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Abstract—A path planning algorithm for outdoor robots, 
which is based on neuronal spike timing, is introduced. The 
algorithm is inspired by recent experimental evidence for 
experience-dependent plasticity of axonal conductance. Based 
on this evidence, we developed a novel learning rule that 
altered axonal delays corresponding to cost traversals and 
demonstrated its effectiveness on real-world environmental 
maps. We implemented the spiking neuron path planning 
algorithm on an autonomous robot that can adjust its routes 
depending on the context of the environment. The robot 
demonstrates the ability to plan different trajectories that 
exploit smooth roads when energy conservation is 
advantageous, or plan the shortest path across a grass field 
when reducing distance traveled is beneficial. Because the 
algorithm is suitable for spike-based neuromorphic hardware, 
it has the potential of realizing orders of magnitude gains in 
power efficiency and computational gains through 
parallelization.    

Keywords—neuromorphic chips; path planning; plasticity; 
robotics; spiking neurons 

I. INTRODUCTION 
Navigation in biology requires acquiring a map, and then 

using that map to make intelligent decisions on where to go 
and what to do [1, 2]. The idea of a cognitive map, which 
was proposed by E.C. Tolman in the last century [3], is 
where the animal takes costs, context, and its needs into 
consideration when moving through its environment. 

Path planning involves calculating an efficient route from 
a starting location to a goal, while avoiding obstacles and 

other impediments. Despite much advancement over several 
decades of robotic research, there are still many open issues 
for path planners [4, 5]. Classic path planning algorithms 
include Dijkstra’s algorithm, A*, and D*. Dijkstra’s 
algorithm uses a cost function from the starting point to the 
desired goal. A* additionally considers the distance from the 
start to the goal “as the crow flies” [6]. D* extends the A* 
algorithm by starting from the goal and working towards the 
start positions. It has the ability to re-adjust costs, allowing it 
to replan paths in the face of obstacles [7]. These algorithms 
can be computationally expensive when the search space is 
large. Rapidly-Exploring Random Trees (RRT) are a less 
expensive approach because they can quickly explore a 
search space with an iterative function [8]. Still these path 
planners are computationally expensive and may not be 
appropriate for autonomous robots and other small, mobile, 
embedded systems. 

Because of their event driven design and parallel 
architecture, neuromorphic hardware holds the promise of 
decreasing size, lowering weight and reducing power 
consumption, and may be ideal for embedded applications 
[9]. These systems are modeled after the brain’s architecture 
and typically use spiking neural elements for computation 
[10]. Spiking neurons are event driven and typically use an 
Address Event Representation (AER), which holds the 
neuron ID and the spike time, for communicating between 
neurons. Since spiking neurons do not fire often and post-
synaptic neurons do not need to calculate information 
between receiving spikes, neuromorphic architectures allow 
for efficient computation and communication. 
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Path planning approaches that may be a good fit for 
neuromorphic applications are wavefront planners [11, 12] 
and diffusion algorithms [13]. In a standard wavefront 
planner, the algorithm starts by assigning a small number 
value to the goal location. In the next step, the adjacent 
vertices (in a topological map) or the adjacent cells (in a grid 
map) are assigned the goal value plus one. The “wave” 
propagates by incrementing the values of subsequent 
adjacent map locations until the starting point is reached. 
Typically, the wave cannot propagate through obstacles. A 
near-optimal path, in terms of distance and cost of traversal, 
can be read out by following the lowest values from the 
starting location to the goal location.  

We recently introduced a spiking neuron wavefront 
algorithm for path planning that adapts to changes in the 
environment [14]. The adaptive element is inspired by recent 
empirical findings supporting experience dependent 
plasticity of axonal conduction velocities [14]. Unlike prior 
implementations of spiking wavefront path planners, our 
algorithm introduces an adjustable spike delay that could 
potentially allow for dynamic online adaptation to realistic 
environmental costs, while maintaining a temporally sparse 
coding of the path. In simulations, we were able to show that 
this algorithm was more computationally efficient and 
sensitive to cost than existing path planning algorithms. 

Versions of the wavefront algorithm have been 
implemented on neuromorphic hardware that supports 
spiking neurons [15-17], including our own algorithm which 
was successfully implemented on the IBM TrueNorth chip 
[18]. In addition, it has been shown to plan efficient paths on 
mobile robots and robotic arms [12, 15, 19]. However, these 
algorithms are not flexible in dynamic environments or in 
situations where the context changes. Other neural inspired 
implementations of the wavefront or diffusion idea use 
learning rules to learn routes through environments [20-23]. 
These models rely on synaptic plasticity to learn and adapt to 
environments. However, most of the environments used in 
these experiments have been static and highly constrained. 

In the present paper, we expand upon this previous work, 
demonstrating the algorithm’s effectiveness in complex 
natural environments. Rather than using a manually 
constructed map, we create maps from an outdoor park with 
an abundance of natural obstacles and varied terrain. These 
obstacles and varied terrain are reflected in the algorithm’s 
cost function. We further show how this algorithm can be 
implemented on an autonomous robot navigating an outdoor 
environment. The mobile robot had to consider real-world 
costs and tradeoffs in the environment, such as smooth roads 
versus rough grass, as well as obstacles such as benches, 
bushes, and trees. The robot demonstrated context-dependent 
path planning through this environment and the spiking 
wavefront was efficient enough to run on an Android 
smartphone that was mounted on and controlled the robot. 

II. METHODS 

A. Neuron Model and Connectivity 
To demonstrate a spiking neuronal wave path planning 

algorithm, we constructed a simple spiking neuron. The 

neuron model contained a membrane potential (v), a 
recovery variable (u), and received current input (I) from 
synaptically connected neurons:  

 vi(t+1) = ui(t) + Ii(t) (1) 
 ui(t+1) = min(ui(t) + 1, 0) (2) 
 Ii(t+1) = Σ j (1 if dij(t) = 1; 0 otherwise)  (3) 
 dij(t+1) = max(dij(t) - 1, 0) (4) 
 dij(t) is the axonal delay between when neuron vj(t) fires an 
action potential and neuron vi(t) receives the action 
potential. When vj(t) fires an action potential, dij(t) is set to a 
delay value of Di,j(t), which was assigned according to 
variable costs in the environment. Note from Eq. (4) that dij 
has a null value of zero unless the pre-synaptic neuron fires 
an action potential. 

Equations (1-4) calculate the membrane potential, 
recovery variable, synaptic input, and axonal delay for 
neuron i at time step t, which is connected to j pre-synaptic 
neurons. The neuron spiked when v in Eq. (1) was greater 
than zero, in which case, v was set to 1 to simulate a spike, u 
was set to minus 5 to simulate a refractory period, and the 
axonal delay buffer, d, was set to D. The recovery variable, 
u, changed each time step per Eq. (2). The delay buffer, d, 
changed each time step per Eq. (4). I in Eq. (3) was the 
summation of the j pre-synaptic neurons that delivered a 
spike to post-synaptic neuron i at time t. Because of the 
refractory and delay periods, most neurons will be inactive 
during each timestep, resulting in sparse activity. Although 
neurons have to check if they fired a spike or received a 
spike each timestep, most of the computation occurs when 
neurons emit or receive a spike.  

The neural network consisted of a 20x20 grid of spiking 
neurons as described in Eqs. (1-4). The 20x20 grid 
corresponded to grid locations used in the outdoor robot 
experiments. Each neuron corresponded to a location in the 
environment and was connected to its eight neighbors (i.e., 
N, NE, E, SE, S, SW, W, NW). At initialization (t = 0), v 
and u were set to 0. All delays, D, were initially set to 5, but 
could vary depending on experience in the environment. D 
represented the time it takes to propagate a pre-synaptic 
spike to its post-synaptic target. 

B. Axonal Delays and Plasticity 
A spike wavefront proceeds by triggering a single spike 

at a neuron that corresponds to the start location. This neuron 
then sends a spike to its synaptically connected neighbors. 
The delivery of the spike to its post-synaptic targets depends 
on its current axonal delay. Each synapse has a delay buffer, 
which governs the speed of the spike wave.  

 Di,j(t+1)=Di,j(t) + δ(mapx,y - Di,j(t)) (5) 
  

Where the delay Di,j(t) represents the axonal delay at time 
t between neurons i and j, mapx,y is the value of the 
environment at location (x,y), and δ is the learning rate. For 
the present experiments, δ was set to 1.0, which allows the 
system to instantaneously learn the values of locations. This 
allows us to use an a priori cost map to test the effectiveness 
of the planning algorithm when the map is known, without 
incremental learning. In section IV, we describe how 
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changing the learning rate can allow for map creation as the 
robot explores an environment. The learning is expressed 
through axonal delays. For example, if the spike wave agent 
encountered a major obstacle, with a high traversal cost (e.g., 
9), the neuron at that location would schedule its spike to be 
delivered to its connected neurons 9 time steps later, 
whereas, if the traversal cost of a location were 1, the spike 
would be delivered on the next time step. It should be noted 
that in the present study the delay buffers were reset before 
each route traversal.  

 
Fig. 1. Spike wave propagation in simulation. The top panels show the 
network activity at timestep 3, the middle panels show network activity at 
timestep 18, and the bottom panels show the resulting path. The left side 
shows the test area without a road. The light blue is the surrounding region, 
which has a cost of 9. The dark blue depicts the location of an open grass 
field, which has a cost of 3. The right side shows the test area that takes into 
consideration a road, which has a cost of 1 and is shown in dark blue. The 
spike wave propagation is shown in yellow. The starting location is at the 
top middle of the map, and the goal location is at the bottom middle of the 
map. Note how the spike wave propagates faster when there is a low cost 
road present.  

C. Spike Wave Propagation and Path Readout 
Fig. 1 shows the progression of a spike wave in a typical 

environment. The example shows how the algorithm is 
sensitive to different costs; the left columns of Fig. 1 show 
an environment where the best path is the most direct route, 
and the right columns show an environment where it is 
advantageous to take a longer route along a smooth road. 
The neuron at the starting location is triggered to emit a 
spike. The top panels of Fig. 1 show the start of the spike 
wave emanating from the start position. Note how the spike 
wave is propagating faster on the regions that depict a 
smooth road (Fig. 1, right column). This is because the road 
has a traversal cost of 1, whereas the grass field has a cost of 
3. Each spike, which is shown in yellow in Fig. 1, is 
recorded in the AER table, with its neuron ID and time step.  

To find the best path between the start and goal locations, 
we used the list of spikes held in the AER table. From the 
goal, the list was searched for the most recent spike from a 
neuron whose location was adjacent to the goal location. If 

more than one spike met this criterion, the neuron whose 
location corresponded to the lowest cost and was closest to 
the start location was chosen. This iteratively proceeded 
from the goal through other neuron locations until a spike at 
the start location was found. The bottom right image in Fig. 
1 shows the found path.  

 In complex environments there was the potential for 
multiple waves to occur and collide (Fig. 2). In this case, the 
AER table could contain more than one path. To find the 
best path, a second pass was made through algorithm with a 
temporary map that had a cost of 1 for the paths from the 
first pass, with the rest of the map set to 20. This second pass 
of the spike wave algorithm ensured that the resulting path 
was most efficient in terms of length and cost.  

 
Fig. 2. In some instances, the collision of multiple spike waves generated 
inefficient paths (left). This was remedied by adding a second pass through 
the algorithm with a cost map containing just the paths from the first pass 
(right). 

D. A* Path Planner 
For comparison purposes, we implemented the A Star 

(A*) algorithm [6], which is commonly used in path 
planning. A* uses a best-first search and attempts to find a 
least-cost path from the start location to the goal location. 
The cost includes the Euclidean distance from the start, the 
Euclidean distance from the goal, and the cost of traversing 
the location. From the start location, adjacent locations are 
placed in a node list. Then the node list is searched for the 
node with the lowest cost. The location corresponding to this 
low cost node is expanded by placing adjacent, unevaluated 
locations on the node list. The process is repeated until the 
goal location is reached. The A* algorithm can find the 
shortest path based on its cost function. 

E. Map of Environment 
 To demonstrate the effectiveness of our spiking 
wavefront planner, we tested the algorithm in a real 
environment through a variety of terrains in Aldrich Park, a 
19-acre botanical garden at the University of California, 
Irvine. Two sections of the park, an open area and a cluttered 
area (Fig. 3) were transformed into 20x20 grid maps 
encoding the costs of traveling and the GPS coordinates. We 
generated the GPS coordinates by pacing off the area with a 
smartphone (Samsung Galaxy S5) and recording the GPS 
points with an Android application.  

 Two maps created from the sections of Aldrich Park 
consisted of a 20x20 grid of GPS coordinates and terrain 
costs (see Fig. 3). The first, referred to as Map 1, was in an 

Without Road With Road 
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ts 18 
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open grassy area of the park, which was surrounded by a 
paved sidewalk. In one variant, referred to as “Without 
Road” (Fig. 4A), the grassy area had a cost of 3, and all other 
areas had a cost of 9. In the “With Road” variant (Fig. 4B), 
the paved sidewalk around the grassy area was given a cost 
of 1. In the “With Road and Obstacles” variant (Fig. 4C), 
benches, bushes, and trees were given a cost of 6. The 
second map, referred to as Map 2 (Fig. 4D), had an outer 
region with a cost of 6, large trees and brush had a cost of 
10, the paved road had a cost of 1, and the gravel road had a 
cost of 2. Map 2 was stretched horizontally such that the 
asphalt path location roughly matched the asphalt path of 
Map 1, allowing for better route comparisons between maps. 
These maps were used in both simulations and in 
autonomous robot experiments.  

 

 
Fig. 3. Google satellite image of Aldrich Park at the University of 
California, Irvine. Two sections of the park (boxed) were transformed into 
cost maps (Map 1 as bottom box and Map 2 as top box) for the spiking wave 
planner. Imagery ©2016 Google. 

F.   Robot Hardware and Software Design  
  For the robot experiments, we used the Android-Based 
Robotic Platform [24], a mobile ground robot constructed 
from off-the-shelf commodity parts and controlled through 
an Android smartphone (see Fig. 5). An IOIO-OTG 
(www.sparkfun.com/products/13613) microcontroller 
communicated with the Android smartphone via a Bluetooth 
connection and relayed motor commands to a separate 
RoboClaw motor controller (www.pololu.com/product/1499) 
for  steering the Dagu Wild Thumper 6-Wheel Drive All-
Terrain chassis (www.pololu.com/product/1563robot). The 
robot used a differential steering technique, moving the left 
and right sets of wheels at differing speeds to achieve 
different degrees of turning. Additional sensors and actuators 
were also connected to the robot through the IOIO-OTG, 
including several MaxBotix LV-MaxSonar sensors 
(www.maxbotix.com/Ultrasonic_Sensors/MB1000.htm) and 

an SPT200 pan and tilt unit (www.servocity.com/spt200) for 
controlling the view of the smartphone camera. Software for 
controlling the robot was created using the Android Software 
Development Kit. The software application was written in 
Java using Android Studio and deployed on a Samsung 
Galaxy S5 smartphone. The application utilized the phone’s 
built-in accelerometer, gyroscope, compass, and global 
positioning system (GPS). 

 
Fig. 4. 20 x 20 cost grids created from two areas of Aldrich Park. A.) An 
open area with uniform low cost in the traversable area, and high cost 
outside of this area. B.) The same area as A but with a lower cost for the 
surrounding road. C.) The same area as B but with obstacles denoting 
benches, bushes and trees near the road. D.) A second area in Aldrich Park 
with high cost for trees, low cost for asphalt roads, and medium cost for dirt 
roads. 

G.  Computation 
Simulations and robot experiments were run to test the 

spike wave algorithm. The simulations of the spike wave and 
the A* algorithm were run in MATLAB. For robot 
experiments, the spike wavefront algorithm, robot I/O, and 
robot control software were implemented in Java using 
Android Studio, and run as an app on a Samsung Galaxy S5. 
Fig. 6 shows a screenshot of the Android application. A 
graphical user interface (GUI) on the phone allowed the user 
to input start and goal grid locations, as well as select a map. 
The app then generated a path using the spike wavefront 
planner described in Section II A-C. The phone then 
displayed the desired path on the GUI (see Fig. 6). Once the 
operator pressed the Auto button on the GUI, the app 
generated a list of ordered GPS waypoints, from the start to 
the goal location, from the path grid locations. The robot 
then used a navigation strategy to visit each waypoint on the 
list in succession. The robot stopped moving once the last 
waypoint, which represented the goal location, was reached. 
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Fig. 5. Android-Based Robotic Platform. Left: Side view of ground robot. A 
flexible pan and tilt unit controls view of smartphone camera. Top right: 
Front view of ground robot. Three LV-MaxSonar sensors are able to detect 
obstacles up to 254 inches away. Bottom right: Top view of component 
enclosure. A IOIO-OTG microcontroller (below) serves as the central hub 
for communication, including sending motor commands to the motor 
controller (above). 

 For robot navigation, a GPS location was queried using 
the Google Play services location API. The bearing direction 
from the current GPS location of the robot to a desired 
waypoint was calculated using the Android API function 
bearingTo. A second value, the heading, was calculated by 
subtracting declination of the robot’s location to the 
smartphone compass value, which was relative to magnetic 
north. This resulted in an azimuth direction relative to true 
north. The robot travelled forward and steered in attempt to 
minimize the difference between the bearing and heading. 
The steering direction was determined by deciding whether 
turning left or turning right would require the least amount of 
steering to match the bearing and heading. The navigation 

 

 

Fig. 6. Screenshot of app used for robot navigation. The screen displays a 
camera view overlaid with information about distance to the destination, 
bearing to the destination ranging 0-360 degrees from true north, heading 
direction (also ranging 0-360 degrees from true north), and the 2D cost grid. 
Colors on the grid ranging from dark blue to red indicated the costs of the 
grid, with tree locations marked at highest cost in red. The planned path of 
the robot is indicated in yellow and the current location of the robot is 
marked in green. The ‘Grid’ button toggles the grid view on and off and the 
‘Auto’ button switches the robot into and out of autonomous navigation 
mode. 

procedure continued until the distance between the robot’s 
location and the current waypoint was less than 10 meters, at 
which point the next waypoint in the path list was selected. 

III. RESULTS 

A. Path Planning Simulations 
Table I shows path and cost metrics for simulated path 

planning that compared the spike wave algorithm with the  
A* path planner. Simulations were run with all four map 
variants: 1) Map 1 – Without Road, 2) Map 1 – With Road, 
3) Map 1 – With Road and Obstacles, and 4) Map 2 – With 
Road and Obstacles.  100 start and goal locations were 
randomly chosen, in which the locations could not be out of 
bounds and the Euclidean distance between the start and goal 
was greater than 5 grid units.  

The path lengths between the two algorithms were nearly 
identical (see Table I), but the spike wave algorithm found 
lower cost paths, especially when there were obstacles and 
roads present (p < 0.001; Wilcoxon Ranksum). This is 
because the spike wave algorithm depends primarily on cost, 
whereas our A* implementation uses the common and 
standard heuristic of Euclidian distance in addition to the 
cost of a node on the map. Although A* is proven to be 
optimal given an admissible heuristic [6], our heuristic is 
only admissible when calculating for shortest path. A varied 
and dynamically changing environment would make a cost-
admissible heuristic more difficult to determine, whereas the 
spike wave algorithm inherently includes both distance and 
cost in its calculation by combining neighbor connectivity 
and axonal delay. 

The A* algorithm ran faster than the spike wave 
algorithm when calculating the paths, as measured by the 
tic/toc functions in MATLAB (see Table I). Interestingly, 
this difference became smaller as the maps became more 
complex (see Map 2 in Table I). This is due to the presence 
of low cost roads among high cost obstacles, which leads to 
the algorithm requiring less neural activity to calculate a 
path. In section IV, we discuss how the spike wave algorithm 
can be made parallel, asynchronous, and implemented on 
neuromorphic hardware. This should allow for substantial 
speedups in processing, and reduction in power 
consumption, which can be quantifiably measured against 
the baseline run times reported here. 

B. Robotic Experiments 
Given that the spike wavefront planner showed possible 

advantages over a traditional approach in simulation, we 
aimed to test the plausibility of embedding the planning 
algorithm on an autonomous robot with limited power and 
computational resources. Robot experiments were conducted 
in Aldrich Park on the campus of the University of 
California, Irvine (see Fig. 3). For each map, we tested a set 
of six routes with the same start and end coordinates on the 
cost grids. See Figs. 7-10 for route start and end coordinates. 
The generated routes were different depending on whether 
roads and obstacles were taken into account. For each route 
in a given map, the robot ran four trials, following the route 
produced by the spiking wavefront path planner. To account 
for changing satellite conditions and other environmental 
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factors, we spread out the testing times to sample the 
variance of GPS signal quality. The first two runs were 
performed in the morning and the last two runs were 
performed in the afternoon. Since the robot only relied on 
GPS and compass to navigate, it was sometimes necessary to 
manually redirect the robot slightly away from undetected 
obstacles. This occurred very infrequently in Map 1, and 
more frequently in Map 2 due to the presence of dense 
vegetation and an abundance of obstacles. In Section IV, we 
discuss ways to mitigate these interventions. 

Overall, the actual robot trajectories matched the desired 
trajectories calculated from the spike wavefront algorithm 
quite well. For each map condition, Figs. 7-10 show the 
satellite image of the area, the cost map used by the path 
planner, and the trajectories for the 6 routes from a starting 
grid location to a goal grid location. The trajectories were 
superimposed on the street view of Google Maps. The black 
line in these figures shows the desired path, and the four 
colored lines show a robot trajectory. Occasionally the GPS 
signal became unreliable due to buildings, trees, and other 
environmental noise. This sometimes caused the robot to 
drive away from the desired destination, requiring the robot 
to backtrack and visit a missed waypoint. 

We used the discrete Fréchet distance [24] as a metric for 
calculating the similarities of trajectories between the actual 
robot’s movements and the intended route. Intuitively, 
Fréchet distance is the minimal leash length necessary to 
physically connect two agents as they walk along their two 
separate paths. The agents are allowed to pause at any time 
but not permitted to backtrack, and both must complete their 
respective paths from start to endpoint. Compared to other 
comparison techniques such as Hausdorff distance, Fréchet 
distance takes into account the specific ordering of points on 
the trajectory, ideal for our experimental conditions. Table II 
shows mean and standard deviation of Fréchet distances for 
each of the maps and routes, with the sample size of 4 trials 
for each condition.  

As our navigation strategy defined reaching a waypoint 
as arriving within 10 meters of the waypoint GPS location, 
any Fréchet distance near the 10-meter threshold should be 
considered acceptable.  We also see the scale at which our 
hardware and algorithm can operate accurately, which in this 
case may not be sufficient in some areas of the park but may 
be sufficient for a car on a commercial road. 

IV. DISCUSSION 
In prior work, we introduced a path planning algorithm 

that used spiking neurons and axonal delays to compute 
efficient routes [14]. The spike wavefront path planner could 
generate near optimal paths and was comparable to 
conventional path planning algorithms, such as the A* 
algorithm or a standard wavefront planner. We introduced a 
learning rule that represented the cost of traversal in axonal 
delays. Because the spike wavefront is a local algorithm (i.e., 
computations are independent and based on neighboring 
neurons), it is suitable for parallel implementation on 
neuromorphic hardware, as was shown recently with both 
grid-based and topological maps [18]. 

In the present paper, we showed that this algorithm was 
efficient and accurate enough for autonomous robot path 
planning in complex, outdoor settings. In prior work, maps 
are idealized, virtual environments. In the present work, the 
axonal delays represented real world costs, such as park 
benches, vegetation, bumpy grass terrain, and trees. Smooth 
roads were represented with short axonal delays, and this led 
to the robot choosing easier to traverse terrain, despite the 
longer overall path. The spiking algorithm, input/output 
handling, and robot control all ran on an off-the-shelf 
smartphone with an application written in Java. This 
demonstrated that the algorithm was lightweight and could 
support autonomous navigation in real-time.  

A. Neurobiological Inspiration for the Spike Wavefront 
Algorithm 
The present algorithm was inspired by recent evidence 

suggesting that the myelin sheath, which wraps around and 
insulates axons, may undergo a form of activity-dependent 
plasticity [25, 26]. These studies have shown that the myelin 
sheath becomes thicker with learning motor skills and 
cognitive tasks. A thicker myelin sheath implies faster 
conduction velocities and improved synchrony between 
neurons. 

Based on these findings, we developed a learning rule in 
which a path that traverses through an easy portion of the 
environment (e.g., via a road) would have shorter axonal 
delays than a path that travels through rough terrain. 
Although it is not known if such spatial navigation costs are 
represented in the brain in this way, and most likely they are 
not, this learning rule does investigate a rarely considered 
form of plasticity. Moreover, manipulating the delays, as 

 

TABLE I.  COMPARISON BETWEEN SPIKE WAVEFRONT PLANNER AND A* PLANNER IN DIFFERENT ENVIRONMENTS 

 Path Length Path Cost Time(ms) 

 Spike Wave A* Spike Wave A* Spike Wave A* 
Map 1 - Without Road 8.5 8.5 25.5 25.5 6.11 1.08 

Map 1 - With Road 10 9 21 24 3.81 0.76 
Map 1 - Road and Obstacles 9 9 24 24.5 4.45 0.88 
Map 2 - Road and Obstacles 13 11 34.5 42.5 5.61 2.71 
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Fig. 7. Experimental results for the spiking path planning algorithm on Map 1, with no unique costs encoded for the path. Start and end locations are noted by their 
row and column position on the cost map. Black lines indicate the planned route and the 4 colored lines indicate the actual route taken by the robot. Scale bars 
indicate the length of 10 meters along latitudinal and longitudinal axes, indicating the size of error threshold of our navigation strategy. Imagery ©2016 Google. 

 
Fig. 8. Experimental results for the spiking path planning algorithm on Map 1, with lower costs encoded for the path.  Black lines indicate the planned route and the 
4 colored lines indicate the actual route taken by the robot. Imagery ©2016 Google. 
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Fig. 9. Experimental results for the spiking path planning algorithm on Map 1, with lower costs encoded for the road and higher costs for obstacles. Black lines 
indicate the planned route and the 4 colored lines indicate the actual route taken by the robot. Imagery ©2016 Google. 

 
Fig. 10. Experimental results for the spiking path planning algorithm on Map 2, with different costs encoded for the asphalt road, dirt path, and trees. Black lines 
indicate the planned route and the 4 colored lines indicate the actual route taken by the robot. Note that the 10 meter scale bars indicate that the image has been 
compressed along the longitudinal axis. Imagery ©2016 Google. 
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TABLE II.  FRÉCHET DISTANCES (IN METERS) BETWEEN PLANNED ROUTE AND ACTUAL ROUTE FOR SPIKE WAVEFRONT PLANNER 

 
was done in the present article, shows how a spiking neural 
network can solve a real-world problem using a purely 
temporal code. Other groups have investigated learning 
rules based on axonal delays. Wang and colleagues have 
implemented a Spike Timing Delay Dependent Plasticity 
(STDDP) rule that can shorten or lengthen the axonal delay 
between two connected neurons [27, 28]. They showed that 
altering axonal delays had advantages in forming 
polychronous neuronal groups, which represent 
spatiotemporal memories [29], over altering synaptic weights 
via Spike Timing Dependent Plasticity (STDP). 

The present algorithm is also inspired by the notion of 
neuronal waves in the brain. Wave propagation has broad 
empirical support in motor cortex, sensory cortex, and the 
hippocampus [30-36]. These waves have been suggested as a 
means to solve the credit assignment problem for associating 
a conditioned stimulus with the later arrival of an 
unconditioned stimulus [37]. In our own work, we have 
shown that neuronal wave dynamics in complex spiking 
neural network models can be used to associate visual stimuli 
with noisy tactile inputs in a physical robot [38]. Therefore, 
the idea of solving problems with spike timing generated by  
propagating waves of activity has biological and theoretical 
support. 

Relevant to the present task, is the experimental 
observation of neural activity that represent potential paths 
through space. Sequences of place cell activity in the 
hippocampus prior can predict an animal’s trajectory through 
the environment [39-43]. These so-called preplays may be a 
means to assess different possible paths prior to selecting a 
specific path plan. In a way, this is similar to how the spike 
wavefront planner operates. Sequences of place activity are 
generated, and the spike sequence that arrives first at the goal 
is the one selected for execution.  

B. Parallel Implementation of Spike Wavefront Planner on 
Neuromorphic Hardware 
The present path planner calculates paths based on the 

timing of spiking neurons. Because each neuron can 
calculate its state independently, the algorithm could realize  
impressive speedups through parallelization. Moreover,  
spiking neuron networks are inherently event-driven, that is, 
a new state is only calculated when an incoming spike has  
 

 
been received. This further reduces computational load. 
Lastly, by stopping as soon as the first spike is received at a 
goal node, the spike wavefront planner algorithm only  
calculates what is necessary. For example, when there were 
variable costs, such as in Map 2, the amount of time to 
calculate a path with the spike wavefront planner was 
reduced relative to the A* path planner (see Table I). It 
should be noted that the A* path planner can be parallelized 
[44], but unlike this and other conventional algorithms, they 
cannot take advantage of neuromorphic hardware as can 
spiking neuron algorithms. 

Neuromorphic hardware differs from the conventional 
Von Neumann computer architecture in that it is 
asynchronous and event-driven, with parallel computation [9, 
10]. The artificial neurons do not take up computation cycles 
unless they receive a spike event from a connected neuron. 
Typical neuromorphic designs have the memory, in the form 
of synapses, co-located with the processing units, that is, the 
neurons. This allows computations to be local, independent, 
and parallel. These features allow neuromorphic chips to 
have low size, weight and power [9, 45]. Nearly all these 
chips use spiking neuron elements and some form of AER. 

As has been shown in prior implementations, the spike 
wavefront algorithm is compatible with neuromorphic 
hardware [15-19]. These implementations show the 
feasibility and parallelization of the wavefront planner. 
Moreover, they show how this neuromorphic algorithm can 
generate optimal paths. In addition, IBM’s TrueNorth 
neuromorphic chip was recently embedded on the robot used 
in the present experiments in an autonomous self-driving 
application [46]. Considering that the present spike 
wavefront algorithm has been implemented on TrueNorth 
[18] a complete neuromorphic path planning system is now 
feasible on our robot. 

The present paper builds on these implementations by 
adding a learning rule to make the planner more flexible and 
to consider the relative costs of traversing an environment. 
Axonal delays have been introduced in large-scale spiking 
neural network simulations [47, 48], but are not typical for 
neuromorphic hardware. However some neuromorphic 
designs include axonal delays [27, 28, 49, 50]. To implement 
the present algorithm in neuromorphic hardware, all that 
would be needed is a delay buffer, delay line, or a means to 

  Route       
 S(2,10) 

E(19,10) 
S(10,10) 
E(5,3) 

S(16,3) 
E(10,10) 

S(5,3) 
E(15,16) 

S(15,16) 
E(16,3) 

S(19,10) 
E(5,3) 

 
Map 1 - Without Road 

 
12.54±1.33 

 
9.28±1.33 

 
18.20±6.15 

 
13.05±0.34 

 
8.39±1.99 

 
23.70±15.98 

 
Map 1 - With Road 

 
19.44±6.37 

 
14.28±4.29 

 
13.04±5.08 

 
16.56±2.29 

 
8.73±3.88 

 
18.15±7.24 

 
Map 1 - Road and Obstacles 

 
18.67±10.87 

 
11.47±2.56 

 
16.06±6.52 

 
12.87±0.22 

 
7.92±2.36 

 
21.44±15.99 

 
Map 2 - Road and Obstacles 

 
11.69±2.23 

 
10.69±2.75 

 
18.46±5.64 

 
14.78±0.74 

 
20.11±17.41 

 
22.98±8.48 
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schedule spikes at specific times in the future. Because a 
synaptic based learning rule, such as STDP, is not needed for 
the present algorithm, the circuitry to support the spike 
wavefront planner could be simplified. 

In the present algorithm, the AER representation is used 
to read out the path, which may be a limitation since it 
requires saving the AER list for each planned route. It also 
requires a planning calculation and readout for every route. 
A more natural implementation might use the rank order of 
the spike wave in a similar way to that proposed by Thorpe 
and colleagues [51, 52]. Such alternative readout 
implementations will be explored in the future. 

C. Comparison to Other Neurally Inspired Path Planning 
Approaches 
The result of our algorithm has complementary parallels 

to past work in bioinspired algorithms for mobile robot 
control [53]. For instance, Ni and Yang [54] propose a 
neural network for multirobot cooperative hunting in 
unknown environments, representing space in a 2D neuron 
grid and using a shunting model to represent attraction and 
repulsion agents on the field. Similarly, our algorithm could 
draw upon these principles, representing not only 
environmental costs but costs of interacting with other 
dynamic agents cooperatively and competitively. It also 
opens the possibility of neuromorphic solutions for the 
complex tasks of swarm coordination in mobile robots. 

Aside from neural navigation models inspired by 
hippocampal activity and cognitive map representation, 
cerebellar models of motor control using the delayed 
eligibility trace learning rule have also been used for spatial 
motion planning [55], with further developments increasing 
its efficacy in real environments such as urban expressways 
and tracks [56]. Perhaps a model of predictive motor control 
combined with a larger cognitive map representation could 
be implemented in neuromorphic hardware to form an 
effective multi-scale motion planning system.  

D. Simultaneous Path Planning and Mapping 
The present algorithm could be modified to build a map 

as the robot explores its environment. It would need 
additional sensors to measure the cost of traversal or some 
other cost function related to navigation. Rather than 
assuming that the environment is known and static, the robot 
could update the map with each path it generates. This would 
require setting the learning rate in Eqn. 5 to be less than one. 
In addition, if the spike wavefront planner had a learning rate 
between 0 and 1, the uncertainty of the cost at a location 
would be represented.  Similar to [57], this would result in 
the spike wavefront planner predicting the cost of traversing 
locations in an environment. Moreover, the planner could 
utilize an exploration/exploitation tradeoff to decide whether 
to explore unknown regions, or exploit previously navigated 
regions. Such tradeoffs have been implemented in 
neurobiologically inspired algorithms [58-60]. Such a 
planner could respond flexibly and fluidly to dynamic 
environments, or the changing needs of the robot. For 
example, if the robot needed to get to a location as fast as 
possible, it might take a direct, but more risky route from the 

start to goal location. However, if the robot wanted to 
conserve energy, it might take a longer, but easier path. The 
different trajectories taken by the robot in Figs. 6-9 
demonstrate this capability. Context is represented in the 
map itself. In a future implementation, one could change the 
cost values of the map based on the robot’s needs, thus 
changing the robot’s behavior. 

Additionally, building a map incrementally opens up 
many possibilities of representing the map besides a 2D grid 
configuration. For example, a more flexible arrangement 
such as a topological map is compatible with our spike wave 
propagation algorithm, and in fact has recently been 
achieved with large-scale maps [18]. For increased 
resolution of map representation, a system of multi-scale 
place recognition [61] may also be considered. Further, a 
hierarchical spiking neural network [62] could be involved 
in forming multi-scale representation compatible with 
neuromorphic hardware. Any of these suggested 
implementations would ease the computational load of 2D 
grid implementations of the A* and the spike wavefront 
propagation algorithm, both of which increase in complexity 
with the grid resolution.  

V. CONCLUSIONS 
In summary, we have shown that a spike based wavefront 

planner can successfully be used on an autonomous robot to 
navigate natural environments. Developing from the existing 
literature on spiking path planning algorithms, we showed 
that the algorithm, which implemented a form of activity-
dependent axonal delay plasticity, was sufficient to plan 
paths based on real costs of traversing an outdoor 
environment. We further demonstrated that this algorithm 
could be implemented on a standard smartphone with 
consumer-grade GPS and compass sensors, suggesting that 
this may be efficient enough for other autonomous vehicles 
that do not have access to high performance computing. 
Because the algorithm relies on spiking neurons and 
asynchronous, event-driven computation, it can be 
implemented on neuromorphic hardware, making it power 
efficient enough for many embedded applications.  
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