
CARLsim 4: An Open Source Library for Large
Scale, Biologically Detailed Spiking Neural

Network Simulation using Heterogeneous Clusters

Ting-Shuo Chou∗, 2, Hirak J Kashyap∗, 1, Jinwei Xing2, Stanislav Listopad1, Emily L Rounds2,
Michael Beyeler1,3,4, Nikil Dutt1,2, Jeffrey L Krichmar1,2

1Department of Computer Science 3Institute for Neuroengineering
2Department of Cognitive Sciences 4eScience Institute

University of California, Irvine University of Washington
Irvine, CA, USA 92697 Seattle, WA, USA 98195

∗ Authors contributed equally to this work
Email: jkrichma@uci.edu

Abstract—Large-scale spiking neural network (SNN) simula-
tions are challenging to implement, due to the memory and
computation required to iteratively process the large set of neural
state dynamics and updates. To meet these challenges, we have
developed CARLsim 4, a user-friendly SNN library written in
C++ that can simulate large biologically detailed neural networks.
Improving on the efficiency and scalability of earlier releases,
the present release allows for the simulation using multiple
GPUs and multiple CPU cores concurrently in a heterogeneous
computing cluster. Benchmarking results demonstrate simulation
of 8.6 million neurons and 0.48 billion synapses using 4 GPUs
and up to 60x speedup for multi-GPU implementations over a
single-threaded CPU implementation, making CARLsim 4 well-
suited for large-scale SNN models in the presence of real-time
constraints. Additionally, the present release adds new features,
such as leaky-integrate-and-fire (LIF), 9-parameter Izhikevich,
multi-compartment neuron models, and fourth order Runge
Kutta integration.

I. INTRODUCTION

Insights from neural representation and organization in the
brain play a major role in the design of algorithms to mimic
intelligence using modern computers, e.g. models of visual
cognition [1] and reinforcement learning [2]. Real neurons
communicate using action potentials or spikes. The tempo-
ral order and frequency of spikes have been found to be
fundamental to learning and memory [3]. In addition, SNNs
in the brain are computationally efficient, fault tolerant, and
robust to noise perturbations [4]. Therefore, it is important
that large scale brain simulations use spiking neurons in order
to understand the principles of neural computation. Moreover,
neuromorphic hardwares have been developed to implement
energy efficient SNNs for low power applications [5].

The existing SNN simulators model neural function at
various levels of details. To be useful, the simulators need

to support key neurobiological functions as well as be com-
putationally efficient. Biophysically detailed simulators, such
as NEURON [6] and GENESIS [7], require a large high-
performance computing (HPC) cluster or a supercomputer to
simulate only a few thousand neurons [8]. On the other hand,
GeNN [9] and NCS [10] simulators achieve parallel execution
of large SNNs using low cost off-the-shelf GPUs, however
they support limited biological features. Since modern HPC
clusters provide arrays of heterogeneous processors, the ability
to simulate an SNN distributed across multiple CPUs and
GPUs concurrently is highly advantageous.

In this paper, we present CARLsim 4, the latest version of
the SNN simulation library CARLsim [11], [12], [13], which
improves upon the previous versions in terms of its support
for multiple GPU and CPU based (hybrid) parallel simulation
of large SNNs, multiple compartment models, 9-parameter
Izhikevich and LIF spiking neuron models, and the fourth
order Runge Kutta sub millisecond integration (RK4) [14] for
improved numerical precision. In the current version, CARL-
sim 4 supports SNN simulations using up to 24 CPU cores
and up to 8 GPUs, concurrently. The newly added features in
CARLsim 4 greatly improve its usability for large scale brain
simulations with biological details. The multi-compartment
model allows for large scale biophysical simulations. The
9-parameter Izhikevich model and the RK4 integration are
added for precise inter-compartment conductance dynamics.
CARLsim 4 includes the LIF neuron, which many modeling
studies use due to its simple dynamics. Moreover, LIF neurons
are supported by most of the neuromorphic platforms, and
CARLsim 4 can be used to develop large SNNs for these
energy efficient hardwares.

CARLsim 4 retains all the modeling features and plug-
in tools from the previous version. It provides a very

978-1-5090-6014-6/18/$31.00 ©2018 IEEE 1158

simple programming interface and requires only rudimen-
tary knowledge of C++. For easy dissemination and col-
laboration, CARLsim 4 is available publicly on Github
(https://github.com/UCI-CARL/CARLsim4) and the Neuro-
science Gateway (https://www.nsgportal.org). Neuroscience
Gateway [15] provides access to clusters with state-of-the-
art CPU/GPU processors, all of which can be concurrently
utilized using CARLsim 4.

II. CARLSIM 4 API

CARLsim 4 supports simulations on Linux, macOS, and
Windows platforms using C/C++ and NVIDIA CUDA li-
braries. The POSIX threads library is used to realize parallel
execution using multiple CPU cores on Linux and macOS
platforms. Windows based simulations additionally require
Visual Studio and openMP libraries. Instructions to set up
CARLsim 4 are available on the user guide (http://uci-
carl.github.io/CARLsim4/). All third party packages required
by CARLsim 4 in all supported platforms are freely available.

A. Simulation workflow

createGroup/createGroupLIF
Creates a group of neurons/compartments

and allocates to a CPU/GPU processor
createGroup/createGroupLIF

Creates a group of neurons/compartments

and allocates to a CPU/GPU processor

setNeuronParameters Specifies model parameters of a groupsetNeuronParameters Specifies model parameters of a group

setCompartmentParameters
Specifies coupling between adjacent

compartments
setCompartmentParameters

Specifies coupling between adjacent

compartments

connect Connects two neuron groups with synapsesconnect Connects two neuron groups with synapses

connectCompartments Connects two compartment groupsconnectCompartments Connects two compartment groups

setSTDP/setSTP Sets synaptic plasticity/modulation behaviorsetSTDP/setSTP Sets synaptic plasticity/modulation behavior

setHomeostasis Sets synaptic scaling to stabilize STDPsetHomeostasis Sets synaptic scaling to stabilize STDP

setConductances
Sets time constants for exponential synaptic

conductance decay
setConductances

Sets time constants for exponential synaptic

conductance decay

setSpikeMonitor Sets a monitor to record spikes in a groupsetSpikeMonitor Sets a monitor to record spikes in a group

setConnectionMonitor Sets a monitor to record synaptic weightssetConnectionMonitor Sets a monitor to record synaptic weights

setNeuronMonitor Sets a monitor to record neuron statessetNeuronMonitor Sets a monitor to record neuron states

injectCurrent Injects external current to compartmentsinjectCurrent Injects external current to compartments

setSpikeRate
Updates firing rate of Poisson spiking

neurons
setSpikeRate

Updates firing rate of Poisson spiking

neurons

CO
N

FI
G

SE

TU
P

RU

N

Fig. 1: The sequence of states in a typical CARLsim 4 simulation and
the API calls invoked in them. Green, yellow, and red boxes denote
CONFIG, SETUP, and RUN states, respectively.

A CARLsim simulation process occupies CONFIG, SETUP,
and RUN states during execution. In CONFIG state, the
model architecture and dynamics are configured. As shown
in Figure 1, the main operations performed in this state are
creation of neuron or compartment groups, creation of synaptic
connections among neuron groups and dendritic connections
among compartment groups, and configuration of conductance
decay and plasticity behaviors of the synapses. Moreover, the

preferred CPU/GPU processor of each group is defined in this
state. A call to the setupNetwork API transitions the simu-
lation to SETUP state, in which data structures are generated
internally for storing model parameters, and monitors are set
to record parameters and activities, such as spikes (in address-
event representation), synaptic weights, and neuron states. The
constructed network is simulated for the desired amount of
time steps by calling runNetwork, and the simulation enters
RUN state. In this state, runNetwork can be called iteratively
with desired input spike rates and/or external currents that can
be altered during runtime. The API calls listed in Figure 1 are
documented in the user guide and partly in [13].

B. Neuron types

CARLsim 4 provides a built-in implementation of spiking
point neuron models as well as multi-compartment models.
The LIF, 4-parameter Izhikevich [16], and 9-parameter Izhike-
vich [17] spiking neuron models are supported. These point
neurons can be stimulated by external current or through
synaptic input from other neurons. The 4-parameter Izhikevich
neuron model is capable of producing a large set of spiking
behavior observed in cortical neurons and is computationally
highly efficient in regard to the more biologically accurate
Hodgkin–Huxley model [18] with similar firing capabili-
ties [16].

The 9-parameter Izhikevich model [17] was introduced to
capture neuronal dynamics that the 4-parameter model could
not and for better interpretability. The model is given by the
following equations and properties:

C
dv

dt
= k(v − vr)(v − vt)− u+ I, (1)

du

dt
= a{b(v − vr)− u}, (2)

if v ≥ vpeak v ← c and u← u+ d,

where, v is the membrane potential, u is the recovery variable,
and I is the cumulative stimulus from synaptic excitato-
ry/inhibitory inputs, external current, and noise. The nine
parameters of the model are the membrane capacitance C,
the resting membrane potential vr, the instantaneous threshold
potential vt, the rate constant of the membrane potential k,
the recovery time constant a, a constant b, the reset potential
c, the outward minus inward current during spike d, and the
threshold potential for spike vpeak.

CARLsim sim("hello_world", GPU_MODE, USER);
// Create a 9 parameter Izhikevich neuron group
int grp1=sim.createGroup("Group1", Grid3D(3,3,1),

INHIBITORY_NEURON, 0, GPU_CORES);
sim.setNeuronParameters(grp1, izh_C, izh_k, izh_vr,

izh_vt, izh_a, izh_b, izh_vpeak, izh_c, izh_d);

// Create an LIF neuron group
int grp2=sim.createGroupLIF("Group2", Grid3D(13,9,1),

EXCITATORY_NEURON, 1, CPU_CORES);
sim.setNeuronParametersLIF(grp2, tau_m, tau_ref, vTh,

vReset, RangeRmem(minRmem, maxRmem));

2018 International Joint Conference on Neural Networks (IJCNN)1159

The above code snippet demonstrates the creation of a
9-parameter Izhikevich neuron group and an LIF neuron
group. The first group of neurons (Group1) is placed on a
3 × 3 grid and they are inhibitory, i.e. these neuron have
only GABAergic synapses. Neurons with all glutamatergic
synapses are specified by EXCITATORY_NEURON keyword.
The final two arguments of the createGroup call specify
that the preferred placement of the group is the GPU with
ID 0 (0-indexed), The integer value (grp1) returned by the
createGroup method serves as the ID for the neuron group to
be used later by other API calls. The setNeuronParameters
call sets the nine parameters of Izhikevich model. The second
group of LIF neurons (Group2) is arranged on a 13 × 9
grid and are placed on CPU core 1 using createGroupLIF

call. The setNeuronParametersLIF method sets up LIF
parameters for the whole group, whereas the RangeRmem

struct can be used to set a fixed or uniformly distributed
membrane resistance values across the neuron population.

Neurons can be modeled with multiple compartments in
a dendritic tree. In a dendritic tree, currents flow into a
compartment from the up (away from soma) and down (toward
soma) compartments. Figure 2 depicts a dendritic tree and the
flow of dendritic currents into a compartment i.

SOMA

i

down(i)

up(i)

Ii
backward

Iup(i)
forward

Fig. 2: An example dendritic tree with multiple compartments. The
dashed arrows represent connections between the compartments. The
forward and backward dendritic currents entering compartment i are
depicted using solid directional arrows.

Each compartment can have multiple up-compartments and
a single down-compartment in the tree. We term the dendritic
current flowing toward the soma as forward current and the
dendritic current flowing away from soma as backward current.
For a compartment i and its down-compartment down(i), the
forward current from compartment i to compartment down(i)
is denoted as (Iforward

i) and the backward current from com-
partment down(i) to compartment i is denoted as (Ibackward

i).
The total dendritic current that flows into a compartment i is
given by the following equation.

Idendri = Ibackward
i +

∑

j∈up(i)

Iforward
j (3)

The asymmetric coupling strength between two compartments
determines the directional flow of dendritic current. The cou-
pling strength value can expressed in terms of conductance (G)
and the degree of asymmetry in the coupling (P). A value of
P = 0.5 signifies symmetric coupling. Between compartments
i and down(i), the forward current Iforward

i and the backward
current Ibackward

i are given by the following equations,

Iforward
i = Gi ∗ Pi ∗ (Vi − Vdown(i)) (4)

Ibackward
i = Gi ∗ (1− Pi) ∗ (Vi − Vdown(i)) (5)

The Gi ∗ Pi term in equation 4 is called the up-coupling
constant for compartment down(i) and the Gi ∗ (1 − Pi)
term in equation 5 is called the down-coupling constant for
compartment i.

// Create a soma and a dendritic compartment
int grpSP = sim.createGroup("Soma", 20,

EXCITATORY_NEURON, 1, GPU_CORES);
sim.setNeuronParameters(grpSP, izh_a, izh_b,

izh_c, izh_d);
int grpD1 = sim.createGroup("Dendrite1", 20,

EXCITATORY_NEURON, 1, GPU_CORES);
sim.setNeuronParameters(grpD1, izh_a, izh_b,

izh_c, izh_d);
sim.setCompartmentParameters(grpSP, 4.60f, 0.0f);
sim.setCompartmentParameters(grpD1, 0.0f, 28.39f);
sim.connectCompartments(grpSP, grpD1);

Each compartment is modeled using a point neuron model.
In the above example, a soma compartment group (grpSP)
and a dedritic compartment group (grpD1) are created us-
ing the 4-parameter Izhikevich neuron model. Coupling con-
stants of each compartment group are set using the API
call setCompartmentParameters(grpId, gUp, gDown).
This method indicates that the group is modeling compart-
ments, instead of point neurons. The connectCompartments
method connects two compartments bidirectionally.

C. Synapse types

CARLsim provides two types of synapse models, the cur-
rent based model (CUBA) and the conductance based model
(COBA). CUBA propagates action potential from the pre-
synaptic neuron, multiplied by synapse weights, as synaptic
current. In COBA mode, synaptic current is calculated using
conductance variables of postsynaptic receptors. Exponentially
decayed conductances of multiple synaptic-receptor types are
used. For excitatory synapses AMPA and NMDA receptors
are used, and for inhibitory synapses, GABAA and GABAB

receptors are used. For each receptor k, the conductance (g)
at time t is given by the following equation.

g =
∑

f

θ(t− tf)e
t−tf

τ (6)

In this equation, f is a pre-synaptic spike, tf is the time of
its occurance, θ is the Heaviside function, and τ is the decay
time constant. The synaptic current flowing through each of
the receptors is also a function of postsynaptic voltage and
receptor specific reversal potential [13].

D. Plasticity types

Multiple forms of synaptic plasticity and modulation are
supported, namely, short-term plasticity (STP) [19], spike
timing dependent plasticity (STDP) [3], dopamine modulated
STDP [20], and homeostatic synaptic scaling [21]. STP acts

2018 International Joint Conference on Neural Networks (IJCNN) 1160

on a timescale of the order 100 ms and results in short-
term facilitation (STF) and short-term depression (STD). STF
happens due to influx of calcium into the axon terminal after
spike and STD is caused by consumption of neurotransmitters
for synaptic signaling at the axon terminal of pre-synaptic
neuron. CARLsim implements the phenomenological model
of STP [22].

Excitatory STDP and Inhibitory STDP are used based on
whether the pre-synaptic neuron is excitatory or inhibitory. The
weight change policy reverses for these two types. The nearest
neighbor STDP rule [23] is implemented. CARLsim supports
modulation of STDP using the dopamine neuromodulator,
by allowing STDP to take place only in elevated dopamine
concentrations. Additionally, homeostatic synaptic scaling is
provided to stabilize STDP. The scaling mechanism is mul-
tiplicative in nature and preserves the relative weights of the
synapses connecting a neuron. Plasticity features of CARLsim
were discussed in details in [13].

E. Integration methods

CARLsim 4 supports sub millisecond integration using
first order forward-Euler and RK4 methods [14]. A common
integration method is used for all the neurons in the network.
Although, irrespective of the integration time step length, the
simulation time step in CARLsim 4 is always 1 millisecond,
i.e. spikes can occur at 1 millisecond time resolution. It is
recommended that a minimum of two forward-Euler inte-
grations are performed per millisecond for the 4 parameter
Izhikevich neuron for precision. RK4 with at least 10 inte-
grations per millisecond should be used for the 9-parameter
Izhikevich neurons and the multi-compartment neurons. Due
to its simplicity, the integration of Izhikevich recovery variable
is always performed using the forward-Euler method. Higher
order integration and more integrations per millisecond require
more processing time.

F. Utilities

CARLsim provides a set of library tools to support model-
ing. A built-in Parameter Tuning Interface (PTI) [24] is pro-
vided to tune parameters and hyper-parameters of a network
using an evolutionary computing library [25]. This tool has
been used to produce simple cell dynamics in the primary
visual cortex with self-organizing receptive fields [24] and to
tune neural responses to match behavior of the rat retrosplenial
cortex [26]. A MATLAB visual stimulus toolbox is provided
that can be used to generate 2D visual patterns to feed into a
CARLsim network through a C++ plugin. Similarly, another
MATLAB toolbox is provided for offline analysis and plotting
of network activities from a simulation. Moreover, a regression
suite and a continuous integration plug-in is provided for
seamless integration of new features to the library.

III. EXAMPLE MODELS USING CARLSIM

A. Existing models

CARLsim has been used to model a broad range of bi-
ologically plausible SNNs [13]. These include, models of

primate visual cortex, rat retrosplenial cortex, motor planning
in posterior parietal cortex, dopamine modulation in insular
cortex, synaptic plasticity, working memory, and attention.
These models have been able to reproduce data observed
in neurobiology and psychophysics literature. More impor-
tantly, CARLsim models with up to 100K neurons were run
in real time using GPU. One such model of dorsal visual
pathway [27] was used to visually navigate a robot in real
environment using live camera data.

B. Examples of new CARLsim 4 functionalities

1) A fast spiking CA3 Basket cell with four compartments:
The multi-compartment neuron feature is demonstrated using
a four compartment model of a fast spiking basket cell
found in CA3 region of hippocampus. The cell is a type
of perisomatic inhibitory interneurons that contribute to the
widely studied gamma frequency oscillations in hippocampal
slices [28]. Although these neurons contain numerous dendritic
branches, recording studies usually decompose these neurons
into four slices or compartments for investigation of local field
potentials and spiking activities, termed as SO, SP (soma), SR,
and SLM [28]. Figure 3 (b) depicts the dendritic structure of
the cell. The example demonstrates an experiment to observe
the membrane potential dynamics of each compartment, when
a steady external current is applied to SP.

Figure 3 (a) shows the C++ source code for simulating a
CA3 basket cell with four compartments. Each compartment is
created using the 9-parameter Izhikevich neuron model (line
3). The model parameters of each compartment are chosen
to reflect the geometry of the neuron in each layer (lines 4-
7). The coupling strength values between compartments are
chosen to match inter-layer polarizing behaviors observed in
recording studies [28] (lines 8-11). Neuron monitors are set to
track membrane potential values of each compartment during
simulation (line 15).

The neuron is simulated for 100 ms with steady injection
of 4070 mA external current to the soma (lines 18-19).
External and dendritic currents are integrated 30 times per
millisecond using RK4. The membrane potential dynamics
of each compartment during the simulation are depicted in
Figure 3 (c). Depolarization of the soma causes strong spiking
activities in the SP compartment, which are propagated to the
SO compartment due to strong coupling from SP to SO, which
results in SO spikes. However, the coupling from SP to SR is
not strong and depolarization in SR and SLM compartments
are not substantial.

Currently, all connected compartment groups must be al-
located to the same processor. In this example, all four
compartments are placed on the same GPU (GPU 0), since
they are all connected in a dendritic chain.

2) An 80-20 network with Izhikevich and LIF neurons
implemented using heterogeneous processors: We implement
the random spiking 80-20 network containing 80% excitatory
and 20% inhibitory neurons [29] using 2 GPUs and 2 CPUs.
The network exhibits sleep-like oscillations observed in the
mammalian cortex. The ratio of number of excitatory neurons

2018 International Joint Conference on Neural Networks (IJCNN)1161

SOMA

SO

SR SLM

Current
injection

Coupling
strength

(b)

(c)

1 sim->setIntegrationMethod(RUNGE_KUTTA4, 30); // integration with 30 sub millisecond steps
2 int N = 1; // A single neuron

// One group for each compartment in the dendritic tree
3 int grpSP = sim->createGroup("excit", N, EXCITATORY_NEURON, 0, GPU_CORES);

// Similarly create groups grpSR, grpSLM, and grpSO

// Set parameters of the Izhikevich model (9 parameter model) for each compartment
4 sim->setNeuronParameters(grpSP, 280.0f, 6.444273f, -58.747934f, -52.902208f, 0.00008021f,

4.784859f, 7.567797f, -55.334578f, 8.0f); // (soma compartment)
5 sim->setNeuronParameters(grpSR, 224.0f, 3.036336f, -58.747934f, -50.928770f, 0.054379f,

29.960733f, -12.175124f, -48.948809f, 32.0f); // (SR dendritic compartment)
6 sim->setNeuronParameters(grpSLM, 51.0f, 3.770798f, -58.747934f, -52.296441f, 0.064657f,

12.182662f, -8.389762f, -49.765185f, 5.0f); // (SLM dendritic compartment)
7 sim->setNeuronParameters(grpSO, 113.0f, 3.824618f, -58.747934f, -53.564764f, 0.080905f,

20.252298f, -5.906874f, -52.994905f, 63.0f); // (SO dendritic compartment)

// Set the coupling (up & down) constants for each layer
8 sim->setCompartmentParameters(grpSR, 55.49f, 12.887f);
9 sim->setCompartmentParameters(grpSLM, 36.098f, 0.0f);
10 sim->setCompartmentParameters(grpSO, 0.0f, 57.749f);
11 sim->setCompartmentParameters(grpSP, 21.251f, 6.5038f);

// Connect the 4 groups (layers) compartmentally
12 sim->connectCompartments(grpSLM, grpSR);
13 sim->connectCompartments(grpSR, grpSP);
14 sim->connectCompartments(grpSP, grpSO);

// Set-up spike monitors so that we can observe the neurons' spike times
15 NeuronMonitor* nMonSP = sim->setNeuronMonitor(grpSP, "DEFAULT"); // etc. for other

compartments
16 sim->setupNetwork();
17 nMonSP->startRecording(); // etc. for other compartments

// Steadily inject 4070mA of current into SP (soma) layer
18 sim->setExternalCurrent(grpSP, 4070);
19 sim->runNetwork(0, 100);

(a)

Time (ms)

M
em

br
an

e
po

te
nt

ia
l (

m
V)

Fig. 3: Multi-compartment experiment of a CA3 basket cell with four slices (compartments). (a) CARLsim 4 source code to implement the
experiment, (b) Coupling among the four compartments of the neuron; the coupling strength between compartments is unidirectional and is
proportional to conductance, (c) the membrane potential values of each of the compartments during the experiment.

to the number of inhibitory neurons in the SNN preserves
the ratio found in the mammalian cortex [30]. Similarly, the
inhibitory synapses are stronger than the excitatory synapses.
The excitatory neurons receive inputs from both excitatory
and inhibitory neurons, whereas the inhibitory neurons receive
inputs from only excitatory neurons. All neurons receive inputs
from approximately 100 other neurons. Additionally, at each
time step, a randomly selected neuron receives a thalamic
input.

Since we use a total of four processors to simulate the SNN,
we can better utilize all available CPU/GPU processors by
dividing the excitatory group into three subgroups of equal size
(i.e. each excitatory subgroup contains 26.67% of the neurons
in the whole network). Therefore, we subdivide the original
80-20 network [29] to demonstrate a CARLsim 4 simulation
with heterogeneous neuron models using heterogeneous com-
puting processors, as shown in Figure 4(a). Each neuron group
is placed in a dedicated processor and connections between the
groups are made to mimic the 80-20 network architecture.

The excitatory groups are modeled using LIF neurons
and the inhibitory group is modeled using fast spiking 4-
parameter Izhikevich neurons [16]. We tune the LIF neuron
parameters to obtain regular spiking behavior. Fig. 4(b) depicts

the rhythmic oscillations in spiking activity of the inhibitory
group and one excitatory subgroup, with stronger activities in
the inhibitory group. The C++ source code used to implement
this experiment is available in the projects directory.

IV. KERNEL: IMPROVEMENTS AND BENCHMARK

A. Kernel Improvements

In order to achieve SNN simulations using multiple CPU
Cores and GPUs concurrently, we re-wrote the kernel to
support: 1) a common runtime data structure that is used
by different computing modules (currently CPU and GPU
backend), 2) a standard interface to CPU and GPU comput-
ing modules, 3) a basic network partition algorithm with a
layer managing mappings between the global network and
subnetworks, and 4) a universal spike routing function among
different computing modules.

Fig. 5 illustrates the improvement in memory management
over the previous release. In CARLsim 3, the kernel could
manage only one copy of runtime data (i.e., voltage v(t),
current i(t), and spikes s(t) for each neuron) and calculated
the results using either CPU or GPU computing functions.
In CARLsim 4, the kernel can first partition runtime data into
several subsets of the original runtime data and then instantiate

2018 International Joint Conference on Neural Networks (IJCNN) 1162

CPU 0

GPU 0

GPU 1

CPU 1

EXC
1

EXC
2

EXC
3

INH

LIF neuron

Izhikevich
neuron

N
eu

ro
n

ID
N

eu
ro

n
ID

(b)
(a)

Fig. 4: An 80-20 random spiking network implementation using 2
CPUs and 2 GPUs. (a) Architecture of the 80-20 network used in
this example. The blue colored circles are excitatory neuron groups
(EXC1, EXC2, EXC3) and the red colored circle is the inhibitory
neuron group (INH). Incoming synapses to the inhibitory group are
fixed. All other synapses are updated using STDP. The neurons inside
the yellow rectangles follow LIF dynamics and the neurons inside the
green rectangle follow 4-parameter Izhikevich dynamics. (b) Spike
monitor outputs for the four EXC2 and INH groups.

multiple CPU and/or GPU modules to calculate the results.
Currently, the kernel of CARLsim 4 can manage 8 copies of
partitioned runtime data on GPU memory and 24 copies on
main memory, which means the support of 8 GPU cards and
CPU with 24 cores.

CARLsim 3

Main Memory

CPU Computing Functions

C
P

U
 C

o
m

p
u
ti

n
g
 M

o
d
u
le

CARLsim 4

v1(t), v2(t),...,v8(t) v1(t), v2(t),...,v8(t)

i1(t), i2(t),...,i8(t) i1(t), i2(t),...,i8(t)

s1(t), s2(t),..., s8(t) s1(t), s2(t),..., s8(t)

GPU Memory

GPU Computing Functions

G
P

U
 C

o
m

p
u
ti

n
g
 M

o
d
u
le

Main Memory

v1(t), v2(t),...,v8(t)

i1(t), i2(t),...,i8(t)

s1(t), s2(t),..., s8(t)

v5(t), v6(t)

i5(t), i6(t)

s5(t), s6(t)

v7(t), v8(t)

i7(t), i8(t)

s7(t), s8(t)

GPU Memory

v1(t), v2(t)

i1(t), i2(t)

s1(t), s2(t)

v3(t), v4(t)

i3(t), i4(t)

s3(t), s4(t)

Data Transfer Functions

Data Transfer Functions

Fig. 5: Memory organization

B. Benchmark

We designed benchmarks for multi-CPU acceleration, multi-
GPU acceleration, scalability, to show CARLsim 4’s improve-
ments over CARLsim 3. We ran all benchmarks on a HPC
node with 4 NVIDIA Tesla K80 GPUs with 10 GB DRAM
per GPU, an Intel Xeon E5-2680v3 processor containing 24
CPU cores, and 128 GB CPU DRAM.

1) Benchmark 1 - Multi-GPU and Multi-GPU acceleration:
In this benchmark, we evaluate the acceleration achieved by
multiple CPU cores (we will refer to as CPUs) and multiple
GPUs. The network contains 8 subnetworks with 100 synapses

per neuron. Each subnetwork consists of 80% excitatory
(Group E) and 20% inhibitory (Group I) neurons. An addi-
tional Poisson spike generator group (Group P) of equal size
as the excitatory group is included to drive subnetwork activity.
In each subnetwork, 2 out of 4 connections are between neuron
groups allocated to different CPU or GPU. The subnetworks
are evenly partitioned among 1, 2, 4 GPUs or 1, 2, 4, 8 CPUs
in separate runs, as shown in Figure 6. In all cases, subnetwork
allocation are done to have equal number of neurons on each
partition. We vary the number of E+I neurons in each 80-20
subnetwork from 103 to 105, i.e. total number of neurons in
the whole network varies from 1.44× 104 to 1.44× 106. All
excitatory synapse weights are updated using STDP. The mean
firing rate of the network is approximately 16 Hz in all cases.

P E I

P E I

P E I

P E I

P E I

P E I

P E I

P E I

P E I

P E I

P E I

P E I

P E I

P E I

P E I

P E I

4 partitions 8 partitions

Fig. 6: The network allocation scheme used for evaluation of multiple
CPU/GPU acceleration. Each color denotes a unique CPU or GPU
partition. The 8 partitions allocation is done for only CPU case. 1
and 2 partitions allocation schemes are not shown. For 2, 4, and
8 partitions cases, 50% connections are between neuron groups on
different CPU or GPU.

0.1

1

10

100

1000

10^4 10^4.5 10^5 10^5.5 10^6

Ex
ec

ut
io

n
Ti

m
e

/
Si

m
ul

at
io

n
Ti

m
e

Number of Neurons

v3 1-CPU v4 1-CPU v4 2-CPU v4 4-CPU v4 8-CPU
v3 1-GPU v4 1-GPU v4 2-GPU v4 4-GPU

Fig. 7: Execution time per second of simulation versus number of
neurons and number of CPUs or GPUs used. The vertical axis is
shown in logscale, in which a value of 1 means real time performance.
v3 and v4 refer to CARLsim 3 and CARLsim 4, respectively.

Fig. 7 shows that multiple CPUs and multiple GPUs ac-
celerate simulation of large SNNs. We compare CARLsim 4
against CARLsim 3, which is able to run up to order of 105.5

neurons using one CPU or GPU. It can be seen that for smaller
networks, fewer partitions (also CARLsim 3 with 1 partition)
run faster. This is expected because for smaller networks,
inter hardware communications throttle any acceleration due
to parallel execution. However, as the network size increases,
CARLsim 4 outperformes CARLsim 3 in terms of both speed
and maximum network size. When comparing GPU against

2018 International Joint Conference on Neural Networks (IJCNN)1163

CPU in terms of execution time, GPU simulation yields 10x
to 60x speed up over CPU.

2) Benchmark 2 - Scalability: To estimate the largest net-
work that can be realized by CARLsim 4 using the hardware
at our disposal as a reference, we scale the number of neurons
to maximum possible with the 4-partitions allocation scheme
shown in Figure 6 using 4 GPUs. The synapse weights are
tuned to achieve a mean firing rate of approximately 20 Hz
and held fixed. The total size of the largest network realized
is 4.3 × 106 neurons and approximately 2.4 × 108 synapses.
The memory footprint is 9.2 GB DRAM per GPU, which is
the major limiting factor on network size. However, when we
change the allocation scheme to assign one subnetwork per
GPU, without any cross GPU synapses, the largest network
realized is 8.6 × 106 neurons and 4.8 × 108 synapses, with
9.02 GB memory footprint per GPU DRAM.

V. RELATED WORKS

We compare CARLsim 4 with existing large-scale SNN
simulators that satisfy these criteria: (i) open source, (ii) sup-
port parallel simulation of spiking point neurons in a network,
(iii) support conductance based synapses, and (iv) support
synaptic plasticity. Accordingly, we select Brian 2 [31], NEU-
RON 7.5 [6], GeNN 3 [9], NCS 6 [10], Nemo 0.7 [32],
Nengo 2.6 [33], NEST 2.14 [34], and PCSIM 0.5 [35]. Table I
presents a side-by-side comparison of these simulators in
terms of supported features, which is a compiled from the
documentations, articles, source code, and release notes of the
simulators. Table I obviously does not compare across all the
features supported by the simulators. However, the features
considered herein are the ones desired for modeling of large-
scale biologically plausible SNNs [36].

Compared to other simulators, CARLsim balances between
flexibility and performance by providing optimized CUD-
A/C++ implementations of a large number of biologically
plausible model features. Moreover, its modularity allows
users to add a new feature with minimal effort. CARLsim
provides neuron, synapse, and plasticity models that are highly
relevant for simulating brain regions as well as for theoretical
understanding of network level coding principles.

All of the considered simulators support some type of
spiking point neuron models. However, multi-compartment
models provide a way to model realistic membrane potential
dynamics in dendrite branches and cell body. Morphologi-
cally realistic neuron simulators, such as NEURON [6] and
Genesis [7], can be used to model multiple compartment
models with desired geometry. Other simulators have added
multi-compartment support with less concern about precise
geometry and more about modeling the interaction among the
compartments. CARLsim provides built-in implementation of
multi-compartment models with GPU acceleration. CARLsim
provides built-in methods to implement dopaminergic neuro-
modulation.

CARLsim is among the few simulators to provide an
integrated automatic parameter tuning tool for spiking neural
networks. CARLsim finds open parameters of an SNN that

TABLE I: Comparison of spiking neural network simulators regarding
supported features. An ’X’ denotes that the feature is supported by
the simulator, a ’/’ denotes that the feature is partially implemented
or requires substantial effort to use, and a blank ’ ’ denotes that
the feature is not supported. Gray colored rows denote new features
added in CARLsim 4 and not available in previous versions.

C
A

R
L

si
m

4

B
ri

an
2

N
E

U
R

O
N

7.
5

G
eN

N
3

N
C

S
6

N
em

o
0.

7

N
en

go
2.

6

N
E

ST
2.

14

PC
SI

M
0.

5

Neuron model
Leaky Integrate-and-fire X X X / X X X X
Izhikevich 4-param X X X X X X X X
Izhikevich 9-param X X /
Multi-compartment X X X X
Hodgkin-Huxley X X X X X X X

Synapse Model
Current-based X X X X X X X X
Conductance-based X X X X X X X X X
AMPA, NMDA, GABA X X X X / X X X
Neuromodulation / / X / / X / /

Synaptic Plasticity
Short-term plasticity X X X / X X X X X
E-STDP X X X X X X / X X
I-STDP X / X / X X
DA-STDP X / X / / X X
Homeostasis X / X / X X X

Tools
Parameter tuning X / X
Analysis/visualization X / X / X X /
Regression suite X X X X X X X

Integration methods
First-order/exponential X X X X X X X X
Exact/Crank-Nicholson X X X
Runge-Kutta X X X X

Computing hardware
Single-threaded CPU X X X X X X X X X
Multi-threaded CPU X X X X X X X X
Distributed / X X X X X
Single GPU X / X X X X
Multi-GPU X X
Hybrid (Multi-CPU/GPU) X X

best fit a given response behavior. The parameters to fit can
be diverse, such as synaptic weights, neuron dynamics, or
network topologies.

Modern high-performance computing clusters and labora-
tory workstations contain arrays of CPUs and GPUs. To
support these heterogeneous clusters, CARLsim 4 has been im-
proved to support parallel network simulations using multiple
GPUs and CPUs concurrently. To the best of our knowledge,
NCS and CARLsim 4 are the only available SNN simula-
tors to support simulations using heterogeneous CPU/GPU
processors. NEST and PCSIM support traditional distributed
computing using CPU based clusters. Brian, GeNN, Nemo,
and Nengo allow parallel network simulations using GPUs.

VI. CONCLUSION

For large-scale simulation and analysis of biologically real-
istic neural networks using off-the-shelf computing resources,
CARLsim has advantages over other simulators. In particu-
lar, CARLsim’s support for parallel simulations using mul-
tiple GPUs and CPUs, built-in biologically realistic neuron,

2018 International Joint Conference on Neural Networks (IJCNN) 1164

synapse, and learning models, minimal third-party dependen-
cies, compatibility with popular OS platforms, integrated vi-
sualization and analysis tools, rigorous documentation of code
and features (including tutorials), and continuous integration
and testing, make it an easy to use and powerful simulator of
biologically plausible neural network models. Moreover, the
automated parameter tuning interface integrated onto CARL-
sim simplifies design of large networks to mimic complex
brain functions. Finally, CARLsim provides an easy to use
programming interface, that has been used by researchers with
diverse expertise.

ACKNOWLEDGMENT

This research was supported by National Science Foun-
dation Award IIS-1302125, Intel Corporation, and Northrop
Grumman Aerospace Systems. MB was supported by Wash-
ington Research Foundation Funds for Innovation in Neuro-
engineering and Data-Intensive Discovery. We thank Amitava
Majumdar of San Diego Supercomputing Center for providing
access to their HPC resources. We also acknowledge the
contributions to CARLsim 4 by Andrey Krainyak.

REFERENCES

[1] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition,” in
Competition and cooperation in neural nets. Springer, 1982, pp. 267–
285.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[3] Y. Dan and M.-m. Poo, “Spike timing-dependent plasticity of neural
circuits,” Neuron, vol. 44, no. 1, pp. 23–30, 2004.

[4] W. Maass, “On the computational power of noisy spiking neurons,” in
Advances in neural information processing systems, 1996, pp. 211–217.

[5] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[6] M. L. Hines and N. T. Carnevale, “The NEURON simulation environ-
ment,” NEURON, vol. 9, no. 6, 2006.

[7] J. M. Bower, D. Beeman, and M. Hucka, “The GENESIS simulation
system,” 2003.

[8] H. Markram, E. Muller, S. Ramaswamy, M. W. Reimann, M. Abdellah,
C. A. Sanchez, A. Ailamaki, L. Alonso-Nanclares, N. Antille, S. Arsever
et al., “Reconstruction and simulation of neocortical microcircuitry,”
Cell, vol. 163, no. 2, pp. 456–492, 2015.

[9] E. Yavuz, J. Turner, and T. Nowotny, “GeNN: a code generation
framework for accelerated brain simulations,” Scientific reports, vol. 6,
2016.

[10] R. V. Hoang, D. Tanna, L. C. J. Bray, S. M. Dascalu, and F. C. Harris Jr,
“A novel CPU/GPU simulation environment for large-scale biologically
realistic neural modeling,” Frontiers in neuroinformatics, vol. 7, 2013.

[11] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and A. V.
Veidenbaum, “A configurable simulation environment for the efficient
simulation of large-scale spiking neural networks on graphics proces-
sors,” Neural networks, vol. 22, no. 5, pp. 791–800, 2009.

[12] M. Richert, J. M. Nageswaran, N. Dutt, and J. L. Krichmar, “An efficient
simulation environment for modeling large-scale cortical processing,”
Frontiers in neuroinformatics, vol. 5, 2011.

[13] M. Beyeler, K. D. Carlson, T.-S. Chou, N. Dutt, and J. L. Krichmar,
“CARLsim 3: A user-friendly and highly optimized library for the cre-
ation of neurobiologically detailed spiking neural networks,” in Neural
Networks (IJCNN), 2015 International Joint Conference on. IEEE,
2015, pp. 1–8.

[14] J. C. Butcher, The numerical analysis of ordinary differential equations:
Runge-Kutta and general linear methods. Wiley-Interscience, 1987.

[15] S. Sivagnanam, A. Majumdar, K. Yoshimoto, V. Astakhov,
A. Bandrowski, M. E. Martone, and N. T. Carnevale, “Introducing the
neuroscience gateway.” in IWSG, 2013.

[16] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions
on neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[17] Izhikevich, Eugene M, Dynamical systems in neuroscience. MIT press,
2007.

[18] A. L. Hodgkin and A. F. Huxley, “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve,”
The Journal of physiology, vol. 117, no. 4, pp. 500–544, 1952.

[19] C. F. Stevens and Y. Wang, “Facilitation and depression at single central
synapses,” Neuron, vol. 14, no. 4, pp. 795–802, 1995.

[20] J. Seamans and D. Durstewitz, “Dopamine modulation,” Scholarpedia,
vol. 3, no. 4, p. 2711, 2008, revision #90663.

[21] G. G. Turrigiano, “The self-tuning neuron: synaptic scaling of excitatory
synapses,” Cell, vol. 135, no. 3, pp. 422–435, 2008.

[22] G. Mongillo, O. Barak, and M. Tsodyks, “Synaptic theory of working
memory,” Science, vol. 319, no. 5869, pp. 1543–1546, 2008.

[23] A. Morrison, M. Diesmann, and W. Gerstner, “Phenomenological models
of synaptic plasticity based on spike timing,” Biological cybernetics,
vol. 98, no. 6, pp. 459–478, 2008.

[24] K. D. Carlson, J. M. Nageswaran, N. Dutt, and J. L. Krichmar, “An
efficient automated parameter tuning framework for spiking neural
networks,” Frontiers in neuroscience, vol. 8, 2014.

[25] S. Luke, L. Panait, G. Balan, S. Paus, Z. Skolicki, J. Bassett, R. Hubley,
and A. Chircop, “ECJ: A Java-based evolutionary computation research
system,” Downloadable versions and documentation can be found at the
following url: http://cs. gmu. edu/eclab/projects/ecj, 2006.

[26] E. L. Rounds, E. O. Scott, A. S. Alexander, K. A. De Jong, D. A.
Nitz, and J. L. Krichmar, “An evolutionary framework for replicating
neurophysiological data with spiking neural networks,” in International
Conference on Parallel Problem Solving from Nature. Springer, 2016,
pp. 537–547.

[27] M. Beyeler, N. Oros, N. Dutt, and J. L. Krichmar, “A GPU-accelerated
cortical neural network model for visually guided robot navigation,”
Neural Networks, vol. 72, pp. 75–87, 2015.

[28] A. I. Gulyás, G. G. Szabó, I. Ulbert, N. Holderith, H. Monyer, F. Erdélyi,
G. Szabó, T. F. Freund, and N. Hájos, “Parvalbumin-containing fast-
spiking basket cells generate the field potential oscillations induced
by cholinergic receptor activation in the hippocampus,” Journal of
Neuroscience, vol. 30, no. 45, pp. 15 134–15 145, 2010.

[29] E. M. Izhikevich, “Polychronization: computation with spikes,” Neural
computation, vol. 18, no. 2, pp. 245–282, 2006.

[30] V. Braitenberg and A. Schüz, Anatomy of the Cortex: Statist. and
Geometry. Springer, 1991.

[31] D. F. Goodman and R. Brette, “The Brian simulator,” Frontiers in
neuroscience, vol. 3, no. 2, p. 192, 2009.

[32] A. K. Fidjeland, E. B. Roesch, M. P. Shanahan, and W. Luk, “Nemo:
a platform for neural modelling of spiking neurons using gpus,” in
Application-specific Systems, Architectures and Processors, 2009. ASAP
2009. 20th IEEE International Conference on. IEEE, 2009, pp. 137–
144.

[33] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart,
D. Rasmussen, X. Choo, A. R. Voelker, and C. Eliasmith, “Nengo: A
python tool for building large-scale functional brain models,” Frontiers
in Neuroinformatics, vol. 7, no. 48, 2014.

[34] S. Kunkel, A. Morrison, P. Weidel, J. M. Eppler, A. Sinha, W. Schenck,
M. Schmidt, S. B. Vennemo, J. Jordan, A. Peyser, D. Plotnikov,
S. Graber, T. Fardet, D. Terhorst, H. Mørk, G. Trensch, A. Seeholzer,
R. Deepu, J. Hahne, I. Blundell, T. Ippen, J. Schuecker, H. Bos, S. Diaz,
E. Hagen, S. Mahmoudian, C. Bachmann, M. E. Lepperød, O. Bre-
itwieser, B. Golosio, H. Rothe, H. Setareh, M. Djurfeldt, T. Schumann,
A. Shusharin, J. Garrido, E. B. Muller, A. Rao, J. H. Vieites, and H. E.
Plesser, “NEST 2.12.0,” Mar. 2017.

[35] D. Pecevski, T. Natschläger, and K. Schuch, “PCSIM: a parallel sim-
ulation environment for neural circuits fully integrated with Python,”
Frontiers in neuroinformatics, vol. 3, 2009.

[36] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. M.
Bower, M. Diesmann, A. Morrison, P. H. Goodman, F. C. Harris et al.,
“Simulation of networks of spiking neurons: a review of tools and
strategies,” Journal of computational neuroscience, vol. 23, no. 3, pp.

349–398, 2007.

2018 International Joint Conference on Neural Networks (IJCNN)1165

