
2379-8920 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2017.2655539, IEEE
Transactions on Cognitive and Developmental Systems

Adaptive Robot Path Planning Using a Spiking
Neuron Algorithm with Axonal Delays

Tiffany Hwu1,2, Alexander Y. Wang3, Nicolas Oros4, Jeffrey L. Krichmar1,5

1Department of Cognitive Sciences
University of California, Irvine

Irvine, CA, USA, 92697

2Northrop Grumman
Redondo Beach, CA 90278

3Department of Mechanical and Aerospace Engineering

University of California, Irvine
Irvine, CA, USA, 92697

4BrainChip Inc.

Aliso Viejo, CA, USA, 92656

5Department of Computer Science
University of California, Irvine

Irvine, CA, USA, 92697
jkrichma@uci.edu

Abstract—A path planning algorithm for outdoor robots,
which is based on neuronal spike timing, is introduced. The
algorithm is inspired by recent experimental evidence for
experience-dependent plasticity of axonal conductance. Based
on this evidence, we developed a novel learning rule that
altered axonal delays corresponding to cost traversals and
demonstrated its effectiveness on real-world environmental
maps. We implemented the spiking neuron path planning
algorithm on an autonomous robot that can adjust its routes
depending on the context of the environment. The robot
demonstrates the ability to plan different trajectories that
exploit smooth roads when energy conservation is
advantageous, or plan the shortest path across a grass field
when reducing distance traveled is beneficial. Because the
algorithm is suitable for spike-based neuromorphic hardware,
it has the potential of realizing orders of magnitude gains in
power efficiency and computational gains through
parallelization.

Keywords—neuromorphic chips; path planning; plasticity;
robotics; spiking neurons

I. INTRODUCTION
Navigation in biology requires acquiring a map, and then

using that map to make intelligent decisions on where to go
and what to do [1, 2]. The idea of a cognitive map, which
was proposed by E.C. Tolman in the last century [3], is
where the animal takes costs, context, and its needs into
consideration when moving through its environment.

Path planning involves calculating an efficient route from
a starting location to a goal, while avoiding obstacles and

other impediments. Despite much advancement over several
decades of robotic research, there are still many open issues
for path planners [4, 5]. Classic path planning algorithms
include Dijkstra’s algorithm, A*, and D*. Dijkstra’s
algorithm uses a cost function from the starting point to the
desired goal. A* additionally considers the distance from the
start to the goal “as the crow flies” [6]. D* extends the A*
algorithm by starting from the goal and working towards the
start positions. It has the ability to re-adjust costs, allowing it
to replan paths in the face of obstacles [7]. These algorithms
can be computationally expensive when the search space is
large. Rapidly-Exploring Random Trees (RRT) are a less
expensive approach because they can quickly explore a
search space with an iterative function [8]. Still these path
planners are computationally expensive and may not be
appropriate for autonomous robots and other small, mobile,
embedded systems.

Because of their event driven design and parallel
architecture, neuromorphic hardware holds the promise of
decreasing size, lowering weight and reducing power
consumption, and may be ideal for embedded applications
[9]. These systems are modeled after the brain’s architecture
and typically use spiking neural elements for computation
[10]. Spiking neurons are event driven and typically use an
Address Event Representation (AER), which holds the
neuron ID and the spike time, for communicating between
neurons. Since spiking neurons do not fire often and post-
synaptic neurons do not need to calculate information
between receiving spikes, neuromorphic architectures allow
for efficient computation and communication.

Supported by the National Science Foundation Award #1302125 and
Northrop Grumman Aerospace Systems. We also would like to
acknowledge the Telluride Neuromorphic Cognition Engineering
Workshop, The Institute of Neuromorphic Engineering, and their National
Science Foundation, DoD and Industrial Sponsors.

2379-8920 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2017.2655539, IEEE
Transactions on Cognitive and Developmental Systems

Path planning approaches that may be a good fit for
neuromorphic applications are wavefront planners [11, 12]
and diffusion algorithms [13]. In a standard wavefront
planner, the algorithm starts by assigning a small number
value to the goal location. In the next step, the adjacent
vertices (in a topological map) or the adjacent cells (in a grid
map) are assigned the goal value plus one. The “wave”
propagates by incrementing the values of subsequent
adjacent map locations until the starting point is reached.
Typically, the wave cannot propagate through obstacles. A
near-optimal path, in terms of distance and cost of traversal,
can be read out by following the lowest values from the
starting location to the goal location.

We recently introduced a spiking neuron wavefront
algorithm for path planning that adapts to changes in the
environment [14]. The adaptive element is inspired by recent
empirical findings supporting experience dependent
plasticity of axonal conduction velocities [14]. Unlike prior
implementations of spiking wavefront path planners, our
algorithm introduces an adjustable spike delay that could
potentially allow for dynamic online adaptation to realistic
environmental costs, while maintaining a temporally sparse
coding of the path. In simulations, we were able to show that
this algorithm was more computationally efficient and
sensitive to cost than existing path planning algorithms.

Versions of the wavefront algorithm have been
implemented on neuromorphic hardware that supports
spiking neurons [15-17], including our own algorithm which
was successfully implemented on the IBM TrueNorth chip
[18]. In addition, it has been shown to plan efficient paths on
mobile robots and robotic arms [12, 15, 19]. However, these
algorithms are not flexible in dynamic environments or in
situations where the context changes. Other neural inspired
implementations of the wavefront or diffusion idea use
learning rules to learn routes through environments [20-23].
These models rely on synaptic plasticity to learn and adapt to
environments. However, most of the environments used in
these experiments have been static and highly constrained.

In the present paper, we expand upon this previous work,
demonstrating the algorithm’s effectiveness in complex
natural environments. Rather than using a manually
constructed map, we create maps from an outdoor park with
an abundance of natural obstacles and varied terrain. These
obstacles and varied terrain are reflected in the algorithm’s
cost function. We further show how this algorithm can be
implemented on an autonomous robot navigating an outdoor
environment. The mobile robot had to consider real-world
costs and tradeoffs in the environment, such as smooth roads
versus rough grass, as well as obstacles such as benches,
bushes, and trees. The robot demonstrated context-dependent
path planning through this environment and the spiking
wavefront was efficient enough to run on an Android
smartphone that was mounted on and controlled the robot.

II. METHODS

A. Neuron Model and Connectivity
To demonstrate a spiking neuronal wave path planning

algorithm, we constructed a simple spiking neuron. The

neuron model contained a membrane potential (v), a
recovery variable (u), and received current input (I) from
synaptically connected neurons:

 vi(t+1) = ui(t) + Ii(t) (1)
 ui(t+1) = min(ui(t) + 1, 0) (2)
 Ii(t+1) = Σ j (1 if dij(t) = 1; 0 otherwise) (3)
 dij(t+1) = max(dij(t) - 1, 0) (4)
 dij(t) is the axonal delay between when neuron vj(t) fires an
action potential and neuron vi(t) receives the action
potential. When vj(t) fires an action potential, dij(t) is set to a
delay value of Di,j(t), which was assigned according to
variable costs in the environment. Note from Eq. (4) that dij
has a null value of zero unless the pre-synaptic neuron fires
an action potential.

Equations (1-4) calculate the membrane potential,
recovery variable, synaptic input, and axonal delay for
neuron i at time step t, which is connected to j pre-synaptic
neurons. The neuron spiked when v in Eq. (1) was greater
than zero, in which case, v was set to 1 to simulate a spike, u
was set to minus 5 to simulate a refractory period, and the
axonal delay buffer, d, was set to D. The recovery variable,
u, changed each time step per Eq. (2). The delay buffer, d,
changed each time step per Eq. (4). I in Eq. (3) was the
summation of the j pre-synaptic neurons that delivered a
spike to post-synaptic neuron i at time t. Because of the
refractory and delay periods, most neurons will be inactive
during each timestep, resulting in sparse activity. Although
neurons have to check if they fired a spike or received a
spike each timestep, most of the computation occurs when
neurons emit or receive a spike.

The neural network consisted of a 20x20 grid of spiking
neurons as described in Eqs. (1-4). The 20x20 grid
corresponded to grid locations used in the outdoor robot
experiments. Each neuron corresponded to a location in the
environment and was connected to its eight neighbors (i.e.,
N, NE, E, SE, S, SW, W, NW). At initialization (t = 0), v
and u were set to 0. All delays, D, were initially set to 5, but
could vary depending on experience in the environment. D
represented the time it takes to propagate a pre-synaptic
spike to its post-synaptic target.

B. Axonal Delays and Plasticity
A spike wavefront proceeds by triggering a single spike

at a neuron that corresponds to the start location. This neuron
then sends a spike to its synaptically connected neighbors.
The delivery of the spike to its post-synaptic targets depends
on its current axonal delay. Each synapse has a delay buffer,
which governs the speed of the spike wave.

 Di,j(t+1)=Di,j(t) + δ(mapx,y - Di,j(t)) (5)

Where the delay Di,j(t) represents the axonal delay at time
t between neurons i and j, mapx,y is the value of the
environment at location (x,y), and δ is the learning rate. For
the present experiments, δ was set to 1.0, which allows the
system to instantaneously learn the values of locations. This
allows us to use an a priori cost map to test the effectiveness
of the planning algorithm when the map is known, without
incremental learning. In section IV, we describe how

2379-8920 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2017.2655539, IEEE
Transactions on Cognitive and Developmental Systems

changing the learning rate can allow for map creation as the
robot explores an environment. The learning is expressed
through axonal delays. For example, if the spike wave agent
encountered a major obstacle, with a high traversal cost (e.g.,
9), the neuron at that location would schedule its spike to be
delivered to its connected neurons 9 time steps later,
whereas, if the traversal cost of a location were 1, the spike
would be delivered on the next time step. It should be noted
that in the present study the delay buffers were reset before
each route traversal.

Fig. 1. Spike wave propagation in simulation. The top panels show the
network activity at timestep 3, the middle panels show network activity at
timestep 18, and the bottom panels show the resulting path. The left side
shows the test area without a road. The light blue is the surrounding region,
which has a cost of 9. The dark blue depicts the location of an open grass
field, which has a cost of 3. The right side shows the test area that takes into
consideration a road, which has a cost of 1 and is shown in dark blue. The
spike wave propagation is shown in yellow. The starting location is at the
top middle of the map, and the goal location is at the bottom middle of the
map. Note how the spike wave propagates faster when there is a low cost
road present.

C. Spike Wave Propagation and Path Readout
Fig. 1 shows the progression of a spike wave in a typical

environment. The example shows how the algorithm is
sensitive to different costs; the left columns of Fig. 1 show
an environment where the best path is the most direct route,
and the right columns show an environment where it is
advantageous to take a longer route along a smooth road.
The neuron at the starting location is triggered to emit a
spike. The top panels of Fig. 1 show the start of the spike
wave emanating from the start position. Note how the spike
wave is propagating faster on the regions that depict a
smooth road (Fig. 1, right column). This is because the road
has a traversal cost of 1, whereas the grass field has a cost of
3. Each spike, which is shown in yellow in Fig. 1, is
recorded in the AER table, with its neuron ID and time step.

To find the best path between the start and goal locations,
we used the list of spikes held in the AER table. From the
goal, the list was searched for the most recent spike from a
neuron whose location was adjacent to the goal location. If

more than one spike met this criterion, the neuron whose
location corresponded to the lowest cost and was closest to
the start location was chosen. This iteratively proceeded
from the goal through other neuron locations until a spike at
the start location was found. The bottom right image in Fig.
1 shows the found path.

 In complex environments there was the potential for
multiple waves to occur and collide (Fig. 2). In this case, the
AER table could contain more than one path. To find the
best path, a second pass was made through algorithm with a
temporary map that had a cost of 1 for the paths from the
first pass, with the rest of the map set to 20. This second pass
of the spike wave algorithm ensured that the resulting path
was most efficient in terms of length and cost.

Fig. 2. In some instances, the collision of multiple spike waves generated
inefficient paths (left). This was remedied by adding a second pass through
the algorithm with a cost map containing just the paths from the first pass
(right).

D. A* Path Planner
For comparison purposes, we implemented the A Star

(A*) algorithm [6], which is commonly used in path
planning. A* uses a best-first search and attempts to find a
least-cost path from the start location to the goal location.
The cost includes the Euclidean distance from the start, the
Euclidean distance from the goal, and the cost of traversing
the location. From the start location, adjacent locations are
placed in a node list. Then the node list is searched for the
node with the lowest cost. The location corresponding to this
low cost node is expanded by placing adjacent, unevaluated
locations on the node list. The process is repeated until the
goal location is reached. The A* algorithm can find the
shortest path based on its cost function.

E. Map of Environment
 To demonstrate the effectiveness of our spiking
wavefront planner, we tested the algorithm in a real
environment through a variety of terrains in Aldrich Park, a
19-acre botanical garden at the University of California,
Irvine. Two sections of the park, an open area and a cluttered
area (Fig. 3) were transformed into 20x20 grid maps
encoding the costs of traveling and the GPS coordinates. We
generated the GPS coordinates by pacing off the area with a
smartphone (Samsung Galaxy S5) and recording the GPS
points with an Android application.

 Two maps created from the sections of Aldrich Park
consisted of a 20x20 grid of GPS coordinates and terrain
costs (see Fig. 3). The first, referred to as Map 1, was in an

Without Road With Road

ts 3

ts 18

Final
Path

2379-8920 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2017.2655539, IEEE
Transactions on Cognitive and Developmental Systems

open grassy area of the park, which was surrounded by a
paved sidewalk. In one variant, referred to as “Without
Road” (Fig. 4A), the grassy area had a cost of 3, and all other
areas had a cost of 9. In the “With Road” variant (Fig. 4B),
the paved sidewalk around the grassy area was given a cost
of 1. In the “With Road and Obstacles” variant (Fig. 4C),
benches, bushes, and trees were given a cost of 6. The
second map, referred to as Map 2 (Fig. 4D), had an outer
region with a cost of 6, large trees and brush had a cost of
10, the paved road had a cost of 1, and the gravel road had a
cost of 2. Map 2 was stretched horizontally such that the
asphalt path location roughly matched the asphalt path of
Map 1, allowing for better route comparisons between maps.
These maps were used in both simulations and in
autonomous robot experiments.

Fig. 3. Google satellite image of Aldrich Park at the University of
California, Irvine. Two sections of the park (boxed) were transformed into
cost maps (Map 1 as bottom box and Map 2 as top box) for the spiking wave
planner. Imagery ©2016 Google.

F. Robot Hardware and Software Design
 For the robot experiments, we used the Android-Based
Robotic Platform [24], a mobile ground robot constructed
from off-the-shelf commodity parts and controlled through
an Android smartphone (see Fig. 5). An IOIO-OTG
(www.sparkfun.com/products/13613) microcontroller
communicated with the Android smartphone via a Bluetooth
connection and relayed motor commands to a separate
RoboClaw motor controller (www.pololu.com/product/1499)
for steering the Dagu Wild Thumper 6-Wheel Drive All-
Terrain chassis (www.pololu.com/product/1563robot). The
robot used a differential steering technique, moving the left
and right sets of wheels at differing speeds to achieve
different degrees of turning. Additional sensors and actuators
were also connected to the robot through the IOIO-OTG,
including several MaxBotix LV-MaxSonar sensors
(www.maxbotix.com/Ultrasonic_Sensors/MB1000.htm) and

an SPT200 pan and tilt unit (www.servocity.com/spt200) for
controlling the view of the smartphone camera. Software for
controlling the robot was created using the Android Software
Development Kit. The software application was written in
Java using Android Studio and deployed on a Samsung
Galaxy S5 smartphone. The application utilized the phone’s
built-in accelerometer, gyroscope, compass, and global
positioning system (GPS).

Fig. 4. 20 x 20 cost grids created from two areas of Aldrich Park. A.) An
open area with uniform low cost in the traversable area, and high cost
outside of this area. B.) The same area as A but with a lower cost for the
surrounding road. C.) The same area as B but with obstacles denoting
benches, bushes and trees near the road. D.) A second area in Aldrich Park
with high cost for trees, low cost for asphalt roads, and medium cost for dirt
roads.

G. Computation
Simulations and robot experiments were run to test the

spike wave algorithm. The simulations of the spike wave and
the A* algorithm were run in MATLAB. For robot
experiments, the spike wavefront algorithm, robot I/O, and
robot control software were implemented in Java using
Android Studio, and run as an app on a Samsung Galaxy S5.
Fig. 6 shows a screenshot of the Android application. A
graphical user interface (GUI) on the phone allowed the user
to input start and goal grid locations, as well as select a map.
The app then generated a path using the spike wavefront
planner described in Section II A-C. The phone then
displayed the desired path on the GUI (see Fig. 6). Once the
operator pressed the Auto button on the GUI, the app
generated a list of ordered GPS waypoints, from the start to
the goal location, from the path grid locations. The robot
then used a navigation strategy to visit each waypoint on the
list in succession. The robot stopped moving once the last
waypoint, which represented the goal location, was reached.

2379-8920 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2017.2655539, IEEE
Transactions on Cognitive and Developmental Systems

Fig. 5. Android-Based Robotic Platform. Left: Side view of ground robot. A
flexible pan and tilt unit controls view of smartphone camera. Top right:
Front view of ground robot. Three LV-MaxSonar sensors are able to detect
obstacles up to 254 inches away. Bottom right: Top view of component
enclosure. A IOIO-OTG microcontroller (below) serves as the central hub
for communication, including sending motor commands to the motor
controller (above).

 For robot navigation, a GPS location was queried using
the Google Play services location API. The bearing direction
from the current GPS location of the robot to a desired
waypoint was calculated using the Android API function
bearingTo. A second value, the heading, was calculated by
subtracting declination of the robot’s location to the
smartphone compass value, which was relative to magnetic
north. This resulted in an azimuth direction relative to true
north. The robot travelled forward and steered in attempt to
minimize the difference between the bearing and heading.
The steering direction was determined by deciding whether
turning left or turning right would require the least amount of
steering to match the bearing and heading. The navigation

Fig. 6. Screenshot of app used for robot navigation. The screen displays a
camera view overlaid with information about distance to the destination,
bearing to the destination ranging 0-360 degrees from true north, heading
direction (also ranging 0-360 degrees from true north), and the 2D cost grid.
Colors on the grid ranging from dark blue to red indicated the costs of the
grid, with tree locations marked at highest cost in red. The planned path of
the robot is indicated in yellow and the current location of the robot is
marked in green. The ‘Grid’ button toggles the grid view on and off and the
‘Auto’ button switches the robot into and out of autonomous navigation
mode.

procedure continued until the distance between the robot’s
location and the current waypoint was less than 10 meters, at
which point the next waypoint in the path list was selected.

III. RESULTS

A. Path Planning Simulations
Table I shows path and cost metrics for simulated path

planning that compared the spike wave algorithm with the
A* path planner. Simulations were run with all four map
variants: 1) Map 1 – Without Road, 2) Map 1 – With Road,
3) Map 1 – With Road and Obstacles, and 4) Map 2 – With
Road and Obstacles. 100 start and goal locations were
randomly chosen, in which the locations could not be out of
bounds and the Euclidean distance between the start and goal
was greater than 5 grid units.

The path lengths between the two algorithms were nearly
identical (see Table I), but the spike wave algorithm found
lower cost paths, especially when there were obstacles and
roads present (p < 0.001; Wilcoxon Ranksum). This is
because the spike wave algorithm depends primarily on cost,
whereas our A* implementation uses the common and
standard heuristic of Euclidian distance in addition to the
cost of a node on the map. Although A* is proven to be
optimal given an admissible heuristic [6], our heuristic is
only admissible when calculating for shortest path. A varied
and dynamically changing environment would make a cost-
admissible heuristic more difficult to determine, whereas the
spike wave algorithm inherently includes both distance and
cost in its calculation by combining neighbor connectivity
and axonal delay.

The A* algorithm ran faster than the spike wave
algorithm when calculating the paths, as measured by the
tic/toc functions in MATLAB (see Table I). Interestingly,
this difference became smaller as the maps became more
complex (see Map 2 in Table I). This is due to the presence
of low cost roads among high cost obstacles, which leads to
the algorithm requiring less neural activity to calculate a
path. In section IV, we discuss how the spike wave algorithm
can be made parallel, asynchronous, and implemented on
neuromorphic hardware. This should allow for substantial
speedups in processing, and reduction in power
consumption, which can be quantifiably measured against
the baseline run times reported here.

B. Robotic Experiments
Given that the spike wavefront planner showed possible

advantages over a traditional approach in simulation, we
aimed to test the plausibility of embedding the planning
algorithm on an autonomous robot with limited power and
computational resources. Robot experiments were conducted
in Aldrich Park on the campus of the University of
California, Irvine (see Fig. 3). For each map, we tested a set
of six routes with the same start and end coordinates on the
cost grids. See Figs. 7-10 for route start and end coordinates.
The generated routes were different depending on whether
roads and obstacles were taken into account. For each route
in a given map, the robot ran four trials, following the route
produced by the spiking wavefront path planner. To account
for changing satellite conditions and other environmental

2379-8920 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2017.2655539, IEEE
Transactions on Cognitive and Developmental Systems

factors, we spread out the testing times to sample the
variance of GPS signal quality. The first two runs were
performed in the morning and the last two runs were
performed in the afternoon. Since the robot only relied on
GPS and compass to navigate, it was sometimes necessary to
manually redirect the robot slightly away from undetected
obstacles. This occurred very infrequently in Map 1, and
more frequently in Map 2 due to the presence of dense
vegetation and an abundance of obstacles. In Section IV, we
discuss ways to mitigate these interventions.

Overall, the actual robot trajectories matched the desired
trajectories calculated from the spike wavefront algorithm
quite well. For each map condition, Figs. 7-10 show the
satellite image of the area, the cost map used by the path
planner, and the trajectories for the 6 routes from a starting
grid location to a goal grid location. The trajectories were
superimposed on the street view of Google Maps. The black
line in these figures shows the desired path, and the four
colored lines show a robot trajectory. Occasionally the GPS
signal became unreliable due to buildings, trees, and other
environmental noise. This sometimes caused the robot to
drive away from the desired destination, requiring the robot
to backtrack and visit a missed waypoint.

We used the discrete Fréchet distance [24] as a metric for
calculating the similarities of trajectories between the actual
robot’s movements and the intended route. Intuitively,
Fréchet distance is the minimal leash length necessary to
physically connect two agents as they walk along their two
separate paths. The agents are allowed to pause at any time
but not permitted to backtrack, and both must complete their
respective paths from start to endpoint. Compared to other
comparison techniques such as Hausdorff distance, Fréchet
distance takes into account the specific ordering of points on
the trajectory, ideal for our experimental conditions. Table II
shows mean and standard deviation of Fréchet distances for
each of the maps and routes, with the sample size of 4 trials
for each condition.

As our navigation strategy defined reaching a waypoint
as arriving within 10 meters of the waypoint GPS location,
any Fréchet distance near the 10-meter threshold should be
considered acceptable. We also see the scale at which our
hardware and algorithm can operate accurately, which in this
case may not be sufficient in some areas of the park but may
be sufficient for a car on a commercial road.

IV. DISCUSSION
In prior work, we introduced a path planning algorithm

that used spiking neurons and axonal delays to compute
efficient routes [14]. The spike wavefront path planner could
generate near optimal paths and was comparable to
conventional path planning algorithms, such as the A*
algorithm or a standard wavefront planner. We introduced a
learning rule that represented the cost of traversal in axonal
delays. Because the spike wavefront is a local algorithm (i.e.,
computations are independent and based on neighboring
neurons), it is suitable for parallel implementation on
neuromorphic hardware, as was shown recently with both
grid-based and topological maps [18].

In the present paper, we showed that this algorithm was
efficient and accurate enough for autonomous robot path
planning in complex, outdoor settings. In prior work, maps
are idealized, virtual environments. In the present work, the
axonal delays represented real world costs, such as park
benches, vegetation, bumpy grass terrain, and trees. Smooth
roads were represented with short axonal delays, and this led
to the robot choosing easier to traverse terrain, despite the
longer overall path. The spiking algorithm, input/output
handling, and robot control all ran on an off-the-shelf
smartphone with an application written in Java. This
demonstrated that the algorithm was lightweight and could
support autonomous navigation in real-time.

A. Neurobiological Inspiration for the Spike Wavefront
Algorithm
The present algorithm was inspired by recent evidence

suggesting that the myelin sheath, which wraps around and
insulates axons, may undergo a form of activity-dependent
plasticity [25, 26]. These studies have shown that the myelin
sheath becomes thicker with learning motor skills and
cognitive tasks. A thicker myelin sheath implies faster
conduction velocities and improved synchrony between
neurons.

Based on these findings, we developed a learning rule in
which a path that traverses through an easy portion of the
environment (e.g., via a road) would have shorter axonal
delays than a path that travels through rough terrain.
Although it is not known if such spatial navigation costs are
represented in the brain in this way, and most likely they are
not, this learning rule does investigate a rarely considered
form of plasticity. Moreover, manipulating the delays, as

TABLE I. COMPARISON BETWEEN SPIKE WAVEFRONT PLANNER AND A* PLANNER IN DIFFERENT ENVIRONMENTS

 Path Length Path Cost Time(ms)

 Spike Wave A* Spike Wave A* Spike Wave A*
Map 1 - Without Road 8.5 8.5 25.5 25.5 6.11 1.08

Map 1 - With Road 10 9 21 24 3.81 0.76
Map 1 - Road and Obstacles 9 9 24 24.5 4.45 0.88
Map 2 - Road and Obstacles 13 11 34.5 42.5 5.61 2.71

2379-8920 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2017.2655539, IEEE
Transactions on Cognitive and Developmental Systems

Fig. 7. Experimental results for the spiking path planning algorithm on Map 1, with no unique costs encoded for the path. Start and end locations are noted by their
row and column position on the cost map. Black lines indicate the planned route and the 4 colored lines indicate the actual route taken by the robot. Scale bars
indicate the length of 10 meters along latitudinal and longitudinal axes, indicating the size of error threshold of our navigation strategy. Imagery ©2016 Google.

Fig. 8. Experimental results for the spiking path planning algorithm on Map 1, with lower costs encoded for the path. Black lines indicate the planned route and the
4 colored lines indicate the actual route taken by the robot. Imagery ©2016 Google.

2379-8920 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2017.2655539, IEEE
Transactions on Cognitive and Developmental Systems

Fig. 9. Experimental results for the spiking path planning algorithm on Map 1, with lower costs encoded for the road and higher costs for obstacles. Black lines
indicate the planned route and the 4 colored lines indicate the actual route taken by the robot. Imagery ©2016 Google.

Fig. 10. Experimental results for the spiking path planning algorithm on Map 2, with different costs encoded for the asphalt road, dirt path, and trees. Black lines
indicate the planned route and the 4 colored lines indicate the actual route taken by the robot. Note that the 10 meter scale bars indicate that the image has been
compressed along the longitudinal axis. Imagery ©2016 Google.

2379-8920 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2017.2655539, IEEE
Transactions on Cognitive and Developmental Systems

TABLE II. FRÉCHET DISTANCES (IN METERS) BETWEEN PLANNED ROUTE AND ACTUAL ROUTE FOR SPIKE WAVEFRONT PLANNER

was done in the present article, shows how a spiking neural
network can solve a real-world problem using a purely
temporal code. Other groups have investigated learning
rules based on axonal delays. Wang and colleagues have
implemented a Spike Timing Delay Dependent Plasticity
(STDDP) rule that can shorten or lengthen the axonal delay
between two connected neurons [27, 28]. They showed that
altering axonal delays had advantages in forming
polychronous neuronal groups, which represent
spatiotemporal memories [29], over altering synaptic weights
via Spike Timing Dependent Plasticity (STDP).

The present algorithm is also inspired by the notion of
neuronal waves in the brain. Wave propagation has broad
empirical support in motor cortex, sensory cortex, and the
hippocampus [30-36]. These waves have been suggested as a
means to solve the credit assignment problem for associating
a conditioned stimulus with the later arrival of an
unconditioned stimulus [37]. In our own work, we have
shown that neuronal wave dynamics in complex spiking
neural network models can be used to associate visual stimuli
with noisy tactile inputs in a physical robot [38]. Therefore,
the idea of solving problems with spike timing generated by
propagating waves of activity has biological and theoretical
support.

Relevant to the present task, is the experimental
observation of neural activity that represent potential paths
through space. Sequences of place cell activity in the
hippocampus prior can predict an animal’s trajectory through
the environment [39-43]. These so-called preplays may be a
means to assess different possible paths prior to selecting a
specific path plan. In a way, this is similar to how the spike
wavefront planner operates. Sequences of place activity are
generated, and the spike sequence that arrives first at the goal
is the one selected for execution.

B. Parallel Implementation of Spike Wavefront Planner on
Neuromorphic Hardware
The present path planner calculates paths based on the

timing of spiking neurons. Because each neuron can
calculate its state independently, the algorithm could realize
impressive speedups through parallelization. Moreover,
spiking neuron networks are inherently event-driven, that is,
a new state is only calculated when an incoming spike has

been received. This further reduces computational load.
Lastly, by stopping as soon as the first spike is received at a
goal node, the spike wavefront planner algorithm only
calculates what is necessary. For example, when there were
variable costs, such as in Map 2, the amount of time to
calculate a path with the spike wavefront planner was
reduced relative to the A* path planner (see Table I). It
should be noted that the A* path planner can be parallelized
[44], but unlike this and other conventional algorithms, they
cannot take advantage of neuromorphic hardware as can
spiking neuron algorithms.

Neuromorphic hardware differs from the conventional
Von Neumann computer architecture in that it is
asynchronous and event-driven, with parallel computation [9,
10]. The artificial neurons do not take up computation cycles
unless they receive a spike event from a connected neuron.
Typical neuromorphic designs have the memory, in the form
of synapses, co-located with the processing units, that is, the
neurons. This allows computations to be local, independent,
and parallel. These features allow neuromorphic chips to
have low size, weight and power [9, 45]. Nearly all these
chips use spiking neuron elements and some form of AER.

As has been shown in prior implementations, the spike
wavefront algorithm is compatible with neuromorphic
hardware [15-19]. These implementations show the
feasibility and parallelization of the wavefront planner.
Moreover, they show how this neuromorphic algorithm can
generate optimal paths. In addition, IBM’s TrueNorth
neuromorphic chip was recently embedded on the robot used
in the present experiments in an autonomous self-driving
application [46]. Considering that the present spike
wavefront algorithm has been implemented on TrueNorth
[18] a complete neuromorphic path planning system is now
feasible on our robot.

The present paper builds on these implementations by
adding a learning rule to make the planner more flexible and
to consider the relative costs of traversing an environment.
Axonal delays have been introduced in large-scale spiking
neural network simulations [47, 48], but are not typical for
neuromorphic hardware. However some neuromorphic
designs include axonal delays [27, 28, 49, 50]. To implement
the present algorithm in neuromorphic hardware, all that
would be needed is a delay buffer, delay line, or a means to

 Route
 S(2,10)

E(19,10)
S(10,10)
E(5,3)

S(16,3)
E(10,10)

S(5,3)
E(15,16)

S(15,16)
E(16,3)

S(19,10)
E(5,3)

Map 1 - Without Road

12.54±1.33

9.28±1.33

18.20±6.15

13.05±0.34

8.39±1.99

23.70±15.98

Map 1 - With Road

19.44±6.37

14.28±4.29

13.04±5.08

16.56±2.29

8.73±3.88

18.15±7.24

Map 1 - Road and Obstacles

18.67±10.87

11.47±2.56

16.06±6.52

12.87±0.22

7.92±2.36

21.44±15.99

Map 2 - Road and Obstacles

11.69±2.23

10.69±2.75

18.46±5.64

14.78±0.74

20.11±17.41

22.98±8.48

2379-8920 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2017.2655539, IEEE
Transactions on Cognitive and Developmental Systems

schedule spikes at specific times in the future. Because a
synaptic based learning rule, such as STDP, is not needed for
the present algorithm, the circuitry to support the spike
wavefront planner could be simplified.

In the present algorithm, the AER representation is used
to read out the path, which may be a limitation since it
requires saving the AER list for each planned route. It also
requires a planning calculation and readout for every route.
A more natural implementation might use the rank order of
the spike wave in a similar way to that proposed by Thorpe
and colleagues [51, 52]. Such alternative readout
implementations will be explored in the future.

C. Comparison to Other Neurally Inspired Path Planning
Approaches
The result of our algorithm has complementary parallels

to past work in bioinspired algorithms for mobile robot
control [53]. For instance, Ni and Yang [54] propose a
neural network for multirobot cooperative hunting in
unknown environments, representing space in a 2D neuron
grid and using a shunting model to represent attraction and
repulsion agents on the field. Similarly, our algorithm could
draw upon these principles, representing not only
environmental costs but costs of interacting with other
dynamic agents cooperatively and competitively. It also
opens the possibility of neuromorphic solutions for the
complex tasks of swarm coordination in mobile robots.

Aside from neural navigation models inspired by
hippocampal activity and cognitive map representation,
cerebellar models of motor control using the delayed
eligibility trace learning rule have also been used for spatial
motion planning [55], with further developments increasing
its efficacy in real environments such as urban expressways
and tracks [56]. Perhaps a model of predictive motor control
combined with a larger cognitive map representation could
be implemented in neuromorphic hardware to form an
effective multi-scale motion planning system.

D. Simultaneous Path Planning and Mapping
The present algorithm could be modified to build a map

as the robot explores its environment. It would need
additional sensors to measure the cost of traversal or some
other cost function related to navigation. Rather than
assuming that the environment is known and static, the robot
could update the map with each path it generates. This would
require setting the learning rate in Eqn. 5 to be less than one.
In addition, if the spike wavefront planner had a learning rate
between 0 and 1, the uncertainty of the cost at a location
would be represented. Similar to [57], this would result in
the spike wavefront planner predicting the cost of traversing
locations in an environment. Moreover, the planner could
utilize an exploration/exploitation tradeoff to decide whether
to explore unknown regions, or exploit previously navigated
regions. Such tradeoffs have been implemented in
neurobiologically inspired algorithms [58-60]. Such a
planner could respond flexibly and fluidly to dynamic
environments, or the changing needs of the robot. For
example, if the robot needed to get to a location as fast as
possible, it might take a direct, but more risky route from the

start to goal location. However, if the robot wanted to
conserve energy, it might take a longer, but easier path. The
different trajectories taken by the robot in Figs. 6-9
demonstrate this capability. Context is represented in the
map itself. In a future implementation, one could change the
cost values of the map based on the robot’s needs, thus
changing the robot’s behavior.

Additionally, building a map incrementally opens up
many possibilities of representing the map besides a 2D grid
configuration. For example, a more flexible arrangement
such as a topological map is compatible with our spike wave
propagation algorithm, and in fact has recently been
achieved with large-scale maps [18]. For increased
resolution of map representation, a system of multi-scale
place recognition [61] may also be considered. Further, a
hierarchical spiking neural network [62] could be involved
in forming multi-scale representation compatible with
neuromorphic hardware. Any of these suggested
implementations would ease the computational load of 2D
grid implementations of the A* and the spike wavefront
propagation algorithm, both of which increase in complexity
with the grid resolution.

V. CONCLUSIONS
In summary, we have shown that a spike based wavefront

planner can successfully be used on an autonomous robot to
navigate natural environments. Developing from the existing
literature on spiking path planning algorithms, we showed
that the algorithm, which implemented a form of activity-
dependent axonal delay plasticity, was sufficient to plan
paths based on real costs of traversing an outdoor
environment. We further demonstrated that this algorithm
could be implemented on a standard smartphone with
consumer-grade GPS and compass sensors, suggesting that
this may be efficient enough for other autonomous vehicles
that do not have access to high performance computing.
Because the algorithm relies on spiking neurons and
asynchronous, event-driven computation, it can be
implemented on neuromorphic hardware, making it power
efficient enough for many embedded applications.

ACKNOWLEDGMENT
The authors would like to thank participants in the

Telluride Neuromorphic Cognition workshop where the
initial implementation and testing of this algorithm occurred.

REFERENCES
[1] J. O'Keefe and L. Nadel, The Hippocampus as a

Cognitive Map: Oxford University Press, 1978.
[2] C. R. Gallistel, The Organization of Learning: MIT

Pres, 1993.
[3] E. C. Tolman, "Cognitive Maps in Rats and Men,"

Psychological Review, vol. 55, pp. 189-208, 1948.
[4] S. M. LaValle, "Motion Planning," Robotics &

Automation Magazine, IEEE, vol. 18, pp. 79-89,
2011.

2379-8920 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2017.2655539, IEEE
Transactions on Cognitive and Developmental Systems

[5] S. M. LaValle, "Motion Planning," Robotics &
Automation Magazine, IEEE, vol. 18, pp. 108-118,
2011.

[6] P. E. Hart, N. J. Nilsson, and B. Raphael, "A
Formal Basis for the Heuristic Determination of
Minimum Cost Paths," Systems Science and
Cybernetics, IEEE Transactions on, vol. 4, pp.
100-107, 1968.

[7] A. Stentz and I. Carnegle, "Optimal and Efficient
Path Planning for Unknown and Dynamic
Environments," International Journal of Robotics
and Automation, vol. 10, pp. 89-100, 1993.

[8] S. M. LaValle and J. J. Kuffner, "Randomized
Kinodynamic Planning," The International Journal
of Robotics Research, vol. 20, pp. 378-400, May 1,
2001 2001.

[9] G. Indiveri, B. Linares-Barranco, T. J. Hamilton,
A. van Schaik, R. Etienne-Cummings, T. Delbruck,
et al., "Neuromorphic silicon neuron circuits,"
Front Neurosci, vol. 5, p. 73, 2011.

[10] J. L. Krichmar, P. Coussy, and N. Dutt, "Large-
Scale Spiking Neural Networks using
Neuromorphic Hardware Compatible Models," J.
Emerg. Technol. Comput. Syst., vol. 11, pp. 1-18,
2015.

[11] J. Barraquand, B. Langlois, and J. C. Latombe,
"Numerical potential field techniques for robot
path planning," Systems, Man and Cybernetics,
IEEE Transactions on, vol. 22, pp. 224-241, 1992.

[12] M. Soulignac, "Feasible and Optimal Path Planning
in Strong Current Fields," Robotics, IEEE
Transactions on, vol. 27, pp. 89-98, 2011.

[13] R. E. Bellman, "On a routing problem," Quarterly
of Applied Mathematics, vol. 16, pp. 87-90, 1958.

[14] J. L. Krichmar, "Path Planning using a Spiking
Neuron Algorithm with Axonal Delays.," in IEEE
Congress on Evolutionary Computation,
Vancouver, 2016, pp. 1219-1226.

[15] S. Koul and T. K. Horiuchi, "Path planning by
spike propagation," in Biomedical Circuits and
Systems Conference (BioCAS), 2015 IEEE, 2015,
pp. 1-4.

[16] S. Koziol, S. Brink, and J. Hasler, "Path planning
using a neuron array integrated circuit," in Global
Conference on Signal and Information Processing
(GlobalSIP), 2013 IEEE, 2013, pp. 663-666.

[17] S. Koziol, S. Brink, and J. Hasler, "A
Neuromorphic Approach to Path Planning Using a
Reconfigurable Neuron Array IC," IEEE Trans.
VLSI Syst., vol. 22, pp. 2724-2737, 2014.

[18] K. D. Fischl, K. Fair, W.-Y. Tsai, J. Sampson, and
A. Andreou, "Large-Scale Path Planning on
Spiking Neuromorphic Hardware," IEEE
International Symposium on Circuits and Systems,
Submitted 2016.

[19] S. Koziol, P. Hasler, and M. Stilman, "Robot path
planning using Field Programmable Analog

Arrays," in Robotics and Automation (ICRA), 2012
IEEE International Conference on, 2012, pp. 1747-
1752.

[20] P. Gaussier, A. Revel, J. P. Banquet, and V.
Babeau, "From view cells and place cells to
cognitive map learning: processing stages of the
hippocampal system," Biological Cybernetics, vol.
86, pp. 15-28, Jan 2002.

[21] F. Ponulak and J. Hopfield, "Rapid, parallel path
planning by propagating wavefronts of spiking
neural activity," Frontiers in Computational
Neuroscience, vol. 7, 2013-July-18 2013.

[22] M. Quoy, P. Laroque, and P. Gaussier, "Learning
and motivational couplings promote smarter
behaviors of an animat in an unknown world,"
Robotics and Autonomous Systems, vol. 38, pp.
149-156, Mar 31 2002.

[23] A. V. Samsonovich and G. A. Ascoli, "A simple
neural network model of the hippocampus
suggesting its pathfinding role in episodic memory
retrieval," Learn Mem, vol. 12, pp. 193-208, Mar-
Apr 2005.

[24] N. Oros and J. L. Krichmar, "Smartphone Based
Robotics: Powerful, Flexible and Inexpensive
Robots for Hobbyists, Educators, Students and
Researchers., CECS Technical Report 13-16, pp. 1-
11, 2013.

[25] R. D. Fields, "White matter in learning, cognition
and psychiatric disorders," Trends Neurosci, vol.
31, pp. 361-70, Jul 2008.

[26] R. D. Fields, "A new mechanism of nervous system
plasticity: activity-dependent myelination," Nat
Rev Neurosci, vol. 16, pp. 756-767, 12//print 2015.

[27] R. Wang, G. Cohen, K. M. Stiefel, T. J. Hamilton,
J. Tapson, and A. van Schaik, "An FPGA
Implementation of a Polychronous Spiking Neural
Network with Delay Adaptation," Front Neurosci,
vol. 7, p. 14, 2013.

[28] R. M. Wang, T. J. Hamilton, J. C. Tapson, and A.
van Schaik, "A mixed-signal implementation of a
polychronous spiking neural network with delay
adaptation," Front Neurosci, vol. 8, p. 51, 2014.

[29] E. M. Izhikevich, "Polychronization: computation
with spikes," Neural Comput, vol. 18, pp. 245-82,
Feb 2006.

[30] D. Rubino, K. A. Robbins, and N. G. Hatsopoulos,
"Propagating waves mediate information transfer in
the motor cortex," Nat Neurosci, vol. 9, pp. 1549-
57, Dec 2006.

[31] A. Benucci, R. A. Frazor, and M. Carandini,
"Standing waves and traveling waves distinguish
two circuits in visual cortex," Neuron, vol. 55, pp.
103-17, Jul 5 2007.

[32] F. Han, N. Caporale, and Y. Dan, "Reverberation
of recent visual experience in spontaneous cortical
waves," Neuron, vol. 60, pp. 321-7, Oct 23 2008.

2379-8920 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2017.2655539, IEEE
Transactions on Cognitive and Developmental Systems

[33] J. Y. Wu, H. Xiaoying, and Z. Chuan, "Propagating
waves of activity in the neocortex: what they are,
what they do," Neuroscientist, vol. 14, pp. 487-502,
Oct 2008.

[34] E. V. Lubenov and A. G. Siapas, "Hippocampal
theta oscillations are travelling waves," Nature,
vol. 459, pp. 534-9, May 28 2009.

[35] T. K. Sato, I. Nauhaus, and M. Carandini,
"Traveling waves in visual cortex," Neuron, vol.
75, pp. 218-29, Jul 26 2012.

[36] T. P. Zanos, P. J. Mineault, K. T. Nasiotis, D.
Guitton, and C. C. Pack, "A sensorimotor role for
traveling waves in primate visual cortex," Neuron,
vol. 85, pp. 615-27, Feb 4 2015.

[37] J. H. Palmer and P. Gong, "Associative learning of
classical conditioning as an emergent property of
spatially extended spiking neural circuits with
synaptic plasticity," Front Comput Neurosci, vol.
8, p. 79, 2014.

[38] T.-S. Chou, L. D. Bucci, and J. L. Krichmar,
"Learning Touch Preferences with a Tactile Robot
Using Dopamine Modulated STDP in a Model of
Insular Cortex," Frontiers in Neurorobotics, vol. 9,
2015.

[39] G. Dragoi and S. Tonegawa, "Preplay of future
place cell sequences by hippocampal cellular
assemblies," Nature, vol. 469, pp. 397-401, Jan 20
2011.

[40] G. Dragoi and S. Tonegawa, "Distinct preplay of
multiple novel spatial experiences in the rat," Proc
Natl Acad Sci U S A, vol. 110, pp. 9100-5, May 28
2013.

[41] B. E. Pfeiffer and D. J. Foster, "Hippocampal
place-cell sequences depict future paths to
remembered goals," Nature, vol. 497, pp. 74-9,
May 2 2013.

[42] B. E. Pfeiffer and D. J. Foster, "PLACE CELLS.
Autoassociative dynamics in the generation of
sequences of hippocampal place cells," Science,
vol. 349, pp. 180-3, Jul 10 2015.

[43] D. Silva, T. Feng, and D. J. Foster, "Trajectory
events across hippocampal place cells require
previous experience," Nat Neurosci, vol. 18, pp.
1772-9, Dec 2015.

[44] Y. Zhou and J. Zeng, "Massively parallel a* search
on a GPU," presented at the Proceedings of the
Twenty-Ninth AAAI Conference on Artificial
Intelligence, Austin, Texas, 2015.

[45] N. Srinivasa and J. Cruz-Albrecht, "Neuromorphic
adaptive plastic scalable electronics: analog
learning systems," IEEE Pulse, vol. 3, pp. 51-6, Jan
2012.

[46] T. Hwu, J. Isbell, N. Oros, and J. Krichmar, "A
Self-Driving Robot Using Deep Convolutional
Neural Networks on Neuromorphic Hardware,"
arXiv preprint arXiv:1611.01235v1, 2016.

[47] E. M. Izhikevich and G. M. Edelman, "Large-scale
model of mammalian thalamocortical systems,"
Proc Natl Acad Sci U S A, vol. 105, pp. 3593-8,
Mar 4 2008.

[48] E. M. Izhikevich, J. A. Gally, and G. M. Edelman,
"Spike-timing dynamics of neuronal groups,"
Cereb Cortex, vol. 14, pp. 933-44, Aug 2004.

[49] J. M. Cruz-Albrecht, M. W. Yung, and N.
Srinivasa, "Energy-Efficient Neuron, Synapse and
STDP Integrated Circuits," Biomedical Circuits
and Systems, IEEE Transactions on, vol. 6, pp.
246-256, 2012.

[50] R. M. Wang, T. J. Hamilton, J. C. Tapson, and A.
van Schaik, "A neuromorphic implementation of
multiple spike-timing synaptic plasticity rules for
large-scale neural networks," Front Neurosci, vol.
9, p. 180, 2015.

[51] S. Thorpe, A. Delorme, and R. Van Rullen, "Spike-
based strategies for rapid processing," Neural
Netw, vol. 14, pp. 715-25, Jul-Sep 2001.

[52] R. VanRullen, R. Guyonneau, and S. J. Thorpe,
"Spike times make sense," Trends Neurosci, vol.
28, pp. 1-4, Jan 2005.

[53] J. Ni, L. Wu, X. Fan, and S. X. Yang, "Bioinspired
intelligent algorithm and its applications for mobile
robot control: a survey," Computational
intelligence and neuroscience, vol. 2016, p. 1,
2016.

[54] J. Ni and S. X. Yang, "Bioinspired neural network
for real-time cooperative hunting by multirobots in
unknown environments," IEEE Transactions on
Neural Networks, vol. 22, pp. 2062-2077, 2011.

[55] J. L. McKinstry, G. M. Edelman, and J. L.
Krichmar, "A cerebellar model for predictive motor
control tested in a brain-based device,"
Proceedings of the National Academy of Sciences
of the United States of America, vol. 103, pp. 3387-
3392, 2006.

[56] V. A. Shim, C. S. N. Ranjit, B. Tian, M. Yuan, and
H. Tang, "A Simplified Cerebellar Model with
Priority-based Delayed Eligibility Trace Learning
for Motor Control," IEEE Transactions on
Autonomous Mental Development, vol. 7, pp. 26-
38, 2015.

[57] W. Schultz, P. Dayan, and P. R. Montague, "A
neural substrate of prediction and reward," Science,
vol. 275, pp. 1593-9, Mar 14 1997.

[58] B. R. Cox and J. L. Krichmar, "Neuromodulation
as a Robot Controller: A Brain Inspired Design
Strategy for Controlling Autonomous Robots,"
IEEE Robotics & Automation Magazine, vol. 16,
pp. 72-80, 2009.

[59] J. L. Krichmar, "The Neuromodulatory System - A
Framework for Survival and Adaptive Behavior in
a Challenging World.," Adaptive Behavior, vol. 16,
pp. 385-399, 2008.

2379-8920 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2017.2655539, IEEE
Transactions on Cognitive and Developmental Systems

[60] G. Aston-Jones and J. D. Cohen, "An integrative
theory of locus coeruleus-norepinephrine function:
adaptive gain and optimal performance," Annu Rev
Neurosci, vol. 28, pp. 403-50, 2005.

[61] Z. Chen, A. Jacobson, U. M. Erdem, M. E.
Hasselmo, and M. Milford, "Multi-scale bio-
inspired place recognition," in 2014 IEEE
international conference on robotics and
automation (ICRA), 2014, pp. 1895-1901.

[62] M. Beyeler, N. D. Dutt, and J. L. Krichmar,
"Categorization and decision-making in a
neurobiologically plausible spiking network using
a STDP-like learning rule," Neural Networks, vol.
48, pp. 109-124, 2013.

Tiffany Hwu received a B.A. in
Computer Science and Cognitive
Science in 2014 from the University of
California, Berkeley and an M. S. in
Cognitive Neuroscience in 2016 from
the University of California, Irvine.
 She is currently pursuing a Ph.D. in
Psychology at the University of

California, Irvine and is also a Systems Technical Intern in
Basic Research at Northrop Grumman. Her current research
interests include biologically inspired spatial navigation,
transfer learning, neurorobotics, and decision making.

Alexander Y. Wang is pursuing a B.S.
in Mechanical Engineering at the
University of California, Irvine.
 He has over 4 years of engineering
internship experience, working for
industry leaders in aerospace, additive
manufacturing, and MEMS. He is
currently building a diverse array of
robots at the Cognitive Anteater

Robotics Laboratory at the University of California, Irvine,
and is part of a broad outreach program in Orange County
mentoring and inspiring high school students to pursue
STEM fields via building rescue robots.

Nicolas Oros received a B.Sc. in
Computer Science in 2005, M.Sc. in
Artificial Intelligence in 2006, and Ph.D.
in Artificial Intelligence in 2010 from
the University of Hertsfordshire.
 He was previously a postdoctoral
research scholar in the Cognitive
Anteater Robotics Laboratory at the
University of California, Irvine. His

research interests include neural computation, evolutionary
computation, neuromodulatory systems, artificial life, and
robotics.
 Dr. Oros is currently a Senior Research Scientist at
BrainChip Inc.

Jeffrey L. Krichmar received a B.S. in
Computer Science in 1983 from the
University of Massachusetts at Amherst,
a M.S. in Computer Science from The
George Washington University in 1991,
and a Ph.D. in Computational Sciences
and Informatics from George Mason
University in 1997.
 He spent 15 years as a software

engineer on projects ranging from the PATRIOT Missile
System at the Raytheon Corporation to Air Traffic Control
for the Federal Systems Division of IBM. In 1997, he
became an assistant professor at The Krasnow Institute for
Advanced Study at George Mason University. From 1999 to
2007, he was a Senior Fellow in Theoretical Neurobiology
at The Neurosciences Institute. His research interests
include neurorobotics, embodied cognition, biologically
plausible models of learning and memory, and the effect of
neural architecture on neural function.
 Dr. Krichmar is currently a professor in the Department of
Cognitive Sciences and the Department of Computer
Science at the University of California, Irvine.

