data analytic technique for studying two-way arrays such
as contingency tables or similarity matrices. It is one of several closely
related scaling approaches, also including dual scdlNighisato 1994
homogeneity analysi€Gifi, 1990), and optimal scaling. It aims to rep-
resent proximity data in a low-dimensional space using scores for cat-
egories of the variables. These scores then serve as coordinates in
graphical displays in which points represent the categories of the vari-
ables and the distance between points represents the similarity between
their respective entities. We use as input the matrix of distances between
networks, appropriately transformed into similarities by subtracting each
value from a large positive number. As Carroll, Kumbasar, and Romney
(1997 show, this is equivalent to multidimensional scaling of the orig-
inal distances. The advantage of correspondence analysis is that it can
be used to analyze nonsymmetric matrices, such as the distances between
the target networks and the networks providing the model predictions.
In our application, two networks will be close in space if the predic-
tions provided by their models are similar, in the sense that they simi-
larly predict other networks in the collection.

Correspondence analysis is accomplished through a singular value
decomposition of an appropriately scaled matrix. Entries in the input matrix
are divided by the square root of the product of the row and column mar-
ginal totals, prior to singular value decomposition. Egte a rectangular
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matrix of positive entriesR andC are diagonal matrices with entries equal
to the row and column totals &, respectively. Correspondence analysis
consists of a singular value decomposition of the maR#FC1/2

RY2FCY2 = UDV, 9)

whereD is a diagonal matrix of singular values, adé&ndV are row and
column vectors, respectively. For visual displapsandV are rescaled.

We use principal coordinates, where, on each dimension, the weighted
mean is equal to 0 and the weighted variance is equal to the singular value
squared. In the following graphs we present the column scores from cor-
respondence analysis of the matrix of similarities among the networks.
Column scores show similarities among networks in terms of the predic-
tions they make for other networks. Row scores would show similarities
among the targets being predicted. We should note that for our analyses
using the row scores leads to essentially the same results and conclusions
as those presented here.

To interpret the correspondence analysis configuration, we employ
information about the networks and about the species and relations that
are involved. There are four kinds of species: human, nonhuman primate,
mammal, and bird. Relations are first categorized by how they were col-
lected: observation or report by respondent. Obviously this is confounded
with the type of animal since only humans provided reports of their ties to
others. We then categorize the relation as either positive or negative.
Grooming, advice seeking, cosponsorship, and working together are con-
sidered positive, whereas dominance, agonistic encounters, and blaming
are negative. This leads to four types: observed positive, observed nega-
tive, reported positive, or reported negathwe also use information about
the structural tendencies exhibited by each network, including the extent
and direction of each of the structural properties included in theqpd-
els, based on the nominal significance of the coefficiéfits from the
model: positive, none, or negative. We use a cutoff value of a .05 signifi-
cance level only as a heuristic to determine whether the tendency is posi-
tive or negative.

1We also tried a four-category coding for the kind of relation: groom, agonis-
tic, influence, and other. The conclusions from that analysis are similar to the ones
reported here for the four group categorization.
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6. RESULTS OF THE CORRESPONDENCE ANALYSIS

Let us turn now to the full set of 42 networks. Figure 3 presents the first
two dimensions of column scores from the correspondence analysis. The
first three dimensions of the correspondence analysis accounted for 24.7,
12.9, and 11.1 percent of the variance, respectively. The column scores
plotted in Figure 3 pertain to the model providing the predictions. Net-
works that are in close proximity in this figure are similar in the extent to
which their g parameter estimates predict other networks in the set. Look-
ing at Figure 3, we see in the center toward the top a grouping of networks
including cosponsorship in all of the U.S. senates except the Ninety-third
and Ninety-fourth(labeled s95 through s1Dldominance among willow

tits (tits), advice among Krackhardt's high-tech managéasack), and
dominance among male hyendg/enam. On the far right of the figure,

we see aggressiysubmissive relations among juvenile vervet monkeys
(vervetla and vervet2a, vervet2ndominance among sparrowspar-

0.2 T T
* reddeer
0.1 ]
< macaqd
9~ tits
2
) 596 «° S e hyenaf . e chimp1
silver « hyenam_ = TR, ponies )
— . * vervet2a —
0.0 [ aguqp * macaag SameRC g « so4 "V SEon
Pajesg * ual2 egowl o e s93 qu
ueOGhimp%an: in = verv@Hf? « patasf
P! * macaqc
wadETET ©
samfRIFS &
-0.1 — 1
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FIGURE 3. Correspondence analysis of similarities between networks fromqulel
parameters, column scores.
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row), threats among highland poniésonieg, pant-grunt calls between
chimpanzees¢chimpl), and patas monkeys fightingatasf.

In Figure 3 networks that are close to one another tend to exhibit
similar structural properties. How can we interpret the overall spatial pat-
terning in this figure? First, we use information about the structural fea-
tures of the networks themselves, as seen in the directions and magnitudes
of their p* parameter estimates. For each network, we code it as positive,
negative, or none on each of the structural features based on the direction
and nominal significance of the estimated coefficient for that property, as
described above. Table 1 reports these codings for each network &s the p
parameter profile. For example, we can see that the Ninety-third Senate
has positive tendencies for transitive triples, out-stars, and in-stars and a
negative tendency for cyclic triples. We then draw confidence ellipses
around the networks with each property on the correspondence analysis
configuration? The results for mutuality, transitivity, and cycles are pre-
sented in Figures 4 through 6.

We examine the extent to which networks with specific structural
tendencies occupy distinct regions of the correspondence space using an
analysis of variance with the dimension scores as the dependent variables
and the three category classifications of structural tendencies as factors,
using the procedure described in Kumbasar, Romney, and Batchelder
(1994 and Romney, Batchelder, and Brazill995. An analysis of vari-
ance comparing column dimension scores along the first three dimen-
sions between three categories of structural properties gives the proportion
reduction in errof PRE) in dimension scores due to the categorical group-
ing variables, as measured by the correlation ratio squayedTable 5
presents these statistics for the first three dimensions of the correspon-
dence analysis. From these results it is clear that the first dimension dis-
tinguishes networks in which mutuality is an important property from those
in which it is not, or in which there is a tendency away from mutuality
(n? = 0.43. Transitivity is an important contrast along the second dimen-
sion(n? =0.27).

We use the same procedure to study whether similarities among
networks are patterned by animal tygmiman, nonhuman primate, non-
primate mammal, or birdor by relation typgobserved positive, observed
negative, reported positive, reported negativiehe confidence ellipses

2The confidence ellipse is centered on the means of the dimension 1 and dimen-
sion 2 coordinates. Its orientation is determined by the covariance of the two vari-
ables. We present 68.27 percent confidence ellipses.
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FIGURE 4. Confidence ellipses for mutuality overlaid on correspondence analysis of
similarities between networks fromni pnodel parameters.

for animal type and for relation type, overlaid on the correspondence
analysis configurations, are in Figures 7 and 8. Results in Table 5 show
that the kind of animal is not an important distinction along any of the
first three dimensions of the correspondence analysis. Whether the rela-
tion is observed or reported is important along both of the first two
dimensiongn? = 0.10 andn? = 0.20, and whether the relation is pos-
itive or negative is an important distinction along the first and third
dimensions(n? = 0.12 andnp? = 0.13. Relation type, coded into four
categories, is an important aspect of the second dimerigidra- 0.26).
Overall the type of relation appears to be more important than the type
of animal in distinguishing among the networks.

Further investigation of the associations between the relation type
and properties of the networks reveals some interesting relationships for
our sample of networks. Observed positive relatidosexample, groom-
ing between nonhuman primates and cosponsorship between sgtetdrs
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FIGURE 5. Confidence ellipses for transitivity overlaid on correspondence analysis
of similarities between networks front pnodel parameters.

to be mutual, as do reported negative relatidsiame and negative influ-
ence. In general, transitivity is characteristic of observed positive rela-
tions, and a tendency away from transitivity is characteristic of reported
negative relations. Whether these associations hold in larger samples of
networks is a topic for future research.

7. DISCUSSION

We have described a methodology for comparing networks from diverse
settings including vastly different species and relational contents. This
methodology allows one to assess not only what structural features are
important in a given network but also how similar various networks are in
terms of these properties. Important features of our approach are the cal-
culation of an index ofdis)similarity between each pair of networks, and
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FIGURE 6. Confidence ellipses for cyclic triples overlaid on correspondence analy-
sis of similarities between networks fromi pmodel parameters.

then the representation of these similarities among the diverse networks
using correspondence analysis. Information about characteristics of the
networks, including the kinds of actors and types of relations, is then used
to interpret this spatial configuration.

In our results it appears that the kind of relation involved rather
than the species underlies similarities among the networks. Itis the nature
of relation that determines the structural features of its network. For exam-
ple, agonistic relations, whether between red deer or highland ponies, are
similarly structured. This leads to the speculation that distinctions among
species in network structures are due to differences in the distributions of
relations in which they typically engage. This also naturally suggests that
greater efforts should be devoted to measuring the typical range of rela-
tions for a species. For example, it would be useful to have observational
data on different kinds of human interactiatisough interviewing chim-
panzees about who they go to for advice is probably out of the quéstion
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TABLE 5
Proportion Reduction in Error Measures?) for Correspondence Analysis Dimensions by Network Structural Properties, Type of
Animal, and Type of Relation

Transitive Cyclic Type of Observed or Positive or Type of
Dimension Mutuat Triples? Triples® AnimalP® Reported Relation Negative Relation Relatiorf
1 0.43** 0.00 0.09 0.09 0.10* 0.12* 0.19
2 0.01 0.27** 0.00 0.05 0.20** 0.00 0.26*
3 0.03 0.10 0.13 0.16 0.02 0.13* 0.14
*p < .05
**p < .01

aMutual, transitive, and cycle coded: positive, none, negative.
bHuman, nonhuman primate, non-primate mammal, bird.
®Observed positive, observed negative, reported positive, reported negative.
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FIGURE 7. Confidence ellipses for type of animal overlaid on correspondence analy-
sis of similarities between networks froni pmodel parameters.

Our methodology of comparison consists of four stéfpscharac-
terizing the structural properties of each network using a statistical model,
(2) comparing pairs of networks based on parameter estimates for the
effects of these structural properti€8) representing spatially the simi-
larities among the networks, arid) interpreting the resulting configura-
tion using information about the networks. At each juncture there are
alternative approaches that might be used. Thus it is important to consider
the principles on which we base our choices and the robustness of our
results in light of decisions about particular alternatives.

First, we use the pfamily of statistical models to estimate the
effects of network structural properties on the probability of the graph. In
the present analysis, the model includes six relatively local properties
(mutuality, out 2-stars, in 2-stars, mixed stars, transitive triples, and cyclic
triples). This collection of effects constitutes a Markov graph model but
can easily be expanded to include other structural properties. Building
models with lower-order effects before adding more complex higher-
order effects is standard practice in statistical modeling, and one that we
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FIGURE 8. Confidence ellipses for type of relation overlaid on correspondence analy-
sis of similarities between networks froni model parameters.

follow here. In addition, there are alternatives to thenpdeling frame-
work that also could be used to estimate effects of network structural
properties—for example, Friedkin’s local density mog@ietiedkin 1998
could be used to estimate tie probabilities.

The second step is to compare networks based on the structural
parameters in the models. We base our choice here on the principle that
networks of different sizes and of different densities can have similar
structures. We view size and density as differences of scale rather than
as differences of theoretical significance. This leads us to use standard-
ized regression coefficients and standardized explanatory variables for
predicting tie probabilities. Comparison is then based on predicted tie
probabilities, using a network’s own parameter estimates and the param-
eter estimates from other networks. Resemblance between networks is
measured using Euclidean distance. Other measures of simi(adtp
as a correlation coefficientvould also be possible. We have explored
other modes of comparison, using predicted probabilities from unstan-
dardized regression coefficients, and using predicted logits rather than
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predicted probabilities. In all cases the results and substantive conclu-
sions are substantially similar to those we present here. We have only
preliminarily explored another alternative—namely, direct comparison
of the parameter estimates themselves. Our preliminary investigation on
the current data indicates this comparison would yield the same substan-
tive conclusions.

The third step in our methodology represents spatiallydi®sim-
ilarities among the collection of networks. Since the matrixd$)simi-
larities is not symmetric we use correspondence analysis rather than other
scaling options that require symmetric input data. Finally, we interpret the
resulting configuration of similarities among networks by systematically
examining which features of the networks are related to the spatial con-
figuration from the correspondence analysis.

This research may be extended in several directions. First, the
method can easily be used to compare multiple networks in a wide vari-
ety of situations. For example, one could compare friendship networks
in multiple schools, communications relations in multiple organiza-
tions, or interorganizational transactions in multiple communities. Thus
our method can be used to address fundamental questions about variabil-
ity or similarity in network structure and organization. Importantly, how-
ever, our methodology is not restricted to comparing networks where
the same relation has been measured in all settings. Second, in future
research it will be important to explore two extensions to the models
for tie probabilities or strengths. The first extension would handle val-
ued relations. In this paper, we have, perhaps somewhat arbitrarily,
dichotomized all relations. The second extension would include addi-
tional structural features in the® pnodels used to characterize the net-
works. We have used a limited set of relatively local properties in our
models. Certainly graph-level properties, such as network centraliza-
tion, the diameter of the graph, or the average path length between points
could also be included. Theoretically, the addition of these long-range
effects may prove quite interesting if it turns out that they have differ-
ent impacts in the networks of humans as opposed to the networks of
other animals.

APPENDIX: LIST OF DATA SOURCES

This appendix lists the 42 networks, describes the relations, gives a refer-
ence for the source of the data, and reports the label used in Table 1 and
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Figure 2. Where data are published, the table number and page of the
source are given. Numbers correspond to numbers listed in Table 1.

¢ 1-9.U.S. SenateCosponsorship in nine senates. Records whether sen-
atori cosponsored at least one bill introduced by senptluring that
session of the Senate. Data provided by Burk&®97). Labels: s93,
s94, s95, s96, s97, s98, s99, s100, s101.

¢ 10. Krackhardt's high-tech manager&ach manager was asked who
they went to for help or advice at work; Krackhaf(d®87). Data avail-
able in Wasserman and Fag$994) and in UCINET(Borgatti, Everett,
and Freeman 1999Label: krack.

¢ 11-14.Sampson’s monasteryour relations reported between monks in
the monastery: positive influené¢@&able D15, p. 47}, negative influ-
ence (Table D15, p. 471 blame(Table D16, p. 47% and praise
(Table D16, p. 472 data from Sampsof1968. Data are also available
in UCINET (Borgatti, Everett, and Freeman 199@abels: sampin,
sampnin, sampnpr, samppr.

» 15-18.Athanassiou and Nigh's top management teams (TNIfigre
are two team$02 and 0%and two relations: from whom each manager
sought advice and how extensively they had worked together; Athanas-
siou and Nigh(1999. Data provided by the second author. Labels: ua02,
ua05(advice, ue02, ue0fwork with).

» 19-21 Chimpanzeed hree relations: pant-grunt call§able 9.3, p. 119
initiation of dyadic agonistic confrontatiori$able 9.4, p. 119 and ini-
tiation of grooming(Table 9.14a, p. 126data from Nishida and Hosaka
(1996. Labels: chimpl, chimp2, and chimp3.

« 22.Macaca MulattaOne relation: groomin¢Table 1, p. 27% data are
from Sadg(1989. Label: macaca.

» 23-26.Macaquesmacaca sylvanug:our relations: male carried baby
away from anothefTable 7a, p. 7)1 label macaqga; male left another
with a baby(Table 7b, p. 71 label macagb; male carrying a baby
approached another maléfable 5a, p. 68 label macaqc; male
approached another male who was with a béfble 5b, p. 69 label
macaqd; data from Dead980.

e 27.Stumptail MacaqueéMacaca artaides The relation is aggression
(Table 2, p. 24y, data are from Dow and de Wa@dl989. Label: macaqu.

e 28-29.Patas monkeyslwo relations: fighting(Table III, p. 202 and
grooming(Table V, p. 20%; data from Kaplan and Zuckét980. Labels:
pataf and patag.
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» 30-33.Vervet monkey&Cercopithecus aethiops sabagyaveniles from
two troops(1l and 2 and two conditiongmother present and mother
absenk dyadic aggressivesubmissive interactions, both mothers present
(Table I, p. 77%, labels: vervetlm and vervet2m; dyadic aggressive
submissive interactions, both mothers abgdable Il, p. 776, labels:
vervetla and vervet2a; data from Horrocks and Hihgs83).

» 34-35.Cows bos indicusTwo relations: social lickingFigure 7, p. 13D
and social grazingFigure 4, p. 12 data from Reinhardt and Rein-
hardt(1981). Labels: cowl, cowg.

» 36—37 Hyaenacrocuta crocutaDominance, among females and among
males. Dominance among adult fema{d@able I, p. 1513 and domi-
nance among malé3able V, p. 1519, data from Frank1986. Labels:
hyenaf, hyenam.

 38. Highland poniesThe relation is threatéTable 2, p. 3; data from
Roberts and Browning1998, originally in Clutton-Brock, Green-
wood, and Powel(1976. Label: ponies.

» 39.Red deer stag<ervus elaphus LWinner and loser in encounters
(Figure 1(a), p. 601; data from Appleby(1983 and also in Freeman,
Freeman, and Romn€$992 and Robert$1994. Label: reddeer.

 40. Silvereyeszosterops lateralisOne relation, victories in encounters
(Table 1, p. 94 data from Kikkawa(1980. Label: silver.

 41.Sparrowszonotrichia querulaOne relation: dominance, both attacks
and avoidance@-igure 2, p. 19, data from Watt1986. Label: sparrow.

» 42. Willow tits, parus montanusOne relation: dominanc€Table 1,

p. 1492; data from Tufto, Solberg, and Ringgsk}©99. Data origi-
nally from Lahti, Koivula, and Orel(1994). Label: tits.
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