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Abstract

We consider the estimation of a tournament model with moral hazard (based on

Rosen (1986, AER)) when only aggregate data on intra-firm employment levels and

salaries are available. Equilibrium restrictions of the model allow us to recover parame-

ters of interest, including equilibrium effort levels in each hierarchical stage of the firm.

We illustrate our estimation procedures using data from major retail chains in the US.

We find that only a fraction of the wage differential directly compensates workers for

higher effort levels, implying that a large portion of the differentials arises to maintain

incentives at lower rungs of the retailers.
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1 Introduction

Wage differentials within retail chains, even at the lowest levels, can be quite large: for

example, full-time sales staff at a major clothing retail chain are paid roughly $16,000
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per annum on average, but store managers earn around $33,600, over twice that amount.

Further up the hierarchy, district managers make on average over $60,800 (in 1986 dollars).1

Why do these differentials arise? One explanation is that employees at higher levels of a

firm are paid more, because they work harder, or are more productive. Alternatively, the

tournament literature proposes that wages at the top of a hierarchy must be kept high in

order to provide incentives for workers, even in low levels of the hierarchy, to exert effort.

Despite the sizable theoretical literature on tournament models (see McLaughlin (1989)

and Bolton and Dewatripont (2005, chap. 8) for surveys), empirical work related to these

models is limited. Previous empirical work on tournament models have mainly focused on

testing the predictions of these models. This includes papers on executive compensation

(cf. Main, O’Reilly, and Wade (1993), Eriksson (1999)), professional sports (eg. Ehrenberg

and Bognanno (1990a), (1990b), Bronars and Oettinger (2001)), and agricultural (poul-

try) production (Knoeber and Thurman (1994)). One common feature of these papers is

their focus on industries for which productivity measures at the individual worker level are

observable.

However, for many industries, these worker productivity measures are difficult to obtain

(or unavailable). In this paper, we consider the structural estimation of tournament models

when we observe only aggregate firm-level information on employment and wages at each

hierarchical level within the firm. Importantly, our empirical strategies do not require

observation of workers’ productivity levels. By exploiting the equilibrium restrictions of the

elimination tournament model, we derive estimates of model unobservables — including

workers’ equilibrium effort levels — which are consistent with the observed wage data.

Hence, the aim of this paper is not to test the tournament theory (as in the previous

empirical work), but to use it as a guide to obtain values for the structural elements of the

tournament model.

Recently, several papers have estimated structural models of tournament models, as is done

in this paper. Ferrall (1996), (1997), estimates structural models of internal labor markets

within, respectively, law firms and engineering firms.2 Zheng and Vukina (2007) estimate

a rank-order tournament model using the Knoeber and Thurman (1994) data, and use

1These figures are for 1997. These data are drawn from the National Retail Federation Specialty Store

Wage and Benefit Survey, which will be described below. For confidentiality reasons, the names of the stores

used in this study cannot be mentioned in the paper. By definition, full-time sales staff must work at least

30 hours a week.
2Relatedly, Ferrall and Smith (1999) develop and estimate a structural tournament-like model of sports

championship series.
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the estimated structural parameters to simulate outcomes under an alternative cardinal

compensation scheme. The empirical approaches taken in those papers and the present

paper are quite different, due to both differences in the underlying theoretical tournament

model being considered, as well as differences in the datasets used for estimation.

We illustrate our methodologies by estimating tournament models using a dataset of wages

and employment levels within a number of large American retail chains (including many

retailers found in typical shopping malls). Our empirical analysis focuses on the lower

hierarchical levels (i.e., the sales staff, assistant store manager, and store manager positions)

of these firms. We are able to estimate the equilibrium effort levels in these positions,

consistent with the observed data and the theoretical tournament model.

We find that effort is generally increasing at higher levels in the firm. Moreover, our

results suggest that only a small fraction – typically less than 50% – of the observed wage

differentials directly compensates workers for higher effort at higher levels of the hierarchy,

implying that over half of the differentials arise purely to maintain incentives at lower rungs

of the retailers. Using our estimates, we also simulate counterfactual compensation levels

that employees would be paid if effort were observable and contractible, and compare them

with actual compensation levels (which we interpret as information-constrained “second-

best” wages).

In the next section, we present a store-level tournament model, based on the model in

Rosen (1986), that we will employ in this paper. In Section 3, we discuss the identification

of this model, and develop two estimation methodologies. In Sections 4 and 5 we present

the empirical illustration. We conclude in Section 6.

2 Economic model

The tournament view of a firm’s internal labor market differs in important respects from

the efficiency wage literature on labor contracts, which likewise focuses on contracts as a

means to provide incentives to workers to provide effort. The non-tournament efficiency

wage literature has focused on “absolute” compensation schemes, in which each worker is

paid according to how her observed performance measures against some objective, absolute

benchmark. As long as a worker’s observed performance depends (even stochastically) on

her effort or productivity, these non-tournament compensation schemes ultimately need not

generate intra-firm wage differentials if effort or productivity is unchanging across different

hierarchical levels within the firm.
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This is not the case with tournaments, which are a form of “relative” compensation schemes,

whereby a given worker is paid (or promoted) depending on her performance relative to her

co-workers. In an elimination tournament, workers must exert effort and be productive

even at low levels of the hierarchy in order to remain in contention for the larger prizes

which are available at higher levels of the firm.3 As Rosen (1986) points out, intra-firm

wage differentials can arise even when workers exert identical effort levels at each stratum

of the firm, because the pay differentials at higher levels of the hierarchy motivate effort

exertion at lower levels of the hierarchy.

The goal of this paper is to develop empirical strategies to estimate a tournament model

when only aggregate firm-level information on employment and wages, at each hierarchical

level within the firm, are available. Next, we introduce our model, which is based on the

elimination tournament model of Rosen (1986). In this model, each worker’s career within

a firm transpires as a progression through a tournament, in which workers compete against

each other at each hierarchical level of the firm, with the winners at each level advancing

to compete at higher levels.

A given firm has S + 1 hierarchical levels, indexed by s, with s = 0 corresponding to the

highest level, and s = S corresponding to the entry level. W1, . . . ,WS+1 denote the payoffs

(wages) at each level of the firm. (Note our indexing convention, whereby Ws+1 is the wage

that the “losers” at stage s make.) Hence, WS+1 is the salary earned by the employees at

the lowest level in the firm hierarchy, and it can be interpreted as a “reservation wage” for

all the workers in our model.

Let n0, . . . , nS denote the number of workers at each level of the firm: hence, the total

number of workers from level s who are advanced up to level s − 1 are
∑s−1

s′=0 ns′ ≡ ms−1.

Note that, by this definition, ms−1 < ms, for s = 0, . . . , S.

3Another strand of the tournament literature has focused on rank-order tournaments, in which workers

are paid according to their relative performance in identical tasks (cf. Lazear and Rosen (1981), Green and

Stokey (1983), and Holmstrom (1982)). The goal of rank-order tournaments is to encourage high effort in

a homogeneous task in the presence of common (across all workers) unobserved productivity shocks, which

differs from the goal of an elimination tournament, which is generally to provide incentives for continued

(and perhaps higher) effort levels at higher hierarchical strata of the company. This paper focuses solely on

the elimination-type of tournaments.
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2.1 Competition

Within each level of the firm, we specify a model of competition which seems especially

relevant for the retail environment. Within level s, we assume that the firm divides the ms

contenders into Ls equal-sized subgroups, each consisting of ms/Ls workers (abstracting

away from integer issues). A tournament is played among the members of each subgroup,

with the ms−1/Ls ≥ 1 best performers selected to advance to the next level s − 1. Let

fs ≡ ms/Ls, gs ≡ ms−1/Ls

denote, respectively, the number of contenders and winners per subgroup. In the retail

application below, a subgroup is interpreted as either a store or a region, depending on the

stage of the tournament.4

We assume that all workers are homogeneous, and focus on a symmetric pure strategy Nash

equilibrium in which each worker exerts the identical effort level x∗
s (where x > 0) at level

s.5 An agent who exerts an effort level x̄ during level s while all of the rivals in her subgroup

exert the equilibrium level of effort x∗
s advances with probability

Ps(x̄;x∗
s) =

h(x̄) + (gs − 1) ∗ h(x∗
s)

h(x̄) + (fs − 1) ∗ h(x∗
s)

. (1)

In the above, h(·) is a function translating individual effort levels into the advancement

probability.6 The Ps(· · · ) function captures, in reduced-form, the procedure whereby the

firm selects winners at each stage of the tournament, and is induced ultimately by the

information structure of the game (i.e., what signals of effort the firm observes). Since

our dataset includes no measures of productivity for any employee, we avoid more detailed

modeling of the information structure, and adopt the reduced-form advancement probability

given in Eq. (1).7

4In Rosen’s (1986) paper, and in most sports tournaments (eg. tennis tournaments), fs = 2 for s =

1, . . . , S, so that the number of subgroups at each level Ls = 1

2
ms.

5While it would be interesting to consider a model with worker heterogeneity, it would be difficult to

identify and estimate such a model without individual work-level employment histories, which our dataset

does not have.
6This parameterization of the advancement probability conditional on effort follows Rosen. For the

fs = 2 case considered by Rosen, if h(x) = exp(x), then the advancement probability (1) is a binary logit

probability. The logit probability function can, in turn, be justified by a model where the worker i with

the higher productivity yis advance out of stage s, and the productivity measure yis is equal to the effort

xis plus an additive random noise term which follows the type I extreme value distribution. This structural

interpretation of the parameterization (1) no longer applies when fs 6= 2.
7See Ferrall (1996), pp. 814–815, for an example where the form of the advancement function Ps(· · · ) is

explicitly derived given additional assumptions on the information structure of the game.
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In the symmetric equilibrium, all employees exert identical levels of effort, so that x̄ = x∗
s

and the probability of advancing beyond level s does not depend on the equilibrium effort

level x∗
s:

p∗s ≡ Ps(x
∗
s;x

∗
s) =

gs

fs
=

ms−1

ms
. (2)

While the functional form for the advancement probability in Eq. (1) is not arbitrary, as

remarked above, the form of the equilibrium probability (2) obtains very generally, requiring

only that, in equilibrium, any gs-subset of the fs contestants in stage s of the tournament

are chosen to advance with equal probability. This is a reasonable requirement because, in

any symmetric equilibrium, every contestant should expend an identical level of effort.

Note that any symmetric equilibrium in which all ms contestants exert identical levels of

effort (including zero effort) will yield the same winning probability ms−1/ms in equilibrium.

Therefore, the specific values of fs and gs matter only insofar as it affects the players’

incentives, and therefore the effort levels that they choose. Indeed, as we will see below,

the toughness of competition (as parameterized by fs and gs) has a crucial effect on the

amount of effort exerted in equilibrium.8

2.2 Equilibrium

The equilibrium sequence of effort levels {x∗
s : s = 1, . . . , S} is determined by a dynamic

optimization problem.9 Let Vs denote the (equilibrium) value of progressing to (and po-

tentially beyond) level s. If a given worker chooses effort level x̄ at level s, her value Vs is

implicitly defined via the Bellman equation

Vs = max
x̄

{Ps(x̄;x∗
s)Vs−1 + (1 − Ps(x̄;x∗

s)) Ws+1 − c(x̄)} (3)

where c(·) is the cost of effort function.10 In the above display, the first term within the

curly brackets denotes the worker’s expected payoff from advancing to the next (s − 1-th)

8The symmetric equilibrium has a prisoner’s dilemma quality: every worker would be better off if nobody

exerted any effort (since the equilibrium winning probability Ps is the same no matter how much effort is

exerted), but this is not an equilibrium.
9With S + 1 hierarchical levels, there are only S stages to the tournament, because there is no more

competition at the top (s = 0) stage.
10Implicitly, we are assuming a discount rate equal to 1, so that both competition and payoffs occur

simultaneously. When the discount rate is less than one, the Bellman equation (3) would also be consistent

with a model where costs are paid in the current period, but the rewards (either Ws+1 or Vs−1) are not

accrued until next period, in which case the costs should be divided by the discount rate, in order for the

units of c(·) to be comparable with Vs−1 and Ws+1. We thank a referee for suggesting this alternative

interpretation.
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round, while the second term is the payoff from “losing” in stage s and obtaining the wage

Ws+1. At level s, a given worker chooses an effort level x̄ to maximize the right-hand side

of (3). Throughout, we assume workers are risk-neutral, so that in this model there is no

insurance aspect to contracting.

In the symmetric equilibrium, all workers expend identical effort levels x∗
s in level s; this

effort level must satisfy the following first-order condition:

Ps,1 (x∗
s;x

∗
s) (Vs−1 − Ws+1) − c′(x∗

s) = 0 (4)

where Ps,1 (· · ·) denotes the derivative of Ps (· · ·) with respect to the first argument. Given

the odds-ratio parameterization (1) of the Ps(· · · ) function, in equilibrium

p∗s,1 ≡ ∂Ps (x;x∗
s)

∂x

∣

∣

∣

∣

x∗
s

=
h′(x∗

s)

h(x∗
s)

1 − p∗s
fs

. (5)

By substituting Eq. (5) into the first-order condition (4), we obtain

h′(x∗
s)

h(x∗
s)

1 − p∗s
fs

(Vs−1 − Ws+1) = c′(x∗
s). (6)

The above equation is the main equation which characterizes equilibrium effort levels in our

tournament game, and our estimation strategies will exploit this optimality equation.

2.3 Remarks

Before proceeding to discuss estimation, however, we raise several remarks about features

of the model. First, we assume that workers are homogeneous, so that the tournament has

no selection aspect (ie., it does not screen for the more productive workers), but rather

only a moral hazard effect, arising from the (assumed) non-contractibility of effort. We

make this assumption because we only observe aggregated data. Without observations of

individual worker-level data, it is difficult to identify and estimate models with worker-

specific heterogeneity. (However, in all our empirical results, we are completely flexible in

allowing for chain-level heterogeneity, by estimating the model separately for each retail

chain.)

Second, the model places restrictions on workers’ employment paths within a firm. The

model does not accommodate voluntary attrition (quits) out of the firm, and also only

allows workers to enter the firm at the lowest (s = S) level of the hierarchy. As above, these

assumptions are mainly motivated by data considerations; without observing individual
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worker-level employment paths, it is difficult to identify and estimate a model with these

features. We will discuss these assumptions in more detail below, when we discuss our

dataset.

Third, because of data constraints, we use cross-sectional data to estimate an inherently

dynamic model. That is, we use annual wage to represent the full value of losing a promo-

tion competition, which implicitly assumes that annual wages are proportional to expected

lifetime utilities, which in turn makes sense only in an infinite-horizon model. If the horizon

is finite, then annual wages may not be proportional to expected lifetime utility, due to

life-cycle concerns. For example, many of the mid-level workers are in their middle age;

if they fail to get promoted, their wage is “spread out” over roughly twenty years. On

the other hand, low-level workers may have “lost” the competition earlier in their careers,

implying that their wage could be spread out over forty years.

Relatedly, in our empirical work we use stocks of workers to estimate flows (promotion

rates). This correspondence between the two may not hold if “losers” are given a chance to

compete again in the future. If such repeated competition is taken into account, promotion

rates may differ from employment ratios because the latter includes previous losers.

3 Empirical strategy

The goal of estimation is to recover values of the equilibrium effort levels x∗
1, . . . , x∗

S as well

as (to the extent possible, as we will be precise about later) the functions h(·) and c(·).
The data at hand consists of observations of wages W1, . . . ,WS+1 and number of employees

n1, . . . , nS at each hierarchical level of a firm. Moreover, observing n1, . . . , nS implies that

we observe the advancement probabilities p∗1, . . . , p∗S because these are, in equilibrium, ratios

of the number of employees at different levels of a firm (cf. Eq. (2)).

Our empirical strategies are based on the first-order condition (6), which summarizes the

equilibrium relations between the observables (p∗s, Ws+1, fs) and the parameters of interest

(x∗
s and the h and c functions).11 Next, we point out an underidentification problem which

arises in estimating this model. Subsequently, we develop two estimation strategies which

overcome this underidentification problem in different ways.

11The reliance of our estimation strategies on first-order conditions bears some qualitative similarities to

the approach taken in the empirical auction literature (eg., Guerre, Perrigne, and Vuong (2000)) and the

empirical equilibrium search literature (eg., Ridder and van den Berg (1998), Hong and Shum (2006)).
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3.1 Discussion of Identification

The first-order condition (6) can be rewritten as

µ(x∗
s)

1 − p∗s
fs

(Vs−1 − Ws+1) = c(x∗
s), (7)

where

µ(x) ≡ h′(x)

h(x)
/
c′(x)

c(x)
. (8)

In matrix notation, this is














µ(x∗
1)

f1
(1 − p∗1) 0 · · · 0

0 µ(x∗
s)

f2
(1 − p∗2) · · · 0

...
...

. . .
...

0 0 · · · µ(x∗
S
)

fS
(1 − p∗S)







































V0

V1

...

VS−1













−













W2

W3

...

WS+1

























=













c(x∗
1)

c(x∗
2)

...

c(x∗
S)













.

(9)

This can be conveniently used in order to derive a recursive formulation for Vs: by plugging

Eq. (7) into Eq. (3), we obtain

Vs = βsVs−1 + (1 − βs) Ws+1, s = 1, . . . , S (10)

where

βs ≡ p∗s − µ(x∗
s)

1 − p∗s
fs

.

Using the initial condition V0 = W1, we can solve Eq. (10) forward to derive

V1 = β1W1 + (1 − β1)W2

V2 = β2β1W1 + β2(1 − β1)W2 + (1 − β2)W3

...

VS = β1 . . . βSW1 + (1 − β1)β2 . . . βSW2 + (1 − β2)β3 . . . βSW3 + · · · + (1 − βS)WS+1

or


















V0

V1

V2

...

VS



















=



















1 0 · · · 0 0

β1 (1 − β1) · · · 0 0

β1β2 β2(1 − β1) · · · 0 0
...

...
. . .

...
...

β1 · · · βS (1 − β1)β2 · · · βS · · · (1 − βS−1)βS (1 − βS)





































W1

W2

...

WS

WS+1



















.

(11)
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Substituting (11) into (9), we obtain















µ(x∗

1
)

f1

(1 − p∗1) 0 · · · 0

0
µ(x∗

s
)

f2

(1 − p∗2) · · · 0
...

...
. . .

...

0 0 · · · µ(x∗

S
)

fS
(1 − p∗S)















































1 0 · · · 0

β1 (1 − β1) · · · 0

β1β2 β2(1 − β1) · · · 0
...

...
. . .

...

β1 · · ·βS−1 (1 − β1)β2 · · ·βS−1 · · · (1 − βS−1)





























W1

W2

...

WS













−













W2

W3

...

WS+1

























=













c(x∗

1)

c(x∗

2)
...

c(x∗

S)













.

(12)

The system of equations (12) gives us, for each firm, S equations but 2S unknowns c(x∗
1), . . . , c(x∗

S),

µ(x∗
1), . . . , µ(x∗

S).

Clearly, with only S equations, we cannot identify the µ(·) and c(·) functions nonparamet-

rically. We proceed by restricting h(·) and c(·) to lie within a parametric family:

h(x) = xγ

c(x) = xα.
(13)

That is, we assume power (constant-elasticity) specifications for both the h function and

the c function.

We next examine the system of equations (12). First recall that all the β’s are functions

of µ only. Second, once we assume the power specifications for the h and c functions, all

the µ’s are equal to γ/α. So γ and α enter into the left-hand side of (12) only in the form

of γ/α, and x∗
s does not enter into the left-hand side at all. Furthermore, the right-hand

side of each equation in the system is x∗α
s . As a result, each FOC can be expressed as

φs(γ/α) = x∗α
s , where we use φs(γ/α) to denote the left-hand side of an FOC in order to

emphasize that it depends only on the ratio γ/α. So if (α, γ, x∗
1, . . . , x∗

S) satisfy the FOC’s,

then (1, γ/α, x∗α
1 , . . . , x∗α

S ) also satisfy them. That means the models with these multiple

values of parameters are observationally equivalent, and to proceed we need to normalize

one way or another. To do this we set α = 1. Consequently, c(x) = x.

With these assumptions, a total of S + 1 parameters—θ ≡ (x∗
1, . . . , x∗

S , γ)—are to be esti-

mated. For this specification of h(·), γ parameterizes the responsiveness of the advancement
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probability Ps to an individual’s effort level. Hence, in a setting where effort is observable

with noise, it is reasonable to interpret a larger value of γ as implying that the observations

of effort are less noisy, which may imply, in turn, that a better monitoring technology is in

place.

With these assumptions, we can simplify µ(x∗
s) = γ for s = 1, . . . , S, and the system of

first-order conditions (12) reduces to













γ
f1

(1 − p∗1) 0 · · · 0

0 γ
f2

(1 − p∗2) · · · 0
...

...
. . .

...

0 0 · · · γ
fS

(1 − p∗S)













∗

































1 0 · · · 0

β1 (1 − β1) · · · 0

β1β2 β2(1 − β1) · · · 0
...

...
. . .

...

β1 · · ·βS−1 (1 − β1)β2 · · ·βS−1 · · · (1 − βS−1)





























W1

W2

...

WS













−













W2

W3

...

WS+1





























=













x∗

1

x∗

2

...

x∗

S













(14)

and βs = ps − γ 1−ps

fs
for s = 1, . . . , S. We are still underidentified, as the system of

equations (14) contains S equation but S +1 unknowns (x∗
1, . . . , x∗

S , γ). Below, we describe

two approaches which circumvent this fundamental underidentification issue.

Before describing our estimation procedures, however, we look at some comparative statics

from the first order conditions (eqs. (6) and (14)), which yield some economic intuition

for this underidentification result. Given our assumptions on h(x) and c(x) (in Eqs. (13)),

if we increase the number of contestants fs, while holding the advancement probability

fixed (i.e., by always adjusting the number of winners gs = fs · p∗s, for some pre-specified

level of p∗s), then dx∗
s

dfs
|p∗sfixed < 0: equilibrium effort levels are smaller when the number of

contestants increases.12 This suggests that an increase in the “toughness of competition”

(as measured by fs) actually dilutes equilibrium incentives to provide effort: when fs is

higher, the marginal effect of additional effort on the winning probability, which is equal to

γ ∗ 1−ps

fs
, is lowered.

[Figure 1 about here.]

12In making this calculation, we assume that any change in fs leaves p∗
s−1 unaffected.
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[Figure 2 about here.]

In Fig. 1, we illustrate this comparative static. We have graphed pairs of best response

curves corresponding to different values of f and g, values of (respectively) the contenders

and winners from the lowest (sales staff) level of a tournament played at the San Francisco-

area stores of retailer I.13 In the solid lines, we graph the best response curves corresponding

to the case where f (the number of contending sales staff) is 10.25, and the number of

winners g (those who “win” the sales floor tournament) is 4.38, the actual observed values.

The lines marked with circles are the best response curves for the case where both f and

g are halved: the reduction in the number of competitors has raised workers’ incentives to

exert effort, and the equilibrium effort levels (measured in money units) double from about

$1500 to $3000. In contrast, if we double the number of contenders, effort levels decrease

by about half, from about $1500 to $800 units (as indicated by the intersection of the third

set of best-response curves, marked in the crossed lines). Hence, configurations of data

analogous to that presented in Figure 1 would be informative regarding the rankings of

equilibrium effort levels in different stages: hypothetically, if there were two stages s, s′ in

the tournament which were completely identical, except for fs > fs′ , then we could conclude

that x∗
s < x∗

s′ .

However, while variation in fs across stages is informative as to the rankings in x∗
s across

stages, it is not enough to pin down the magnitudes of the effort levels, which depend on

γ. With the power function parameterization, we obtain that dx∗
s

dγ > 0, ∀s: the equilib-

rium effort levels are increasing in γ, as illustrated in Fig. 2. The solid lines are a pair of

best-response curves corresponding to γ = 1.5. When γ is increased to 2.0, implying more

responsiveness in the probability of winning to worker effort, we see that the circle-marked

best response curves intersect at a higher point, implying that equilibrium effort levels rise,

by around 15%. When γ is decreased to 1.0 (illustrated by the best-response curves marked

with crosses), the equilibrium effort levels decrease by around 15%. These considerations

suggest that the actual magnitude of the effort levels is not separately determined apart from

γ. Essentially, for given values of the observables (fs, . . . , fS , p∗1, . . . , p∗S , W1, . . . ,WS+1), a

whole continuum of values of (γ, x1, . . . , xS) satisfy Eqs. (14).14 Hence, additional restric-

tions would be required to jointly pin down the effort levels with the curvature parameter

13In these simulations, we fixed γ at 2.2, and also the wages fixed at the values observed in the San

Francisco-area stores for this retailer.
14On the other hand, given the monotonicity of equilibrium effort levels x∗

s in γ, if one is willing to restrict

γ to a certain interval (e.g. γ ∈ [γ, γ̄]), then bounds on equilibrium effort levels could be obtained by solving

the system (14) at γ and γ̄. We leave this intriguing possibility for future work.
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γ. Next, we consider two alternative sets of restrictions.

3.2 First approach

In the first approach, we address the underidentification issues by adding additional equa-

tions regarding the supply-side of the model. Specifically, we assume that the employment

at the S levels of the firms are chosen to maximize profits at the (chain, year, and geo-

graphic location)-level.15 In specifying the supply-side, we assume that firms set n1, . . . , nS

optimally, but take the functional form of the advancement probability function Ps(· · · ) as

given.16 Here we depart from Rosen’s (1986) model, which does not have a supply-side.17

We assume that firms choose n1, . . . , nS to maximize the following profit objective:

max
n1,... ,nS

ηQ (n1, . . . , nS ;x1, . . . , xS) −
S
∑

s=0

nsWs+1 (15)

where ~n = (n1, . . . , nS) and ~W = (W1, . . . ,WS+1).
18 The production function is assumed

to take the CES form

Q (n1, . . . , nS ;x1, . . . , xS) =

(

S
∑

s=1

(

nsx
∗
s(~n, ~W )

)ρ
)1/ρ

(16)

in the aggregate effort levels exerted in the different levels of the company. η is a multi-

plicative profitability parameter (scaling from effort to revenue units), and the substitution

parameter ρ should lie in [−∞, 1] for the production function to be concave.

15We thank Quang Vuong for this suggestion.
16We could have also assumed that firms set wages W1, . . . , WS+1, and also used the first-order conditions

arising from those choices. We did not do this for two reasons. First, the first-order conditions for n1, . . . , ns

imply enough additional restrictions for recovering the effort levels x1, . . . , xS and curvature parameter γ.

Second, and more importantly, it turns out that the first-order conditions for W1, . . . , WS+1 are multiplica-

tive in γ, and so do not allow us to identify that parameter (once we take the ratio of first-order conditions,

as is done in Eq. (17) below).
17Note that in our model, wages are exogenously given but the ratio of workers at different levels are

endogenously chosen by the firm to maximize profit, whereas in Rosen’s model, competition is always one-

to-one and the question is what wage structures would lead to constant efforts throughout the hierarchy.

So our model can be considered as the flip side of Rosen’s model. We thank a referee for pointing out this

comparison.
18This profit specification resembles the specifications used in models of hierarchical firms (eg. Qian

(1994)).
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The first-order conditions for this problem imply:

Ws+1

WS+1
=

(nsx
∗
s)

ρ−1 x∗
s +

∑S
t=1 (ntx

∗
t )

ρ−1 nt
∂x∗

t

∂ns
(

nSx∗
S

)ρ−1
x∗

S +
∑S

t=1 (ntx∗
t )

ρ−1 nt
∂x∗

t

∂nS

, s = 1, . . . , S − 1 (17)

which yield S − 1 equations, with the extra parameter ρ. (By dividing two first-order

conditions, we eliminate the scaling parameter η, which we are not interested in estimating.)

The partial derivatives
∂x∗

t

∂ns
are obtained from the system of equations (14).

For our empirical work, S = 3, so that the supply-side adds two equations. These two

equations, combined with the S equations given in (14), enable us to recover the equilibrium

effort levels x∗
1, . . . , x∗

S , the power parameter γ of the h(·) function, as well as the new ρ

parameter of the CES production function. This can be done separately for each firm, year,

and geographical location (so we can allow equilibrium effort levels to differ arbitrarily

across geographical locations and over time, for a given retail chain).

3.3 Second approach

The main benefit of the first approach is that we are able to recover distinctive effort levels

for each set of (firm-, geographic region-, and year-) observations. However, this is done

at the cost of making potentially restrictive assumptions regarding the supply-side. In the

second approach, we dispense with the supply-side assumptions, but substitute instead the

assumption that for a given firm, the effort levels x∗
1, . . . , x∗

S , as well as the functional form

of the h(·) function, are constant over both time and geographic locations.

However, once we assume that x1, . . . , xS and γ remain unchanged over time and geographic

locations for each retail chain, we must introduce additional randomness into the model to

accommodate the variation in employment and wages across time and locations which we

observe in the data. Therefore, we do this by allowing the wages W1, . . . ,WS+1 to be

observed with error.19

In particular, we assume that Wismt, the observed wage for firm i, strata s, location l,

and year t, is equal to the actual (but unobserved) wage W ∗
is perturbed with additive

measurement error ǫismt:
20

Wislt = W ∗
is + ǫislt, s = 1, . . . , S (18)

19One may be justified in assuming the presence of measurement error, because the observed wages are

obtained by surveys, where respondents report the average salaries earned in each hierarchical level.
20Note that given our assumptions that the effort levels x1, . . . , xS and γ are identical across all markets

m and period t for a given firm i, the actual wage W ∗
is should be unchanged across markets m and period t.
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where ǫislt is a mean zero measurement error assumed independent across s, m, and t for a

given firm i, and also independent of W ∗
is. (Note that we assume that WiS+1lt, the wage at

the lowest stratum of the company, is not observed with error. The reason for this will be

noted below.)

We estimate the parameters x∗
1, . . . , x∗

S , as well as the parameters of the h(·) function,

separately for each firm i. (In what follows, we drop the firm i subscript for convenience.)

For each firm, we will estimate these parameters by method of moments. In order to derive

the estimating equations, we combine Eqs. (14), (5), and (18) to obtain
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(19)

or, in shorthand,

A
[

B
(

~W1:S − ~ǫ1:S

)

−
(

~W2:S+1 − ~ǫ2:S|0
)]

= ~x ⇒

~ǫ = −B̃−1
[

A−1~x − B ~W1:S + ~W2:S+1

] (20)

where B̃ is the matrix B minus a S × S matrix with ones in the (i, i + 1), i = 1, . . . , S − 1

spots and zeros everywhere else. (In the first display, ~ǫ2:S |0 denotes the S-vector where the

first S − 1 elements are ǫ2, . . . , ǫS and the S-th element is a zero.) Because the system of

equations (19) is only S-dimensional, we cannot accommodate an additional measurement

error in the wage WS+1.
21

21Since this is ad-hoc, we also obtained results where we allowed WS+1 to be observed with error, but as-

sumed instead that the observed W1 (the district manager salary) contained no measurement error. Overall,

the magnitude of the results remained quite stable.
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For each firm i, the population moment conditions exploited in the estimation is

E [ǫZ] = 0 (21)

where Z is an M -vector of instruments. The sample analog of the above is

mLST (θ) ≡









1
LST

∑T
t=1

∑L
l=1

∑S
s=1 ǫlst(θ)Zsl1t = 0
...

1
ST

∑T
t=1

∑S
s=1 ǫlst(θ)ZslMt = 0









where the dependence of ǫst on the parameters θ emphasizes the fact that, at each value

of θ, the ǫ’s are obtained as residuals, via Eq. (20). Let M ≥ S + 1 be the total number

of moments conditions employed in estimating θ. We seek the minimizer of the quadratic

form

θLST ≡ argminθ mLST (θ)′ΩmLST (θ)

and our estimator has the limiting distribution (as T goes to infinity)

√
ST (θLST − θ0)

d→ N
(

0, (J ′ΩJ)−1J ′ΩV ΩJ(J ′ΩJ)−1
)

where

J = E0
∂m(θ0)

∂θ0

V = V ar0 m(θ0) = E0m(θ0)m(θ0)
′

and m(θ) denotes the M -vector of moment conditions, and Ω is a M ×M weighting matrix.

In the results below, we use a two-step GMM procedure in which an estimate of the optimal

weighting matrix Ω = V −1 is used in the second step, so that the limiting variance of our

estimator reduces to (J ′ΩJ)−1.

In estimation, we employ seven moment conditions to estimate the four parameters in the

model. The instruments which we use for a given observation of firm i, stratum s, location

l, and year t are (i) nislt, the number of workers in the firm at this location, year and

level; and (ii) wisl′t, the wages of workers in the same level and during the same year, but

at six different locations l′ 6= l. For firms for which we have a relatively small number of

observations, we only use observations in years when at least 7 markets are observed for the

same firm (in order to have enough instruments). That explains why, in column 2 of Table

5, the number of observations used in estimation in the second approach is smaller than the

number of observations reported in Table 1. For example, for firm A, we have observations

for all years 1997-1999, but we use only the eight observations for 1997, because only for

this year do we have observations for at least 7 markets.
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Second-order optimality conditions In both estimation approaches given above, we

assume that the first-order condition (4) characterizes the optimal effort levels chosen by

the workers. However, second-order conditions should also hold at the optimal effort levels,

given the tournament parameters. In our empirical work, therefore, we check each estimated

set of effort levels x∗
1, . . . , x∗

S to ensure that they satisfy the second-order condition which

corresponds to the first-order condition in Eq. (4):

ĉ′(x̂∗
s) ∗

[

ĥ′′(x̂∗
s)

ĥ′(x̂∗
s)

− 2
ĥ′(x̂∗

s)

fs ∗ ĥ(x̂∗
s)

]

− ĉ′′(x̂∗
s) < 0 (22)

for s = 1, . . . , S, with the hats (ˆ ) denoting estimated quantities. For the parametric

assumptions on the h(·) and c(·) functions (Eqs. (13)), the second-order conditions reduce

to
γ̂ − 1

x̂∗
s

− 2
γ̂

fsx̂∗
s

< 0.

In what follows, we report only the empirical results which satisfy these second-order con-

ditions.

4 Empirical illustration

As an illustration of the methodologies developed above, we estimate the model using data

on wage differentials and employment levels at a number of large US retail chains. Most of

these retailers typically have locations in shopping malls and centers in the suburban US.

After presenting the results from the first approach and the second approach, respectively,

we proceed to consider two extensions of the model. In the first extension we accommodate

effort at the highest level by modeling it as observed by firms, and in the second extension we

allow workers to quit. The estimates from these extensions are presented in the appendix,

and show that our main findings are robust to these alternative specifications.

4.1 Data

The dataset is drawn from the Specialty Store Wage and Benefit Survey performed by the

National Retail Federation (NRF), for the years 1997-1999. This survey contains aggregated

information on the number of employees and average annual salary for employees in each

hierarchical level, for a number of large national retail chains. For confidentiality reasons,

we cannot identify the chains by name, but refer to them by letters (see Table 1 for a list

of the 14 chains considered in the empirical exercise).
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The data are aggregated up to the (retail chain–geographic area) level, so we cannot distin-

guish between different stores within the same chain and geographic area. Therefore, in our

analysis, we essentially treat all the stores within the geographic area as identical stores.

We focus on four levels of employment within each chain: Sales Staff (s = 3), Assistant

Store Manager (s = 2), and Store Manager (s = 1), with the District Manager (s = 0)

position taken as the prize in the tournament. We focus on these levels because they are

the most similar and, hence, comparable across chains. At higher levels of the chains, the

hierarchies can differ substantially across chains. In stages 2 (asst store managers) and

3 (sales staff), the tournament is played at the (chain-region-store-year) level, whereas in

stage 1 (store managers), it is played at the (chain-region-year) level. Hence, in stages 2

and 3, each subgroup is a store, whereas in stage 1, each subgroup is a region.

According to the tournament model, we interpret the observed number of workers at stages

s = 1, . . . , S as the number of “losers” (ns) at that stage. The number of district managers,

n0, is interpreted as the number of “winners” in stage s = 1 of the tournament game.22 As

we discussed in Section 2.1 above, we need to make assumptions on the level of competition

at each stage of the tournaments. At the sales staff and assistant store manager levels, we

take the number of subgroups to be L2 = L3 = n1, the number of store managers in each

geographic region. That is, we assume that competition takes place within stores, and that

the number of stores that a retail chain operates in each geographic region is equal to the

total number of store managers employed in each region. At the store manager level, we

assume that L1 = n0, the total number of district managers in the geographic region. That

is, we assume that the firm divides up the stores within each geographic region in a number

of equal-sized districts, each headed by a single district manager. (Throughout, we ignore

integer issues for convenience.)

In Table 1 we give summary statistics on the wage and tournament parameters (number

of contenders and winners in each subgroup, at each of the three stages considered) for the

retail chains which we will consider in our study, averaged across geographic locations and

years. (For full-time Sales Staff, salary is calculated as hourly wage*40 hours*50 weeks.)

There are large variations across stores both in wages as well as the intensity of competition,

so that we perform estimation on a store-by-store basis. Across most retailers, the assistant

22We do not model the changes across years in employment at the (chain, geographic location)-level. This

would require extra assumption and modeling of the flow of workers in and out of the firm, which is beyond

the scope of this paper (especially given that we have no data on the job tenure of the workers at each

hierarchical level). In essence, then, we treat observations across years for a given retailer as independent

observations.
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store manger/store manager salary gap is at least as large, and often larger, than the sales

staff/assistant store manager gap. Note also that g2, the number of “winners” in the second

stage (the competition among assistant store managers) is always slightly more than one;

this is because, even though competition takes place within each store in stages 2 and 3,

each store must promote slightly more than one winner, in order to produce the required

number of employees to cover both the store manager and district manager positions.23

In Table 2, we define and describe some retailer characteristics which will be used in our

analysis. These include variables for the retailers’ line of business (DCLOTH, DFOOT ,

DHOUSE), store location and size (DMALL, DLARGE). Finally, DCOMMIS indicates

whether more than 25% of the compensation for sales staff are commission-based. We will

use this information on commissions as an informal check on our estimates below.

As we mentioned earlier, our theoretical model is stylized, and abstracts away from several

potentially important features of the retailers that we consider. First, the model does not

allow workers to quit. In practice, attrition could be very common, especially among the

sales staff of a retail chain.24 However, this possibility need not affect our analysis since we

interpret the data at hand as representing the desired level of employment at each hierarchy.

Therefore, we allow for sales staff to quit, as long as they are replaced by other workers

who “take their place” in the tournament (and as long as the assistant store managers and

store managers are chosen from among the sales staff, not from the outside).

Second, we assume that all employees enter the hierarchy by the lowest (sales staff) stage.

In practice, however, it may be possible to be directly hired as an assistant store manager,

or store manager. Because we do not have individual-level data, we are unable to assess

how important this is among the retailers in our dataset. Hence, our empirical application

should be considered primarily as an illustration of our estimation methodologies, rather

than a full examination of tournament incentives within retail chains.

23Note that we do not consider part-time sales staff in this paper, and assume that these employees do not

participate in the tournament. Typically, the number of part-time sales staff outnumber full-time sales staff

by a ratio of 5:1 or 6:1 in most retail chains. We only report the number of full-time sales staff in Table 1,

which is why the average number of sales staff per store seems so small.
24For a subset of the retailers, we observe aggregated (chain level) turnover rates for each hierarchical

level. Among this subset of firms, the median turnover rate (defined as the number of terminations divided

by the number of workers employed at a given level) across firms is 14%, 23%, 33%, and 38% at the district

manager, store manager, assistant store manager, and (full-time) sales staff stages, respectively. In an earlier

version of the paper, we estimated an extension of the model which allows employees to leave the firm if they

receive higher outside wage offers. However, we omit this extension from this version of the paper, because

there are only four retailers which report enough turnover data.
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[Table 1 about here.]

[Table 2 about here.]

4.2 Results: First approach

Using the first approach, we are able to recover the values of γ, ρ, x∗
1, x∗

2, x∗
3 for every (chain,

location, year) observation of (W1, . . . ,WS+1, n0, . . . , nS). Table 3 presents the average and

standard deviation of the recovered values for each retail chain, where the average is taken

across all (year, geographic region) pairs observed in the dataset for that particular chain.25

[Table 3 about here.]

Two features are noticeable. First, higher effort levels are exerted at higher levels of the

firm, implying that at least part of the observed wage differentials across the store manager,

assistant store manager, and sales staff stages can be justified for effort reasons alone.

However, for several retailers, the average effort level drops at higher hierarchical levels: for

example, for retailers B and C the average effort level at the assistant store manager stage

exceeds the average effort level at the store manager stage. Second, for a majority of the

firms, there is a larger gap in absolute effort between the assistant store manager and store

manager stages than between the sale staff and assistant store manager stages. This mimics

the relative sizes of the wage differentials, as given in Table 1.

Next, we see that the average γ > 1 in all the retail chains, (excepting chain J, which is the

sole eyewear retailer in our dataset). The implies that for most chains, the h(·) function,

which measures the sensitivity of the advancement probability to effort levels, is convex on

average. Finally, for a large number of the retailers, the average ρ is quite negative, implying

a low elasticity of substitution between the various types of workers which we consider.

Because we are able to recover effort levels, as well as γ and ρ, at the (chain, region, year)-

level, we next examine the variation in these quantities. We ran regressions to see whether

store characteristics (listed in Table 2) could explain the variation in these quantities across

25As discussed above, for each set of estimates, we checked that the second-order conditions in Eqs. (22)

hold. We also dropped observations for which the nonlinear equation solver did not converge, as well as

observations where the recovered ρ > 1, implying that the production function is not concave. Among

these criteria, the non-convergence of the nonlinear solver accounted for the most eliminations – 56% of the

observations.
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retailers. The regression results are reported in Table 4. γ, the parameter in the h(·)
function linking effort to the probability of winning, is smaller in shopping mall stores

(coefficient on DMALL -0.778) and in larger stores (coefficient on DLARGE is 0.341).

The coefficients are negative across the line-of-business dummies DCLOTH, DFOOT , and

DHOUSE (relatively to the omitted category, which consists of the children’s retailer G

and the eyewear retailer J).

The DCOMMIS variable, an indicator for the use of commissions for sales staff, allows

us to perform some ad-hoc specification checks on the estimates. First, we see that γ is

significantly higher in stores which pay sales staff using commissions (the coefficient on

DCOMMIS is 1.097 and statistically significant). Since a larger γ can be interpreted as

less noisy observations of effort, this finding could imply that firms offer sharper incen-

tives (such as sales commissions) when effort signals are more accurate. This is consistent

with Holmstrom and Milgrom’s (1994) model of incentive contracts within a supermodular

framework.

Moreover, DCOMMIS enters positively (and significantly) in the regression where x3,

the sales staff effort, is the dependent variable, confirming, as we would expect, a positive

relationship between commissions and effort level.26 Since we do not impose this relation-

ship in recovering the effort levels, this finding offers support for our model, and for our

interpretation of the x’s as effort levels.

[Table 4 about here.]

4.3 Results: second approach

Table 5 presents estimates of effort levels and the γ parameter using the second, GMM-based

approach.27

[Table 5 about here.]

Generally, the estimates are reasonably precisely estimated. As with the first-approach

estimates reported before, we check that, at the estimated quantities, the second-order

26We do not include DCOMMIS as a regressor in the x1 and x2 regressions, because the survey only

asks retailers to report whether commissions were used for sales staff.
27We varied the starting values in obtaining our estimates, to ensure that the reported estimates are

reasonably robust and stable.
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conditions (in Eq. (22)) are satisfied at the estimated effort levels. As a more formal

specification check, the GMM J-statistic (and the associated p-value under the null of

correctly-specified moment conditions) is given in the last column. For all 14 retail chains,

we could not reject the null hypothesis (at reasonable significance levels) that the moment

conditions are indeed satisfied at the estimated values.

The estimates for the h(·) function parameter, γ, indicate that this function is convex

across all retailers28, ranging from a low value of 1.34 for retailer J, to 3.86 for retailer

H. Furthermore, for a majority of the choices, the estimated γ using the second approach

is higher than the average recovered using the first approach. Correspondingly, it is not

surprising to find that, generally, the effort levels estimated using the second approach are

higher than those reported earlier because, as we discussed above, equilibrium effort levels

increase when γ increase.

In addition, effort levels are generally higher at higher levels of the company. The sole

exception is retailer J, for which a pronounced drop in effort occurs between the assistant

store manager stage (where effort costs of $3341.8 are expended) and the store manager

stage (where effort costs of $1912.7 – about a 40% drop – are expended). Retailer J is the

sole eyewear retailer, and arguably this retailer is the one where sales staff are required to

have the most training, as their duties include fitting and ordering eyewear for customers.29

5 Decomposing wage differentials

Next, we use our recovered parameter values to decompose wage differentials into the part

which compensates workers for higher effort, and the part which serves to incentivize em-

ployees. In a perfect-information, perfectly-competitive setting, intra-firm wage differentials

between two positions should just compensate employees for their effort cost differentials

across the two positions. In a tournament setting, this need not be true, since wage differ-

entials between levels i and i + 1 must also serve to give incentives for more effort at lower

levels s > i of the company.

28Given h(x) = xγ and c(x) = x, this finding can also be interpreted as implying that the h(·) function is

more convex than the cost of effort function across all 14 retailers.
29We also ran regressions of the estimated γ’s and effort levels on retailer characteristics, analogously to the

regressions reported in Table 4 for the first approach results. However, none of the coefficients were precisely

estimated in these regressions. This is not surprising, because in the second approach we pool observations

across geographic markets and years, resulting in only 14 observations in each of these regressions. For this

reason, we do not report these regression results here.
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Using the results obtained above, we can directly measure how much of the observed intra-

firm wage differentials between stages i and i + 1 (which, given our indexing convention,

is ∆wi ≡ wi+1 − wi+2), directly rewards higher effort differentials, ∆xi ≡ xi − xi+1. We

introduce the notation δs ≡ 100∗
(

∆xs

∆ws

)

, which denotes the ratio of effort to wage differential

between stages s and s + 1. In Table 6 we present the values for δ1 (between the assistant

store manager and store manager stages) and δ2 (between the sales staff and assistant store

manager stages) implied by our model estimates. The results using the first and second

approaches, which are both reported in Table 6, differ numerically because the underlying

estimating approaches are quite different. In the following discussion, we focus on qualitative

results which are robust across both empirical approaches.

[Table 6 about here.]

For the first approach, δ1 and δ2 was calculated for each firm, year, and geographic location,

and we report the mean and standard deviation of these values for each retail chain. We

see that, on average, both δ1 and δ2 are typically less than 50. Since wages at a given stage

i can provide incentives for effort only at stages s > i prior to i, this implies that, for most

chains, wages at the assistant store manager stage are an important source of incentives

for effort provision on the sales floor and, similarly, wages at the store manager level also

compensate for effort exerted in earlier stages.

Indeed, for several stores (retailers B, C, and E between the assistant store manager and

store manager stages, in the first approach results), the average δ is negative. This occurs

only when the effort differential between stages is estimated to be negative (because the wage

differentials are never negative), and implies that the wage differential exists completely to

compensate effort at previous stages. However, the mean δ2 for chain M, and the mean δ1

for chain D both exceed 100 (implying that the increase in effort outstrips the increase in

wage between two levels). This makes sense only in a tournament setting, where workers

perceive an option value of “staying alive” in the tournament.

5.1 Counterfactual: effort-based compensation

The results from the previous section suggest that a large proportion — typically over 50%

— of the observed wage differentials arise to provide workers incentives to exert effort.

The need for these incentives would only arise when effort is non-contractible. In order to

gauge how well the second-best tournaments are performing for the retail chains which we
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study, we compare each retail chain’s observed wage bill under the tournament setting to

its wage bill under an alternative scheme in which workers’ effort levels are contractible,

and therefore compensation based directly on a worker’s effort.

At each hierarchical level s, we compute the alternative wage (assuming firms have complete

bargaining power), for a given effort level xs in stage s, as

W CF
s = W R + xs

where W R is some reservation wage (assumed constant across all stages s), and xs is the

effort level at stage s, in money units. In calculating the counterfactual wages for each

store, we assume that the firm’s desired effort levels at each stage correspond to the effort

levels estimated before.30 Furthermore, we set W R for each store to be equal to WS+1−xS,

the sales staff salary less the cost of effort for each salesperson.31

These wage bill results are given in Table 7. We see that, indeed, for all of the stores,

and across both approaches, the counterfactual wage bill is lower than the observed wage

bill (which we interpret throughout this paper as being generated from a second-best tour-

nament). The percentage differences between the two wage bills (reported in columns 3

and 6 of Table 7 for, respectively, the first and second approach estimates) hover between

20-25% for most retailers, ranging from 19% for retailer N, up to 48% for retailer J (using

the first approach results). Therefore, while tournaments are second-best, in some cases the

firms are not doing much worse using the tournaments, compared with the scenario where

workers could be compensated directly for their effort.32

[Table 7 about here.]

6 Conclusions

In this paper, we considered the estimation of a tournament model with moral hazard when

only aggregate data on intra-firm employment levels and salaries are available. We show

30Strictly speaking, then, these are not first-best effort levels, which would be the levels which maximized

productivity less effort costs at each hierarchical level.
31We note that we cannot compute the entire counterfactual wage bill for all stages of the tournament

(from s = 0 to s = 3) because we cannot estimate the equilibrium effort level exerted by district managers

(the “winners” in each tournament).
32Ideally, one would like to compare the tournament wage bill to the wage bill from another second-

best incentive pay scheme. However, this would require additional assumptions regarding the performance

measures that the firms observe, upon which the workers’ wages would depend. This is difficult because we

observe no information on these matters in the data.
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how the equilibrium restrictions of the tournament model allow us to recover parameters

of interests, including the equilibrium effort levels in each hierarchical stage of the firm.

We illustrated our estimation procedures using data from major retail chains in the United

States. The estimates suggest that effort levels are generally higher at higher strata of

employment within a firm, but that only a small fraction of the wage differential directly

compensates workers for higher effort levels: at the estimated effort levels, we find that

typically less than 50% of the observed wage differentials are for rewarding higher effort

levels at higher levels of the corporations, implying that over half of the differentials arise

purely to maintain incentives at lower rungs of the retailers.

There are also general extensions of the current work. One important implicit assumption

made in this paper is that the tournament framework is correct, and no attempt has been

made to test the tournament framework versus alternative models of the data generating

process for the observed wage data. Moreover, we have assumed here that workers are

homogeneous within a firm, across all hierarchical levels. It will be interesting to consider

whether a model with both adverse selection and moral hazard (such as MacLeod and

Malcomson (1988)) can be identified and estimated with the type of data considered in this

paper.

A Extensions

In this appendix, we discuss two extensions of the model. In the first extension we accom-

modate effort at the highest level by modeling it as observed by firms, and in the second

extension we allow workers to quit.

A.1 Effort at the highest level

So far we have assumed that the equilibrium effort for workers at the highest level is zero

because there is no competition at that level. While this assumption is reasonable in the

context of a sports tournament such as the soccer World Cup (the winner in the final gets

the trophy and there is no more competition), in the retail chains industry workers at the

highest level have to exert effort to keep their jobs. To accommodate effort at the highest

level, we assume that firms observe such effort and offer wage contracts for those workers

as follows:

W̄1 =

{

W1 if x0 ≥ x∗
0

0 otherwise,
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where x∗
0 is chosen by firms.

With the normalization that c(x) = x, payoff for workers at the highest level is

V0 =

{

W1 − x0 if x0 ≥ x∗
0

0 − x0 otherwise.

As long as firms set x∗
0 below W1, in equilibrium workers at the highest level always choose

to exert x∗
0 and obtain V0 = W1−x∗

0. We therefore obtain the following system of equations

by replacing W1 with W1 − x∗
0 in the system of equations (12):
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We take the first approach to estimation. Firms choose n1, . . . , nS , and x∗
0 to maximize the

following profit objective:

max
n1,... ,nS ,x∗

0

ηQ (n0, n1, . . . , nS ;x∗
0, x1, . . . , xS) −

S
∑

s=0

nsWs+1,

where

Q (n0, n1, . . . , nS ;x∗
0, x1, . . . , xS) =

(

(n0x
∗
0)

ρ +

S
∑

s=1

(

nsx
∗
s(~n, ~W )

)ρ
)1/ρ

.

The first-order conditions for this problem imply:

Ws+1

WS+1
=

(nsx
∗
s)

ρ−1 x∗
s +

∑S
t=1 (ntx

∗
t )

ρ−1 nt
∂x∗

t

∂ns
(

nSx∗
S

)ρ−1
x∗

S +
∑S

t=1 (ntx∗
t )

ρ−1 nt
∂x∗

t

∂nS

, s = 1, . . . , S − 1,

0 = (n0x
∗
0)

ρ−1 n0 +

S
∑

s=1

(nsx
∗
s)

ρ−1 ns
∂x∗

s

∂x∗
0

.
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Both
∂x∗

t

∂ns
and ∂x∗

s

∂x∗
0

are obtained from the system of equations above. Compared to the

specification in which effort at the highest level is assumed to be zero, here we add one

more equation, the FOC w.r.t. x∗
0, and we estimate one more parameter, x∗

0.

The results for this extension are presented in Table 8. There are three features. First, the

efforts (measured in money units) exerted by workers at the highest level (district managers)

range from $4,886 to $13,066 and average at $8,230. These efforts are the highest among

the four levels of workers. Second, the efforts exerted by worker at the second highest level

(store managers) are substantially lower than the estimates obtained from the original first

approach (the average drops from $3,419 to $1,689). This is as expected, as the efforts that

are now required of district managers reduce their payoffs, thus lowering the incentive for

store managers to exert effort. Finally, compared to the original first approach results, the

estimated efforts exerted by the lowest two levels (assistant store managers and sales staff)

are little affected.

Table 9 presents the average percentage of wage differentials accounted for by effort differ-

entials. These results are qualitatively similar to those reported in Table 6 for the original

first approach. In particular, we continue to see that the δ’s are typically below 50 and that

some δ’s are even negative, suggesting that a large portion of the wage differentials arises

to maintain incentives for workers at lower levels.

[Table 8 about here.]

[Table 9 about here.]

A.2 Accommodating turnover rates

In this subsection, we describe how the model estimated in the paper could be extended

to allow workers to quit the firm if they receive a wage offer which exceeds their current

salary. In our modification of the model, we allow employees to leave the firm once they

find their place in the firm (i.e., after they “lose” and remain in some stage s). We do

not allow workers to quit while they are still “active” in the tournament. In addition, we

maintain the assumption that the firm can only hire workers from the outside at the lowest

level of the firm (level S), and that positions at levels s < S can only be filled by advancing

workers from lower stages.

In the dataset, we observe turnover rates λ0, . . . , λS , where λs is defined as the ratio of the

total workers terminated in stage s divided by the total number of workers employed at

27



stage s (which includes both the terminated and non-terminated workers).33 These turnover

rates are observed at the firm and year level, but only at the national level (i.e., not broken

down by geographic locations).

Let Fs, s = 0, . . . , S denote the CDF of outside wages for employees in stage s. We can

interpret the observed turnover rates as

λs = 1 − Fs(Ws+1), s = 0, . . . , S. (23)

That is, the observed turnover rate at stage s is interpreted as the probability of obtaining

an outside wage offer exceeding the stage s salary, which is Ws+1. The workers’ Bellman

equation, for stage s, is

Vs = max
x

{ps(x;x∗
s)Vs−1 + (1 − ps(x;x∗

s)) ERs max (Ws+1, Rs)} (24)

where Rs denotes the outside wage offer for a stage s worker, and Rs ∼ Fs. Obviously,

E max (Ws+1, Rs) = Fs(Ws+1)Ws+1 + (1 − Fs(Ws+1)) E [Rs|Rs > Ws+1] .

Let W̃s+1 ≡ E max (Ws+1, Rs).

In order to estimate this amended model, we need to make additional assumption on the

outside wage distributions F0, . . . , FS . In the following, we assume that each of the wage

distributions is uniform:

Rs ∼ U [0, κs]

where κs, s = 0, . . . , S are unknown parameters. With this distributional assumption:

Fs(Ws+1) =
Ws+1

κs
= 1 − λs

⇒ κs =
Ws+1

1 − λs
, s = 0, . . . , S

(25)

E [Rs|Rs > Ws+1] =
1

2
(Ws+1 + κs)

=
1

2
Ws+1

2 − λs

1 − λs

W̃s+1 = Ws+1 ∗
[

(1 − λs) +
1

2

λs(2 − λs)

(1 − λs)

]

.

33Obviously, firms do not fire workers in our model. All terminations arise because the worker receive a

higher outside wage offer and quit.
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Hence, after plugging in these items into Eq. (24), we can estimate as before.

For the first approach, given observations of λ0, . . . , λS , we can back out κ0, . . . , κS using

Eq. (25). Then we can construct W̃1, . . . , W̃S+1 and then estimate x∗
1, . . . , x∗

S , as well

as γ and ρ, using the system of equations (14), substituting in W̃s in place of Ws, for

s = 1, . . . , S + 1.

For the second approach, we again assume that the observed wages are contaminated by

additive measurement error. With this assumption:34

W̃s = (Ws − ǫs) ∗
[

(1 − λs) +
1

2

λs(2 − λs)

(1 − λs)

]

, s = 1, . . . , S

W̃S+1 = WS+1 ∗
[

(1 − λS+1) +
1

2

λS+1(2 − λS+1)

(1 − λS+1)

]

.

Let Ψ1:S denote the S × S diagonal matrix with (1 − λs) + 1
2

λs(2−λs)
(1−λs) in the s-th diagonal

position. Then, for this case, the estimating equation corresponding to Eq. (20) in the

main text is

A
[

BΨ0:S−1

(

~W1:S − ~ǫ1:S

)

− Ψ1:S

(

~W2:S+1 − ~ǫ2:S |0
)]

= ~c′ ⇒

~ǫ = − ˜̃
B

−1 [

A−1~c′ − BΨ0:S−1
~W1:S + Ψ1:S

~W2:S+1

]

where
˜̃
B ≡ BΨ0:S−1 − Ψ̃2:S−1

and Ψ̃2:S−1 denotes the Ψ1:S−1 matrix bordered at the bottom and the left with, respectively,

a row and column of zeros.

We continue to assume that the observed employment levels for each firm, year, and ge-

ographic location are the desired employment levels for the firm. For both the first and

second approaches, the presence of turnover implies that firms must hire, and promote,

more workers in order to achieve the desired employment levels at each stage of the firm.

Hence, we need to reconstruct our measures of the number of competitors at each stage.

The Ls’s (number of subgroups) stay the same. We must redefine the number of “losers”

and “contenders” in each stage as (for s = 0, . . . , S):

ñs =
ns

1 − λs

m̃s =
s
∑

s=0

ns

1 − λs
.

34As above, we need to assume that one of the wages – in this case, WS+1 – is not contaminated by

measurement error.
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Results using the second approach for the four retailers for which we were able to obtain

turnover rates at the sales staff, assistant store manager, store manager, and district man-

ager levels, for at least a single year, are reported in Table 10. Noticeably, the J-test

specification checks have substantially lower p-values for this model, relative to the results

in the main text, which are obtained from a model which does not accommodate turnover.35

However, the qualitative implications of the results are similar to those in the main text.

For the model with turnover, Table 11 reports the average percentage of wage differentials

accounted for by effort differentials, and Table 12 reports the comparison between the

observed wage bill and the counterfactual wage bill implied by the estimates. The patterns

in these tables are consistent with their counterparts in the no-turnover model, Tables 6

and 7, respectively. In particular, we continue to find that an important purpose of the

wage differentials is to provide workers incentives to exert efforts (Table 11), and that

the counterfactual wage bill (when workers’ effort levels are assumed to be contractible) is

always lower than the observed wage bill, with the percentage differences ranging from 19%

to 33% (Table 12).

[Table 10 about here.]

[Table 11 about here.]

[Table 12 about here.]

35However, the second-order conditions in Eq. (22) continue to hold for these estimates.
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Figure 1: Comparative statics of tournament model
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Figure 2: Comparative statics of tournament model
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Table 1: Average wage and tournament parameters in major retail chains
Store identifier # mkt/yr Dist mgr Store mgr Asst store mgr Sales staff

obs. (s = 0) (s = 1) (s = 2) (s = 3)

A (Clothing) 13 31978.39 19171.11 13875.25 8645.20
(3968.13) (1550.75) (1835.10) (894.61 )

1.23 4.69 7.77 2.08
1/4.92 1.32/3.00 3.00/3.48

B (Athletic footwear) 8 37327.43 18051.92 11334.86 8016.21
(5421.04) (1970.93) ( 553.25) (495.38 )

1.00 15.50 17.00 9.00
1/16.5 1.07/2.19 2.19/2.78

C (Non-athletic Footwear) 9 25302.87 14628.8 8048.46 6069.92
(2654.97) (916.31 ) (348.82 ) (1755.60 )

1.22 13.33 16.22 9.11
1/11.56 1.11/2.39 2.39/3.18

D (High-end specialty) 12 45563.5 24468.35 16019.71 9665.78
(4838.46) (4261.09) (1415.18) (999.65 )

1.00 2.50 2.17 1.83
1/3.5 1.5/2.46 2.46/3.40

E (Clothing) 38 35767.75 20855.25 14304 11025.61
(6502.10) (2998.42) (2310.14) (1196.92)

1.05 14.58 18.32 21.87
1/14.71 1.12/2.47 2.47/3.90

F (High-end specialty) 12 41695.05 25456.24 18018.76 9943.56
(7138.76) (3971.62) (2238.46) (1358.79)

1.00 6.08 5.33 18.50
1/7.08 1.24/2.10 2.10/6.04

G (Children) 13 40410.57 25120.34 18464.37 11328.93
(7636.94) (4064.84) (1916.36) (1006.76)

1.23 4.54 12.38 7.92
1/4.77 1.32/4.12 4.12/5.89

H (Athletic footwear) 21 29811.7 17989.24 10203.93 8403.99
(3389.65) (1799.55) (1013.59) (748.64 )

2.48 19.76 49.24 9.33
1/8.75 1.18/3.71 3.71/4.53

I (Clothing) 42 38017.61 21691.99 16480.2 10361.4
(3214.85) (1720.96) (3088.39) (714.72 )

8.36 50.81 111.07 126.62
1/7.33 1.19/3.53 3.53/6.46

J (Eyewear) 14 45495.18 25910.98 20066.61 9382.12
(4900.57) (2287.53) (2478.05) (600.92 )

1.36 11.71 10.79 15.57
1/9.55 1.15/2.11 2.11/3.46

K (Clothing) 21 43205.93 24275.2 18040.99 12208.09
(4135.74) (2255.50) (1466.40) (1175.39)

1.52 7.81 19.10 14.95
1/6.21 1.27/4.35 4.35/7.07

L (Household items) 17 47210.02 32884.84 23046.81 10885.75
(5267.12) (3002.86) (2175.07) (2252.73)

1.00 1.94 7.06 16.41
1/2.94 1.79/5.66 5.66/13.07

M (Non-athletic Footwear) 45 42655.28 20606.52 10298.17 8651.43
(4090.03) (2132.92) (974.77 ) (703.60 )

3.76 32.73 27.31 43.73
1/9.15 1.32/3.15 3.15/5.20

N (Books) 20 32946.63 19329.51 12181.77 8871.47
(3571.39) (2123.77) (1400.18) (971.85 )

1.15 4.75 5.50 6.40
1/5.5 1.35/2.69 2.69/4.35

Top entry in each cell is annual salary (in 1986 dollars). Second entry is standard deviation of salary. Third
entry in each cell gives ns, and fourth entry gives gs/fs, the ratio of “winners” from each subgroup to the
size of each subgroup. For Sales Staff, salary is calculated as hourly wage*40 hours*50 weeks.
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Table 2: Retailer characteristics

Definitions:

DCLOTH: =1 if clothing retailer
DFOOT : =1 if footwear retailer

DHOUSE: =1 if housewares retailer
DMALL: =0 if stores mostly located in shopping centers; =1 if in shopping malls

DLARGE: =0 if stores mostly < 20,000 sq. ft.; =1 if ≥ 20,000
DCOMMIS: =1 if over 25% of sales-staff pay is based on commissions

Retail Chain DCLOTH DFOOT DHOUSE DMALL DLARGE DCOMMIS

A 1 0 0 1 1 0
B 0 1 0 1 1 1a

C 0 1 0 1 1 1b

D 0 0 1 1 1 0
E 1 0 0 1 1 0
F 0 0 1 1 1 1c

G 0 0 0 1 0 0
H 0 1 0 0 0 0
I 1 0 0 1 0 0
J 0 0 0 1 1 0
K 1 0 0 1 0 0
L 0 0 1 0 0 0
M 0 1 0 0 1 0
N 0 0 0 1 1 0

aOnly for 1999
bOnly for 1998
cOnly for 1999
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Table 3: Average Parameters for Retail Chains: First Approach

Retail Chain # (Yr-Location) Obs.a Avg x1 Avg x2 Avg x3 Avg γ Avg ρ
(stdev) (stdev) (stdev) (stdev) (stdev)

A 6 4556.08 1639.03 398.82 2.03 -1.56
(2322.71) (870.62) (172.03) (1.07) (0.46)

B 8 2309.14 2521.79 527.70 2.07 -1.71
(991.30) (689.53) (203.40) (0.65) (0.82)

C 5 1388.00 1651.83 209.73 1.15 -0.83
(788.33) (468.95) ( 55.91) (0.32) (0.29)

D 4 9063.02 1208.78 491.68 1.50 -0.11
(6284.87) (865.31) (381.74) (1.00) (1.19)

E 25 1315.08 1967.67 542.39 1.41 -8.33
( 905.33) (1443.30) (433.93) (1.04) (28.35)

F 0b — — — — —

G 3 1989.53 1024.25 259.74 1.04 -2.43
(1800.92) (1065.05) (298.83) (1.25) (1.48)

H 6 2020.78 1454.38 215.72 1.05 -1.09
(2084.50) (489.05) (91.43) (0.40) (0.53)

I 20 2373.51 1516.83 299.66 1.36 -2.45
(836.12) (397.51) (134.12) (0.47) (0.77)

J 2 820.72 768.11 852.58 0.55 -10.74
(1147.47) (1071.53) (1194.34) (0.75) (2.57)

K 13 3523.32 1314.03 372.74 1.32 -3.83
(1994.66) (896.51) (408.95) (1.04) (4.76)

L 2 5533.15 2993.55 1787.60 2.69 -3.34
(1646.92) ( 971.07) (327.81) (0.90) (0.74)

M 23 5488.56 2656.54 500.64 1.82 -2.18
(4237.27) (1105.44) (230.57) (0.75) (1.56)

N 14 5409.00 2058.66 651.07 2.31 -3.49
(2794.65) (720.71) (190.33) (0.64) (3.82)

aWe only included those (Yr-Location) observations for which the calculated effort levels satisfy the two
conditions given at the end of Section 3.3 of the main text.

bThere were no (year-location) observations which both satisfied the two model optimality conditions,
as well as yielded convergent estimates for the nonlinear solver used to solve the supply-side first-order
conditions.
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Table 4: Regressions of parameters on retailer characteristics: first approach
Dependent Var:

Regressors: γ x1/1000 x2/1000 x3/1000 ρ

DMALL -0.778** -2.085** -0.639* -0.513*** 1.831
(0.391) (0.956) (0.321) (0.151) (5.921)

DLARGE 0.341** 0.698 0.564*** 0.182*** -3.591
(0.177) (0.612) (0.206) (0.069) (2.686)

DCLOTH -0.338 -2.216** 0.255 -0.103 -0.055
(0.256) (0.885) (0.297) (0.099) (3.877)

DFOOT -0.873** -2.444** 0.354 -0.574*** 3.460
(0.405) (1.113) (0.374) (0.157) (6.139)

DHOUSE -0.488 2.134 -0.271 0.069 12.294*
(0.439) (1.517) (0.510) (0.170) (6.658)

DCOMMIS 1.097** — — 0.520*** -3.754
(0.511) (—) (—) (0.198) (7.744)

year dummies yes yes yes yes yes
city dummies yes yes yes yes yes

N 131 131 131 131 131
R2 0.305 0.316 0.341 0.388 0.224
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Table 5: Parameter estimates: Second approach
Retail Chain #obsa x1: SM x2: ASM x3: Sales γb J-statisticc

effort effort effort
(std er) (std er) (std er) (std er) (p-value)

A 8 4362.4 832.9 487.9 1.94 0.1544
( 249.3) ( 181.2) ( 78.1) ( 0.17) ( 0.9846)

B 8 2673.1 2262.7 583.59 2.23 0.4129
( 680.4) ( 200.3) ( 54.8) ( 0.19) ( 0.9376)

C 9 2255.5 2183.7 362.74 2.49 0.2756
( 120.6) ( 178.1) ( 36.3) ( 0.15) ( 0.9646)

D 12 3758 2083.7 1493.0 1.57 0.8159
( 735.9) ( 870.0) ( 88.5) ( 0.28) ( 0.8457)

E 38 2557.5 1025.1 778.5 2.46 0.0445
( 1222.1) ( 506.9) ( 67.8) ( 0.43) ( 0.9975)

F 12 2977.7 2812.9 1600.3 1.85 0.0609
( 177.49) ( 416.65) ( 217.26) ( 0.32) ( 0.9961)

G 13 3321.4 2465.8 570.9 1.98 0.4706
( 176.4) ( 618.5) ( 81.4) (0.07) ( 0.9253)

H 21 5613.0 1302.0 96.5 3.86 0.1691
( 494.9) ( 89.5) ( 33.5) ( 0.44) ( 0.9824)

I 42 4253.0 1546.6 601.7 2.21 0.1439
( 384.8) ( 377.7) ( 89.8) ( 0.21) ( 0.9861)

J 14 1912.7 3341.8 1551.0 1.34 0.1731
( 776.8) ( 2135.6) ( 1174.5) ( 0.22) ( 0.9818)

K 21 3779.0 1930.5 435.4 1.63 0.0151
( 944.3) ( 355.4) ( 33.5) ( 0.19) ( 0.9995)

L 17 4140.3 3507.3 1030.9 2.47 0.1744
( 1491.5) ( 1830.9) ( 326.2) ( 0.76) ( 0.9816)

M 45 3316.1 1412.9 1661.4 2.34 0.2271
( 2045.7) ( 3086.2) ( 1250.4) ( 1.59) ( 0.9731)

N 16 3709.8 2122.0 510.8 1.87 0.4765
( 3699.1) ( 964.2) ( 116.4) ( 0.93) ( 0.9240)

aAs in Table 1, each observation denotes that wages w1, w2, w3, w4 and n0, n1, n2, n3 were observed for
a particular (location,year) combination. That is, the number of observations is equal to LST , using the
notation in Section 3.3.

bExponent on h(·).
casymptotically distributed χ2(3) under null that the moment conditions in Eq. (21) hold.
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Table 6: Average percentage of wage differentials accounted for by effort differentials

δs ≡ 100 ∗
(

xs−xs+1

ws+1−ws+2

)

, s = 1, 2

First approacha Second approachb

Retail Chain mean δ1 mean δ2 δ1 δ2

(stdev)c (stdev) (stder)d (stder)

A 51.25 32.25 65.03 8.25
( 36.64) (12.21) ( 6.39) ( 5.14)

B -2.12 60.86 6.38 52.47
( 17.05) (20.66) ( 10.08) ( 7.20)

C -3.90 93.43 1.11 114.53
( 8.26) (18.24) ( 3.76) ( 12.93)

D 100.51 14.45 21.44 9.69
( 75.81) (12.50) ( 17.99) ( 14.29)

E -4.79 23.99 28.19 2.65
( 19.99) ( 156.10) ( 19.02) ( 5.76)

F 2.36 15.31
( 7.02) ( 7.85)

G 14.42 15.43 13.63 28.35
( 12.53) ( 13.53) ( 11.38) ( 10.16)

H 5.54 64.17 57.00 78.05
( 18.81) ( 36.30) ( 7.36) ( 7.03)

I 13.83 29.65 78.05 18.82
( 11.10) ( 6.61) ( 20.81) ( 9.16)

J 0.83 -0.53 -26.79 17.53
( 1.20) ( 0.78) ( 35.65) ( 16.40)

K 33.43 18.85 35.74 27.17
( 23.52) ( 10.01) ( 20.39) ( 6.60)

L 25.07 10.00 6.81 21.70
( 4.71) ( 6.41) ( 35.14) ( 18.79)

M 27.80 121.28 19.06 -17.17
( 40.50) ( 57.60) ( 26.85) ( 157.22)

N 48.41 43.90 23.33 55.88
( 46.51) ( 20.38) ( 45.91) ( 32.10)

aCorresponding to recovered parameter values summarized in Table 3.
bCorresponding to GMM estimates from Table 5.
cδ1 was calculated separately for each retail chain, year, and geographic location. We report the standard

deviations of δ1 across all years and geographic locations, for a given retail chain.
dStandard error computed using delta method, for the estimates in Table 5.
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Table 7: Observed vs. counterfactual total wage bill implied by estimates
Counterfactual: if effort were contractible

First approach Second approacha

Retail Chain Observed Counterfactual % Diff Observedb Counterfactual % Diff
wage bill wage bill (Obs-CF)/Obs wage bill wage bill (Obs-CF)/Obs

($mills) ($mills) ($mills) ($mills)
(stder)

A 1.49 1.13 0.24 1.808 1.301 0.28
(0.018)

B 4.35 3.16 0.27 4.356 3.160 0.27
(0.104)

C 1.33 1.02 0.23 3.347 2.498 0.25
(0.337)

D 0.39 0.31 0.21 1.349 0.836 0.38
(0.239)

E 20.62 15.96 0.23 30.344 23.793 0.22
(0.934)

F — — — 5.286 3.872 0.27
(0.055)

G 0.91 0.68 0.25 5.893 4.239 0.28
(0.109)

H 2.91 2.27 0.22 19.318 17.222 0.11
(0.197)

I 58.95 44.84 0.24 178.431 137.952 0.23
(1.785)

J 1.60 0.84 0.48 9.296 5.344 0.43
(0.254)

K 9.29 7.46 0.20 14.977 11.815 0.21
(0.192)

L 0.73 0.50 0.32 6.939 5.044 0.27
(0.224)

M 32.75 26.32 0.20 58.289 41.084 0.30
(3.123)

N 3.41 2.77 0.19 3.343 2.714 0.19
(0.324)

aCorresponding to GMM estimates from Table 5.
bNote that figures in first and third columns may not coincide due to (i) rounding errors; and (ii) for some

(firm/geographic locations/year) observations, we were not able to obtain convergent estimates for the first approach.

Wages bills only for store managers, assistant store managers, and sales staff.
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Table 8: Average Parameters for Retail Chains: First Approach with Effort at the Highest Level

Retail Chain # (Yr-Location) Obs.a Avg x∗
0 Avg x1 Avg x2 Avg x3 Avg γ Avg ρ

(stdev) (stdev) (stdev) (stdev) (stdev) (stdev)

A 2 5045.89 2109.35 2009.95 376.05 2.09 -1.29
(2014.57) (1726.94) (1740.64) (145.03) (1.34) (1.43)

B 6 10269.3 876.89 2824.9 495.08 1.88 -1.19
(2127.49) (248) (869.85) (143.46) (0.45) (0.43)

C 5 5542.02 670.3 1587.56 205.1 1.1 -0.67
(1050.44) (369.94) (507.44) (56.01) (0.35) (0.32)

D 2 13065.91 6905.79 5799.9 1303.1 4.29 -0.37
(8732.43) (2780.73) (4784.27) (1192.94) (2.99) (0.51)

E 22 7719.66 593.43 2056.91 493.49 1.29 -1.79
(3780.57) (310.4) (1517.48) (367.85) (0.87) (1.02)

G 3 6316.65 2229.35 1780.6 738.01 2.03 -1.74
(3328.55) (1460.68) (955.63) (740.4) (1.56) (1.45)

H 5 4885.94 1081.26 1404.94 222.06 0.99 -0.67
(824.6) (948.41) (262.85) (63.51) (0.22) (0.33)

I 20 7456.69 1170.03 1594.39 295.71 1.35 -2.18
(1294.54) (292.57) (528.6) (129.87) (0.47) (0.62)

J 1 12193.99 2880.49 6981.91 3971 9.22 -2.34
(-) (-) (-) (-) (-) (-)

K 13 6963.95 2016.8 1650.33 522.44 1.58 -2.32
(2639.77) (983.94) (1372.91) (699.38) (1.55) (2.5)

L 2 5555.04 2993.45 3799.26 1946.44 2.97 -0.78
(2160.41) (623.53) (1070.49) (274.27) (0.12) (0.35)

M 20 11811.45 2592.14 3194.08 532.32 1.99 -1.26
(2624.33) (1932.64) (1156.24) (233.23) (0.8) (0.75)

N 13 7711.23 2344.37 2432.69 653.43 2.22 -1.23
(3369.86) (1191.82) (698.52) (207.2) (0.73) (0.78)

aWe only included those (Yr-Location) observations for which the calculated effort levels satisfy the two condi-
tions given at the end of Section 3.3 of the main text.
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Table 9: Average percentage of wage differentials accounted for by effort differentials: first
approach with effort at the highest level

δs ≡ 100 ∗
(

xs−xs+1

ws+1−ws+2

)

, s = 0, 1, 2

First approacha

Retail Chain mean δ0 mean δ1 mean δ2

(stdev)b (stdev) (stdev)

A 29.91 2.18 41.34
(3.36) (1.52) (41.69)

B 51.33 -28.19 70.36
(3.46) (8.17) (21.78)

C 42.13 -13.52 89.53
(3.44) (4.33) (22.97)

D 16.32 14.5 62.42
(45.61) (23.01) (23.26)

E 43.23 -18.7 17.2
(11.94) (15.63) (160.08)

G 31.15 7.32 18.35
(12.78) (15.42) (6.07)

H 35.6 -5.35 59.75
(7.62) (9.25) (26.98)

I 40.58 -6.36 31.27
(6.51) (6.98) (8.3)

J 60.65 -68.99 30.83
(-) (-) (-)

K 29.38 7.14 20.72
(12.38) (19.88) (11.88)

L 21.45 -7.36 15.55
(20.49) (16.26) (12.7)

M 44.6 -6.78 151.79
(11.41) (20.07) (71.26)

N 37.69 -0.56 54.4
(14.35) (17.85) (16.19)

aCorresponding to recovered parameter values summarized in Table 8.
bδs was calculated separately for each retail chain, year, and geographic location. We report the standard

deviations of δs across all years and geographic locations, for a given retail chain.
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Table 10: Parameter estimates: incorporating turnover rates
Retail Chain #obs x1 x2 x3 γa J-statisticb

(std er) (std er) (std er) (std er) (p-value)

A 32 3322.3 3588.8 207.81 1.107 1.853
(506.02) (2106.6) (504.02) (0.238) (0.603)

B 32 1822.8 3733.1 1861.4 1.822 1.887
(649.07) (5201.8) (6434.5) (0.276) (0.596)

G 24c 3614.6 2448.2 691.47 0.918 2.018
(772.51) ( 10047) (1387.5) (0.056) (0.569)

M 60 3057.6 5681.9 2549.3 1.128 1.730
(1497.4) (4339.5) ( 23681) (0.187) (0.630)

aExponent on h(·).
basymptotically distributed χ2(2) under null that the moment conditions in Eq. (21) hold.
cFewer observations are available for this retail chain (as compared to the number of observations used

for the results in Table 5) because turnover rates were not reported for some years. Same applies for Retail
Chain M.
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Table 11: Average percentage of wage differentials accounted for by effort differentials:
incorporating turnover rates

Second approacha

Retail Chain %
(

x1−x2

w1−w2

)

%
(

x2−x3

w2−w3

)

(stder) (stder)

A -4.9105 80.879
( 36.219) ( 61.988)

B -29.701 58.486
( 82.244) ( 143.26)

G 20.257 33.765
( 183.45) ( 177.58)

M -25.35 230.93
( 53.648) ( 2057.6)

aCorresponding to GMM estimates from Table 10.
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Table 12: Observed vs. counterfactual total wage bill implied by estimates: incorporating turnover
rates

Second approacha

Retail Chain Observedb Counterfactual % Diff
wage bill wage bill (Obs-CF)/Obs

($mills) ($mills)
(stder)

A 1.808 1.455 0.19
(0.189)

B 4.356 2.923 0.33
(1.292)

G 1.478 1.190 0.19
(0.301)

M 37.245 27.203 0.27
(43.21)

aCorresponding to GMM estimates from Table 10.
bNote that figures in first and third columns may not coincide due to (i) rounding errors; and (ii) for some

(firm/geographic locations/year) observations, we were not able to obtain convergent estimates for the second ap-
proach.

Wages bills only for store managers, assistant store managers, and sales staff.
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