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COMPARING NETWORKS ACROSS
SPACE AND TIME, SIZE AND
SPECIES
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John Skvoretz†

We describe and illustrate methodology for comparing networks
from diverse settings. Our empirical base consists of 42 networks
from four kinds of species (humans, nonhuman primates, nonpri-
mate mammals, and birds) and covering distinct types of relations
such as influence, grooming, and agonistic encounters. The gen-
eral problem is to determine whether networks are similarly struc-
tured despite their surface differences. The methodology we propose
is generally applicable to the characterization and comparison of
network-level social structures across multiple settings, such as dif-
ferent organizations, communities, or social groups, and to the
examination of sources of variability in network structure. We first
fit a p* model (Wasserman and Pattison 1996) to each network to
obtain estimates for effects of six structural properties on the prob-
ability of the graph. We then calculate predicted tie probabilities for
each network, using both its own parameter estimates and the esti-
mates from every other network in the collection. Comparison is
based on the similarity between sets of predicted tie probabilities.
We then use correspondence analysis to represent the similarities
among all 42 networks and interpret the resulting configuration
using information about the species and relations involved. Results
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show that similarities among the networks are due more to the kind
of relation than to the kind of animal.

1. INTRODUCTION

Much of social network analysis examines a single network at a time.
Commonly the analyses comprise case studies of network properties or
processes within a single community. For example, dominance relations
among chimpanzees are described and the structure of the network ana-
lyzed. Or the liking and disliking relations among novices in a monastery
are described and the patterning in these networks related to observations
about group structure and dynamics. The problem of comparing networks
arises more rarely, and when it does the usual context is that of comparing
two relations mapped on the same population during the same time period.
For example, possible associations between friendship and advice seek-
ing among corporate managers may be studied by comparing the two
relations.

In this paper we expand the scope of comparison by describing a
general way in which two, three, . . . , many networks can be compared
at the same time even though they differ widely in size, type of rela-
tion, species of the units, and time and space of the observations. The
general question concerns determining whether the networks are simi-
larly structured despite their surface differences. The method we pro-
pose and illustrate allows us not only to compare two networks at a
time but to look at the overall patterning of similarities among a large
collection of networks from diverse settings. Our empirical base con-
sists of 42 different networks from four kinds of species~humans, non-
human primates, nonprimate mammals, and birds!, varying in size from
7 to 103 units, and covering distinct types of relations such as influ-
ence, grooming, and agonistic encounters. Although we illustrate the
methodology on a collection of relatively exotic networks, it can be eas-
ily applied to a wide range of more familiar substantive situations, such
as comparing advice networks among managers in different firms, friend-
ships among schoolchildren in different classrooms, referrals between
service agencies in various communities, and so on.

Six of these networks are diagrammed in Figure 1. The diversity in
our collection is apparent from the figures. All are directed graphs. In
some, the original data refer to counts. We dichotomize these data, regard-
ing any nonzero count as indicating the presence of a tie. Network 1~a!
derives from the observation of agonistic encounters between red deer: A
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tie exists from animali to animalj if the first defeated the second in an
encounter~Appleby 1983!. Network 1~b! diagrams the cosponsorship ties
among U.S. senators in the Ninety-third Congress~1973–1974!: A tie exists
from senatori to senatorj if the first cosponsored at least one bill intro-
duced by the second~Burkett 1997!. Network 1~c! graphs grooming rela-
tions among patas monkeys: The presence of a tie from monkeyi to

FIGURE 1. Graphs of six networks.

COMPARING NETWORKS 269



monkeyj indicates that the first groomed the second at least once~Kaplan
and Zucker 1980!. Network 1~d! depicts victories in encounters among
birds called silvereyes: The presence of a tie fromi to j indicates that
silvereyei was victorious in at least one encounter withj ~Kikkawa 1980!.
Network 1~e! graphs the advice relations among a group of high-tech man-
agers: There is a tie from manageri to managerj if i reports going toj for
advice~Krackhardt 1987!. Finally, network 1~f ! diagrams social licking
among cows: There is a tie from cowi to cowj if the first licks the second
~Reinhardt and Reinhardt 1981!.

Our problem of the comparison of networks can now be posed
rather dramatically: Is the network of cosponsorship among senators
structurally more similar to the network of social licking among cows,
the network of grooming among monkeys, or the network of advice
among managers? Or, are the networks of victory in encounters among
silvereyes and of dominance among red deer similarly structured? Such
questions are substantively interesting and theoretically provocative, but
they cannot be addressed systematically without general methods for the
comparison of networks. Such methods would enable us to answer cer-
tain questions: What structural features are similar or different among
networks of different kinds of organisms or different kinds of relations?
Which kinds of networks tend to be similarly structured and which tend
to be different? The present work contributes to research on these deeper
issues.

In the next section we review the relatively sparse literature on the
comparison of networks. We then outline the formal background for our
approach. We use the p* modeling framework to build and estimate mod-
els for the probability of a graph as a function of its structural properties.
The estimates from these models, in turn, form the basis from which the
similarity or dissimilarity of pairs of networks is calculated. Correspon-
dence analysis provides a way of representing the similarities among all
networks under consideration. We then interpret the resulting configura-
tion using information about the networks and their structural properties.
We apply this strategy to 42 networks and discuss the results.

2. COMPARING NETWORKS

The vast majority of social network studies are case studies of individual
communities. Nevertheless, comparison of networks can, and does, pro-
ceed along several lines. The most straightforward case is the comparison
of two networks over the same set of actors. For instance, two different
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relations could be measured on the same set of actors or the same relation
could be measured on one set of actors at two time points. Methodology
for comparison of two relations measured on the same set of actors dates
to the early years of social network analysis~Katz and Powell 1953! and
has been elaborated by Hubert and colleagues in a matrix permutation
context~Hubert and Baker 1978; Baker and Hubert 1981!. Moreover, sta-
tistical models for multiple relations are well developed~Wasserman 1987;
Pattison and Wasserman 1999!. There are also models for longitudinal
networks, where the same relation is measured on the same set of actors at
two ~or more! points in time~Wasserman and Iacobucci 1988; Snijders
1996; Snijders and VanDuijn 1997!.

Another type of comparison, replication, arises when the same rela-
tion is measured on two~or more! different sets of actors. Researchers are
usually concerned with whether the networks exhibit similar structural
properties or relationships or whether nonnetwork properties of the groups
are associated with network-level properties. Examples include both clas-
sics, such as Laumann and Pappi’s study of elite networks in the commu-
nities of Altneustadt and Towertown~Laumann and Pappi 1976! and
Hallinan’s ~1974! studies of sentiment structures in school groups, and
more recent studies such as Shrader, Lincoln, and Hoffman’s~1989! study
of networks in 36 agencies, Johnson and Boster’s study of winter-over
research teams at the South Pole~Johnson, Boster, and Palinkas n.d.!, the
National Longitudinal Study of Adolescent Health replication of friend-
ship networks across schools~Bearman, Jones, and Udry 1997!, and Rind-
fuss and Entwisle’s studies of networks of kinship and social and economic
relations in 51 villages in Nang Rong District, Thailand~Rindfuss et al.
2000!. Until recently, methodology for the comparison of replicated net-
works was primarily descriptive. For example, Breiger and Pattison’s com-
parison of elite structures in two communities used joint homomorphic
reduction of the semigroup algebras in the two communities~Breiger and
Pattison 1978!. Recently, however, Anderson et al.~1999! and Martin
~1999! describe statistical approaches that evaluate whether a common
set of parameter estimates provides adequate fit to two or more networks.

A fourth type of comparison arises when data on roughly similar
relations are available from different settings with different sets of actors.
Unlike the situation just described, which is “pure” replication, relations
in this case are only roughly comparable. The classic series of studies by
Davis~1979! and by Holland and Leinhardt~1978! using the sociometric
data bank of several hundred sociomatrices is a case in point. The studies
asked whether sociometric data from diverse sources tended to exhibit
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greater than chance tendencies for transitivity, balance, or clustering. They
calculated standard transitivity statistics on each network and then exam-
ined the distribution of the scores. Another example is studies of infor-
mant accuracy in different settings~for example, Bernard and Killworth
1977; Bernard, Killworth, and Sailer 1980!, where observational data were
collected in different ways depending on the setting~e.g., monitoring radio
transmissions among ham radio operators, or observing interactions in
the office or fraternity!. Similarly, Freeman~1992! compiled examples of
observations of interactions among people in seven different communi-
ties to explore the question of which of two alternative grouping models
was more consistent with the observed interactions. In these examples of
comparison, interest centers on whether hypothesized structural patterns
or relationships are found across a range of roughly similar settings.

Common to the examples cited is the fact that the comparisons
involve communities of identical actor types, usually humans. Only rarely
have comparisons been made between networks of different kinds of
organisms—for example, different animal species~Sade and Dow 1994!.
A notable exception is Maryanski’s~1987! comparison of weak and strong
ties in gorilla and chimpanzee social networks.

A more abstract and methodologically more challenging type of
comparison arises when networks not only have different actor sets but
also vary greatly in size, have substantively different relations, and include
actors that are different kinds of organisms. The methods we propose
address this problem. Our overarching question is whether pairs or sets of
networks are similarly structured despite being based on substantively dif-
ferent relations measured on quite different kinds of organisms. An impor-
tant contrast between our approach and previous methods for network
comparison is that it measures directly the similarity between pairs of net-
works rather than simply determining whether~or to what degree! each
exhibits specific structural tendencies. That is, our method provides an
index, akin to a correlation coefficient, that quantifies the degree of
similarity between two networks. An additional contrast with previous
methods derives from the number of networks our method compares simul-
taneously. In the most straightforward case of comparison—two net-
works over the same set of actors—several measures of association can
be calculated and evaluated—for example, using matrix permutation tests
~Hubert and Baker 1978; Baker and Hubert 1981! or estimating multiplex-
ity parameters in statistical models for multiple relations~Wasserman 1987;
Pattison and Wasserman 1999!. Extending comparisons to more than two
networks requires calculating similarities between all pairs of networks
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and analyzing these simultaneously. In the method we propose, the idea is
to represent the similarities among all networks in the set being compared
via scaling or clustering techniques to depict graphically the similarity
space of networks.

In overview, our approach consists of four steps:~1! We character-
ize each network in terms of a set of structural properties using a statisti-
cal model for the probability of the graph;~2! we measure the similarity
between networks based on parameter estimates for the structural proper-
ties in the models as they predict network tie probabilities;~3! we repre-
sent the similarities among the networks using a spatial model; and~4! we
interpret the resulting spatial configuration using information about the
networks. Each of these steps involves decisions about possible alterna-
tive approaches, which we discuss as they arise in our description below
and consider in detail in the discussion.

3. FORMAL BACKGROUND

Our aim is to assess whether two, three, . . ., many networks are similarly
structured despite their surface differences. We argue that two networks
are similarly structured to the extent that they exhibit the same structural
tendencies, to the same degree. Obviously there are numerous structural
tendencies that could be used to characterize networks, and selection cen-
ters on which properties are argued to be theoretically important for char-
acterizing the networks at hand. Some widely used properties provide the
basis for our comparison: mutuality, transitivity, cyclical triples, and star
configurations~in-stars, out-stars, and mixed stars!, as illustrated below.
To be precise, we focus on predicting the probability of a network from a
profile of structural properties of the network. Two networks are similarly
structured to the extent that the probabilities of both networks depend on
the same set of structural properties, used as predictor variables in the
models, and on each property to the same degree.

We draw upon recent developments in the statistical modeling of
networks—in particular, the development of models known as p* models
~Anderson et al. 1999; Crouch et al. 1998; Pattison and Wasserman 1999;
Wasserman and Pattison 1996; Robins, Pattison, and Wasserman 1999!.
Statistical models for networks were long based on the assumption of
dyadic independence. Dyadic independence means that the presence or
absence of a tie in theij dyad is independent of the presence or absence of
a tie in any other dyad. It is widely recognized that this assumption clearly
oversimplifies matters. As one example of the inappropriateness of the

COMPARING NETWORKS 273



dyadic independence assumption, triadic effects such as the presence of
an ij tie being significantly more likely if there are several othersk who
have ties toi and to j abound in real social networks. Modeling these
effects is beyond the capability of statistical models that assume dyadic
independence. The new statistical approaches, the p* family of models,
explicitly model nonindependence among dyads by including parameters
for structural features that capture hypothesized dependencies among ties.

In the p* framework, the probability of a digraph G is expressed as
a log-linear function of a vector of parametersu, an associated vector of
digraph statisticsx~G!, and a normalizing constantZ~u!:

P~G! 5
exp~u 'x~G!!

Z~u!
+ ~1!

The normalizing constant ensures that the probabilities sum to unity over
all digraphs. Theu parameters express how various “explanatory” prop-
erties of the digraph affect the probability of its occurrence. Different mod-
els use different profiles of digraph properties. Our models use a profile
of six structural properties: mutuality, out 2-stars, in 2-stars, mixed 2-stars,
transitive triples, and cyclical triples, as diagrammed in Figure 2.

Taken together, these effects constitute a Markov graph model
~Frank and Strauss 1986! in which the probability of theij tie depends
only on other ties in whichi andj might be involved but not on ties that
involve neitheri nor j. This model includes substantively interesting dyadic
and triadic effects and provides a base to which higher order network prop-
erties~such as subgrouping or graph connectivity! might later be added.
These effects are assumed to be homogeneous. The homogeneity assump-
tion means that a particular structural property has the same effect regard-
less of the specific individual nodes involved. Obviously when comparing
networks of different individuals the homogeneity assumption is desir-
able. Under the assumption of homogeneity, then, our model stipulates
that the probability of a graph is a log-linear function of the number of
mutual dyads, the number of out 2-stars, the number of in 2-stars, etc. If
the resulting parameter estimate for a specific property is large and posi-
tive, then graphs with that property have large probabilities. For example,
if the mutuality property has a positive coefficient, then a graph with many
mutual dyads has a higher probability than a graph with few mutual dyads.
Or, if the cyclical triple property has a negative coefficient, then a graph
with many cyclical triples has a lower probability than a graph with few
cyclical triples. Thus, the resulting parameter estimates associated with
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the structural properties capture the importance of their respective prop-
erties for characterizing the network under study.

Conceptually, the models are easy to understand. The real diffi-
culty comes in trying to estimate the effect coefficients. Consider the
estimation problem. Suppose we assigned a set of values to the effect coef-
ficients. Then for each digraph realization over the set of all digraphs for a
particular node set of sizeg, we could calculate the numerator of equa-
tion ~1!. Summing the numerator over all realizations yields the normal-
izing constant in the denominator of equation~1!. The probability of a
particular digraph realization is then given by the ratio of its numerator to
the normalizing constant. One particular realization is the observed
digraph. The estimation problem can be thought of as finding an assign-

FIGURE 2. Network properties included in the p* models.
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ment of values to effect coefficients that maximizes the probability of the
observed digraph. Conceptually, of course, these are the maximum-
likelihood estimates of the effect parameters. One could imagine estima-
tion by a numerical search procedure through an orthogonal space of
parameter values. But the number of combinations to be searched and the
number of digraph realizations to be calculated on each pass are so huge
for even relatively small networks that such a procedure is simply not
practicable. Clearly, direct analysis via the solution of simultaneous dif-
ferential equations for values that maximize equation~1! is equally out of
the question.

The literature proposes a way of out of this impasse. The estima-
tion approach, suggested by Strauss and Ikeda~1990! and elaborated by
Wasserman and Pattison~1996!, uses equation~1! to express the proba-
bility of tie, conditional on the rest of the digraph:

P~xij 5 16G2ij ! 5
P~G1!

P~G1! 1 P~G2!
, ~2!

whereG2ij is the digraph including all adjacencies except thei, j th one.
The digraphG1 is defined by the adjacency matrix plusxij 5 1 while G2

is defined as the adjacency matrix plusxij 5 0. This equation expresses
the probability thatxij 5 1 conditional on the rest of the graph. Note that
equation~2! does not depend on the normalizing constant because upon
rewriting we get

P~xij 5 16G2ij ! 5
exp~u 'x~G1!!

exp~u 'x~G1!! 1 exp~u 'x~G2!!
+ ~3!

The conditional odds of the presence of a tie fromi to j versus its absence
is expressed by

P~xij 5 16G2ij !

P~xij 5 06G2ij !
5

exp~u 'x~G1!!

exp~u 'x~G2!!
+ ~4!

From equation~4!, we derive the log of the odds orlogit model:

logit P~xij 5 16G2ij ! 5 u ' @x~G1! 2 x~G2!# + ~5!

The quantity in brackets on the right side is a vector of differences in the
profile of structural properties~which are assumed in equation~1! to affect
the probability of the digraph! whenxij changes from 1 to 0. Finally, we
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can derive an equation for the probability thatxij 5 1, conditional on the
rest of the digraph, from equation~5!:

P~xij 5 16G2ij ! 5
exp~u ' ~x~G1! 2 x~G2!!!

11 exp~u ' ~x~G1! 2 x~G2!!!
+ ~6!

The estimation method proposed by Strauss and Ikeda~1990! forms
a pseudolikelihood function for the graph in terms of the conditional prob-
abilities forxij as follows:

PL~u! 5 )
ij

P~xij 5 16G2ij !xij P~xij 5 06G2ij !12xij ~7!

Strauss and Ikeda prove that equation 7 can be maximized using maximum-
likelihood estimation of the logistic regression, equation~5!, assuming
thexij ’s are independent observations. Thus the p* family of models can
be estimated, albeit approximately, using logistic regression routines in
standard statistical packages. However, since the logits are not indepen-
dent, the model is not a true logistic regression model and statistics from
the estimation must be used with caution. Because goodness-of-fit statis-
tics are pseudolikelihood ratio statistics, it is questionable whether the
usual chi-square distributions apply, and standard errors have only “nom-
inal” significance~see Crouch and Wasserman 1998!. These reservations
have little or no importance in our use of the p* framework. We are not
concerned with exactly how good a fit a particular model has to a partic-
ular network. Nor are we concerned with identifying just those coeffi-
cients that are statistically “significant.” Instead we use estimates from
the model in conjunction with the calculated changes in graph statistics to
calculate an estimated probability for eachij tie in the network.

For each of our data sets, we estimate a p* model that expresses the
probability of a tie being present~conditional on the rest of the graph! as a
function of the six structural properties diagrammed in Figure 2. Fitting
the p* model results in estimates ofu’s for the effects of each of the graph
properties hypothesized to affect the likelihood of a tie. These estimates
express the importance of the properties for the probability of the graph,
but they can also be used~via equation~6! ! to calculate the probabilities
of the individual ties in the network. We use all parameter estimates to
calculate predicted probabilities regardless of their level of statistical
significance.

With these considerations in hand, we may return to the question
of whether two networks are similarly structured. Consider two networks,
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A and B, in which theu’s from the p* model~equation~6! ! are similar in
direction and magnitude. We would argue that these two networks are
similarly structured in that the same structural tendencies are important,
and important to the same degree, in predicting tie probabilities in both
networks. In such a case we should be able to predict the tie probabilities
in one network not only from its own parameter estimates but also from
the parameter estimates of its “twin.” On the other hand, this would not be
the case if the p* models for two networks resulted in quite different esti-
mates of theu’s.

An important general principle for comparison is that the magni-
tudes of the effects should be independent of scale differences in the
explanatory variables in the models. The networks we compare vary
widely in size and density, leading to distributional differences in the
explanatory variables—the change statisticsx~G1! 2 x~G2!. Thus, for
comparison, the effects should be expressed as standardized logistic
regression coefficients. Two networks are similarly structured if net-
work structural properties have the same impact, net of distributional
differences in the explanatory variables; that is, if the impact is the same
in standardized terms.

Comparison can now proceed at different levels. First, we could
directly compare the standardized parameter estimates from models for
different networks. Alternatively, we could use sets of parameter esti-
mates to get predicted tie probabilities for the networks and then compare
these predicted probabilities. We use the second mode of comparison for
three reasons:~1! We are interested in the collection of structural effects
that characterize the network rather than individual parameter compari-
sons;~2! we are fundamentally interested in the structure of the network
as manifested in the tie probabilities predicted by the network structural
effects; and~3! resemblance between networks based on predictions from
the parameter estimates may be asymmetric; parameter estimates from
network A may predict ties in network B better than parameter estimates
from B predict ties in A.

The task of comparing networks proceeds by using the standard-
ized parameter estimates for one data set to predict tie probabilities for
every other data set in the collection, in a pair-wise fashion. Predictions
are made using equation~6! but entering the standardized parameter esti-
mates from one network and the standardized change statistics~x~G1! 2
x~G2!! from the network that is being predicted. We do this for each pair
of networks. The result is a set of predicted tie probabilities for each net-
work, one based on its own p* parameter estimates and the rest based on
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the estimates from the other networks. The next step assesses the relative
similarity between one set of parameter estimates and another set of esti-
mates via their predicted tie probabilities. We now turn to a description of
this step in the comparison process.

4. DATA AND METHODOLOGY OF COMPARISON

Table 1 lists the 42 data sets we use to illustrate our methodology of com-
parison. The networks range in size from 7 red deer stags to 104 U.S.
senators. The ties composing the networks also vary from grooming rela-
tions and advice seeking to victories in agonistic encounters. Each of the
networks that we compare is represented by a 0,1 adjacency matrix~cre-
ated by dichotomizing all nonzero entries equal 1 if the original relation
was valued!. More details about each of the data sets can be found in the
Appendix.

The strategy of comparison consists of four steps:~1! for each data
set, we estimate a p* model that expresses the conditional probability of a
tie as a function of six structural factors: mutuality, out 2-stars, in 2-stars,
mixed 2-stars, transitive triples, and cyclical triples~since we use stan-
dardized estimates there is no intercept!; ~2! we use these standardized
parameter estimates and the standardized change scores in these struc-
tural factors to calculate the predicted probability of a tie in eachi, j pair
in each data set using as coefficients the parameter estimates from its own
model and from each of the remaining 41 models. Thus for each data set,
we have 42 sets of predicted probabilities, one from each set of parameter
estimates including the set of estimates from the focal data set itself. The
third step calculates a~dis!similarity score between the predicted proba-
bilities from the estimates on the focal data set and each of the other 41
sets of predicted probabilities. The fourth and final step uses correspon-
dence analysis to represent the proximities among all of the networks,
using as input the 42 by 42 matrix of~dis!similarity scores. To illustrate
the methodology, we can follow through the steps for the six networks
diagrammed in Figure 1.

For these six networks, the results of the p* model estimation are
displayed in Table 2. The estimates vary considerably and many of the
coefficients are not statistically significant at the p, .05 level. However,
all estimates are retained in the prediction equation regardless of their
nominal statistical significance. In one case, “cows, licking,” the full model
cannot be estimated due to multicolinearity among the predictor vari-
ables. In that case and three others like it, we use the model that is estima-
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TABLE 1
List of Networks

p* parameter profile

Label Network Relation mut trans cycle ostar istar mstar N

1. s93 U.S. Senate, 1973–74 Influence0cosponsorship 1 2 1 1 103
2. s94 U.S. Senate, 1975–76 Influence0cosponsorship 1 1 1 2 101
3. s95 U.S. Senate, 1977–78 Influence0cosponsorship 1 1 1 2 104
4. s96 U.S. Senate, 1979–80 Influence0cosponsorship 1 1 1 2 101
5. s97 U.S. Senate, 1981–82 Influence0cosponsorship 1 1 1 2 101
6. s98 U.S. Senate, 1983–84 Influence0cosponsorship 1 1 2 2 2 101
7. s99 U.S. Senate, 1985–86 Influence0cosponsorship 1 1 2 2 2 102
8. s100 U.S. Senate, 1987–88 Influence0cosponsorship 1 1 2 2 101
9. s101 U.S. Senate, 1989–90 Influence0cosponsorship 1 1 2 2 2 102

10. krack Krackhardt’s managers Advice 1 1 1 2 21
11. sampin Sampson’s Monastery Influence, positive 1 1 1 18
12. sampnin Sampson’s Monastery Influence, negative 1 2 2 2 18
13. sampnpr Sampson’s Monastery Blame 1 2 1 1 1 2 18
14. samppr Sampson’s Monastery Praise 1 2 18
15. ua02 Athanassiou & Nigh TMT 2 Advice 1 12
16. ue02 Athanassiou & Nigh TMT 2 Worked together 1 12
17. ua06 Athanassiou & Nigh TMT 6 Advice 1 11
18. ue06 Athanassiou & Nigh TMT 6 Worked together 2 1 11
19. chimp1 Chimpanzees Pant grunt calls 2 1 2 9
20. chimp2 Chimpanzees Agonistic 2 2 9
21. chimp3 Chimpanzees Grooming 1 9
22. macaca Macaca mulatta Grooming 1 1 2 16

2
8

0



23. macaqa Macaca sylvanus icarries baby away fromj 1 1 8
24. macaqb Macaca sylvanus ileaves baby w0j 2 2 8
25. macaqc Macaca sylvanus iw0baby approachesj 8
26. macaqd Macaca sylvanus jw0baby approached byi 2 1 1 2 2 2 8
27. macaqu Macaca artaides Aggression 2 14
28. patasf Patas monkeys, female Fight 2 18
29. patasg Patas monkeys Groom 1 1 1 19
30. vervet1a Vervet monkeys, juveniles Aggressive0submissive 14
31. vervet1m Vervet monkeys, juveniles Aggressive0submissive 2 1 1 14
32. vervet2a Vervet monkeys, juveniles Aggressive0submissive 2 2 11
33. vervet2m Vervet monkeys, juveniles Aggressive0submissive 2 11
34. cowg Cows,bos indicus Grazing preference 1 1 29
35. cowl Cows,bos indicus Licking 1 1 1 29
36. hyenaf Hyaena, female,crocuta crocuta Dominance 1 2 1 25
37. hyenam Hyaena, male,crocuta crocuta Dominance 1 13
38. ponies Highland ponies Threat 2 17
39. reddeer Red deer stags,cervus elaphus L. Dominance 1 7
40. silver Silvereyes,zosterops lateralis Victory in encounter 10
41. sparrow Harris’ sparrows Dominance 2 2 26
42. tits Willow tits Dominance 1 8

2
8

1



ble and contains the greatest number of original structural factors. The
omitted one~s! are set equal to zero. Inspection of the parameter estimates
reveals several similarities and differences. For instance, mutuality has a
positive effect in all six networks but “Senate 93rd”. Transitivity has a
positive effect in all six networks—that is, completing a triple transitively
tends to be an important property in all of them, although the size of the
effect varies considerably from one network to another.

Table 3 presents six sets of predicted tie probabilities for a portion
of the red deer network, one made by its own parameters and the others by
the estimates from the other five networks. In general, if another network
has a structure similar to the “red deer” network, then its model should
provide predicted probabilities that are close to the probabilities predicted
from the “red deer” model itself. That is, we would expect the average
difference between predictions to be small.

To calculate the dissimilarity between the predicted probabilities,
we use the Euclidean distance function:

d~t, y! 5 !(
i, j

~ pt ~i, j ! 2 py~i, j !!2

gt ~gt 2 1!
, ~8!

wherept ~i, j ! is the standardized tie probability for pair~i, j ! predicted
from the target networkt’s model,py~i, j ! is the standardized tie probabil-
ity for pair ~i, j ! predicted from networky’s model, andgt is the number
of nodes in networkt. Results for our six illustrative networks are given

TABLE 2
p* Parameter Estimates for Six Networks

Red Deer
Senate
93rd Patas Silvereyes Managers

Cows,
Lick

Intercept 4.291 25.773* 22.308* 3.801 23.676* 24.179*
Mutual 6.520* 20.074 1.813* 1.057 1.714* 2.032*
O-Star 20.795 0.061* 0.152* 20.347 0.260* 0.115
I-Star 28.482 0.066* 20.045 20.741 0.249* 0.488*
M-Star 2.689 0.002 20.131 20.443 2.152* 20.458
Trans 2.085 0.007* 0.092 0.450 0.039 1.402*
Cycle 25.973 20.017* 0.647* 0.180 0.102 ...

*Significant at p, .05
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in Table 4. We find, for instance, that the model that best predicts the “red
deer” target~other than the “red deer” model itself! is the model for
encounters between silvereyes. The model of social licking among cows
best predicts, as a target, cosponsorship among U.S. senators in the Ninety-

TABLE 3
Predicted Tie Probabilities for Red Deer Dominance

Model Providing Predictions

i j Obsxij Red Deer
Senate
93rd Patas Silvereyes Managers

Cows,
Lick

1 2 1 0.99097 0.60750 0.80128 0.78903 0.75413 0.50732
1 3 1 0.96682 0.60753 0.69805 0.66990 0.82355 0.59876
1 4 1 0.99978 0.32027 0.66999 0.66996 0.60650 0.40379
1 5 1 0.99535 0.61614 0.74646 0.74403 0.76769 0.53816
1 6 1 0.98674 0.32624 0.38869 0.38818 0.37927 0.3266
1 7 1 0.87031 0.63108 0.40235 0.41386 0.58531 0.48569
2 1 1 0.99264 0.80810 0.70941 0.74697 0.78741 0.63561
2 3 1 0.37954 0.52914 0.56319 0.63587 0.53177 0.47484
2 4 1 0.99802 0.24093 0.66128 0.68044 0.57629 0.42665
2 5 1 0.99847 0.54663 0.65779 0.72511 0.70561 0.56147
2 6 0 0.59946 0.62525 0.43461 0.47461 0.66197 0.54392
2 7 1 0.69987 0.54721 0.40736 0.51333 0.56865 0.53659
3 1 1 0.60305 0.55773 0.56403 0.44505 0.45961 0.47982
3 2 0 0.69020 0.65131 0.65062 0.64060 0.66261 0.59907
3 4 0 0.39391 0.35465 0.44473 0.47845 0.24874 0.35147
3 5 1 0.89568 0.27196 0.64230 0.70525 0.44261 0.48479
3 6 0 0.35590 0.36566 0.32775 0.41485 0.34780 0.46709
3 7 0 0.13754 0.68110 0.35404 0.52912 0.56595 0.65571
. . . . . . . . . . . . . . . . . . . . . . . . . . .

TABLE 4
Distances Between Networks

Model Providing Predictions

Target
Network Red Deer

Senate
93rd Patas Silvereyes Managers

Cows,
Lick

Red Deer 0 0.07082 0.05098 0.04568 0.05477 0.06412
Senate 93rd 0.00505 0 0.00232 0.00229 0.00117 0.00128
Patas 0.01969 0.01186 0 0.00714 0.00680 0.00706
Silvereyes 0.03438 0.02214 0.00724 0 0.01861 0.01610
Managers 0.02386 0.00580 0.00997 0.00977 0 0.00616
Cows, Lick 0.01678 0.00565 0.00427 0.00662 0.00533 0
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Third Congress. However, that network of cosponsorship ties is best pre-
dicted by the model for advice seeking between managers, among the five
alternatives. Note that the matrix of distances is not symmetric. In fact,
there is no reason to expect symmetry—the~i, j ! cell expresses the dis-
tance between the predicted probabilities of target networki ’s ties from
networkj ’s model, while the~ j, i ! cell expresses the distance between the
predicted probabilities of target networkj ’s ties from networki ’s model.
The final step takes the full matrix version of Table 4~transformed to
similarities! and scales it using correspondence analysis. These results are
reported and interpreted in the next section.

5. REPRESENTING SIMILARITIES AMONG NETWORKS:
CORRESPONDENCE ANALYSIS

We use correspondence analysis to represent the similarities among the
networks. Correspondence analysis~Greenacre 1984; Weller & Rom-
ney, 1990! is a data analytic technique for studying two-way arrays such
as contingency tables or similarity matrices. It is one of several closely
related scaling approaches, also including dual scaling~Nishisato 1994!,
homogeneity analysis~Gifi, 1990!, and optimal scaling. It aims to rep-
resent proximity data in a low-dimensional space using scores for cat-
egories of the variables. These scores then serve as coordinates in
graphical displays in which points represent the categories of the vari-
ables and the distance between points represents the similarity between
their respective entities. We use as input the matrix of distances between
networks, appropriately transformed into similarities by subtracting each
value from a large positive number. As Carroll, Kumbasar, and Romney
~1997! show, this is equivalent to multidimensional scaling of the orig-
inal distances. The advantage of correspondence analysis is that it can
be used to analyze nonsymmetric matrices, such as the distances between
the target networks and the networks providing the model predictions.
In our application, two networks will be close in space if the predic-
tions provided by their models are similar, in the sense that they simi-
larly predict other networks in the collection.

Correspondence analysis is accomplished through a singular value
decomposition of an appropriately scaled matrix. Entries in the input matrix
are divided by the square root of the product of the row and column mar-
ginal totals, prior to singular value decomposition. LetF be a rectangular
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matrix of positive entries.R andC are diagonal matrices with entries equal
to the row and column totals ofF, respectively. Correspondence analysis
consists of a singular value decomposition of the matrixR102FC102

R102FC102 5 UDV, ~9!

whereD is a diagonal matrix of singular values, andU andV are row and
column vectors, respectively. For visual displays,U andV are rescaled.
We use principal coordinates, where, on each dimension, the weighted
mean is equal to 0 and the weighted variance is equal to the singular value
squared. In the following graphs we present the column scores from cor-
respondence analysis of the matrix of similarities among the networks.
Column scores show similarities among networks in terms of the predic-
tions they make for other networks. Row scores would show similarities
among the targets being predicted. We should note that for our analyses
using the row scores leads to essentially the same results and conclusions
as those presented here.

To interpret the correspondence analysis configuration, we employ
information about the networks and about the species and relations that
are involved. There are four kinds of species: human, nonhuman primate,
mammal, and bird. Relations are first categorized by how they were col-
lected: observation or report by respondent. Obviously this is confounded
with the type of animal since only humans provided reports of their ties to
others. We then categorize the relation as either positive or negative.
Grooming, advice seeking, cosponsorship, and working together are con-
sidered positive, whereas dominance, agonistic encounters, and blaming
are negative. This leads to four types: observed positive, observed nega-
tive, reported positive, or reported negative.1 We also use information about
the structural tendencies exhibited by each network, including the extent
and direction of each of the structural properties included in the p* mod-
els, based on the nominal significance of the coefficients~u’s! from the p*

model: positive, none, or negative. We use a cutoff value of a .05 signifi-
cance level only as a heuristic to determine whether the tendency is posi-
tive or negative.

1We also tried a four-category coding for the kind of relation: groom, agonis-
tic, influence, and other. The conclusions from that analysis are similar to the ones
reported here for the four group categorization.
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6. RESULTS OF THE CORRESPONDENCE ANALYSIS

Let us turn now to the full set of 42 networks. Figure 3 presents the first
two dimensions of column scores from the correspondence analysis. The
first three dimensions of the correspondence analysis accounted for 24.7,
12.9, and 11.1 percent of the variance, respectively. The column scores
plotted in Figure 3 pertain to the model providing the predictions. Net-
works that are in close proximity in this figure are similar in the extent to
which their p* parameter estimates predict other networks in the set. Look-
ing at Figure 3, we see in the center toward the top a grouping of networks
including cosponsorship in all of the U.S. senates except the Ninety-third
and Ninety-fourth~labeled s95 through s101!, dominance among willow
tits ~tits!, advice among Krackhardt’s high-tech managers~krack!, and
dominance among male hyenas~hyenam!. On the far right of the figure,
we see aggressive0submissive relations among juvenile vervet monkeys
~vervet1a and vervet2a, vervet2m!, dominance among sparrows~spar-

FIGURE 3. Correspondence analysis of similarities between networks from p*model
parameters, column scores.
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row!, threats among highland ponies~ponies!, pant-grunt calls between
chimpanzees~chimp1!, and patas monkeys fighting~patasf!.

In Figure 3 networks that are close to one another tend to exhibit
similar structural properties. How can we interpret the overall spatial pat-
terning in this figure? First, we use information about the structural fea-
tures of the networks themselves, as seen in the directions and magnitudes
of their p* parameter estimates. For each network, we code it as positive,
negative, or none on each of the structural features based on the direction
and nominal significance of the estimated coefficient for that property, as
described above. Table 1 reports these codings for each network as the p*

parameter profile. For example, we can see that the Ninety-third Senate
has positive tendencies for transitive triples, out-stars, and in-stars and a
negative tendency for cyclic triples. We then draw confidence ellipses
around the networks with each property on the correspondence analysis
configuration.2 The results for mutuality, transitivity, and cycles are pre-
sented in Figures 4 through 6.

We examine the extent to which networks with specific structural
tendencies occupy distinct regions of the correspondence space using an
analysis of variance with the dimension scores as the dependent variables
and the three category classifications of structural tendencies as factors,
using the procedure described in Kumbasar, Romney, and Batchelder
~1994! and Romney, Batchelder, and Brazill~1995!. An analysis of vari-
ance comparing column dimension scores along the first three dimen-
sions between three categories of structural properties gives the proportion
reduction in error~PRE! in dimension scores due to the categorical group-
ing variables, as measured by the correlation ratio squared,h2. Table 5
presents these statistics for the first three dimensions of the correspon-
dence analysis. From these results it is clear that the first dimension dis-
tinguishes networks in which mutuality is an important property from those
in which it is not, or in which there is a tendency away from mutuality
~h2 5 0.43!. Transitivity is an important contrast along the second dimen-
sion~h2 5 0.27!.

We use the same procedure to study whether similarities among
networks are patterned by animal type~human, nonhuman primate, non-
primate mammal, or bird! or by relation type~observed positive, observed
negative, reported positive, reported negative!. The confidence ellipses

2The confidence ellipse is centered on the means of the dimension 1 and dimen-
sion 2 coordinates. Its orientation is determined by the covariance of the two vari-
ables. We present 68.27 percent confidence ellipses.
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for animal type and for relation type, overlaid on the correspondence
analysis configurations, are in Figures 7 and 8. Results in Table 5 show
that the kind of animal is not an important distinction along any of the
first three dimensions of the correspondence analysis. Whether the rela-
tion is observed or reported is important along both of the first two
dimensions~h2 5 0.10 andh2 5 0.20!, and whether the relation is pos-
itive or negative is an important distinction along the first and third
dimensions~h2 5 0.12 andh2 5 0.13!. Relation type, coded into four
categories, is an important aspect of the second dimension~h2 5 0.26!.
Overall the type of relation appears to be more important than the type
of animal in distinguishing among the networks.

Further investigation of the associations between the relation type
and properties of the networks reveals some interesting relationships for
our sample of networks. Observed positive relations~for example, groom-
ing between nonhuman primates and cosponsorship between senators! tend

FIGURE 4. Confidence ellipses for mutuality overlaid on correspondence analysis of
similarities between networks from p* model parameters.
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to be mutual, as do reported negative relations~blame and negative influ-
ence!. In general, transitivity is characteristic of observed positive rela-
tions, and a tendency away from transitivity is characteristic of reported
negative relations. Whether these associations hold in larger samples of
networks is a topic for future research.

7. DISCUSSION

We have described a methodology for comparing networks from diverse
settings including vastly different species and relational contents. This
methodology allows one to assess not only what structural features are
important in a given network but also how similar various networks are in
terms of these properties. Important features of our approach are the cal-
culation of an index of~dis!similarity between each pair of networks, and

FIGURE 5. Confidence ellipses for transitivity overlaid on correspondence analysis
of similarities between networks from p* model parameters.
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then the representation of these similarities among the diverse networks
using correspondence analysis. Information about characteristics of the
networks, including the kinds of actors and types of relations, is then used
to interpret this spatial configuration.

In our results it appears that the kind of relation involved rather
than the species underlies similarities among the networks. It is the nature
of relation that determines the structural features of its network. For exam-
ple, agonistic relations, whether between red deer or highland ponies, are
similarly structured. This leads to the speculation that distinctions among
species in network structures are due to differences in the distributions of
relations in which they typically engage. This also naturally suggests that
greater efforts should be devoted to measuring the typical range of rela-
tions for a species. For example, it would be useful to have observational
data on different kinds of human interactions~though interviewing chim-
panzees about who they go to for advice is probably out of the question!.

FIGURE 6. Confidence ellipses for cyclic triples overlaid on correspondence analy-
sis of similarities between networks from p* model parameters.
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TABLE 5
Proportion Reduction in Error Measures~h2! for Correspondence Analysis Dimensions by Network Structural Properties, Type of

Animal, and Type of Relation

Dimension Mutuala
Transitive
Triplesa

Cyclic
Triplesa

Type of
Animalb

Observed or
Reported Relation

Positive or
Negative Relation

Type of
Relationc

1 0.43** 0.00 0.09 0.09 0.10* 0.12* 0.19
2 0.01 0.27** 0.00 0.05 0.20** 0.00 0.26*
3 0.03 0.10 0.13 0.16 0.02 0.13* 0.14

*p , .05
**p , .01
aMutual, transitive, and cycle coded: positive, none, negative.
bHuman, nonhuman primate, non-primate mammal, bird.
cObserved positive, observed negative, reported positive, reported negative.

2
9

1



Our methodology of comparison consists of four steps:~1! charac-
terizing the structural properties of each network using a statistical model,
~2! comparing pairs of networks based on parameter estimates for the
effects of these structural properties,~3! representing spatially the simi-
larities among the networks, and~4! interpreting the resulting configura-
tion using information about the networks. At each juncture there are
alternative approaches that might be used. Thus it is important to consider
the principles on which we base our choices and the robustness of our
results in light of decisions about particular alternatives.

First, we use the p* family of statistical models to estimate the
effects of network structural properties on the probability of the graph. In
the present analysis, the model includes six relatively local properties
~mutuality, out 2-stars, in 2-stars, mixed stars, transitive triples, and cyclic
triples!. This collection of effects constitutes a Markov graph model but
can easily be expanded to include other structural properties. Building
models with lower-order effects before adding more complex higher-
order effects is standard practice in statistical modeling, and one that we

FIGURE 7. Confidence ellipses for type of animal overlaid on correspondence analy-
sis of similarities between networks from p* model parameters.
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follow here. In addition, there are alternatives to the p* modeling frame-
work that also could be used to estimate effects of network structural
properties—for example, Friedkin’s local density model~Friedkin 1998!
could be used to estimate tie probabilities.

The second step is to compare networks based on the structural
parameters in the models. We base our choice here on the principle that
networks of different sizes and of different densities can have similar
structures. We view size and density as differences of scale rather than
as differences of theoretical significance. This leads us to use standard-
ized regression coefficients and standardized explanatory variables for
predicting tie probabilities. Comparison is then based on predicted tie
probabilities, using a network’s own parameter estimates and the param-
eter estimates from other networks. Resemblance between networks is
measured using Euclidean distance. Other measures of similarity~such
as a correlation coefficient! would also be possible. We have explored
other modes of comparison, using predicted probabilities from unstan-
dardized regression coefficients, and using predicted logits rather than

FIGURE 8. Confidence ellipses for type of relation overlaid on correspondence analy-
sis of similarities between networks from p* model parameters.
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predicted probabilities. In all cases the results and substantive conclu-
sions are substantially similar to those we present here. We have only
preliminarily explored another alternative—namely, direct comparison
of the parameter estimates themselves. Our preliminary investigation on
the current data indicates this comparison would yield the same substan-
tive conclusions.

The third step in our methodology represents spatially the~dis!sim-
ilarities among the collection of networks. Since the matrix of~dis!simi-
larities is not symmetric we use correspondence analysis rather than other
scaling options that require symmetric input data. Finally, we interpret the
resulting configuration of similarities among networks by systematically
examining which features of the networks are related to the spatial con-
figuration from the correspondence analysis.

This research may be extended in several directions. First, the
method can easily be used to compare multiple networks in a wide vari-
ety of situations. For example, one could compare friendship networks
in multiple schools, communications relations in multiple organiza-
tions, or interorganizational transactions in multiple communities. Thus
our method can be used to address fundamental questions about variabil-
ity or similarity in network structure and organization. Importantly, how-
ever, our methodology is not restricted to comparing networks where
the same relation has been measured in all settings. Second, in future
research it will be important to explore two extensions to the models
for tie probabilities or strengths. The first extension would handle val-
ued relations. In this paper, we have, perhaps somewhat arbitrarily,
dichotomized all relations. The second extension would include addi-
tional structural features in the p* models used to characterize the net-
works. We have used a limited set of relatively local properties in our
models. Certainly graph-level properties, such as network centraliza-
tion, the diameter of the graph, or the average path length between points
could also be included. Theoretically, the addition of these long-range
effects may prove quite interesting if it turns out that they have differ-
ent impacts in the networks of humans as opposed to the networks of
other animals.

APPENDIX: LIST OF DATA SOURCES

This appendix lists the 42 networks, describes the relations, gives a refer-
ence for the source of the data, and reports the label used in Table 1 and
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Figure 2. Where data are published, the table number and page of the
source are given. Numbers correspond to numbers listed in Table 1.

• 1–9.U.S. Senate. Cosponsorship in nine senates. Records whether sen-
ator i cosponsored at least one bill introduced by senatorj during that
session of the Senate. Data provided by Burkett~1997!. Labels: s93,
s94, s95, s96, s97, s98, s99, s100, s101.

• 10. Krackhardt’s high-tech managers. Each manager was asked who
they went to for help or advice at work; Krackhardt~1987!. Data avail-
able in Wasserman and Faust~1994! and in UCINET~Borgatti, Everett,
and Freeman 1999!. Label: krack.

• 11–14.Sampson’s monastery. Four relations reported between monks in
the monastery: positive influence~Table D15, p. 471!, negative influ-
ence ~Table D15, p. 471!, blame ~Table D16, p. 472!, and praise
~Table D16, p. 472!; data from Sampson~1968!. Data are also available
in UCINET ~Borgatti, Everett, and Freeman 1999!. Labels: sampin,
sampnin, sampnpr, samppr.

• 15–18.Athanassiou and Nigh’s top management teams (TMT). There
are two teams~02 and 05!and two relations: from whom each manager
sought advice and how extensively they had worked together; Athanas-
siou and Nigh~1999!. Data provided by the second author. Labels: ua02,
ua05~advice!, ue02, ue05~work with!.

• 19–21.Chimpanzees. Three relations: pant-grunt calls~Table 9.3, p. 119!,
initiation of dyadic agonistic confrontations~Table 9.4, p. 119!, and ini-
tiation of grooming~Table 9.14a, p. 126!; data from Nishida and Hosaka
~1996!. Labels: chimp1, chimp2, and chimp3.

• 22.Macaca Mulatta. One relation: grooming~Table 1, p. 274!; data are
from Sade~1989!. Label: macaca.

• 23–26.Macaques, macaca sylvanus.Four relations: male carried baby
away from another~Table 7a, p. 71!, label macaqa; male left another
with a baby~Table 7b, p. 71!, label macaqb; male carrying a baby
approached another male~Table 5a, p. 69!, label macaqc; male
approached another male who was with a baby~Table 5b, p. 69!, label
macaqd; data from Deag~1980!.

• 27. Stumptail Macaques~Macaca artaides!. The relation is aggression
~Table 2, p. 247!; data are from Dow and de Waal~1989!. Label: macaqu.

• 28–29.Patas monkeys. Two relations: fighting~Table III, p. 202! and
grooming~Table V, p. 205!; data from Kaplan and Zucker~1980!. Labels:
pataf and patag.
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• 30–33.Vervet monkeys~Cercopithecus aethiops sabaeus!, juveniles from
two troops~1 and 2! and two conditions~mother present and mother
absent!: dyadic aggressive0submissive interactions, both mothers present
~Table I, p. 775!, labels: vervet1m and vervet2m; dyadic aggressive0
submissive interactions, both mothers absent~Table II, p. 776!, labels:
vervet1a and vervet2a; data from Horrocks and Hunte~1983!.

• 34–35.Cows, bos indicus. Two relations: social licking~Figure 7, p. 130!
and social grazing~Figure 4, p. 126!; data from Reinhardt and Rein-
hardt~1981!. Labels: cowl, cowg.

• 36–37.Hyaena, crocuta crocuta.Dominance, among females and among
males. Dominance among adult females~Table I, p. 1513! and domi-
nance among males~Table V, p. 1519!; data from Frank~1986!. Labels:
hyenaf, hyenam.

• 38. Highland ponies. The relation is threats~Table 2, p. 3!; data from
Roberts and Browning~1998!, originally in Clutton-Brock, Green-
wood, and Powell~1976!. Label: ponies.

• 39. Red deer stags, Cervus elaphus L.Winner and loser in encounters
~Figure 1~a!, p. 601!; data from Appleby~1983! and also in Freeman,
Freeman, and Romney~1992! and Roberts~1994!. Label: reddeer.

• 40.Silvereyes, zosterops lateralis.One relation, victories in encounters
~Table 1, p. 94!; data from Kikkawa~1980!. Label: silver.

• 41.Sparrows, zonotrichia querula.One relation: dominance, both attacks
and avoidances~Figure 2, p. 19!; data from Watt~1986!. Label: sparrow.

• 42. Willow tits, parus montanus. One relation: dominance~Table 1,
p. 1492!; data from Tufto, Solberg, and Ringgsby~1998!. Data origi-
nally from Lahti, Koivula, and Orell~1994!. Label: tits.

REFERENCES

Appleby, Michael. 1983. “The Probability of Linearity in Hierarchies.”Animal Behav-
iour 31:600–608.

Anderson, Carolyn, J., Stanley Wasserman, and Bradley Crouch. 1999. “A p* Primer:
Logit Models for Social Networks.”Social Networks21:37–66.

Athanassiou, Nicholas, and Douglas Nigh. 1999. “The Impact of U.S. Company Inter-
nationalization on Top Management Team Advice Networks: A Tacit Knowledge
Perspective.”Strategic Management Journal20:83–92.

Baker, Frank, and Lawrence Hubert. 1981. “The Analysis of Social Interaction Data.”
Sociological Methods and Research9:339–61.

Bearman, P. S., J. Jones, and J. R. Udry. 1997. “National Longitudinal Study of Ado-
lescent Health: Research Design.” Carolina Population Center. Unpublished
manuscript.

296 FAUST AND SKVORETZ



Bernard, H. Russell, and Peter D. Killworth. 1977. “Informant Accuracy in Social
Network Data II.”Human Communications Research4:3–18.

Bernard, H. Russell, Peter D. Killworth, and Lee D. Sailer. 1980. “Informant Accu-
racy in Social Network Data IV: A Comparison of Clique-Level Structure in Behav-
ioral and Cognitive Network Data.”Social Networks2:191–218.

Borgatti, Stephen, Martin Everett, and Linton Freeman. 1999. UCINET 5.0 for Win-
dows. Analytic Technologies.

Breiger, R. L., and P. Pattison. 1978. “The Joint Role Structure of Two Communities’
Elites.” Sociological Methods and Research7:213–26.

Burkett, Tracy. 1997. “Cosponsorship in the United States Senate: A Network Analy-
sis of Senate Communication and Leadership, 1973–1990.” Ph.D. dissertation. Uni-
versity of South Carolina.

Carroll, J. Douglas, Ece Kumbasar, and A. Kimball Romney. 1997. “An Equivalence
Relation Between Correspondence Analysis and Classical Multidimensional Scal-
ing for the Recovery of Euclidean Distances.”British Journal of Mathematical
and Statistical Psychology50:81–92.

Clutton-Brock, T. H., P. J. Greenwood, and R. P. Powell. 1976. “Ranks and Relation-
ships in Highland Ponies and Highland Cows.”Z. Tierpsychol41:202–16.

Crouch, Bradley, and Stanley Wasserman. 1998. “A Practical Guide to Fitting p* Social
Network Models.”Connections21:87–101.

Davis, James A. 1979. “The Davis0Holland0Leinhardt Studies: An Overview.” Pages
51–62 inPerspectives on Social Network Research, edited by Paul W. Holland and
Samuel Leinhardt. New York: Academic Press.

Deag, John M. 1980. “Interactions Between Males and Unweaned Barbary Macaques:
Testing the Agonistic Buffering Hypothesis.”Behaviour75:54–81.

Dow, Malcolm M., and Frans B. M. de Waal. 1989. “Assignment Methods for the
Analysis of Network Subgroup Interactions.”Social Networks11:237–55.

Frank, Ove, and David Strauss. 1986. “Markov Graphs.”Journal of the American
Statistical Association81:832–42.

Frank, Laurence G. 1986. “Social Organization of the Spotted Hyaena Crocuta Cro-
cuta. II: Dominance and Reproduction.”Animal Behaviour34:1510–27.

Freeman, Linton. 1992. “The Sociological Concept of ‘Group’: An Empirical Test of
Two Models.”American Journal of Sociology98:152–66.

Freeman, Linton C., Sue C. Freeman, and A. Kimball Romney. 1992. “The Implica-
tions of Social Structure for Dominance Hierarchies in Red Deer.”Animal Behav-
iour 44:239–45.

Friedkin, Noah. 1998.A Structural Theory of Social Influence. Cambridge, UK: Cam-
bridge University Press.

Gifi, Albert. 1990.Nonlinear Multivariate Analysis. New York: Wiley.
Greenacre, Michael. 1984.Theory and Applications of Correspondence Analysis. New

York: Academic Press.
Hallinan, Maureen T. 1974. “A Structural Model of Sentiment Relations.” American

Journal of Sociology80:364–78.
Holland, Paul W., and Samuel Leinhardt. 1978. “An Omnibus Test for Social Structure

Using Triads.”Sociological Methods and Research7:227–56.
Horrocks, Julia, and Wayne Hunte. 1983. “Maternal Rank and Offspring Rank in Vervet

COMPARING NETWORKS 297



Monkeys: An Appraisal of the Mechanisms of Rank Acquisition.”Animal Behav-
iour 31:772–82.

Hubert, Lawrence, and Frank Baker. 1978. “Evaluating the Conformity of Sociomet-
ric Measurements.”Psychometrika43:31–41.

Johnson, Jeffrey C., James S. Boster, and Lawrence Palinkas. n.d. “The Evolution of
Networks in Extreme and Isolated Environments.” Unpublished manuscript.

Kaplan, J. R., and E. Zucker. 1980. “Social Organization in a Group of Free-ranging
Patas Monkeys.”Folia Primatologica34:196–213.

Katz, Leo, and James H. Powell. 1953. “A Proposed Index of the Conformity of One
Sociometric Measurement to Another.”Psychometrika18:249–56.

Kikkawa, Jiro. 1980. “Weight Change in Relation to Social Hierarchy in Captive Flocks
of Silvereyes, Zosterops Lateralis.” Behaviour74:92–100.

Krackhardt, David. 1987. “Cognitive Social Structures.”Social Networks9:104–34.
Kumbasar, Ece, A. Kimball Romney, and William H. Batchelder. 1994. “Systematic

Biases in Social Perception.”American Journal of Sociology100:477–505.
Lahti, K., K. Koivula, and M. Orell. 1994. “Is the Social Hierarchy Always Linear in

Tits.” Journal of Avian Biology25:347–48.
Laumann, E. O., and F. Pappi. 1976.Networks of Collective Action: A Perspective on

Community Influence Systems. New York: Academic Press.
Martin, John. 1999. “A General Permutation-Based QAPAnalysis Approach for Dyadic

Data from Multiple Groups.”Connections22:50–60.
Maryanski, A. P. 1987. “African Ape Social Structure: Is There Strength in Weak Ties?”

Social Networks9:191–215.
Nishida, Toshisada, and Kasuhiko Hosaka. 1996. “Coalition Strategies Among Male

Chimpanzees of the Mahale Mountains, Tanzania.” Pp. 114–134 inGreat Ape Soci-
eties, edited by William C. McGrew, Linda F. Marchant, and Toshisada Nishida.
New York: Cambridge University Press.

Nishisato, Shizuhiko. 1994.Elements of Dual Scaling: An Introduction to Practical
Data Analysis. Hillsdale, NJ: Lawrence Erlbaum.

Pattison, Philippa, and Stanley Wasserman. 1999. “Logit Models and Logistic Regres-
sions for Social Networks: II. Multivariate Relations.”British Journal of Math-
ematical and Statistical Psychology52:169–93.

Reinhardt, Viktor, and Annie Reinhardt. 1981. “Cohesive Relationships in a Cattle
Herd~Bos Indicus!.” Behaviour76:121–51.

Rindfuss, Ronald R., Aree Jampaklay, Barbara Entwisle, Yothin Sawangdee, Katherine
Faust, and Pramote Prasartkul. 2000. “The Collection and Analysis of Social Net-
work Data in Nang Rong, Thailand.” Presented at the IUSSP Conference on Part-
nership Networks, February, Chiang Mai, Thailand.

Roberts, John M., Jr. 1994. “Fit of Some Models to Red Deer Dominance Data.”Jour-
nal of Quantitative Anthropology4:249–58.

Roberts, John M., Jr., and Bridget A. Browning. 1998. “Proximity and Threats in High-
land Ponies.”Social Networks20:227–38.

Robins, Garry, Philippa Pattison, and Stanley Wasserman. 1999. “Logit Models and
Logistic Regressions for Social Networks. III. Valued Relations.”Psychometrika
64:371–94.

Romney, A. Kimball, William H. Batchelder, and Timothy Brazill. 1995. “Scaling

298 FAUST AND SKVORETZ



Semantic Domains.” Pp. 267–94 inGeometric Representations of Perceptual Phe-
nomena: Papers in Honor of Tarow Indow’s 70th Birthday, edited by Duncan Luce
et al. Hillsdale, NJ: Lawrence Erlbaum.

Sade, Donald Stone. 1989. “Sociometrics ofMacaca MulattaIII: N-path Centrality in
Grooming Networks.”Social Networks11:273–92.

Sade, Donald Stone, and Malcolm Dow. 1994. “Primate Social Networks.” Pp. 152–66
in Advances in Social Network Analysis, edited by Stanley Wasserman and Joseph
Galaskiewicz. Thousand Oaks: Sage.

Sampson, S. 1968. “A Novitiate in a Period of Change: An Experimental and Case
Study of Social Relationships.” Ph.D. dissertation. Cornell University.

Shrader, Charles B., James R. Lincoln, and Alan N. Hoffman. 1989. “The Network
Structures of Organizations: Effects of Task Contingencies and Distributional Form.”
Human Relations42:43–66.

Snijders, T. A. B. 1996. “Stochastic Actor-Oriented Dynamic Network Analysis.”Jour-
nal of Mathematical Sociology21:149–72.

Snijders, T. A. B., and M. A. J. Van Duijn. 1997. “Simulation for Statistical Inference
in Dynamic Network Models.” Pp. 493–512 inSimulating Social Phenomena, edited
by R. Conte, R. Hegselmann, and P. Terna. Berlin: Springer.

Strauss, David, and Michael Ikeda. 1990. “Pseudolikelihood Estimation for Social
Networks.”Journal of the American Statistical Association85:204–12.

Tufto, Jarle, Erling Johan Solberg, and Thor-Harald Ringgsby. 1998. “Statistical Mod-
els of Transitive and Intransitive Dominance Structures.”Animal Behaviour
55:1489–98.

Wasserman, Stanley. 1987. “Conformity of Two Sociometric Relations.”Psychometrika
52:3–18.

Wasserman, Stanley, and Katherine Faust. 1994.Social Network Analysis: Methods
and Applications. Cambridge, England: Cambridge University Press.

Wasserman, Stanley, and Dawn Iacobucci. 1988. “Sequential Social Network Data.”
Psychometrika53:261–82.

Wasserman, Stanley, and Philippa Pattison. 1996. “Logit Models and Logistic Regres-
sions for Social Networks: I. An Introduction to Markov Graphs and p*.” Psy-
chometrika61:401–25.

Watt, Doris, J. 1986. “Relationship of Plumage Variability, Size, and Sex to Social
Dominance.”Animal Behaviour34:16–27.

Weller, Susan C., and A. Kimball Romney. 1990.Metric Scaling: Correspondence
Analysis. Newbury Park, CA: Sage.

COMPARING NETWORKS 299


