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Abstract

This paper investigates how consumer switching costs affect firms’ compatibility

choices and social welfare in network industries. Firms face a choice between two modes

of competition: make their networks incompatible and compete fiercely for market dom-

inance, or make their networks compatible and have mild competition. By incentivizing

firms to harvest their locked-in consumers rather than price aggressively for market

dominance, switching costs tip the balance in favor of compatible networks and mild

competition. A public policy that reduces switching costs also tends to make networks

incompatible, and results in small efficiency gains at best. Combining the policy with

a mandatory compatibility policy, however, can lead to sizable efficiency gains.
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1 Introduction

A product or service has network effect if its value to a consumer increases in the number of its

users. For example, with mobile phone services, there are typically discounts for on-net calls, and

therefore a user benefits from being in a network with more users, because in that case the user is

more likely to be making on-net calls and paying discounted calling fees. Similarly, with banking

services, a bank that has more customers typically has more extensive branch and ATM networks,

which make it easier for customers to access their accounts wherever they happen to be.

Two prominent features of network industries are consumers’ switching costs and firms’ com-

patibility choices. First, consumers can switch between networks but it is often costly for them to

do so (in terms of money and/or effort). For example, when a consumer switches from one mobile

phone service provider to another, she needs to tell her new phone number to all her contacts (if

phone numbers are not portable between two different providers), and she may have to pay early

termination fees. Similarly, when a consumer switches from one bank to another, she needs to

tell her new bank’s name and her new account number to all the relevant parties (direct deposits,

automatic payments, etc.). In fact, Shy (2001, Page 1) states that switching costs are one of the

main characteristics of network industries.

Second, firms sometimes make their networks compatible—here compatibility between two net-

works refers to the ability of consumers in either network to enjoy the network effect from both

networks.1 For example, mobile phone service providers may extend their on-net calling discounts

to cover each other’s networks, and banks may allow their customers to access their combined ATM

networks without extra fees.

Although each of the above two features of network industries has been analyzed in the lit-

erature, the interactions between them remain largely unexplored. Yet such interactions play an

important role in determining the industry dynamics and market outcome. Here’s a real-world

example. In 1999, mobile number portability was implemented in Hong Kong, which enabled mo-

bile phone users to retain their mobile phone numbers when changing from one carrier network to

another, thereby reducing consumers’ switching costs. In response to this policy, the mobile phone

carriers in Hong Kong reduced the compatibility among their networks (shared on-net calling dis-

counts) by adopting network-based discriminatory pricing schemes. Following the implementation

of mobile number portability, the market prices went down, and moreover, the largest network

steadily gained market share, resulting in a higher level of market concentration (Shi, Chiang, and

1In the case of direct network effects, compatibility means consumers in either network can freely interact with
consumers in the other network. In the case of indirect network effects, compatibility means the complementary
product for either network can be used on the other network.
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Rhee (2006)).

To better understand such interactions and their impact on industry dynamics and welfare, in

this paper I investigate the effects of switching costs on network compatibility using a dynamic

duopoly model with an infinite horizon. In each period, firms choose both network compatibility

and prices. I numerically solve for a Markov perfect equilibrium of the model, and study how

switching costs affect firms’ compatibility choices and social welfare.

I find that switching costs tend to induce compatible networks. Firms face a choice between

two modes of competition: make their networks incompatible and compete fiercely for market

dominance, or make their networks compatible and have mild competition. By incentivizing firms

to harvest their locked-in consumers rather than price aggressively for market dominance, switching

costs tip the balance in favor of compatible networks and mild competition. This result points to

an important tradeoff in network industries between consumer mobility and product compatibility:

when switching costs—the barrier to consumer mobility—are reduced, the firms tend to reduce the

compatibility between their networks.

Correspondingly, in welfare analysis I find that in a network industry with high switching costs,

a public policy that reduces switching costs, by itself, does not lead to a significant increase in

total surplus, as the efficiency gains from lowering switching costs are offset by the efficiency losses

from firms reducing the compatibility between their networks. However, if the switching costs

reduction policy is combined with a public policy that mandates compatibility between networks

(for an example of such policies, see Hannan (2007), which studies ATM surcharge bans), then

there are sizable efficiency gains, as such a combination makes it possible to have the best of both

worlds—low switching costs and compatible networks.

Analysis of how switching costs affect firms’ strategic choices and the market outcome is par-

ticularly needed in light of the recent growing trend of regulations that aim at reducing switching

costs in network industries in order to increase competition. For instance, in the past decade or

so, mobile number portability was implemented in more than forty countries to reduce mobile

phone users’ switching costs. In the EU retail banking and payments systems markets, the Eu-

ropean Competition Authorities Financial Services Subgroup recommends the implementation of

switching facilities (objective and up-to-date comparison sites, switching services, etc.) and account

number portability to lower switching costs (ECAFSS (2006)). While there are many studies on the

effects of switching costs on market concentration and prices, little is known about how a change in

switching costs affects firms’ network compatibility choices (shared on-net calling discounts, shared

ATM networks, etc.) Since network compatibility can have significant impact on competition and

welfare, research on this issue is much needed.
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Related Literature. One of the main findings in the literature on switching costs is that

they make markets less concentrated (see, for example, Beggs and Klemperer (1992), Chen and

Rosenthal (1996), Taylor (2003), and Chen (2016)). Adding to that literature, the current paper

examines the effects of switching costs in network industries on both the market structure and

firms’ compatibility choices, and shows that switching costs tend to induce compatible networks,

which go hand in hand with a lower level of market concentration.

Shi, Chiang, and Rhee (2006) study the effects of mobile number portability in a one-period

model. They find that by reducing consumers’ switching costs, mobile number portability leads to

lower prices and higher market concentration. In their model, the firms use the same network-based

discriminatory pricing schemes regardless of the level of switching costs; in other words, changes

in the switching costs have no effect on the firms’ network compatibility choices. The current

paper extends the analysis by incorporating dynamics, and shows that firms’ compatibility choices

crucially depend on the level of switching costs, and furthermore, changes in the firms’ compatibility

choices have important implications for welfare.2

A number of existing papers investigate whether compatibility will emerge in a standard two-

stage model without switching costs: in the first stage, firms make compatibility decisions, and

then given such decisions, they engage in price or quantity competition. Examples include Katz

and Shapiro (1986), Economides and Flyer (1997), Cremer, Rey, and Tirole (2000), Malueg and

Schwartz (2006), and Tran (2006). These papers find that products are made compatible when

firms are comparable in terms of their installed bases or some other traits.

To go beyond the initial emergence of compatibility and take account of the evolution of the

market over time, one needs to study the long-run industry dynamics. A growing body of work

explores long-run market structure issues in network industries, such as Mitchell and Skrzypacz

(2006), Llobet and Manove (2006), Driskill (2007), Markovich (2008), and Cabral (2011), although

they do not model firms’ compatibility choices.

Chen, Doraszelski, and Harrington (2009) endogenizes product compatibility in a dynamic

stochastic setting and investigates the issue of whether compatibility can be maintained in the long

run. They find that products are compatible when firms have similar installed bases, and when

random forces result in one firm having a bigger installed base, strategic pricing tends to prevent

the installed base differential from expanding to the point that incompatibility occurs. Their paper

does not consider consumer switching costs.

2In a related paper, though not in the context of switching costs, Farrell and Saloner (1986) also study the impli-
cations of compatibility on welfare. The focus of their paper is on the tradeoff between standardization (compatible
products) and variety. They find that if standardization is the unique equilibrium, then it also maximizes welfare.
However, if there exist multiple equilibria, then it is possible that an equilibrium involves standardization when the
optimum involves variety.
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Chen (2016) investigates the effects of switching costs in network industries using a dynamic

model of price competition, and provides a series of results that characterize how switching costs

affect market concentration and prices in network industries. The paper does not consider firms’

compatibility choices.

The current paper adds to the above literature by incorporating consumer switching costs into

a dynamic model in which firms make both compatibility and price decisions. This allows me to

study the long-run effects of switching costs on firms’ compatibility choices and social welfare and

examine the policy implications.

This paper also joins a growing literature that uses computational dynamic oligopoly equilibrium

models to derive policy implications. For example, Gowrisankaran and Town (1997) investigate

the effects of changes in health care policies and taxation of nonprofits using a dynamic model

of the hospital industry. Benkard (2004) studies the effects of an antitrust policy that restricts

concentration in the commercial aircraft industry. Tan (2006) analyzes how anti-smoking policies

affect the market structure of the U.S. cigarette industry. Ching (2010) studies the welfare effects

of shortening the expected generic approval time in the prescription drug market. Filson (2012)

examines the consequences if the U.S. adopts price controls or one or more non-U.S. countries

abandon their controls in the pharmaceutical industry.

The rest of the paper is organized as follows. The next section presents the model. Section 3

reviews the dynamic equilibria of the model. Section 4 discusses the effects of switching costs on

the equilibrium outcome. Section 5 examines the welfare effects of two public policies related to

switching costs and network compatibility. Section 6 concludes.

2 Model

This section describes a dynamic duopoly model of network industries in which firms have the

option to make their networks compatible and consumers face switching costs. This model builds

on Chen, Doraszelski, and Harrington (2009) and Chen (2016), and adds the interaction between

switching costs and network compatibility. Since the objective of this paper is to provide some

general insights about how switching costs affect firms’ compatibility choices and social welfare,

the model is not tailored to any particular industry. Instead, a more generic model is developed to

capture the key features of many network markets featuring consumers’ switching costs and firms’

compatibility choices.
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2.1 State Space and Firm Decisions

The model is cast in discrete time with an infinite horizon. Two firms sell to a sequence of buyers

with unit demands. Each firm sells a single product and sets price. The firms’ products are referred

to as the inside goods, and are durable subject to stochastic death. There is also an outside good

(“no purchase”), indexed 0. The outside good (also called “outside alternative” or “outside option”

in the literature) refers to the no-purchase option.3 In the model, what this outside good does is

that it makes the so called “market coverage” endogenous, i.e., with an outside good, the combined

market share of the firms is endogenously determined. In comparison, in models without such an

outside good, the firms’ combined market share is exogenously fixed at 100% (the “full market

coverage” assumption).

At the beginning of period t, a firm is endowed with an installed base which represents users of

its product. bit ∈ {0, 1, ...,M} denotes the installed base of firm i in period t, where M represents

the size of the consumer population and is the upper bound on the sum of the firms’ installed

bases. b0t = M − b1t − b2t is the outside good’s “installed base”, though it does not offer network

benefits. The industry state is bt = (b1t, b2t), with state space Ω = {(b1t, b2t)|0 ≤ bit ≤M, i = 1, 2;

b1t + b2t ≤M}.

Assume that the firms employ stationary strategies, i.e., their strategies are not explicitly a

function of time t. Given stationarity, in the rest of the paper I drop the time subscript t, and

use the prime symbol (′) to denote next-period values. For example, in what follows, b = (b1, b2)

denotes the state in the current period, and b′ = (b′1, b
′
2) denotes the state in the next period.

In each period, given (b1, b2), the firms engage in a two-stage game, choosing compatibility in

the first stage and prices in the second stage. In the first stage, each firm decides whether or not

to “propose compatibility” with the other firm. Let di ∈ {0, 1} be the compatibility choice of firm

i, where di = 1 means “propose compatibility.” Products of the two firms are “compatible” if and

only if d1 ·d2 = 1. After compatibility is determined and revealed to the firms, they simultaneously

choose prices in the second stage. In Subsection 2.4 below, I provide a more detailed discussion of

how this two-stage game in each period fits into the Markov perfect equilibrium framework.

The compatibility studied in this paper is two-way compatibility, which allows consumers on

both networks to get bigger network benefits. In the real world, in some cases compatibility is

two-way, and in some cases it is one-way (which expands the network benefits for consumers on

one network only). As an example of two-way compatibility, in the streaming media industry,

3The modeling of an outside good is a commonly used approach in the discrete choice literature. For instance,
Anderson, de Palma, and Thisse (1992, p. 80) gives the following example to illustrate the outside good: in the
context of choosing a restaurant, the inside goods are the different restaurants, while the outside good may be
“eating at home”. Note that the outside good does not refer to money or a medium of exchange, and furthermore, a
consumer who buys one of the inside goods does not choose the outside good.
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Apple’s QuickTime and Microsoft’s Windows Media Player can playback and save in each other’s

proprietary format, allowing users of either piece of software to enjoy the network benefits from

both networks. In contrast, in the late 80’s, Apple Computers installed the so called “HyperDrive”

diskette drive on their Macintosh computers, which allowed Macintosh users to read DOS-formatted

diskettes produced on Intel-based computers, but files on Macintosh-formatted diskettes were not

readable on Intel-based DOS computers. This is an example of one-way compatibility (see Manenti

and Somma (2002) for a discussion of these and several other examples of two-way and one-way

compatibility). This paper focuses on two-way compatibility and abstracts from one-way compati-

bility.

2.2 Consumers

Following prior studies on industry dynamics in network markets, such as Chen, Doraszelski, and

Harrington (2009) and Cabral (2011), I assume that demand in each period comes from one random

consumer. This consumer chooses one among the three goods. r ∈ {0, 1, 2} denotes the good that

this consumer is loyal to. A consumer may be loyal to a firm’s product because she previously used

that product and now her product dies and she returns to the market.4 Assume r is distributed

according to Pr(r = j|b) = bj/M, j = 0, 1, 2, so that a larger installed base implies a larger expected

demand from loyal consumers.

Utility Functions. Below I first present the consumers’ utility functions, and then explain

them. For the consumer who makes a purchasing decision in the current period, assuming that she

is loyal to good r, the utility that she gets from buying good i is

uri(b, d, p) = vi + 1(i 6= 0)θg(bi + d1d2b−i)− pi − 1(r 6= 0 and i 6= 0 and i 6= r)k + εi. (1)

Besides this purchase-decision-making consumer, the rest of the consumers do not make a

purchasing decision in the current period and simply use the products that they have (for those

whose products died and who do not make a purchasing decision, assume that they use the outside

good).5 These consumers do not pay a price, and do not incur switching costs. The utility that

4In this paper, I assume product deaths but not consumer deaths, and therefore this is a model with no newly-
entering consumers.

5In this model, a consumer who has purchased before does not return to the market and make another purchasing
decision until her product dies. This assumption follows the approach in prior studies such as Beggs and Klemperer
(1992), Chen, Doraszelski, and Harrington (2009), and Cabral (2011), which assume that in a durable goods market,
purchasing decisions are made only when an existing product dies, or when a consumer dies and is replaced with a
new consumer.
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such a consumer gets, assuming that she uses product i, is

wi(b, d) = vi + 1(i 6= 0)θg(bi + d1d2b−i) + εi. (2)

These consumers who do not make a purchasing decision in the current period do not contribute

to the demand in the current period, but the expression for wi, along with the expression for uri,

will be useful when we compute consumer surplus later in the paper.

In the above two equations, vi is the intrinsic product quality, which is fixed over time and is

common across firms: vi = v, i = 1, 2. Since the intrinsic quality parameters affect demand only

through the expression v − v0, without loss of generality I set v = 0, and consider different values

for v0.

bi + d1d2b−i is the effective installed base of firm i given the compatibility choices, where b−i

is the installed base of firm i’s rival. The increasing function θg(.) captures network effects, where

θ ≥ 0 is the parameter controlling the strength of network effect.6 There are no network effects

associated with the outside good. The results reported below are based on linear network effects,

that is, g(bi) = bi/M. I have also allowed g to be convex, concave, and S-shaped, and the main

results are robust.

pi denotes the price for good i. The price of the outside good, p0, is always zero.

The nonnegative constant k denotes switching cost, and is incurred if the consumer switches

from one inside good to the other. A consumer who switches from the outside good to an inside

good incurs a start-up cost, which is normalized to 0. Increasing the start-up cost above 0 has the

effect of lowering the inside goods’ intrinsic quality relative to that of the outside good.

εi is the consumer’s idiosyncratic preference shock and is assumed to have zero mean. (ε0, ε1, ε2)

and r are unknown to the firms when they set prices.

Choice Probabilities. Assume εi is distributed type I extreme value, independent across

products, consumers, and time. We then have a logit model for the consumer who makes a pur-

chasing decision. The probability that a consumer who is loyal to good r buys good i is thus

φri(b, d, p) =
exp(vi + 1(i 6= 0)θg(bi + d1d2b−i)− pi − 1(r 6= 0 and i 6= 0 and i 6= r)k)∑2

j=0 exp(vj + 1(j 6= 0)θg(bj + d1d2b−j)− pj − 1(r 6= 0 and j 6= 0 and j 6= r)k)
,

(3)

6Note that the network effects are based on the installed bases at the beginning of the period, i.e, before the
purchase-decision-making consumer chooses her product. One motivation for this specification is that when network
effects come from a complementary stock which increases the value of the network, it often takes time for the
developers to build up this complementary stock (Llobet and Manove (2006)). For example, the network of users of a
computer operating system benefit from the complementary stock of software applications; since the development of
these software applications takes time, the size of this complementary stock is proportional to the size of the installed
base with a lag.
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where b is the vector of installed bases, d is the vector of compatibility choices, and p is the vector

of prices.

The Assumption of Myopic Consumers. In this model, the consumer buys the good

that offers the highest current utility. I am then assuming that consumers make myopic decisions,

which is a limitation of the present study. While in some durable goods markets there is evidence

that consumers behave myopically (for example, see Miao (2010) for evidence in the printer and

cartridge market), in some other durable goods markets there is evidence that consumers do not

behave myopically (for example, see Busse, Knittel, and Zettelmeyer (2013) for evidence in the

automobile and gasoline market). A more general model would allow the possibility that consumers

are forward-looking, and ideally also vary the degree to which consumers are forward-looking to

assess how the results are affected. The parsimonious specification of consumers’ decision-making

in this paper allows rich modeling of firms’ choices and industry dynamics. Allowing consumers to

be forward-looking with rational expectations in the presence of network effects, switching costs,

and compatibility decisions is an important but challenging extension of the current work.

Real-World Examples of Switching Costs and Network Compatibility. In this model,

switching costs are unchanged when firms make their networks compatible, which fits the reality

in some real-world industries.

Consider, for instance, ATM networks in the banking industry, which provide a good example

for a market featuring network effects and firms’ compatibility decisions (Shy (2001, pp. 196-

197)). A bank with a larger customer base can afford to install and operate a larger ATM network.

Therefore, its customers benefit from a larger number of geographically dispersed ATMs, which

make it easier for customers to access their accounts wherever they happen to be. Two banks can

make their ATM networks compatible by allowing consumers from each network to access the ATMs

in the other network for free. Note that when two banks make their ATM networks compatible, a

consumer who switches from one bank to the other still incurs the switching cost as she still needs

to inform all the relevant parties (direct deposits, automatic payments, etc.) of her new account

number.

As another example, consider mobile phone networks, which feature the so-called tariff-mediated

network effects (Laffont, Rey, and Tirole (1998)): mobile phone service providers often provide “on-

net” calling discounts, which are reduced calling rates offered to customers for calling others on the

same network. They may take the form of lower rates for on-net calls, or a certain number of “free”

on-net minutes as part of a subscription package; see Shi, Chiang, and Rhee (2006) and Zucchini,

Claussen, and Trg (2013) for examples in Hong Kong and Germany, respectively. Two mobile
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service providers can make their networks compatible by extending their on-net calling discounts

to cover each other’s network. Note that when two providers make their networks compatible, a

consumer who switches from one network to the other still faces the switching cost as she still

needs to pay the early termination fee and incur procedural costs such as setting up automatic bill

payments with the new provider.

In some other cases, switching costs may be reduced when firms make their products compatible.

For example, if two producers of computer-aided design (CAD) software (which many engineers

use to design structures/models) make their products compatible by adopting the same standard,

a consumer who switches will incur smaller switching costs: while she still needs to incur learning

costs, due to the compatibility she no longer needs to convert her old files to a new format in

order to use them within the new software. This paper focuses on the first type of switching

costs (unchanged when networks are made compatible), and leaves the more general case which

encompasses both types of switching cost to future work.

2.3 Depreciation and Transition

In each period, each unit of a firm’s installed base independently depreciates with probability

δ ∈ [0, 1], due to product death. Let ∆(xi|bi) denote the probability that firm i’s installed base

depreciates by xi units. We have

∆(xi|bi) =

(
bi
xi

)
δxi(1− δ)bi−xi , xi = 0, ..., bi, (4)

as xi is distributed binomial with parameters (bi, δ). Accordingly E [xi|bi] = biδ, and therefore

the expected size of the depreciation to a firm’s installed base is proportional to the size of that

installed base. When the firms’ installed bases depreciate, the number of unattached consumers,

b0 = M − b1− b2, goes up by the same number as the aggregate depreciation, and the total market

size is fixed (at M).

Let qi ∈ {0, 1} indicate whether or not firm i makes the sale. Firm i’s installed base changes

according to the transition function

Pr(b′i|bi, qi) = ∆(bi + qi − b′i|bi), b′i = qi, ..., bi + qi. (5)

If the joint outcome of the depreciation and the sale results in an industry state outside of the state

space, the probability that would be assigned to that state is given to the nearest state(s) on the

boundary of the state space.
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2.4 Markov Strategies and Bellman Equation

In this model, there are two stages in each period. The firms simultaneously make compatibility

decisions in the first stage, then simultaneously make price decisions in the second stage.

In the Markov perfect equilibrium framework, prior studies have used similar settings in which

there is a two-stage game in each period in an infinite-horizon model. For instance, in the infinite-

horizon model in Fershtman and Pakes (2000), there are two stages in each period. In the first

stage, the incumbents decide whether or not to exit and a potential entrant decides whether or not

to enter, and in the second stage, the remaining firms simultaneously choose price and investment.

A similar two-stage structure is also used in Chen, Doraszelski, and Harrington (2009), among

others. In all of these papers, in each period, the firms make their second-stage decisions after the

first-stage decisions are known.

Markov Strategies. A Markov strategy is one that depends only on state variables that

summarize the history of the game. In the current model, the industry state b is a summary of

the final outcomes of the sequence of two-stage games prior to this period. A Markov strategy for

a firm is a function that maps from the state space Ω into D × F , where D = {0, 1} is the set of

compatibility choices and F is the set of the price policy functions, where a price policy function fi

maps from Ω×D2 into R; that is, given the state and the firms’ compatibility choices, fi prescribes

a price for firm i.

In equilibrium, since the compatibility policy functions are functions of the state, the price

policy functions, being functions of the state and the compatibility choices, can be expressed as

functions of the state alone.

Bellman Equation. Below I first present the Bellman equation, and then explain it. For

each b in the state space Ω, the value of firm i satisfies

Vi(b) = max
di∈{0,1}

Ui(b, di, d−i(b)), (6)

where

Ui(b, d) = max
pi

Er|b

φri(b, d, pi, p−i(b, d))pi + β

2∑
j=0

[
φrj(b, d, pi, p−i(b, d))

∑
b′∈Ω

[
Pr(b′|b, qj = 1)Vi(b

′)
]] .

(7)

In the above two equations, d−i(b) is the compatibility choice of firm i’s rival in equilibrium

(given the installed bases), p−i(b, d) is the price charged by firm i’s rival in equilibrium (given

the installed bases and the compatibility choices), the (constant) marginal cost of production is
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normalized to zero, and β ∈ [0, 1) is the discount factor.

Eq. (6) is firm i’s Bellman equation, where Vi(b) is firm i’s value function and denotes the

expected net present value of current and future profits of firm i in state b before the compatibility

decisions have been made. In comparison, Ui(b, d), defined in Eq. (7), denotes the expected net

present value of current and future profits of firm i in state b after the compatibility decisions have

been made and revealed to both firms. Note that Vi(·) appears on the right-hand side of Eq. (7),

and therefore enters into the right-hand side of Eq. (6) through Ui(·). Hence Eq. (6), the Bellman

equation, provides a recursive definition of the value function Vi(·).

The max operator in Eq. (6) corresponds to firm i’s first-stage decision, in which it decides

whether or not to propose compatibility, conditional on the state. The max operator in Eq. (7)

corresponds to firm i’s second-stage decision, in which it chooses a price to maximize its expected

payoff, conditional on the state and the two firms’ first-stage compatibility decisions.

To understand Eq. (7), note that the term V ij(b) ≡
∑

b′∈Ω [Pr(b′|b, qj = 1)Vi(b
′)], which ap-

pears at the end of the right-hand side of Eq. (7), is the expected continuation value to firm i

conditional on firm j winning the purchase-decision-making consumer in the current period, where

the expectation is taken over the probability distribution of the next-period state b′ given the

current-period state b and the assumption that firm j wins the purchase-decision-making consumer

in the current period (i.e., qj = 1). We then obtain the expected continuation value to firm i as the

weighted average of the term
∑

b′∈Ω [Pr(b′|b, qj = 1)Vi(b
′)], where the weights are the consumer’s

choice probabilities φrj(·), j = 0, 1, 2 (note that the choice probabilities sum to 1). Overall, on the

right-hand side of Eq. (7), firm i chooses a price to maximize its expected payoff conditional on

the state and the compatibility decisions, where the expectation is taken successively over (1) the

probability distribution of the next-period state b′, (2) the consumer’s choice probabilities, and (3)

the probability distribution of r given the state b.

First-Order Conditions for the Prices. Let V ij(b) denote
∑

b′∈Ω [Pr(b′|b, qj = 1)Vi(b
′)].

Differentiating the objective function in the maximization problem in Eq. (7) with respect to pi

and using the properties of logit demand (see Train (2009, p. 58)) yields the first-order condition7

Er|b

−φri(1− φri)(pi + βV ii) + φri + βφri
∑
j 6=i

(
φrjV ij

) = 0, (8)

where φri, φrj , V ii, and V ij are shorthand for φri(b, d, pi, p−i(b, d)), φrj(b, d, pi, p−i(b, d)), V ii(b),

and V ij(b), respectively, to simplify the notation. The pricing strategies p(b, d) are then the solution

7See Online Appendix 1 for the derivation of the first-order condition.
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to the system of first-order conditions.

2.5 Equilibrium

I focus attention on symmetric Markov perfect equilibria (MPE), where symmetry means agents

with identical states are required to behave identically.8 Following the literature on numerically

solving dynamic stochastic games (Pakes and McGuire (1994), Pakes and McGuire (2001)), I restrict

attention to pure strategies. A symmetric MPE in pure strategies exists, which follows from the

existence proof in Doraszelski and Satterthwaite (2010). Online Appendix 2 provides a description

of the software and code used in computing the equilibrium in this paper.

2.6 Parameterization

The key parameters of the model are the quality of the outside good v0, the rate of depreciation

δ, the strength of network effect θ, and the switching cost k. I consider v0 ∈ {−5,−4,−3} and

use v0 = −4 as the baseline, which represents a case in which there exists an outside good but it

is inferior compared to the inside goods, so that most but not all of the market is covered by the

firms (a reasonable approximation of real-world examples such as the mobile phone industry and

the banking industry). The lower bound for δ is zero and corresponds to the unrealistic case in

which installed bases never depreciate. On the other hand, if δ is sufficiently high then the industry

never takes off. I consider δ ∈ {0.05, 0.06, 0.07, 0.08} and use δ = 0.06 as the baseline. I consider

the following values for the strength of network effect and the switching cost: θ ∈ {1, 1.5, ..., 4},

and k ∈ {0, 0.5, ..., 3}. The remaining parameters are held constant at M = 20 and β = 1
1.05 , the

latter of which corresponds to a yearly interest rate of 5%.

While the model is not intended to fit any specific industry, the own-price elasticities for the

parameterizations that I consider are reasonable compared to the findings in several empirical

studies. Specifically, the own-price elasticities for the baseline parameterizations range from −1.08

to −0.48. These numbers are in line with the own-price elasticities reported in Gandal, Kende, and

Rob (2000) (−0.54 for CD players, computed from the results reported in the paper), Clements and

Ohashi (2005) (ranging from −2.15 to −0.18 for video game consoles), and Dick (2008) (ranging

from −0.87 to −0.12 for banking services). Additionally, the aggregate market shares of the inside

goods for the baseline parameterizations range from 86.9% to 99.3%. These numbers are consistent

with, for instance, the cellular mobile penetration rates in OECD countries, which averaged at

96.1% in 2007 (OECD (2009)).

8With two firms, symmetry means firm 2’s choices in state (b1, b2) = (̂b, b̃) are identical to firm 1’s choices in state

(b1, b2) = (̃b, b̂).
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3 Types of Equilibria

In this model three types of equilibria emerge: Rising, Tipping, and Compatibility.

3.1 Rising Equilibrium

A Rising equilibrium (depicted in Figure 1) occurs when both network effect and switching cost

are weak. A firm’s price rises in its own installed base and falls in its rival’s installed base (see

Panel 1, which plots firm 1’s equilibrium price against the firms’ installed bases). Products are

generally incompatible, except possibly when the firms have identical installed bases (see Panel

2, which reports the compatibility region; an asterisk indicates a state in which both firms prefer

compatibility and thus products are compatible).

Panels 3 and 4 show the evolution of the industry structure over time. They plot the 15-

period transient distribution of installed bases (which gives the frequency with which the industry

state takes a particular value after 15 periods, starting from state (0, 0) in period 0) and the

limiting distribution (which gives the probability distribution of the state as the number of periods

approaches infinity), respectively. The unimodal transient distribution and limiting distribution

show that the market is generally fragmented, as the industry spends most of the time in fairly

symmetric states.

Panel 5 plots the probability that a firm makes a sale, and Panel 6 plots the resultant forces,

which report the expected movement of the state from one period to the next (for visibility of

the arrows, the lengths of all arrows are normalized to 1, therefore only the direction, not the

magnitude, of the expected movement is reported). The larger firm wins the consumer with a

higher probability (Panel 5). However, the larger firm’s expected size of depreciation is also larger.

In a Rising equilibrium, the difference in expected depreciation more than offsets the difference in

expected sales, and as a result the difference in installed bases shrinks in expectation (Panel 6).

When the market has considerable network effect and/or switching cost, two types of equilibria

occur: Tipping equilibrium and Compatibility equilibrium. They are the focus of our attention,

and are discussed below.

3.2 Tipping Equilibrium

A Tipping equilibrium (depicted in Figure 2) occurs when the network effect is strong and the

switching cost is modest. There is a deep trench along and around the diagonal of the price function

(Panel 1), indicating intense price competition when firms’ installed bases are of comparable size.

Once a firm pulls ahead, the smaller firm stops competing for market dominance and raises its price,
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thereby propelling the larger firm into a dominant position. In a Tipping equilibrium, products are

almost always incompatible (in Panel 2, the products are incompatible except in two symmetric

states).

The presence of strong network effects, which give the larger firm a significant quality advantage

given that products are mostly incompatible, is the reason the smaller firm stops pricing aggressively

once its rival pulls ahead. If instead it were to price aggressively and try to become the dominant

firm, it would need to price at a substantial discount and such low pricing would have to continue for

a long period of time in order to eliminate the installed base differential. Since such an aggressive

strategy is not profitable, the smaller firm optimally chooses to raise its price and accept having a

low market share.9

The transient distribution (Panel 3) and the limiting distribution (Panel 4) are bimodal. Over

time, the industry moves towards asymmetric states, and the market tends to be dominated by

a single firm.10 The larger firm enjoys a significant advantage in expected sales (Panel 5), which

results from the smaller firm’s willingness to surrender (by not pricing aggressively), and gives rise

to the forces that pull the industry away from the diagonal once an asymmetry arises (Panel 6).

3.3 Compatibility Equilibrium

A Compatibility equilibrium (depicted in Figure 3) occurs when the switching cost is strong. Prod-

ucts are compatible when firms have comparable installed bases (Panel 2). In the compatibility

region, prices are high, peaking at the point where each firm has half of the consumers (Panel

1). Off of the peak, the smaller firm drops its price in order to bring the industry back to the

peak. In particular, around the border of the compatibility region, the smaller firm lowers its price

significantly, in an effort to keep the industry in the compatibility region. Away from the peak, the

larger firm also drops its price, but that’s a response to the smaller firm’s aggressive pricing rather

than an effort to achieve market dominance.

The switching cost segments the market into submarkets, with each submarket consisting of

consumers that are locked-in by a firm. Firms focus on charging high prices to “harvest” their

locked-in consumers, rather than competing fiercely for market dominance. As a result, the market

9Given the stochastic nature of the game, tipping can be reversed over time, though with small probabilities.
Consider a market that has tipped in favor of firm 2. Although firm 1 is the smaller firm, it still has a positive
probability of making a sale, albeit much smaller than firm 2’s probability of making a sale (for example, in Panel 5
of Figure 2, the smaller firm makes a sale with a probability of about 20%, whereas the larger firm makes a sale with
a probability of about 80%.) Consequently, given the randomness, with a small but positive probability, the smaller
firm can be successful in making a sale several periods in a row, thereby reversing the market tipping.

10A Tipping equilibrium does not mean zero market share for the smaller firm. Instead, it means a rather asym-
metric division of the market share between the two firms, with the larger firm occupying the majority of the market,
leaving a very small share for the smaller firm.
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tends to be fragmented, as shown by the unimodal transient distribution and limiting distribution

in Panels 3 and 4, respectively.

The resultant forces (Panel 6) show global convergence towards the symmetric modal state.

Outside the compatibility region, the larger firm enjoys a larger expected sale, but inside the

compatibility region, the smaller firm has an advantage (Panel 5). Such an advantage for the

smaller firm results from its aggressive pricing away from the peak, aimed at keeping the industry

in the compatibility region.

3.4 Comparing Tipping and Compatibility Equilibria: Evolution of the Market

The infinite-horizon dynamic model in this paper allows us to gain more insights into the evolution

of the market over time and better understand the contrast between the Tipping equilibrium and

the Compatibility equilibrium.

Figure 4 plots the evolution of the market over time, from period 0 to period 100, starting from

state (0,0) in period 0. The left column of panels plot for a Tipping equilibrium (the one depicted in

Figure 2), and the right column of panels plot for a Compatibility equilibrium (the one depicted in

Figure 3). From top to bottom, the four rows of panels plot the evolution of the installed bases, the

probability of compatible networks, the prices, and the two firms’ probabilities of sale, respectively,

The solid lines show the expectation (based on the transient distributions) of the variables for the

larger firm, and the dashed lines show those for the smaller firm. For the purpose of comparison,

the scale and location of the y-axis are the same for panels in the same row.

First consider the firms’ installed bases. In the Tipping equilibrium (Panel 1), the difference

between the two firms’ installed bases widens over time, and in the long run, the larger firm has

an installed base more than twice as large as the smaller firm. In comparison, in the Compat-

ibility equilibrium (Panel 2), the difference between the two firms’ installed bases remains small

throughout, and in the long run, there isn’t a firm that vastly dominates the other.

Next consider the compatibility between the two networks. In the Tipping equilibrium (Panel

3), the probability of compatible networks is close to 0 throughout. In contrast, in the Compatibility

equilibrium (Panel 4), after some initial fluctuations, the probability of compatible networks steadily

increases to above 0.5, and stabilizes at 0.55 in the long run.

Next consider the firms’ prices. In the Tipping equilibrium (Panel 5), the firms charge very low

prices in the first few periods as they compete fiercely for an early advantage. After the first few

periods, one of the firms has obtained an installed base advantage, and both firms increase their

prices substantially. In the long run, the larger firm charges a higher price than the smaller firm,

though not by much: the price stabilizes at 1.51 for the larger firm and 1.18 for the smaller firm.
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In comparison, in the Compatibility equilibrium (Panel 6), the prices gradually increase over time,

and in the long run the larger firm charges a price that is considerably higher than the smaller

firm’s: the long-run price is 3.05 for the larger firm and 1.98 for the smaller firm.

Lastly consider the firms’ probabilities of sale. In the Tipping equilibrium (Panel 7), throughout

the evolution of the market the larger firm enjoys a substantial advantage in probability of sale.

This persistent advantage results from the fact that the larger firm provides the consumers with

a much larger network and yet charges a price that is not much higher than the smaller firm’s.

In contrast, in the Compatibility equilibrium (Panel 8), the two firms have similar probabilities of

sale throughout the evolution of the market. The reason for this pattern is that the larger firm’s

network is not much larger than the smaller firm’s and the two networks are often made compatible,

and yet the larger firm’s price is considerably higher than the smaller firm’s.

The only difference between the two equilibria plotted in Figure 4 is in the switching cost:

k = 0.5 for the left column (Tipping equilibrium) and k = 2.5 for the right column (Compatibility

equilibrium). Therefore, the results presented in Figure 4 illustrate that an increase in the switching

cost in network industries can drastically change the firms’ behavior, from fierce competition and

incompatible networks to mild competition and compatible networks, resulting in a very different

path for the evolution of the market.

4 Switching Costs and Equilibrium Outcome

In this model, the magnitude of the switching cost has significant impact on the equilibrium out-

come, including the type of the equilibrium, firms’ compatibility choices, market concentration,

and prices, as illustrated in Figure 5.

4.1 Type of Equilibrium and Network Compatibility

Panel 1 in Figure 5 shows the type of equilibrium that occurs for different combinations of θ

(strength of network effect) and k (switching cost). When the network effect is modest (θ ≤ 2),

the outcome is a Rising equilibrium at low switching cost and a Compatibility equilibrium at high

switching cost. When there is strong network effect (θ > 2), the outcome is a Tipping equilibrium

at modest switching cost but changes to a Compatibility equilibrium at high switching cost.

Panel 2 plots the probability with which the networks are made compatible (based on the

limiting distribution). The panel shows that when the switching cost is low, the probability of

compatible networks is small for modest network effect and essentially zero for strong network

effect. However, in both cases, this probability increases significantly as the switching cost increases,
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indicating that higher switching cost induces firms to make their networks compatible. For example,

with θ = 1.5, the probability of compatible networks is 0.09 when k = 0 (Rising equilibrium), but

increases to 0.80 when k = 3 (Compatibility equilibrium). With θ = 3, the probability of compatible

networks is 0.01 when k = 0 (Tipping equilibrium), but increases to 0.61 when k = 3 (Compatibility

equilibrium).

4.2 Intuition for the Above Results

In this model, the two main factors that determine the market outcome are network effects and

switching costs. To better understand the above results, we now consider how those two factors

affect the firms’ incentives and consequently the type of equilibrium that occurs in the market.

Network Effects Alone. The main property of network effects is that they tend to give rise

to a “winner-takes-most” market structure: with strong network effects, a firm that has an installed

base advantage over its rival is able to attract an outsized fraction of new buyers and switchers,

allowing it to get an even bigger installed base advantage. This “snowball” effect leads to market

tipping and propels the larger firm to a dominant position.

Anticipating this winner-takes-most tendency in the market, the firms compete fiercely (by

charging very low prices) when they have similar installed bases, because they know that an early

size advantage can propel them to a dominant position and allow them to reap high profits in the

future. Such incentives of the firms are what give rise to the Tipping equilibrium, where there is a

deep trench along and around the diagonal in a firm’s price policy function (Panel 1 of Figure 2).

In such an equilibrium, since the larger firm strives to achieve and maintain market dominance, it

refuses compatibility in order to maintain its advantage over the smaller firm.

The above discussion sheds light on the changes in the type of equilibrium as we move around in

the parameter space. In Panel 1 of Figure 5, when switching costs are low (k ≤ 1), the equilibrium

changes from Rising to Tipping when θ exceeds 2. The intuition is that when θ exceeds a certain

threshold, network effects are strong enough to generate the “snowball” effect and market tipping,

thereby changing the equilibrium from Rising to Tipping.

Switching Costs Alone. The main property of switching costs is that they heighten the

switching barrier for locked-in consumers and thereby lower the intensity of competition between

the two firms. When switching costs make it more difficult for locked-in consumers to switch, the

firms shift their focus from competing for each other’s consumers to harvesting their own locked-in

consumers and attracting new consumers (who are not loyal to either firm and do not face switching

costs). To do so, the firms (1) charge high prices, and (2) agree to make their networks compatible
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in order to increase the value of their products relative to the outside good. Such incentives of the

firms are what give rise to the Compatibility equilibrium, where firms charge high prices and often

make their networks compatible. In Panel 1 of Figure 5, when network effects are low (θ ≤ 2), the

equilibrium changes from Rising to Compatibility when k exceeds 0.5 (for θ ≤ 1.5) or 1 (for θ = 2).

Both Network Effects and Switching Costs. When both network effects and switching

costs are strong, there is a tension between those two factors: while network effects tend to give

rise to fierce competition and incompatible networks (Tipping equilibrium), switching costs tend

to give rise to mild competition and compatible networks (Compatibility equilibrium). The type

of equilibrium that occurs in the market is then determined by the relative strengths of those two

factors. For example, in Panel 1 of Figure 5, if we hold k fixed at 1.5 and increase θ from 2.5 to 3,

then network effects come to dominate switching costs and the type of equilibrium changes from

Compatibility to Tipping. In contrast, if we hold θ fixed at 3 and increase k from 1.5 to 2, then

switching costs come to dominate network effects and the type of equilibrium changes from Tipping

to Compatibility.

4.3 Market Concentration and Price

As changes in the switching cost alter the type of the equilibrium in the market and the firms’

compatibility choices, one consequence is that the level of market concentration is affected. Panel

3 in Figure 5 plots the expected long-run Herfindahl-Hirschman Index (HHI; based on installed

bases and weighted by the probabilities in the limiting distribution). A higher HHI indicates a

more concentrated market. When the network effect is modest (θ ≤ 2), the HHI is low throughout.

However, when there is strong network effect (θ > 2), the HHI starts with a high level at low switch-

ing cost but drops significantly at high switching cost. In this case, the market is dominated by a

single firm at low switching cost (high market concentration in a Tipping equilibrium), but becomes

fragmented at high switching cost (low market concentration in a Compatibility equilibrium).

Panel 4 plots the average price (weighted by the firms’ expected sales and the probabilities

in the limiting distribution). The panel shows that in general, an increase in the switching cost

increases the average price.11 For example, with θ = 1.5, the average price is 1.52 when k = 0

(Rising equilibrium), but increases to 2.64 when k = 3 (Compatibility equilibrium). With θ = 3,

the average price is 1.35 when k = 0 (Tipping equilibrium), but increases to 2.82 when k = 3

(Compatibility equilibrium).

11An exception is that when both the network effect and the switching cost are modest, a small increase in the
switching cost can result in a reduction in the average price. In Panel 4 of Figure 5, this occurs when θ ≤ 2 and k is
increased from 0 to 0.5. This pattern is consistent with the finding in recent literature that in non-network industries,
small switching costs can lead to lower prices (see, for example, Cabral (2009)).
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We next examine the policy and welfare implications of these changes brought about by switch-

ing costs.

5 Public Policies and Welfare

In this section we evaluate two public policies in network industries related to switching costs and

compatibility. The first policy is a reduction in switching costs, such as the implementation of

mobile number portability in the mobile phone industry and the implementation of account num-

ber portability in the banking industry.12 The second policy is mandating compatibility between

different networks, such as shared on-net calling discounts and shared ATM networks.

5.1 Switching Costs Reduction and Mandatory Compatibility

Figure 6 shows the results from an evaluation of the above two public policies. From left to right,

the two columns of panels correspond to θ = 2 and 3, respectively. Each panel plots how an

equilibrium outcome variable is affected when switching costs are varied between 0 and 3. From

top to bottom, the five rows of panels pertain to network compatibility, average price, producer

surplus (PS), consumer surplus (CS), and total surplus (TS), respectively. Here, compatibility

refers to the probability that products are made compatible, PS is the expected industry profits

per period, CS is the expected consumer surplus per period, and TS is the sum of PS and CS.

All five measures are weighted averages using the probabilities in the limiting distribution as the

weights. The precise definitions for PS and CS are given in Online Appendix 3.

In each panel in Figure 6, three compatibility regimes are considered. The first regime is

endogenous compatibility. This is the laissez faire regime and corresponds to the model that we

have been analyzing so far. The second regime is mandatory compatibility, in which firms optimize

with respect to price only, while we impose the condition that networks are compatible. We also

consider a third regime, prohibited compatibility, in which firms optimize with respect to price only,

given that networks are incompatible. This regime is not a policy being considered by regulators,

and is included in the analysis for comparison purposes only.

Compatibility. Consistent with our discussions in the previous section, the first row of panels

in Figure 6 show that under the endogenous compatibility regime (the dash-dot line), as switching

12In this paper, switching costs k is a fixed parameter from the firms’ point of view. However, from the policy
point of view, k is a parameter in the market that can be changed by the regulator. The analysis of a switching
costs reduction policy is therefore a comparative statics analysis, i.e., the comparison of different economic outcomes
before and after a change in an underlying exogenous parameter (in this case, the exogenous parameter that is being
changed is k).
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costs are reduced from 3 to 0, firms become less likely to make their networks compatible, bringing

the industry farther away from the mandatory compatibility regime (the solid line) and closer to

the prohibited compatibility regime (the dotted line).

Price and Producer Surplus. Rows 2 and 3 show that reducing switching costs lowers

average price and PS (except when switching costs are small, specifically when k ≤ 0.5) under each

of the three compatibility regimes.13 This is consistent with the intuition that as it becomes easier

for consumers to switch, firms focus more on competing for each other’s customers and less on

exploiting their locked-in customers. This results in a higher intensity of price competition, which

lowers the firms’ profits.

Consumer Surplus and Total Surplus. We now examine the effect of a reduction in

switching costs on CS and TS.

First consider CS. Panels 7 and 8 of Figure 6 show that compared to endogenous compatibility,

mandatory compatibility raises CS, despite raising prices (as shown in Panels 3 and 4).

Under either mandatory compatibility or prohibited compatibility, the probability of compatible

networks is fixed (at either 1 or 0). In both cases, a reduction in switching costs unambiguously

increases CS, as shown in Panels 7 and 8.

However, under endogenous compatibility, which allows network compatibility to endogenously

change as we vary switching costs, the effect of a reduction in switching costs on CS becomes

ambiguous. That’s because the change in CS is now the result of two concurrent changes: the re-

duction in switching costs, and the consequent reduction in the probability of compatible networks.

While the former tends to increase CS, the latter tends to reduce it.

Take Panel 8 (θ = 3) for example. As switching costs are reduced from 3 to 0, CS increases from

17.7 to 23.3 under mandatory compatibility, and from 2.3 to 9.3 under prohibited compatibility.

Notice that CS is noticeably higher under mandatory compatibility than under prohibited com-

patibility: everything else equal, making the networks compatible generates larger benefits from

network effects, thereby increasing CS.

In comparison, under endogenous compatibility, reducing switching costs from 3 to 0 lowers net-

work compatibility significantly (from 0.61 to 0.01; see Panel 2). Correspondingly, when switching

costs are reduced from 3 to 0, CS moves farther away from the CS under mandatory compatibility

13In Figure 6, the panels depicting average price (second row) and the ones depicting PS (third row) look similar
to each other, and here’s the reason. In this paper the analysis focuses on industries in which there exists an outside
good but it is inferior compared to the inside goods (v0 = −4 in the baseline, compared to v = 0), so that most,
but not all, of the market is covered by the firms, such as mobile phone services and banking services. Therefore,
the industry profits, which equal the sum of the firms’ sales times average price-cost margin, are close to the average
price, because the sum of the firms’ expected sales is close to 1 (due to the inferiority of the outside good) and the
marginal cost is normalized to 0.
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(which is higher) and closer to the CS under prohibited compatibility (which is lower), dropping

from 11.7 to 9.5 in the process.

However, if the reduction in switching costs from 3 to 0 is combined with a mandatory com-

patibility policy, then CS increases significantly, from 11.7 (k = 3 under endogenous compatibility)

to 23.3 (k = 0 under mandatory compatibility). The reason is that such a combination of policies

allows consumers to benefit from both a reduction in switching costs and an increase in network

compatibility.

Next consider TS. When switching costs are changed, the variation in PS is much smaller than

the variation in CS (compare Panels 5 and 6 to Panels 7 and 8), so changes in TS (the sum of PS

and CS) are largely determined by changes in CS. Consequently, we observe similar patterns in TS

to those in CS.

Take Panel 10 (θ = 3) for example. As switching costs are reduced from 3 to 0, TS increases from

20.8 to 25.3 under mandatory compatibility, and from 4.5 to 10.7 under prohibited compatibility.

In contrast, under endogenous compatibility, when switching costs are reduced from 3 to 0, TS

moves farther away from the TS under mandatory compatibility (which is higher) and closer to

the TS under prohibited compatibility (which is lower), dropping from 14.4 to 10.8 in the process.

However, if the reduction in switching costs from 3 to 0 is combined with a mandatory compatibility

policy, then there are sizable efficiency gains: TS increases from 14.4 (k = 3 under endogenous

compatibility) to 25.3 (k = 0 under mandatory compatibility).

The patterns described above are further confirmed by the results from a broader set of param-

eterizations. Details are contained in Online Appendix 4.

5.2 Policy Discussion

The policy implication of the results above is the following. In a network industry with high

switching costs, a public policy that reduces switching costs, by itself, does not lead to a substantial

increase in total surplus, as the efficiency gains from lowering switching costs are offset by the

efficiency losses from firms reducing the compatibility between their networks. However, if the

switching costs reduction policy is combined with a public policy that mandates compatibility

between networks, then there can be sizable efficiency gains, as such a combination makes it possible

to have the best of both worlds—low switching costs and compatible networks.

The above finding is a possibility result, that is, it shows that it’s possible to improve the welfare

gains from switching costs reduction by combining it with mandatory compatibility. The success of

such a policy would depend on the details of the implementation, such as deciding which standard

to adopt, which are by no means straightforward and would require additional careful analysis.
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Regarding policy implementation, there are two different ways to achieve compatibility: com-

patibility by standard and compatibility by contract. For example, during the AOL-Time Warner

merger case (2000), with respect to AOL’s Instant Messaging (IM) service which dominated the IM

market at the time, the FCC required that AOL cannot offer advanced IM services until it either

demonstrates that it is no longer dominant in IM, or demonstrates that it has implemented interop-

erability (compatibility) by either adopting a public standard of interoperability (“interoperability

by standard”) or entering into interoperability contracts with rival IM providers (“interoperability

by contract”) (Faulhaber (2004, p. 469)).

Therefore, if a regulator wants to make compatibility mandatory, it doesn’t have to impose a

specific standard, and in fact doing so sometimes backfires. For example, in the 1950s, although the

FCC mandated the CBS color TV standard, the market demanded NBC’s NTSC standard instead,

and the FCC was forced to change its decision.14 Instead, it may be better for the regulator to

simply require that the firms either adopt a public standard (letting the firms or the market decide

which standard to adopt) or enter into compatibility contracts between themselves.

Moreover, if compatibility is implemented by standard, it is likely that some R&D is required

for changing a standard, and so the firms may not be able to change compatibility very frequently.

Therefore, the assumption in this paper that in each period the firms can propose compatibility

or incompatibility is a simplification and is more suitable for cases in which compatibility is im-

plemented by contract, which doesn’t involve designing and adopting a new standard and may

be easier to implement. Also, the difficulty with which compatibility can be changed likely varies

across different industries and would need to be assessed on a case-by-case basis.

Finally, the model in this paper does not consider innovation, which can play an important

role in determining the firms’ profits and the consumer welfare, and we should therefore take the

above welfare findings with a grain of salt. While innovation is an important issue, given the

several elements already in the model (network effects, switching costs, and compatibility choices),

additionally incorporating innovation would make the model intractable (in that case, the two firms’

endogenous product qualities would also become state variables, resulting in a 4-dimensional state

space and substantially increasing the difficulty of computation). I therefore consider innovation an

interesting issue but out of the scope of this paper, and leave it for future research. Nonetheless, the

analysis in this paper illustrates the potential efficiency gains that can be achieved by combining

the two policies, and the welfare results here can serve as a benchmark for further analysis.

14I thank a referee for suggesting this example.
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5.3 A More General Form of Network Effect

In the model of this paper, in a consumer’s utility function, the term θg(bi +d1d2b−i) describes the

network benefit. If the two networks are made compatible (i.e., d1d2 = 1), the consumer derives the

same benefit from each of the networks. Here we consider a more general setting, in which the two

networks may not bring the same benefit to the consumer. Specifically, let the consumer’s utility

from the network effect take the form θg(bi +wd1d2b−i), where w ∈ (0, 1] is the weight parameter.

The main specification analyzed in this paper, in which the consumer derives the same benefit

from each network when the two networks are made compatible, corresponds to w = 1 (full com-

patibility). In comparison, when w < 1, firm i’s consumer enjoys a smaller benefit from firm i’s

competitor’s network than from firm i’s network (partial compatibility). We consider the following

values of w in this robustness check: w ∈ {0.75, 0.5, 0.25}.

The results from this robustness check are discussed in Online Appendix 5. They show that

the main findings of the paper are robust to changing the value of w. For example, they show that

changing the value of w has minimal effect on the type of equilibrium that occurs: for most of the

parameterizations, the type of equilibrium remains unchanged as we change the value of w. For

more results from and discussions of this robustness check please refer to Online Appendix 5.

6 Conclusion

In this paper, I investigate how switching costs affect product compatibility and market dynamics

in network industries. Firms face a choice between two modes of competition: make their networks

incompatible and compete fiercely for market dominance, or make their networks compatible and

have mild competition. By incentivizing firms to harvest their locked-in consumers rather than

price aggressively for market dominance, switching costs tip the balance in favor of compatible

networks and mild competition.

Accordingly, public policies that reduce switching costs in network industries, such as mobile

number portability and banking account number portability, can change the market outcome from

compatible networks to incompatible networks. In the former, price competition is mild and the

market is often fragmented, whereas in the latter, firms compete fiercely for market dominance and

in the long run the market is dominated by one firm.

Consequently, in a network industry with high switching costs, a switching costs reduction

policy alone would result in small efficiency gains at best, as the efficiency gains from lowering

switching costs are offset by the efficiency losses from firms reducing the compatibility between

their networks. However, if the switching costs reduction policy is combined with a public policy
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that mandates compatibility between networks, then there can be sizable efficiency gains, as such a

combination makes it possible to have the best of both worlds—low switching costs and compatible

networks.

Lastly, I reiterate the caveat that I have had to make some simplifying assumptions (includ-

ing myopic consumers and absence of innovation) in this paper to facilitate its computation, and

therefore the results should be interpreted with some caution. Nevertheless, one general policy

implication which arises from these results is the importance of properly accounting for firms’ com-

patibility choices in analyses of network industries and switching costs. Regulations that directly

or indirectly affect network compatibility can have profound and sometimes unexpected effects on

competition and welfare. Thus the findings in this paper call for further research on the design and

evaluation of public policies in network industries, paying particular attention to the interactions

of the various features of the market.
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Online Appendix

1 Deriving the First-Order Condition

Let ψi(pi; b, d) denote the objective function in the maximization problem in Eq. (7):

ψi(pi; b, d) ≡ Er|b

φri(b, d, pi, p−i(b, d))pi + β

2∑
j=0

[
φrj(b, d, pi, p−i(b, d))

∑
b′∈Ω

[
Pr(b′|b, qj = 1)Vi(b

′)
]] .

Let V ij(b) denote
∑

b′∈Ω [Pr(b′|b, qj = 1)Vi(b
′)]. Below we derive the first-order condition. First,

∂ψi(pi; b, d)

∂pi
= 0⇔ Er|b

∂φri
∂pi

pi + φri + β
2∑

j=0

(
∂φrj
∂pi

V ij

) = 0,

where φri, φrj , and V ij are shorthand for φri(b, d, pi, p−i(b, d)), φrj(b, d, pi, p−i(b, d)), and V ij(b),
respectively, to simplify the notation.

Using the properties of logit demand regarding derivatives of the choice probabilities (see Train
(2009, p. 58)),

∂φri
∂pi

=
∂ūri
∂pi

φri(1− φri) = −φri(1− φri), and

∂φrj
∂pi

= −∂ūri
∂pi

φriφrj = φriφrj , for j 6= i,

where ūri is the deterministic part in uri(·) (see Eq. (1) in the paper):

ūri ≡ uri − εi = vi + 1(i 6= 0)θg(bi + d1d2b−i)− pi − 1(r 6= 0 and i 6= 0 and i 6= r)k.

Therefore,

∂ψi(pi; b, d)

∂pi
= 0 ⇔ Er|b

−φri(1− φri)pi + φri + β [−φri(1− φri)]V ii + β
∑
j 6=i

(
φriφrjV ij

) = 0

⇔ Er|b

−φri(1− φri)(pi + βV ii) + φri + βφri
∑
j 6=i

(
φrjV ij

) = 0.

2 Description of Software and Code Used in Computation

The computation in this paper is carried out using MATLAB, a programming language developed
by MathWorks intended primarily for numerical computing.

The computation code uses an iterative algorithm to solve for a firm’s equilibrium value function
and policy functions. The algorithm follows Chen, Doraszelski, and Harrington (2009). It takes a
value function Ṽi(b) for each firm i as the starting point for an iteration and generates an updated
value function Vi(b) along with policy functions pi(b, d) and di(b). The initial value is Ṽi(b) = 0,
i = 1, 2 and for all b.

1



Each iteration cycles through the state space in some predetermined order. Given a state b, it
solves for the subgame-perfect Nash equilibrium of the two-stage game in that state, holding fixed
the continuation values. Specifically, in each iteration the algorithm proceeds as follows.

First, solve the system of first-order conditions (8) given first d1(b) = d2(b) = 0 and then
d1(b) = d2(b) = 1. This yields prices given compatibility decisions, i.e., pi(b, (0, 0)) and pi(b, (1, 1)),
i = 1, 2.

Second, substitute the price policy functions pi(b, (0, 0)) and pi(b, (1, 1)), i = 1, 2 into the
objective function in Eq. (7). This yields payoffs given compatibility decisions, i.e., Ui(b, (0, 0))
and Ui(b, (1, 1)), i = 1, 2.

Third, determine the firms’ compatibility decisions as

di(b) =

{
1 if U1(b, (1, 1)) > U1(b, (0, 0)) and U2(b, (1, 1)) > U2(b, (0, 0)),
0 otherwise.

Lastly, substitute the compatibility policy functions di(b), i = 1, 2 into the objective function
in Eq. (6) to obtain the value functions Vi(b) as Ui(b, (di(b), d−i(b))), i = 1, 2.

Once the computation for one state is completed, the algorithm moves on to another state.
After all states have been visited, the algorithm updates the current guess for the value function by
setting Ṽi(b) = Vi(b), i = 1, 2 and for all b. This completes the iteration. The algorithm continues
to iterate until the relative change in the value and the policy functions from one iteration to the
next is below a pre-specified tolerance.

3 Definitions of PS and CS

This appendix gives the definitions of producer surplus (PS) and consumer surplus (CS), discussed
in Section 5 of the paper. PS is the expected industry profits per period, where the expectation
is taken over the limiting distribution of the industry state and the probability distribution of the
consumer’s loyalty r given the industry state:

PS =
∑
b∈Ω

{
µ∞(b)× Er|b [φr1(·)p1(b) + φr2(·)p2(b)]

}
. (9)

Here µ∞(b) is the probability given to state b in the limiting distribution (therefore
∑

b∈Ω µ∞(b)
= 1), φr1(·) = φr1(b, d1(b), d2(b), p1(b), p2(b)) and φr2(·) = φr2(b, d1(b), d2(b), p1(b), p2(b)) are the
consumer’s equilibrium choice probabilities for firms 1 and 2 in state b, respectively, and d1(b), d2(b),
p1(b), and p2(b) are the firms’ equilibrium compatibility and price choices in state b, respectively.
Since the (constant) marginal cost of production is normalized to zero, pi(b) is firm i’s profit if it
makes a sale.

Note that given the stationarity of the limiting distribution, in equilibrium the expected net
present value (NPV) of the two firms combined can be obtained by scaling up the PS defined above:∑

b∈Ω {µ∞(b)× (V1(b) + V2(b))} = PS + βPS + β2PS + ... = PS/(1− β).
CS is the expected consumer surplus per period:

CS =
∑
b∈Ω

µ∞(b)×

Er|b

ln

 ∑
i=0,1,2

exp (ūri)

+
∑

i=0,1,2

(niw̄i)


 . (10)

Here ūri ≡ uri(b, d1(b), d2(b), p1(b), p2(b))− εi is the deterministic part in uri(·) (see Eq. (1) in the
paper), ni is the expected number of consumers who keep their existing product i in the current
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period, and w̄i ≡ wi(b, d1(b), d2(b))− εi is the deterministic part in wi(·) (see Eq. (2) in the paper).
Below I explain this formula for CS.

In any given state b, the consumers can be divided into four groups for the purpose of computing
consumer surplus. First, there is one consumer who makes a purchasing decision. This consumer
pays for the product that she chooses, and may incur switching costs depending on her choice.
Assuming that she is loyal to product r, given the i.i.d. type I extreme value assumption on the

εi’s, her expected consumer surplus is the so called “log-sum term”, ln
(∑

i=0,1,2 exp (ūri)
)

(see

Train (2009, p. 55)). Since r is stochastic, we take the expectation of this log-sum term over

the distribution of r given b, and obtain Er|b

[
ln
(∑

i=0,1,2 exp (ūri)
)]

as this consumer’s expected

surplus.
The other three groups of consumers are those who keep their existing product i in the current

period, i = 0, 1, 2, respectively. These consumers do not pay a price, and do not incur switching
costs. Given the depreciation process specified in Subsection 2.3 of the paper, the expected number
of each of these groups of consumers is: n1 = (1− δ)b1, n2 = (1− δ)b2, and n0 = M −n1−n2−1.15

Furthermore, given the assumption that the ε’s have zero mean, when computing the expected
consumer surplus for these consumers, we can ignore the ε’s, and obtain the expected consumer
surplus for each one of them as w̄i.

Finally, the expression
∑

b∈Ω {µ∞(b)× {·}} is the expected value of the term inside the inner
curly brackets, where the expectation is taken over the limiting distribution of the industry state.

4 Results from a Broader Set of Parameterizations

The patterns described in Section 5 are further confirmed by the results from a broader set of
parameterizations. Table 1 reports the changes in network compatibility and average price when k is
reduced from 3 to 0 under the endogenous compatibility regime, for θ ∈ {2, 3, 4}, v0 ∈ {−5,−4,−3},
and δ ∈ {0.05, 0.06, 0.07, 0.08}. The table shows that as the switching cost is reduced from 3 to
0, the firms substantially reduce the compatibility between their networks, and the average price
goes down: the change in the probability of compatible networks ranges from -0.23 to -0.79, with
a median of -0.56 (the percentage change ranges from -62% to -100%, with a median of -98%), and
the change in the average price ranges from -0.57 to -1.71, with a median of -1.20 (the percentage
change ranges from -28% to -56%, with a median of -46%).

For the same set of parameterizations, Table 2 reports the changes in PS and CS when k is
reduced from 3 to 0 under the endogenous compatibility regime. The table shows that as the
switching cost is reduced from 3 to 0, PS goes down: the change in PS ranges from -0.45 to -1.57,
with a median of -1.09 (the percentage change ranges from -24% to -55%, with a median of -45%).
At the same time, CS either goes down or increases slightly: the change in CS ranges from -4.24
to 6.44, with a median of -1.50 (78% of the changes are negative).16

Lastly, Table 3 reports the change in TS when k is reduced from 3 to 0. Starting from k = 3
under the endogenous compatibility regime, two sets of changes are reported. First, if k is reduced
from 3 to 0 while keeping the endogenous compatibility regime, then the change in TS is ambiguous

15Recall that for the consumers whose products died and who do not make a purchasing decision, we assume that
they use the outside good.

16Because utility is an ordinal concept, the absolute level of utility and consequently the absolute level of consumer
surplus cannot be measured; only the variation is measurable. Therefore, in Tables 2 and 3, only changes, and
not percentage changes, are reported for CS and TS. Furthermore, since the quality of the outside good, v0, is
parameterized to be less than zero, expected consumer surplus and therefore expected total surplus can be negative,
as is reflected in Tables 2 and 3.
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and there are small efficiency gains at best: the change in TS ranges from -5.31 to 5.51, with a
median of -2.84 (86% of the changes are negative). However, if the reduction in k is accompanied by
the imposition of the mandatory compatibility regime, then there are sizable efficiency gains: the
change in TS ranges from 4.15 to 22.25, with a median of 8.36 (100% of the changes are positive).

5 A More General Form of Network Effect

In this Appendix, we consider a more general form of the consumer’s utility from the network effect,
θg(bi + wd1d2b−i), where w ∈ (0, 1] is the weight parameter.

The main specification analyzed in this paper, in which the consumer derives the same benefit
from each network when the two networks are made compatible, corresponds to w = 1 (full com-
patibility). In comparison, when w < 1, firm i’s consumer enjoys a smaller benefit from firm i’s
competitor’s network than from firm i’s network (partial compatibility). We consider the following
values of w in this robustness check: w ∈ {0.75, 0.5, 0.25}.

The results from this robustness check are presented in Figures 7a and 7b, and they show that
the main findings of the paper are robust to changing the value of w.

The left column of panels in Figure 7a show the type of equilibrium that occurs for different
combinations of θ (strength of network effect) and k (switching cost). Comparison between these
panels and their counterpart in Figure 5 in the paper (which has w = 1) shows that changing the
value of w has minimal effect on the type of equilibrium that occurs: for most of the parameteri-
zations, the type of equilibrium remains unchanged as we change the value of w.

The intuition for the above finding is that when the magnitude of switching costs is changed,
the first-order effect is on the intensity of price competition, and this first-order effect does not
hinge on the value of w. Changes in the firms’ compatibility choices are then derived from this
first-order effect. In particular, in markets with strong network effects, regardless of the value of w,
at low switching costs the firms compete fiercely for market dominance, whereas at high switching
costs they engage in mild competition and focus on harvesting their own locked-in consumers. The
effect of switching costs on the firms’ compatibility choices is a consequence of the above first-order
effect: at low switching costs, as the firms compete for market dominance, the larger firm refuses
compatibility in order to maintain its advantage over the smaller firm, in an effort to achieve and
maintain market dominance (Tipping equilibrium). At high switching costs, as the firms engage
in mild competition and focus on harvesting their own locked-in consumers, they choose to make
their products compatible which increases the values of their products relative to the outside good
(Compatibility equilibrium).

A similar intuition applies to markets with weak network effects. The only difference is that in
that case, without the increasing returns associated with strong network effects, there is a Rising
equilibrium instead of a Tipping equilibrium at low switching costs.

The above effects operate regardless of the value of w. Therefore, as we change the value of w,
the effects of switching costs on the intensity of competition as well as on the firms’ compatibility
choices are largely unaffected, and the type of equilibrium that occurs in the market remains largely
unchanged.

The right column of panels in Figure 7a plot the probability of compatible networks, the market
concentration, and the average price for k ∈ {0, 0.5, ..., 3} while holding θ = 3. These panels show
that the results remain qualitatively the same when we change the value of w. In particular,
they show that for all the different values of w considered, the switch from Tipping equilibrium to
Compatibility equilibrium occurs between k = 1.5 and k = 2, where the probability of compatible
networks increases significantly while the market concentration drops significantly.

4



In unreported results, I zoom in on the shorter interval of [1.5, 2] for k, and examine k ∈
{1.5, 1.52, 1.54, ..., 2}. I find that as we decrease the value of w (from 1, 0.75, 0.5 to 0.25), the
switch from Tipping equilibrium to Compatibility equilibrium occurs at slightly higher switching
costs. For example, when w = 1, the switch from Tipping equilibrium to Compatibility equilibrium
occurs between k = 1.64 and k = 1.66, whereas when w = 0.5, the switch occurs between k = 1.7
and k = 1.72. These results show that changing the value of w can affect the type of equilibrium
that occurs in the market, but its effect is small, relative to the effects of the two main parameters
in the model, θ and k.

Figure 7b presents the effects of a reduction in the switching cost k on compatibility, average
price, PS, CS, and TS, under different values of w. As w becomes smaller, making the networks
compatible makes a smaller impact, and the difference between the mandatory compatibility (MC)
regime and the prohibited compatibility (PC) regime becomes smaller (in the extreme case, if w = 0,
making the networks “compatible” makes no difference and the MC and PC regimes coincide). The
results in Figure 7b show that for each of the w values considered, as k is reduced from 3 to 0, the
probability of compatible networks first falls substantially between k = 3 and k = 1, then levels off
between k = 1 and k = 0 (see the first row of panels). The efficiency losses from the firms reducing
the compatibility between their networks offset (at least partially) the efficiency gains from the
reduction in the switching cost, and as a result, when k is reduced from 3 to 0, TS either decreases
or has a small increase (see the last row of panels in Figure 7b). These results are consistent with
the ones obtained from the main specification in the paper, in which w = 1 (Figure 6 in the paper).

In sum, the results from this robustness check show that the main findings of this paper are
robust to changing the value of w and modeling partial compatibility instead of full compatibility.

5
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Figure 7a. Robustness check with respect to w. v0 = !4, / = 0:06.
Solid lines: w = 1. Dashed lines: w = 0:75. Dash-dot lines: w = 0:5. Dotted lines: w = 0:25.
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Figure 7b. Robustness check with respect to w. v0 = !4, / = 0:06, 3 = 2.
Solid lines: mandatory compatibility (MC). Dash-dot lines: endogenous compatibility (EC).
Dotted lines: prohibited compatibility (PC).



(A)

k  = 3,

EC

(B)

k  = 0,

EC

Change 

from (A) 

to (B)

% change 

from (A) 

to (B)

(A)

k  = 3,

EC

(B)

k  = 0,

EC

Change 

from (A) 

to (B)

% change 

from (A) 

to (B)

0.05 0.56 0.02 -0.55 -97% 3.07 1.36 -1.71 -56%

0.06 0.61 0.08 -0.53 -87% 3.04 1.36 -1.68 -55%

0.07 0.64 0.09 -0.55 -86% 2.82 1.42 -1.40 -50%

0.08 0.54 0.10 -0.45 -82% 2.55 1.46 -1.08 -43%

0.05 0.67 0.07 -0.60 -90% 2.85 1.28 -1.57 -55%

0.06 0.76 0.08 -0.68 -90% 2.75 1.36 -1.39 -51%

0.07 0.74 0.09 -0.66 -88% 2.53 1.41 -1.12 -44%

0.08 0.72 0.10 -0.62 -86% 2.36 1.46 -0.90 -38%

0.05 0.75 0.07 -0.68 -90% 2.50 1.29 -1.21 -48%

0.06 0.85 0.08 -0.76 -90% 2.36 1.35 -1.01 -43%

0.07 0.83 0.29 -0.54 -65% 2.19 1.45 -0.74 -34%

0.08 0.80 0.30 -0.49 -62% 2.06 1.48 -0.57 -28%

0.05 0.36 0.00 -0.36 -100% 2.94 1.49 -1.45 -49%

0.06 0.48 0.01 -0.47 -99% 3.00 1.36 -1.64 -55%

0.07 0.53 0.02 -0.51 -97% 2.80 1.24 -1.56 -56%

0.08 0.43 0.07 -0.36 -84% 2.46 1.16 -1.30 -53%

0.05 0.46 0.00 -0.46 -100% 2.86 1.47 -1.39 -48%

0.06 0.61 0.01 -0.60 -98% 2.82 1.35 -1.47 -52%

0.07 0.70 0.02 -0.68 -97% 2.65 1.21 -1.44 -54%

0.08 0.66 0.07 -0.58 -89% 2.41 1.16 -1.24 -52%

0.05 0.56 0.00 -0.56 -100% 2.63 1.44 -1.19 -45%

0.06 0.77 0.01 -0.76 -99% 2.57 1.30 -1.27 -49%

0.07 0.82 0.03 -0.79 -96% 2.39 1.15 -1.24 -52%

0.08 0.78 0.08 -0.70 -90% 2.19 1.18 -1.02 -46%

0.05 0.23 0.00 -0.23 -100% 2.88 1.92 -0.96 -33%

0.06 0.42 0.00 -0.42 -100% 2.91 1.61 -1.30 -45%

0.07 0.37 0.00 -0.37 -100% 2.61 1.43 -1.18 -45%

0.08 0.26 0.00 -0.26 -100% 2.23 1.29 -0.94 -42%

0.05 0.25 0.00 -0.25 -100% 2.87 1.91 -0.96 -33%

0.06 0.46 0.00 -0.46 -100% 2.74 1.60 -1.14 -42%

0.07 0.61 0.00 -0.61 -100% 2.65 1.42 -1.23 -46%

0.08 0.57 0.00 -0.57 -100% 2.36 1.27 -1.08 -46%

0.05 0.34 0.00 -0.34 -100% 2.70 1.87 -0.82 -31%

0.06 0.62 0.00 -0.62 -100% 2.63 1.57 -1.06 -40%

0.07 0.74 0.00 -0.74 -100% 2.50 1.38 -1.11 -45%

0.08 0.76 0.01 -0.75 -98% 2.31 1.23 -1.08 -47%

Table 1. Changes in compatibility and average price when  k  is reduced from 3 to 0 under Endogenous 

Compatibility (EC) regime.
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(A)

k  = 3,

EC

(B)

k  = 0,

EC

Change 

from (A) 

to (B)

% change 

from (A) 

to (B)

(A)

k  = 3,

EC

(B)

k  = 0,

EC

Change 

from (A) 

to (B)

0.05 2.92 1.35 -1.57 -54% 10.87 9.72 -1.16

0.06 2.91 1.35 -1.57 -54% -2.79 -4.12 -1.32

0.07 2.73 1.41 -1.32 -48% -16.38 -17.85 -1.47

0.08 2.48 1.45 -1.02 -41% -28.44 -29.23 -0.79

0.05 2.65 1.27 -1.38 -52% 13.85 10.72 -3.14

0.06 2.57 1.34 -1.23 -48% 1.48 -0.97 -2.45

0.07 2.38 1.39 -1.00 -42% -11.07 -12.76 -1.69

0.08 2.23 1.43 -0.81 -36% -21.04 -22.39 -1.35

0.05 2.22 1.25 -0.97 -44% 15.76 11.67 -4.09

0.06 2.11 1.30 -0.82 -39% 4.37 1.47 -2.90

0.07 1.97 1.39 -0.58 -30% -6.45 -6.57 -0.11

0.08 1.86 1.41 -0.45 -24% -14.82 -14.71 0.11

0.05 2.85 1.48 -1.37 -48% 20.70 22.38 1.67

0.06 2.92 1.36 -1.57 -54% 6.55 6.17 -0.38

0.07 2.74 1.23 -1.51 -55% -8.27 -9.80 -1.53

0.08 2.42 1.15 -1.26 -52% -22.32 -23.49 -1.17

0.05 2.73 1.46 -1.27 -46% 24.62 23.97 -0.64

0.06 2.69 1.33 -1.36 -51% 11.74 9.50 -2.24

0.07 2.55 1.20 -1.35 -53% -1.65 -4.51 -2.86

0.08 2.32 1.15 -1.17 -50% -13.85 -16.46 -2.61

0.05 2.43 1.41 -1.02 -42% 28.06 25.17 -2.89

0.06 2.39 1.27 -1.12 -47% 16.48 12.29 -4.19

0.07 2.22 1.12 -1.11 -50% 3.75 0.22 -3.53

0.08 2.04 1.14 -0.90 -44% -6.73 -9.99 -3.26

0.05 2.84 1.92 -0.93 -33% 31.71 38.15 6.44

0.06 2.87 1.61 -1.26 -44% 16.26 17.43 1.17

0.07 2.58 1.43 -1.15 -45% -1.86 -1.62 0.25

0.08 2.20 1.29 -0.92 -42% -17.70 -16.66 1.05

0.05 2.77 1.90 -0.88 -32% 33.57 39.77 6.20

0.06 2.67 1.59 -1.08 -40% 20.84 20.81 -0.03

0.07 2.59 1.41 -1.18 -46% 6.71 3.75 -2.96

0.08 2.30 1.26 -1.04 -45% -7.29 -9.55 -2.25

0.05 2.55 1.84 -0.71 -28% 38.89 41.02 2.13

0.06 2.50 1.54 -0.96 -38% 26.04 23.72 -2.33

0.07 2.38 1.35 -1.03 -43% 12.85 8.61 -4.24

0.08 2.20 1.20 -1.00 -46% 1.04 -2.73 -3.77
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Table 2. Changes in producer surplus (PS) and consumer surplus (CS) when  k  is reduced from 3 

to 0 under Endogenous Compatibility (EC) regime.

θ v 0 δ

Producer Surplus Consumer Surplus



θ v 0 δ
(A)

k  = 3,

EC

(B)

k  = 0,

EC

Change 

from (A) 

to (B)

(C)

k  = 0,

MC

Change 

from (A) 

to (C)

0.05 13.79 11.07 -2.73 23.69 9.90

0.06 0.12 -2.77 -2.89 8.27 8.15

0.07 -13.65 -16.44 -2.79 -7.95 5.70

0.08 -25.96 -27.77 -1.81 -21.31 4.66

0.05 16.50 11.98 -4.52 25.16 8.66

0.06 4.05 0.37 -3.68 11.32 7.28

0.07 -8.68 -11.37 -2.69 -3.01 5.68

0.08 -18.81 -20.96 -2.15 -14.63 4.18

0.05 17.97 12.91 -5.06 26.06 8.09

0.06 6.48 2.77 -3.71 13.51 7.03

0.07 -4.48 -5.18 -0.70 1.01 5.49

0.08 -12.96 -13.30 -0.34 -8.81 4.15

0.05 23.55 23.86 0.30 40.29 16.73

0.06 9.48 7.53 -1.95 21.94 12.47

0.07 -5.53 -8.56 -3.03 2.71 8.24

0.08 -19.90 -22.34 -2.43 -13.01 6.89

0.05 27.34 25.43 -1.91 41.96 14.62

0.06 14.44 10.83 -3.60 25.28 10.85

0.07 0.90 -3.31 -4.21 7.95 7.05

0.08 -11.53 -15.31 -3.77 -6.07 5.46

0.05 30.48 26.58 -3.91 43.29 12.81

0.06 18.87 13.56 -5.31 28.06 9.19

0.07 5.97 1.33 -4.64 12.50 6.53

0.08 -4.69 -8.84 -4.16 0.16 4.85

0.05 34.56 40.07 5.51 56.81 22.25

0.06 19.13 19.04 -0.09 35.52 16.39

0.07 0.72 -0.19 -0.90 13.28 12.56

0.08 -15.50 -15.37 0.13 -4.78 10.72

0.05 36.34 41.67 5.33 58.60 22.25

0.06 23.51 22.40 -1.10 39.04 15.53

0.07 9.29 5.15 -4.14 18.72 9.43

0.08 -4.99 -8.29 -3.29 2.34 7.33

0.05 41.44 42.86 1.42 60.20 18.76

0.06 28.54 25.26 -3.28 42.22 13.67

0.07 15.23 9.96 -5.26 23.71 8.48

0.08 3.24 -1.53 -4.77 8.96 5.72

Table 3. Change in total surplus (TS) when  k  is reduced from 3 to 0 under Endogenous 

Compatibility (EC) and Mandatory Compatibility (MC) regimes.
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