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Abstract

As is well-recognized, market dominance is a typical outcome in
markets with network effects. A firm with a larger installed base offers
a more attractive product which induces more consumers to buy its
product which produces a yet bigger installed base advantage. Such
a setting is investigated here but with the main difference that firms
have the option of making their products compatible. When firms have
similar installed bases, they make their products compatible in order
to expand the market. Nevertheless, random forces could result in one
firm having a bigger installed base in which case the larger firm may
make its product incompatible. We find that strategic pricing tends
to prevent the installed base differential from expanding to the point
that incompatibility occurs. This pricing dynamic is able to neutralize
increasing returns and avoid the emergence of market dominance.

2



1 Introduction

Markets for products with network effects face the following conundrum.
The value of the good to consumers is greatest when a single product dom-
inates, as then network effects are maximized. However, the dominance of
a single product typically means the presence of a monopoly, in which case
consumers suffer the usual welfare losses from an excessively high price.

One possible solution to this conundrum is to have multiple firms offer
compatible products. If there is complete compatibility then there are no
foregone network effects, while the presence of viable competitors means
price competition is operative. In fact, this was the basis for one of the
proposed structural remedies in the Microsoft case. Referred to as the Baby
Bills solution, the proposal was to divide the Windows monopoly into several
identical companies which would initially have compatible (in fact, identical)
products. Key to the remedy’s appeal is that by initializing the market
with compatible products, these newly created competitors would have an
incentive to maintain compatibility over time.1

For product compatibility to represent a long-run solution to the problem
of network effects, two conditions must then be satisfied. First, firms must
initially find it in their interests to make their products compatible. Second,
there must be incentives to maintain compatibility when, in response to
future developments, differences emerge in firms’ installed bases.

There are a number of papers that explore the first condition including
Katz and Shapiro (1986), Economides and Flyer (1998), Cremer, Rey, and
Tirole (2000), Malueg and Schwartz (2006), and Tran (2006).2 The stan-
dard model is a two stage structure; in the first stage, firms make compati-
bility decisions and, given products are or are not compatible, they engage
in price or quantity competition (for either one or two periods). Consis-
tent with the Microsoft setting, both firms must agree for their products
to be compatible. There are two primary forces that influence whether or
not compatibility occurs in equilibrium. First, compatibility enhances the
value of firms’ products by increasing network effects. As this draws more
consumers into the market, firms have a mutual interest in making their
products compatible. Second, when firms have different installed bases, the
larger firm loses an advantage with compatibility. In contrast, the smaller

1These Microsoft clones were colloquially dubbed “Baby Bills” as a play on the term
Baby Bells which is itself a colloquialism for the Regional Bell Operating Companies
created with the break-up of the Bell System in 1984. For details on the Baby Bills
solution, see Levinson, Romaine, and Salop (2001).

2Some of this work is discussed in the review of Farrell and Klemperer (2007).
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firm always prefers products to be compatible since it benefits through both
effects. Existing work has shown that if firms are not too different - either
in terms of installed bases or other traits - then products are compatible.

Having established that there are initial market conditions that would
result in firms choosing to make their products compatible, this leads us to
the second issue which is the long-run viability of compatible technologies.
Even if firms are initially similar and make their products compatible, ran-
domness in demand and other shocks will surely lead to asymmetric installed
bases. Could a modest difference in installed bases induce the current market
leader to choose incompatibility in a march towards dominance? If so, then
creating a structure with initially compatible products may only delay - but
not prevent - increasing returns from kicking in and creating a monopoly. Or
are there forces that would maintain incentives for compatibility even when
the installed base differential is significant? More generally, are compatible
products stable in the long-run or can we expect that eventually market
dominance will emerge?

To explore long-run market structure issues when network effects are
present, there is a growing body of work, including Mitchell and Skrzy-
pacz (2006), Llobet and Manove (2006), Cabral (2007), Driskill (2007), and
Markovich (2008). However, none of these models allow firms to make their
products compatible and thus cannot address the issue of whether compat-
ible products are stable in the long-run.

The modelling innovation of this paper is to endogenize product compat-
ibility in a dynamic stochastic setting so as to address the long-run market
structure of a product market characterized by network effects. In each
period, firms first decide on compatibility and then price. Demand and
customer turnover are stochastic which means that firms are very likely to
end up with asymmetric installed bases even if they begin identical and
choose compatible products. While consumers are myopic, firms dynami-
cally optimize. A Markov perfect equilibrium is numerically solved for and
we assess the frequency with which market dominance occurs and explore
its determinants.

Our main finding is that compatible products can indeed be stable in
the long-run. What underlies this finding is a dynamic that can neutralize
increasing returns and prevent market dominance from emerging. As long
as network effects are not too strong, firms that begin with comparably
sized installed bases will choose to make their products compatible. Fur-
thermore, if the installed base differential should grow - even to the point
that the larger firm makes its product incompatible - the smaller firm prices
aggressively so as to reduce the differential and thereby maintain or restore
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mutual incentives for product compatibility. This pricing dynamic is suffi-
ciently powerful to sustain compatible products in the long-run and prevent
market dominance from emerging. Interestingly, if a product has stronger
network effects, it is possible that this strategic pricing effect is so intensified
that it actually becomes more likely that products are compatible.

The model is described in Section 2, while the definition and computa-
tion of equilibrium are discussed in Section 3. As a benchmark, Section 4
covers the static Nash equilibrium for the compatibility-price game. Markov
perfect equilibria are reviewed in Section 5, and the implications of prod-
uct compatibility for market dominance are explored in Sections 6 and 7,
with the latter focusing on the role of network effects. A welfare analysis of
various policy regimes is examined in Section 8, and we conclude in Section
9.

2 Model

Our objective is to provide some general insight about the long-run stability
of compatible technologies in the midst of network effects. Towards that end,
we chose not to tailor the model to a specific product - such as operating
systems - but rather to develop a more generic model that encompasses the
key forces at play in many markets characterized by network effects.

2.1 State Space and Firm Decisions

The model is cast in discrete time with an infinite horizon. Though our
attention in this paper is limited to when there are just two firms, the model
will be described for the more general case of N ≥ 2 firms. These firms sell
to a sequence of heterogenous buyers with unit demands. At the start of a
period, a firm is endowed with an installed base which represents consumers
who have purchased its product in the past. Let bi ∈ {0, 1, . . . , M} denote
the installed base of firm i at the start of a period where M is the maximal
size of the installed base.

Given (b1, . . . , bN ) , firms engage in a two-stage decision process in which
they choose compatibility in stage 1 and then price in stage 2. In stage 1,
each firm decides whether or not to “propose compatibility” with each of
the other firms. Let dij ∈ {0, 1} be the compatibility choice of firm i with
respect to firm j where dij = 1 means “propose compatibility.” To actu-
ally achieve compatibility requires that both firms propose it. Thus, the
technologies of i and j are “compatible” if and only if dij · dji = 1. Requir-
ing both firms to consent is consistent with a number of markets including
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those involved in the Microsoft case. Furthermore, the analysis promises to
be more interesting than when a firm can, by itself, make its product com-
patible.3 After compatibilities are determined, firms simultaneously choose
price. Let pi denote the price of firm i.

Though firms can influence compatibility and price, we do not allow
inter-firm payments which would permit a firm to induce a competitor
to make its product compatible through appropriate compensation. This
assumption is common in the literature on network effects. Malueg and
Schwartz (2006) summarize the arguments in its favor, of which the most
compelling is that such payments may not be permitted by the antitrust
authority as they provide fertile grounds for firms to collude.

This is clearly a stylized modelling of compatibility but should serve
our purposes well. Our primary interest is in understanding the incentives
for compatibility and that means learning when firms prefer compatibility.
We have then given them maximal flexibility by ignoring any technical con-
straints and assuming compatibility is costless to change. Furthermore, this
modelling approach means that compatibility is not a state variable and this
is important in keeping the dimensionality of the state space manageable.
After presenting our main results, we argue that they are likely to be robust
to having a cost to changing compatibility.

2.2 Demand

Demand in each period comes from the replacement of a randomly selected
old consumer (who previously purchased) with a new consumer. There is one
new consumer each period and her buying decision is based on the following
discrete choice model. Let εi be the idiosyncratic preference of the buyer for
firm i’s product in the current period. The utility that the consumer gets
from buying from firm i is

vi + θg


bi + λ

∑

j 6=i

dijdjibj


− pi + εi.

bi + λ
∑

j 6=i dijdjibj is the effective installed base of firm i given the set of
compatible technologies where λ ∈ [0, 1] allows for the value of the installed
base of other compatible technologies to be worth less to consumers of firm
i’s product. vi is a measure of intrinsic product quality which is assumed to

3In some markets, it may be viable for consumers to purchase converters to achieve
compatibility. The implications of that option are explored in Farrell and Saloner (1992)
and Choi (1996, 1997).
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be common across firms: v = vi and is also fixed over time.4 Network effects
are captured by the increasing function θg(·) where θ ≥ 0 is the parameter
that controls the strength of network effects. We will refer to the sum of these
two factors, vi + θg (·), as quality. The buyer can also choose to purchase
an outside good with utility v0 + ε0. As the intrinsic quality parameters
only affect demand through the expression v0− v, without loss of generality
we set v = 0. The consumer’s idiosyncratic preferences (ε0, ε1, . . . , εN ) are
unobservable to firms.

A new consumer buys from the firm offering the highest current utility.
We are then assuming consumers make myopic decisions (or, equivalently,
they have static expectations about the future). By having a parsimonious
representation of consumer decision-making, we are able to have a rich mod-
elling of firm choice with respect to price and compatibility. An impor-
tant though challenging extension of our work is to allow consumers to be
forward-looking with rational expectations. For some recent research along
those lines - though not allowing for endogenous compatibility - see Cabral
(2007) and Driskill (2007).

Assuming (ε0, ε1, . . . , εN ) are independently extreme value distributed,
the probability that firm i makes a sale to a new consumer is

φi (p; d, b) ≡
exp

(
θg

(
bi + λ

∑
j 6=i dijdjibj

)
− pi

)

exp (v0) +
∑N

j=1 exp
(
θg

(
bj + λ

∑
k 6=j djkdkjbk

)
− pj

) ,

where p is the vector of prices of all firms, d is the vector of compatibil-
ity choices, and b is the vector of installed bases. Note that if v0 = −∞
then φ0 (p; d, b) = 1 − ∑N

i=1 φi (p; d, b) = 0, so the outside good is hope-
lessly unattractive and a consumer will buy from one of the N firms with
probability one. In that case, expected market demand equals one in each
period and, most importantly, is independent of firms’ installed bases and
any decisions regarding compatibility and price. Those decisions will only
influence a firm’s expected market share. The case of v0 = −∞ is referred to
as the case when market size (or demand) is fixed. When instead v0 is not
−∞ then the expected market size is endogenous. In particular, a firm can
increase its expected demand without necessarily decreasing the expected
demand of its rivals.

4An important research and policy question is how endogenous compatibility affects
innovation incentives. We intend to explore this question in the future by allowing firms
to invest in quality in which case vi will be endogenous.
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2.3 Network Effects and Transition Probabilities

In modelling network effects, we will assume they are bounded in the sense
that g (bi) = g (m) if bi ≥ m for some m ≤ M. Bounding the network effect
is as specified in Cabral and Riordan (1994) though in their context it was
learning-by-doing. Though the results reported here are based on linear
network effects - g (bi) = bi

m if bi ≤ m - we have also allowed g to be convex,
concave, and S-shaped and the main conclusions of the paper are robust.

∆(bi) denotes the probability that the installed base of firm i depreciates
by one unit. We specify ∆(bi) = 1− (1− δ)bi , where δ ∈ [0, 1] is the rate of
depreciation. This specification captures the idea that the likelihood that a
firm’s installed base depreciates increases with the size of its installed base.
δ would be expected to be higher where consumer turnover is higher or
products have shorter lives so that consumers need to return to the market
at a higher rate.5

Letting qi ∈ {0, 1} indicate whether or not firm i makes the sale, its
installed base changes according to the transition function

Pr(b′i|bi, qi) =
{

1−∆(bi) if b′i = bi + qi,
∆(bi) if b′i = bi + qi − 1,

where, at the upper and lower boundaries of the state space, we modify the
transition probabilities to be Pr(M |M, 1) = 1 and Pr(0|0, 0) = 1, respec-
tively.

3 Equilibrium

3.1 Bellman Equation and Strategies

In working backwards through the compatibility and pricing decisions, we
use the following notation:

• Vi(b) denotes the expected net present value of future cash flows to
firm i in state b before the compatibility decisions have been made.

• Ui(d, b) denotes the expected net present value of future cash flows to
firm i in state b after the compatibility decisions have been made and
revealed to all firms.

5One motivation for this specification is that if bi old consumers were to independently
“die” with probability δ, then the probability of at least one dying is 1 − (1 − δ)bi . The
number of deaths in a period is then capped at one as a simplifying approximation.
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We use d(b) and p(d, b) to denote the compatibility and pricing strategies
in equilibrium. Given compatibility choices d and installed bases b, the net
present value of future cash flows to firm i is given by

Ui(d, b) = max
pi

φi(pi, p−i(d, b); d, b)pi

+β
N∑

j=0

φj(pi, p−i(di, b); d, b)V ij(b), (1)

where p−i(d, b) are the prices charged by firm i’s rivals in equilibrium (given
installed bases and compatibility choices), the (constant) marginal cost of
production is normalized to be zero, β ∈ [0, 1) is the discount factor, and
V ij(b) is the continuation value to firm i given that firm j wins the current
consumer.

Given any feasible vector of compatibility choices d, differentiating the
right-hand side of equation (1) with respect to pi and using the properties
of logit demand yields the first-order condition

−φi(1− φi)(pi + βV ii) + φi + β
∑

j 6=i

φiφjV ij = 0. (2)

The pricing strategies p(d, b) are the solution to the system of first-order
conditions.

Folding back from pricing to compatibility decisions, given installed bases
b, the net present value of future cash flows to firm i is given by

Vi(b) = max
di∈{0,1}N−1

Ui(di, d−i(b), b), (3)

where di = (di1, . . . , dii−1, dii+1, . . . , diN ) and d−i(b) are the compatibility
choices of firm i’s rivals in equilibrium (given installed bases). Since firm i
has 2N−1 feasible compatibility choices, the size of the choice set is increasing
exponentially in the number of firms.

We focus attention on Markov perfect equilibria (MPE). As firms are
ex-ante symmetric - in the sense that they face the same demand and cost
primitives - we focus on symmetric MPE. It is easiest to understand what
the symmetry restriction entails if N = 2.6 In this case the compatibility
decision taken by firm 2 in state (b1, b2) = (b′, b′′) is identical to the compat-
ibility decision taken by firm 1 in state (b1, b2) = (b′′, b′), and similarly for

6See e.g. Doraszelski and Satterthwaite (2007) for a formal definition of symmetry if
N > 2.
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the pricing decision and value function. This means that firms are required
to behave identically if their installed bases are identical, but that they may
behave differently if their installed bases are different. With a symmetric
MPE, any ex-post asymmetries between firms arise endogenously as a con-
sequence of firms’ pricing and compatibility decisions for realized demand
and the random depreciation of their installed bases. Finally, we follow the
majority of the literature on numerically solving dynamic stochastic games
by restricting attention to pure strategies (Pakes and McGuire, 1994, 2001).

3.2 Computation and Parameterization

As with many other dynamic models, the multiplicity of MPE is a concern.
Unfortunately, it is not practical to compute all of them using the homotopy
method proposed in Besanko et al (2005) because our game is more complex
(with both compatibility and pricing decisions). We therefore develop an
algorithm that computes a particular kind of equilibrium, namely the limit
of a finite-horizon game as the horizon grows to infinity. This is a widely
used selection criterion in the theoretical literature on dynamic games.

The idea is as follows: Given continuation values that encapsulate the
value of future play and installed bases, in any given state it is as if firms
are playing a two-stage game of making first compatibility and then pricing
decisions. In the last period of a finite-horizon game, the continuation values
are zero. Hence, we can solve for the subgame-perfect equilibrium of the two-
stage game. In the previous-to-last period, the continuation values are given
by the equilibrium payoffs of the last period. Continuing this line of thought,
we can construct an algorithm that computes the limit of a finite-horizon
game by iterating backwards in time.

It is worth pointing out two important differences to the widely-used
Pakes and McGuire (1994) algorithm. First, in any given state we solve
for the subgame-perfect equilibrium of the two-stage game of compatibility
followed by pricing decisions whilst taking as given the continuation values
of all firms. The Pakes and McGuire (1994) algorithm, in contrast, computes
only a best reply for one firm taking as given both the continuation value of
that firm and the strategies of its rivals. Second, while the initial guess for
the value function is arbitrary in the Pakes and McGuire (1994) algorithm,
using zero as the initial guess reflects the fact that the continuation values
are zero in the last period of a finite-horizon game and is thus a key part of
our algorithm.

Although we focus on the limit of a finite-horizon game, multiplicity of
MPE remains a concern. Since products are compatible between firms i and
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j if and only if both firms propose compatibility then, for any state, there is
always an equilibrium outcome in which firms’ products are incompatible.
When it is also an equilibrium for products to be compatible, we select that
equilibrium because: 1) our interest is in exploring the implications of prod-
uct compatibility; and 2) the equilibrium with compatible products Pareto
dominates the one with incompatible products (except when compatibility
does not matter, such as when λ = 0). In the event that a firm is indif-
ferent about whether or not to make its product compatible, we assume it
proposes incompatibility.7 At least when there are just two firms (which
is the market structure of focus in this paper), this selection criteria takes
care of multiplicity issues at the compatibility stage. With this selection
criteria in place, our algorithm always converged and resulted in a unique
equilibrium. A detailed description of our algorithm can be found in the
Online Appendix.

The key parameters of the model that govern whether firms choose com-
patibility are the strength of the network effect θ, the degree of compatibility
λ, the customer turnover rate δ, and the value of the outside option v0. We
assume v0 = 0, so that market size is sensitive to firms’ compatibility and
price decisions, but also briefly contrast results with when v0 = −∞ so that
market size is fixed.8 The lower bound for customer turnover is zero and
corresponds to the not very realistic case where consumers live or products
last forever, which is achieved when δ = 0. If δ is sufficiently close to one,
then again the industry never takes off. We consider many values for δ be-
tween these extremes. The two extremes of λ = 0 and λ = 1 are explored
along with the intermediate case of λ = .5. Finally, we investigate a range
of values for the strength of network effects: θ ∈ {0, 1, 2, 3, 4}. While we
extensively vary the key parameters, we hold the remaining parameters con-
stant at N = 2, m = 15, M = 20, and β = 1

1.05 , which corresponds to a
yearly interest rate of 5%. We have no reason to think that our results are
sensitive to these parameters (and we did experiment with various values
for m and M).

While the model is not intended to fit any particular industry, we feel
that our parameter values are reasonable when comparing the own-price
elasticity for our model with empirical estimates for products with network
effects. As representative examples of the equilibria for our model, the own-
price elasticity is −.77 for one parameterization (that used in Figure 2)

7Experimentation with the tie-breaking rule revealed that it does not make a difference
for our results.

8In unreported results, we find that our conclusions are robust to assuming v0 ∈
{−3,−1, 1}.
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and −.92 for another (Figure 3). As a point of comparison, Dranove and
Gandal (2003) and Gandal, Kende, and Rob (2000) report own-price elastic-
ities of −1.20 for DVD players and −.54 for CD players, respectively; while
Clements and Ohashi (2005) report own-price elasticities ranging from−2.15
to −.18 for video game consoles. Other studies find evidence of much more
elastic demand: Doganoglu and Grzybowski (2007) and Ohashi (2003) re-
port own-price elasticities ranging from −5.04 to −4.20 for mobile telephony
and from −18.84 to −12.51 for VCRs, respectively.

4 Static Equilibrium

Prior to characterizing equilibria for the dynamic game, it is useful to first
understand the incentives for compatibility in the static model. The static
equilibrium is derived by setting β = 0 in which case firms choose price to
maximize current profit. Installed bases matter only because of how they
affect the current value that consumers attach to firms’ products; they are
not an instrument to later dominance.

Firm 1’s equilibrium price, p1 (b1, b2, d (b1, b2)), depends on its own in-
stalled base, b1, its rival’s base, b2, and whether firms’ equilibrium compati-
bility choices result in compatible products, which is represented by d (b1, b2)
and thus also depends on firms’ installed bases. Representative of our find-
ings is Figure 1 where we have plotted firm 1’s equilibrium price against
firms’ installed bases. Also reported is the compatibility region - that is,
d (b1, b2) - which are the states for which both firms prefer compatibility
and thus their products are compatible. When compatibility affects market
demand (λ = .5 or λ = 1), products are compatible when firms’ installed
bases are sufficiently similar in size. The forces at work are basically the
same as those in other static models that allow for compatibility choice and
are most clearly identified in Cremer, Rey, and Tirole (2000). We review
and elaborate upon them below.

Holding price fixed, there are two quantity effects from firms making their
products compatible. Compatibility raises firm i’s effective installed base
from bi to bi + λbj which then increases the value that consumers attach to
its product by θ [g (bi + λbj)− g (bi)] . Each firm’s product is more attractive
relative to the outside option. Firms then have a mutual interest in having
compatible products because both benefit from drawing more consumers
into the market. This we refer to as the market expansion effect.

A second quantity effect arises when firms have different installed bases.
In that situation, compatibility reduces the quality differential between their
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products which, generally, harms the firm with a bigger installed base. In
other words, the larger firm has an edge because of its installed base and that
edge is partially (when λ = .5) or fully (when λ = 1) lost when products are
made compatible. We call this the business gift effect as it means enhancing
the business stealing effect of one’s rival.9

Supplementing these quantity effects are price effects that can best be
understood through the following decomposition when λ = 1. Suppose the
initial state is (b1, b2) = (b′, b′′) where b′ < b′′. Compatibility can then be
decomposed into two parts: it causes firms’ effective installed bases to shift
from (b′, b′′) to (b′′, b′′) and then from (b′′, b′′) to (b′ + b′′, b′ + b′′) . As the first
shift only improves the smaller firm’s quality, its price rises and the larger
firm’s price falls.10 The second shift causes both firms’ prices to increase
as the quality of their products rises relative to the outside good.11 The
first price effect is ambiguous as to how it impacts profitability though the
second price effect amplifies the market expansion effect and thus further
enhances the value to making products compatible.

We can now use the market expansion and business gift effects to explain
why compatibility emerges when firms’ installed bases are sufficiently similar
in size. Suppose firms have identical installed bases and recall that firms are
static profit-maximizers in this exercise. Both firms experience higher profit
by having compatible products because they take demand away from the
outside good (which is the market expansion effect) and neither firm loses
any advantage over its competitor since relative quality is unaffected (that
is, there is no business gift effect). Now suppose firms’ bases are close but
not identical. With compatibility, the larger firm loses only a small relative
quality advantage over the smaller firm (since similar bases means similar
qualities) but there is a discrete jump in absolute quality with compatibility.
Hence, the market expansion effect exceeds the business gift effect when
a firm’s installed base is slightly larger than that of its rival. Obviously,
the firm with a smaller base is better off with compatible products. This
explains why there is an area around the diagonal in which firms agree to

9In the Online Appendix, it is shown that sufficient conditions for the business gift
effect to harm the firm with the larger installed base are that g is linear or concave and/or
λ ' 1. If g is sufficiently convex and λ ¿ 1, it is possible that the business gift effect
instead harms the firm with the smaller installed base.

10For our demand structure, Anderson et al (1992, p. 266) prove that a firm’s equi-
librium price is increasing in its quality (or installed base). Since prices are strategic
complements then a firm’s equilibrium price is decreasing in the other firm’s quality.

11If firms have a common quality (which is composed of both intrinsic quality and
network effects) then the symmetric equilibrium price can be shown to be increasing in
that common quality as long as exp (v0) > 0 (that is, market size is variable).
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make their products compatible, as can be seen in Figure 1. Now move the
bases farther off of the diagonal. The business gift effect rises in importance
- as the larger firm gives up a greater quality advantage - until it exceeds the
market expansion effect; at that point the larger firm prefers that products
be incompatible.12

This explanation is confirmed when one examines the case when there is
no outside good (v0 = −∞). Since the market expansion effect vanishes, only
the business gift effect is operative which would argue that the larger firm
would never want to have compatible products. Indeed, when the market
size is fixed, compatibility never occurs in equilibrium as long as firms have
different installed bases.

5 Dynamic Equilibrium

For the primary dynamic forces of our model to be at work, the relevant
part of the parameter space is when compatibility matters, network effects
are not weak, and the rate of customer turnover is neither too low (so that
the state stays away from the bounds) nor too high (so the “investment”
incentive is not weak). In that part of the parameter space, two types of
equilibria occur, which we refer to as Tipping and Compatibility. These are
by far the most insightful for learning about dynamic competition and will
be the focus of our attention. Throughout most of this section, we assume
v0 = 0, so that market demand is variable, and at its conclusion discuss
what happens when market size is fixed.13

5.1 Tipping Equilibrium

A Tipping equilibrium has the following properties: i) intense price com-
petition when firms’ installed bases are of comparable size; ii) the limit
distribution for installed bases is bimodal with a lot of mass at highly asym-
metric states; and iii) products are generally incompatible. An example of a
Tipping equilibrium is shown in Figure 2. The policy function for a Tipping
equilibrium is characterized by a deep trench along and around the diago-
nal. In Figure 2, price is actually negative - below marginal cost - for some
states near the diagonal. Sufficiently off of the diagonal, price is relatively
high. This equilibrium is similar to that found in models with increasing

12We have indeed confirmed that where incompatibility occurs, the smaller firm prefers
to have compatible products but it is vetoed by the larger firm.

13For a description of equilibria for a more comprehensive set of parameterizations, see
the Online Appendix.
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returns such as arises with advertising (Doraszelski and Markovich, 2007)
and learning-by-doing (Besanko et al, 2005).14

When firms have sufficiently disparate installed bases, dynamic competi-
tion largely ceases as reflected in relatively high prices (these are the plateaus
off of the diagonal). Due to network effects, the profitable strategy for the
smaller firm is to accept having a low market share. If instead it were to try
to supplant the larger firm, it would need to price at a considerable discount
in light of the quality disadvantage emanating from a smaller installed base
and that products are incompatible. Furthermore, low pricing would have
to continue for an extended period of time in order to eliminate the installed
base differential. Since such an aggressive strategy is not profitable and thus
not pursued, prices are high and the larger firm reaps large profits due to its
high market share by virtue of having a better product (which comes from
a bigger installed base and network effects).

It is this “prize” to a firm with a significant installed base advantage that
causes competition to be so intense when firms have comparable installed
bases. A firm knows that if it were to gain such an advantage that the other
(smaller) firm would accept its position in the market and the larger firm
would reap high profits. We then have a deep trench along and around the
diagonal which indicates that prices are low. Each firm focuses on fighting
its rival to become the dominant firm. Note that for states in the trench,
firms’ products are incompatible except possibly when b1 = b2.15

To describe how firms’ installed bases evolve, the T -period transient
distribution describes the frequency with which the state (b1, b2) takes a
particular value after T periods, starting from state (0, 0) in period 0. A
comparison of the transient distributions after 5, 15, and 25 periods in Figure
2 describes how the state is changing over time. Turning from the short run
to the long run, the limit (or ergodic) distribution gives the frequency with
which a state occurs after many periods.16

As shown in Figure 2, the limit distribution on installed bases is bimodal,
which indicates that it is quite likely market dominance will emerge. Once

14This is also the case with capacity investment with price competition (Besanko and
Doraszelski, 2004; Chen, 2005) though it is not an increasing returns story.

15Interestingly, products are not always compatible on the diagonal. Incompatibility
occurs when firms price below marginal cost because of their eagerness to increase their
installed bases. As a result, compatibility would reduce current profit because it increases
demand and each unit sold is at a loss.

16More formally, let P be the (M+1)2×(M+1)2 transition matrix of the Markov process
of industry dynamics. The transient distribution after T periods is given by µT = µ0P

T ,
where µ0 is the 1 × (M + 1)2 initial distribution. The limit distribution µ∞ solves the
system of linear equations µ∞ = µ∞P .
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one of the firms gains an advantage in terms of installed bases, the strength
of network effects transforms it into a long-run advantage. The movement
towards skewed outcomes is apparent by following the transient distribution
over time; more and more mass is dispersed away from the diagonal. The
pricing behavior of firms contributes to the emergence and persistence of
market dominance since the firm with the smaller installed base generally
accepts its position by not pricing aggressively. The Tipping equilibrium
embodies the quintessential property of network effects which is that the
market “tips” to one firm dominating as soon as it has an advantage.

A Tipping equilibrium occurs when the network effect is strong - it does
not occur for θ ∈ {1, 2} but does arise when θ ∈ {3, 4} - and customer
turnover is modest (δ is low).17 For a firm to price aggressively and forego
current profit, the prospect of future dominance by building its installed
base must be sufficiently great. This requires that the network effect is
sufficiently strong and the installed base does not deteriorate too rapidly.

Result 1 (Tipping Equilibrium) When the network effect is strong and
customer turnover is modest, equilibrium is characterized by incompatible
products, intense price competition when firms’ installed bases are of com-
parable size, and tipping towards market dominance when one firm gains an
advantage in terms of its installed base.

5.2 Compatibility Equilibrium

There is another type of equilibrium which is new to the increasing returns
literature and arises solely because firms have the option to make their prod-
ucts compatible. A Compatibility equilibrium has the following properties:
i) high prices when firms’ installed bases are of similar or highly disparate
size but intense price competition when modestly different; ii) the transient
and limit distributions for installed bases are unimodal with a lot of mass at
reasonably symmetric states; and iii) products are compatible when firms’
installed bases are comparable. A representative example is provided in Fig-
ure 3. For this type of equilibrium, let us explore compatibility and pricing
in three scenarios: when the installed base differential is large, modest, and
small.

Large installed base differential. When the differential is large, the
outcome is basically the same as with a Tipping equilibrium. Products

17The exact parameter configurations for which a Tipping equilibrium occurs can be
found in the Online Appendix.
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are incompatible and the firm with the larger installed base dominates the
market due to network effects. The smaller firm is resigned to its inferior
position in the market and thus dynamic competition is minimal. Prices are
relatively high as a result.

Small installed base differential. When firms have installed bases that
are similar in size, prices are also relatively high though now products are
compatible. Recall from our examination of the static equilibrium that
compatibility reduces the quality differential emanating from firms having
different installed bases, which is detrimental to the firm with a bigger in-
stalled base. At the same time, it enhances both firms’ product quality and
thereby expands the market. The former effect we referred to as the business
gift effect and the latter as the market expansion effect. Due to these two
effects, there was a region around the diagonal for which both firms choose
to make their products compatible. These forces are still present in the
dynamic equilibrium and are partly at work in generating the compatibility
region for a Compatibility equilibrium.

Though products are compatible, this need not imply the absence of price
competition. For a Tipping equilibrium, firms often make their products
compatible when they have identical installed bases and, at the same time,
price very low in order to acquire an advantage in its installed base. Such
dynamic price competition is not observed for a Compatibility equilibrium
when the installed base differential is small. To see why, suppose firms
begin with identical installed bases. Regardless of which firm (if any) wins
today’s customer and thereby expands its installed base, firms expect their
products to be compatible tomorrow; this follows from the compatibility
region encompassing asymmetric as well as symmetric states. Thus, a firm
which gains a small installed base advantage does not anticipate gaining a
quality advantage in the near term because compatibility will be maintained;
this stifles dynamic price competition.

Modest installed base differential. The most intriguing region is when
firms have modestly different installed bases in which case prices are low as
reflected in the dual trenches in the policy function. As explained below,
pricing behavior is largely driven by dynamics associated with endogenous
product compatibility. Whether or not products are compatible tomorrow
depends on firms’ installed bases tomorrow; only if they are sufficiently
similar in size will firms mutually decide to have compatible products. Of
course, tomorrow’s state depends on today’s pricing. With a Compatibility
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equilibrium, pricing is then driven not only by the prospect of dominating
the market - a force that is ever present in a market with network effects -
but also by the strength of firms’ desire to maintain product compatibility.

To explore the incentives for compatibility, first note that the smaller
firm almost always prefers compatible products - as it is benefitted both by
the market expansion and business gift effects - while the larger firm prefers
compatible products only when the installed base differential is sufficiently
small. Thus, when products are incompatible, it is the larger firm that
prevents it. Let us begin by examining how the smaller firm’s desire for
compatibility influences its pricing behavior.

Corresponding to Figure 3, Figure 4 reports firm 1’s equilibrium price
for different states. The states for which firms’ products are compatible are
shaded, while negative (below cost) prices are boxed. Prices are high when
firms have comparable bases (that is, near the diagonal). As the state moves
farther off of the diagonal - so that the difference in firms’ bases increases -
the smaller firm lowers its price. It does so even though firms’ products are
of equal quality (due to compatibility and λ = 1). In particular, the smaller
firm significantly drops its price when the state approaches the (interior)
border of the compatibility region. Its intent is to increase expected sales
and thereby reduce the installed base differential. In Figure 4, firm 1’s price
drops from 1.3 to 1.0 when the state moves from (b1, b2) = (4, 9) to (4, 10)
where (4, 10) is just on the interior of the compatibility region. Just outside
of the compatibility region, the smaller firm drops price even more; when
the state moves from (4, 10) to (4, 11), firm 1’s price drops from 1.0 to -.1.
The smaller firm is trying to add to its base in order to move the state
back into the region where the larger firm prefers compatibility. Compared
to when the state is just inside the compatibility region, this task is made
more difficult because products are no longer compatible which means the
smaller firm suffers from a quality disadvantage. To compensate for that
disadvantage, it needs to sell its product at an even bigger discount to the
larger firm’s product.

In sum, the smaller firm is pricing aggressively in order to keep the differ-
ential in installed bases sufficiently small. Its intent is to pacify, rather than
fight, the larger firm so that the larger firm will “make nice” (by having a
compatible product) rather than “make mean” (by pursuing monopolization
through incompatible products).

Though the larger firm also drops price around the border of the com-
patibility region, that apparently is a response to the smaller firm’s pricing
behavior - as prices are strategic complements - rather than an attempt
to monopolize. For example, in Figure 4, a movement in the state from
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(4, 9) to (4, 10) results in the smaller firm dropping price from 1.3 to 1.0,
while the larger firm’s price only falls from 1.8 to 1.7 (and remember that
consumers attach the same utility to their products as they are fully com-
patible). Examination of the value function shows that, along the border of
the compatibility region, the larger firm only slightly prefers compatibility
which is why it is willing to price much higher than the smaller firm even
though it might mean the state moves out of the compatibility region. In
contrast, the smaller firm strongly prefers compatibility, which explains why
it is willing to price so low in order for the state to remain in that region.

It is worth emphasizing that this pricing behavior is quite distinct from
what static demand effects would produce. Within the compatibility region,
the relative quality of firms’ products is identical since products are compat-
ible and λ = 1. In a static model, prices would then be identical, while here
the smaller firm has a lower price. Second, price falls sharply just outside of
the compatibility region but eventually rises as the installed base differential
becomes sufficiently large. That is also in support of our dynamic story as a
firm’s static equilibrium price monotonically declines as its relative quality
falls.

A Compatibility equilibrium occurs when network effects are neither
weak nor strong and the effect of compatibility on demand is significant. It
is typical when θ ∈ {1, 2} but also occurs when θ ∈ {3, 4} as long as δ is
not too low. If network effects are weak then pricing is largely uninfluenced
by dynamic considerations, while if it is strong then the ability to translate
a small installed base advantage into long-run dominance deters the larger
firm from making its product compatible.

Result 2 (Compatibility Equilibrium) When the network effect is mod-
estly strong and the effect of compatibility on demand is strong, equilibrium
is characterized by compatible products, mild price competition, and an ab-
sence of market dominance.

Suppose we were now to assume that there is no viable outside option, in
which case market size is fixed and each consumer buys from either firm 1 or
firm 2. Running the model when v0 = −∞, firms are found never to choose
to make their products compatible, except possibly when their installed
bases are identical. With a fixed market size, each firm is only interested in
having higher quality relative to its rival, in which case compatibility is al-
ways to the detriment of the larger firm. Hence, a Compatibility equilibrium
does not arise, while there is a wider array of parameter values for which a
Tipping equilibrium occurs. For example, when θ = 2, firms do not compete
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aggressively for dominance when v0 = 0 (that is, there are no Tipping equi-
libria), while they do compete for dominance for δ ∈ {.04, . . . , .12} , when
v0 = −∞. In sum, fixing the market size intensifies dynamic price competi-
tion, as firms compete to gain an advantage in terms of their installed base,
and there is almost no basis for compatibility.

In concluding this section, let us briefly discuss what we think might
happen if there was a cost to changing compatibility that was neither small
(in which case the equilibria would be almost exactly what we have now) nor
large (in which case products would either always or never be compatible).
The Tipping equilibrium ought to persist though there might be some mildly
asymmetric states in which firms’ products are compatible (assuming they
began by being compatible). Still, we would expect that eventually the
differential will become large enough that the larger firm will incur the cost of
switching to incompatibility in order to then dominate the market. We also
believe the Compatibility equilibrium would persist and, in fact, the pricing
effects we have characterized could be more extreme. If firms’ products are
compatible and the larger firm is near the point of preferring incompatibility,
the smaller firm would have an even stronger incentive to price aggressively
since, once products are incompatible, it will be more difficult to return to
having compatible products given that the larger firm has to be induced to
incur the switching cost. Secondly, a cost to changing compatibility would
mean there is a hysteresis band around the border of the compatibility region
whereby firms’ products remain compatible if they are currently compatible
and remain incompatible if they are currently incompatible. These changes
do not alter the key properties of equilibria and thus we expect the insight
to be robust to having a cost to changing compatibility.

6 Product Compatibility and Market Dominance

One of the central questions of this paper is understanding to what ex-
tent endogenous product compatibility can prevent market dominance from
emerging. If the transient and limit distributions with respect to installed
bases are heavily skewed - putting a lot of mass on relatively asymmetric
outcomes - then market dominance is likely to occur. The extent to which
compatibility is feasible can be measured by the parameter λ. Firms ef-
fectively do not have the option of compatible products when λ = 0 as
compatibility does not impact demand.

The pricing behavior identified in the previous section creates a compat-
ibility dynamic which has the potential for maintaining some balance in the
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market and avoiding dominance. Suppose firms begin with identical or near-
identical installed bases. They generally will find it optimal to make their
products compatible in order to expand the market. With products of simi-
lar quality, firms charge similar prices. At that point, their expected market
shares are comparable. Though, in expectation, future installed bases re-
main similar in size, random shocks to demand and customer turnover could
result in one of the firms gaining a significant advantage in terms of installed
bases. If that differential becomes large enough, products will no longer be
compatible and firms will price in a manner to perpetuate such a skewed
market structure. However, in a Compatibility equilibrium, there are forces
preventing a slight advantage from growing into a large one. When firms’
installed bases differ and are near the boundary of the compatibility region,
the smaller firm prices aggressively in order to increase its installed base
and thereby shift the state back towards symmetry. When the state is close
to but outside of the compatibility region - so that the larger firm chooses
to make its product incompatible - the smaller firm offers its product at
an even larger discount so as to shift the state back into the compatibility
region. The strategic pricing behavior of the smaller firm in the vicinity of
the boundary of the compatibility region acts to keep the state within that
region and thus works against market dominance.

The compatibility dynamic is revealed by reporting the resultant force,
which measures the expected movement of the state as determined by the
probability-weighted average of the difference between this and next period’s
state. Figure 5 shows the resultant forces for the parameter configurations
in Figures 2 and 3. The left panel of Figure 5 has a Tipping equilibrium
and, therefore, products are incompatible (except perhaps on the diagonal).
Once the state is off of the diagonal, so that firms have different installed
bases, the state moves away from symmetry as the larger firm builds on its
advantage. Increasing returns is at work. The right panel of Figure 5 is
for a Compatibility equilibrium and nicely shows how the increasing returns
dynamic can be countered by the compatibility dynamic. There is a strong
attraction to the diagonal for a wide range of states.

The real test of this dynamic is examining how the option of compati-
bility impacts the distribution on installed bases. Let us begin with a few
illustrative examples and then present more systematic evidence. For two
different parameter configurations, Figure 6 reports the set of state for which
products are compatible and the limit distributions when λ = 0 and λ = 1.
In the upper panels of Figure 6, the network effect is moderate (θ = 2) and
thus the limit distribution is unimodal even when compatibility is not an
option. Market dominance is not likely to emerge in that case. As compat-
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ibility becomes a possibility (λ = 1), a unimodal distribution persists with
more mass pushed towards symmetric outcomes. Introducing the option of
compatibility makes it more likely that a roughly symmetric state occurs
though does not have a significant impact.

As the strength of networks effects is increased to θ = 3, endogenous
product compatibility makes a striking difference; see the lower panels of
Figure 6. When λ = 0, the limit distribution is significantly bimodal. With-
out the prospect of compatibility, it is very likely that one of the firms will
dominate the market. Allowing for products to be compatible has a dra-
matic effect as the distribution shifts to being unimodal with a lot of mass
around the diagonal. Firms are choosing to make their products compati-
ble unless the state is reasonably asymmetric.18 Introducing the option of
compatibility makes it vastly less likely that market dominance will emerge.

Table 1 and Figure 7 provide a broader set of confirming results. Table
1 reports the mode of the limit distribution.19 Highlighted are parameter
values for which a bimodal distribution occurs when compatibility is not an
option (λ = 0) and a unimodal distribution occurs when compatibility is an
option (λ = 1). For example, when (δ, θ) = (.07, 3), the lack of compatibility
results in a highly skewed mode in which one firm has an installed base of
15 units and the other has only one unit. When instead firms have the
option of product compatibility, the mode is symmetric with each having
eight units. Figure 7 reports the expected long-run Herfindahl index (based
on sales) using the limit distribution over states. To the extent that the
long-run Herfindahl index exceeds .5, asymmetries arise and persist. If the
customer turnover rate is not too low, the option of compatibility reduces
market concentration and sometimes significantly so.

To summarize, endogenous product compatibility can neutralize the usual
increasing returns mechanism associated with network effects. The trick is
keeping the differential in installed bases sufficiently modest so that the
larger firm chooses to make its product compatible. The burden of ensur-
ing the differential is kept low falls on the smaller firm, whose incentive for
compatibility is much greater, and is reflected in aggressive pricing when the
installed base differential becomes too large. Compatible products can then
be stable and, as a result, both firms can have significant market shares in
the long-run.20

18For the case of a very strong network effect (θ = 4), which is not shown, endogenous
compatibility does not matter as, even when λ = 1, products are incompatible and a
bimodal distribution arises.

19A bimodal distribution never occurs for δ > .15.
20This is a useful point to contrast our model and results with another body of work
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Result 3 (Avoidance of Market Dominance) Having the option of prod-
uct compatibility can result in a market achieving a relatively symmetric
outcome when, in the absence of that option, there would have been market
dominance.

7 Impact of Network Effects

Consistent with previous work, Figure 7 shows that market concentration is
higher when network effects are stronger. Where there is a big increase in
concentration from a stronger network effect - such as when θ rises from 2 to
3 for (δ, λ) = (.08, 0) and from 3 to 4 for (δ, λ) = (.08, 1) - it is because the
equilibrium is switching to a Tipping equilibrium. Not surprising, stronger
network effects result in higher concentration.

To gain some insight into how network effects and product compatibility
interact, let us use Figure 8 to explore how the equilibrium policy function
changes with respect θ. When network effects are weak (θ = 1), there is
a mild Compatibility equilibrium with a large compatibility region. As θ
is increased, the dual trenches deepen and the compatibility region shrinks
because the larger firm increasingly prefers a monopolization strategy rather
than enhancing current demand through compatibility. As a result, it is
all the more important for the smaller firm to prevent the gap in bases
from widening too much, which induces it to price lower along the border
of the compatibility region; hence, the trench deepens as θ rises. While
the limit distribution does become more dispersed as the network effect
rises - indicating that it is more likely that installed bases will be highly
asymmetric - the effect is relatively weak. The real impact of a stronger

dealing with endogenous market dominance. Exemplified by Budd, Harris, and Vickers
(1993), this literature identifies the tendency for dynamic competition to move the indus-
try in a joint profit-maximizing direction. As the approach uses asymptotic expansion to
approximate the value and policy functions around the special cases of infinite discounting
and infinite uncertainty, it has been noted that additional effects may operate when away
from these special cases and could well dominate the joint-profit effect. Furthermore, and
perhaps most important, firms’ prices in these other models do not affect the future evolu-
tion of the state of the industry; that is, price is a static control variable while investment
is a dynamic control variable. In our setting, in contrast, price and compatibility deci-
sions affect both current profit and the future evolution of the state. Finally, the state
in our model is not moving in the direction of maximizing joint profit. This we verified
numerically but it is most easily seen by noting that joint profits are maximized by one
of the firms being priced out of the market so a monopoly prevails. To the extent that
endogenous compatibility helps to avoid market dominance, dynamic competition does
not maximize joint profits.
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network effect is to induce the smaller firm to price more aggressively in
order to ensure that products are compatible. This property highlights the
role of the compatibility dynamic in that market dominance is only mildly
increasing when the network effect is strengthened.

Note that the compatibility region in Figure 8 shrinks as θ increases.
Nevertheless, it is not always the case that products are less likely to be
compatible when the network effect is stronger. Table 2 reports the long-run
probability that products are compatible using the limit distribution. When
the customer turnover rate is relatively low, the frequency with which prod-
ucts are compatible is generally lower when the network effect is stronger;
for example, when δ = .06, the frequency with which products are compati-
ble falls from 96% of the time to never as θ increases from 1 to 3. However,
when the customer turnover rate is modestly high, products are more likely
to be compatible when the network effect is stronger. For example, when
δ = .14, the frequency with which products are compatible rises from 68%
to 83% as θ increases from 1 to 4, in spite of the fact that the set of states
for which products are compatible is shrinking.

The resolution of this riddle lies in the policy functions. Because the
network effect is stronger, the smaller firm is more aggressive in keeping the
installed base differential relatively low because it fears the larger firm may
shift to a monopolization strategy. This aggressive pricing behavior makes
it more likely that the state remains in the compatibility region when θ = 4
than when θ = 1 even though the region is smaller. Note that this surprising
comparative static holds as long as the equilibrium is Compatibility. But for
a Compatibility equilibrium to persist as θ is increased (and not transform
into a Tipping equilibrium), it is necessary that the customer turnover rate
not be too low. That is why δ must be sufficiently high for a stronger
network effect to increase the frequency of compatible products.

Result 4 (Strength of Network Effect) A stronger network effect in-
creases market concentration. A stronger network effect decreases the fre-
quency of compatible products when the customer turnover rate is low and
increases the frequency of compatible products when the customer turnover
rate is high.

8 Welfare Effects of Compatibility

In this section we consider the welfare effects of various policies designed
for a market with network effects. The first policy is one of laissez faire or,
as we refer to it below, endogenous compatibility. The results for a policy
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of endogenous compatibility are derived by running the model that we have
thus far been analyzing. A second policy is mandatory compatibility so that
firms optimize with respect to price only, while we impose the condition
that products are compatible. The final policy is prohibited compatibility
which has firms optimize with respect to price only, given that products are
incompatible.21 Results are reported for when products are, in principle,
fully compatible (λ = 1).22

In measuring the performance of these policies, we use the expected net
present value of producer surplus, consumer surplus, and total welfare (the
sum of the previous two measures), starting with zero installed bases. These
measures are appropriate if one imagines weighing various policy options at
the inception of a product market, which is typically when such discussions
occur.23 To derive producer surplus at a market’s initiation, we just need to
evaluate a firm’s value function at (b1, b2) = (0, 0). In the Online Appendix,
we describe how we calculated the net present value of consumer surplus.

As reported in the upper panel of Table 3, firms have an unambiguous
ranking of policies. Firms most prefer that products are mandated to be
compatible, and least prefer a policy that prevents products from being
compatible. As we have previously discussed, firms benefit from having
compatible products because of the market expansion effect, and since we are
evaluating these policies when firms are symmetric (both have zero installed
bases), the business stealing effect is less relevant. This factor, by itself,
would explain the ranking of policies. But there is a second factor which
is that these policies have different implications regarding the intensity of
price competition. When products are required to be compatible, there is
no basis for aggressive pricing so as to dominate the market. And when
products are prohibited from being compatible, there is no basis for the
mild price competition that arises when products are compatible. Thus,
pricing behavior is, on average, increasingly intense as we move from a policy
of mandatory compatibility to one of endogenous compatibility to one of
prohibited compatibility.24 Firms then most prefer mandatory compatibility
since it makes their product more attractive to consumers and it reduces

21Results are derived for this case by running the original model and setting λ = 0.
22Qualitatively similar results hold for the case of partial compatibility (λ = .5).
23Similar conclusions are reached when we used average profit, consumer surplus, and

welfare based on the limit distribution, though there are some differences when network
effects are strong (θ = .4) and customer turnover is not high, δ ∈ {.06, .08, .10}.

24For the limit distribution, we verified that average price is highest under mandatory
compatibility and lowest under prohibited compatibility, when θ ∈ {1, 2, 3}. When θ = 4,
the relative intensity of price competition with these three policy regimes depends on δ.
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dynamic price competition.
In contrast to firms, the ranking of policies by consumers depends on

the strength of network effects; see the middle panel of Table 3. When
network effects are modest, θ ∈ {1, 2} , consumers most prefer a policy of
endogenous compatibility. Policies of mandatory and endogenous compati-
bility produce a similar frequency of compatible products; as shown in Table
2, the frequency of compatible products is relatively high under endogenous
compatibility. But a policy of endogenous compatibility has an advantage
in that there are episodes in which the smaller firm prices really low in order
to keep the state in the compatibility region; that incentive is absent un-
der mandatory compatibility. Thus, consumers desire a laissez faire policy
which has firms determining whether their products are compatible.

When instead network effects are strong, consumers can prefer a policy
of prohibited compatibility. When θ = 4 and customer turnover is low,
consumers are indifferent between endogenous and prohibited compatibility
since, in either case, products are incompatible (because a Tipping equi-
librium occurs under the endogenous compatibility regime). When instead
customer turnover is modest or high, consumers strictly prefer a policy that
prohibits compatible products. For those values of δ, endogenous compat-
ibility results in a Compatibility equilibrium. When firms’ products are
required to be incompatible, price competition is made much more intense
because network effects are strong. The gain in surplus from lower prices is
sufficient to offset the loss of value from product incompatibility.

In terms of total welfare, the lower panel of Table 3 shows that a laissez
faire policy is generally preferred except for some cases when network effects
are strong. However, that conclusion could well depend on the particular
parameter configurations which result in consumer surplus being large rel-
ative to producer surplus. More robust is the finding that firms prefer that
compatibility be made mandatory, and consumers generally prefer a policy
of non-intervention. Thus, we can expect industry and consumer lobbyists
to be on opposing sides of a policy debate.

Result 5 (Welfare Effects of Compatibility) When network effects are
modest, firms prefer a policy of mandatory compatibility and consumers pre-
fer a policy of endogenous compatibility. When network effects are strong,
firms continue to prefer a policy of mandatory compatibility while consumers
prefer a policy of prohibited compatibility (strictly so when customer turnover
is not low).
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9 Concluding Remarks

The main contribution of this paper is identifying the compatibility dynamic
which can prevent market dominance in markets with network effects. When
firms have comparably-sized installed bases, they choose to make their prod-
ucts compatible in order to expand market size. This occurs at a cost to
the firm with the larger installed base since its quality advantage over the
other firm is diminished when products are compatible. However, as long
as installed bases are sufficiently similar in size, the reduction in relative
quality is small relative to the rise in absolute quality. The challenge to
compatibility persisting over time is that, due to the randomness in demand
and customer turnover, the differential in firms’ installed bases could grow
to the point that the larger firm chooses to pursue a dominance strategy
and thus makes its product incompatible. However, there are strong forces
preventing a slight differential from growing into a large one. When firms’
installed bases near the point that the larger firm would make its product
incompatible, the smaller firm prices aggressively in order to increase its in-
stalled base. Thus, strategic pricing keeps the installed base differential from
expanding to the point that incompatibility occurs. Compatible products
are then stable. The compatibility dynamic is able to neutralize increasing
returns and result in long-run market structures that are not characterized
by a single dominant firm.

This research project will continue in several directions. First is to extend
the model to a triopoly and explore whether market dominance can be
avoided even when market size is insensitive to firms’ prices. Recall for
the duopoly case that a necessary condition for compatible products is that
there is an outside option whose market can be eaten into. When there
is a triopoly, the third firm is an outside option from the perspective of
two firms, though one whose value is endogenous. This suggests that some
compatibility may arise even when market size is fixed if there are more
than two firms.

A second research direction is to enrich the model by allowing firms to
innovate. Prior to deciding on compatibility and price, each firm invests in
R&D; the outcome of which is stochastic and affects the intrinsic quality
of the good. Does the option of product compatibility reduce innovation
because a firm can free ride as long as products are compatible? Does
innovation offset the compatibility dynamic and allow increasing returns to
flourish? Is market dominance more likely when firms can innovate? These
are some of questions that will be addressed.

Finally, let us remind the reader that a strong assumption in our model
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is that consumers have static expectations in that they choose the prod-
uct with the highest current net surplus and thus presume that installed
bases will not change in the future. An alternative specification is to as-
sume consumers have rational expectations; their beliefs being based upon
the equilibrium-induced distribution over future installed bases. This mod-
ification means a far more complex model as now consumer behavior must
be solved dynamically along with firms’ behavior. We leave this challenging
task to future research.
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Figure 1: Static equilibria. Compatibility (a ∗ indicates compatible products) and price.
θ = 3, λ ∈ {0, .5, 1}.
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Figure 2: Tipping equilibrium. Compatibility (a ∗ indicates compatible products) and price,
transient and limit distribution. θ = 3, λ = 1, δ = .06.
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Figure 6: Compatibility (a ∗ indicates compatible products), limit distribution. θ ∈ {2, 3},
λ ∈ {0, 1}, δ = .08.

6



0 0.05 0.1 0.15
0.5

0.6

0.7

0.8

0.9

δ

H
H

I

θ = 2

0 0.05 0.1 0.15
0.5

0.6

0.7

0.8

0.9

δ

H
H

I

θ = 3

0 0.05 0.1 0.15
0.5

0.6

0.7

0.8

0.9

δ

H
H

I

θ = 4

Figure 7: Herfindahl index. θ ∈ {2, 3, 4}, λ = 0 (solid line) and λ = 1 (dashed line),
δ ∈ [0, .15].

7



0
5

10
15

20

0
5

10
15

20

0
1
2
3

b
1

Price (θ = 1)

b
2

p 1(b
1,b

2)
0 5 10 15 20

0

5

10

15

20

**
**
*

**
**
**
**

**
**
**
**
**
*

**
**
**
**
**
**

**
**
**
**
**
**

**
**
**
**
**
*

**
**
**
**
**
*

**
**
**
**
**
**

**
**
**
**
**
*

**
**
**
**
**
*

**
**
**
**
**
*

**
**
**
**
**
*

**
**
**
*
**
*

b
1

b 2

Compatibility (θ = 1)

0
5

10
15

20

0
5

10
15

20
0

0.05

0.1

b
1

Limit distribution (θ = 1)

b
2

µ ∞
(b

1,b
2)

0
5

10
15

20

0
5

10
15

20

0
1
2
3

b
1

Price (θ = 2)

b
2

p 1(b
1,b

2)

0 5 10 15 20
0

5

10

15

20

**
**

**
**
**
*

**
**
**
**
*

**
**
**
**
**
*

**
**
**
**
**

**
**
**
**
**

**
**
**
**
**
*

**
**
**
**
**

**
**
**
**
**

**
**
**
**
**

**
**
**
**
**

**
**
**
*

**
**
***

b
1

b 2

Compatibility (θ = 2)

0
5

10
15

20

0
5

10
15

20
0

0.05

0.1

b
1

Limit distribution (θ = 2)

b
2

µ ∞
(b

1,b
2)

0
5

10
15

20

0
5

10
15

20

0
1
2
3

b
1

Price (θ = 3)

b
2

p 1(b
1,b

2)

0 5 10 15 20
0

5

10

15

20

**
**

**
**
**

**
**
**
**

**
**
**
**
*

**
**
**
**
*

**
**
**
**
*

**
**
**
**
*

**
**
**
**
*

**
**
**
**
*

**
**
**
**

**
**
**

**
**
***

*

b
1

b 2

Compatibility (θ = 3)

0
5

10
15

20

0
5

10
15

20
0

0.05

0.1

b
1

Limit distribution (θ = 3)

b
2

µ ∞
(b

1,b
2)

0
5

10
15

20

0
5

10
15

20

0
1
2
3

b
1

Price (θ = 4)

b
2

p 1(b
1,b

2)

0 5 10 15 20
0

5

10

15

20

**
**

**
**
*

**
**
**
*

**
**
**
**

**
**
**
**

**
**
**
**

**
**
**
**

**
**
**
**

**
**
**
*

**
**
**

**
**
***

**

b
1

b 2

Compatibility (θ = 4)

0
5

10
15

20

0
5

10
15

20
0

0.05

0.1

b
1

Limit distribution (θ = 4)

b
2

µ ∞
(b

1,b
2)

Figure 8: Compatibility (a ∗ indicates compatible products) and price, limit distribution.
θ ∈ {1, 2, 3, 4}, λ = 1, δ = .14.
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.05 (3,15) (9,9) (3,18) (3,18) (2,20) (2,20)

.06 (3,11) (8,8) (2,16) (2,16) (1,20) (1,20)

.07 (4,5) (6,6) (1,15) (8,8) (1,17) (1,17)

.08 (3,4) (5,5) (1,14) (7,7) (1,16) (1,16)

.09 (3,3) (4,4) (1,12) (5,5) (0,15) (0,15)

.10 (2,3) (3,3) (1,9) (4,4) (0,15) (6,6)

.11 (2,2) (3,3) (3,3) (4,4) (0,14) (5,5)

.12 (2,2) (2,2) (2,3) (3,3) (0,13) (4,4)

.13 (2,2) (2,2) (2,2) (3,3) (0,11) (4,4)

.14 (1,2) (2,2) (2,2) (2,2) (0,9) (3,3)

.15 (1,1) (2,2) (1,2) (2,2) (2,2) (3,3)

Table 1: Mode of limit distribution. If the distribution is bimodal, then just one of the
modes is reported. A framed box indicates that there is a bimodal distribution under λ = 0
and a unimodal distribution under λ = 1. θ ∈ {2, 3, 4}, λ ∈ {0, 1}, δ ∈ {0, .01, . . . , .20}.
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δ\θ 1 2 3 4
.04 .87 .03 .00 .00
.06 .96 .90 .00 .00
.08 .91 .95 .93 .00
.10 .84 .90 .94 .93
.12 .76 .81 .86 .90
.14 .68 .73 .80 .83
.16 .59 .66 .73 .72
.18 .52 .59 .66 .66

Table 2: Probability of compatible products. θ ∈ {1, 2, 3, 4}, λ = 1, δ ∈ {.04, .06, . . . , .18}.
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1 Computation and Parameterization: Technical Details

We describe our algorithm here for N = 2. While the state space is

B =
{

(b1, b2) ∈ {0, 1, . . . , M}2
}

,

with the symmetry restriction in place, it suffices to consider the reduced states space

B♦ = {(b1, b2) ∈ B|b1 ≥ b2} .

Moreover, it suffices to consider two compatibility outcomes in any given state (b1, b2) ∈ B♦,
namely d12(b1, b2) = d21(b1, b2) = 0 (incompatible products) and d12(b1, b2) = d21(b1, b2) = 1
(compatible products). Hence, our goal is to determine the following value and policy
functions:

V1(b1, b2), V2(b1, b2),

U1(0, 0, b1, b2), U2(0, 0, b1, b2), U1(1, 1, b1, b2), U2(1, 1, b1, b2),

d1(b1, b2), d2(b1, b2),

p1(0, 0, b1, b2), p2(0, 0, b1, b2), p1(1, 1, b1, b2), p2(1, 1, b1, b2),

where (b1, b2) ∈ B♦. The value and policy functions on the full state space can be recovered
as needed from the value and policy functions on the reduced state space by exploiting the
symmetry restriction. For example, the value function of firm 2 in state (b1, b2) /∈ B♦,
V2(b1, b2), is identical to the value function of firm 1 in state (b2, b1) ∈ B♦, V1(b2, b1).

The algorithm is iterative. The initial guess for the value functions Ṽ1(b1, b2) and
Ṽ2(b1, b2), where (b1, b2) ∈ B♦, is zero to capture the fact that the continuation values
are zero in the last period of a finite-horizon game. The algorithm takes value functions
Ṽ1(b1, b2) and Ṽ2(b1, b2) as the starting point for an iteration and generates updated value
functions V1(b1, b2) and V2(b1, b2). Along the way it also computes the remaining value and
policy functions.

Each iteration cycles through the reduced state space in some predetermined (but ar-
bitrary) order. In any given state (b1, b2) ∈ B♦ it solves for the subgame-perfect Nash
equilibrium of the two-stage game of compatibility followed by pricing decisions whilst tak-
ing as given the continuation values of both firms. Specifically, the algorithm proceeds as
follows:
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1. Compute the continuation values in state (b1, b2) ∈ B♦:

V 10(b1, b2) =
∑

(b′1,b′2)∈B

Ṽ1(b′1, b
′
2) Pr(b′1|b1, 0) Pr(b′2|b2, 0),

V 11(b1, b2) =
∑

(b′1,b′2)∈B

Ṽ1(b′1, b
′
2) Pr(b′1|b1, 1) Pr(b′2|b2, 0),

V 12(b1, b2) =
∑

(b′1,b′2)∈B

Ṽ1(b′1, b
′
2) Pr(b′1|b1, 0) Pr(b′2|b2, 1),

V 20(b1, b2) =
∑

(b′1,b′2)∈B

Ṽ2(b′1, b
′
2) Pr(b′1|b1, 0) Pr(b′2|b2, 0),

V 21(b1, b2) =
∑

(b′1,b′2)∈B

Ṽ2(b′1, b
′
2) Pr(b′1|b1, 1) Pr(b′2|b2, 0),

V 22(b1, b2) =
∑

(b′1,b′2)∈B

Ṽ2(b′1, b
′
2) Pr(b′1|b1, 0)Pr(b′2|b2, 1).

2. Assume first d12(b1, b2) = d21(b1, b2) = 0 and obtain pricing decisions given incompat-
ible products, p1(0, 0, b1, b2) and p2(0, 0, b1, b2), in state (b1, b2) ∈ B♦ by solving the
following system of first-order conditions for p1 and p2:

−φ1(·)(1− φ1(·))
(
p1 + βV 11(b1, b2)

)
+ φ1(·)

+βφ1(·)
(
φ0(·)V 10(b1, b2) + φ2(·)V 12(b1, b2)

)
= 0,

−φ2(·)(1− φ2(·))
(
p2 + βV 22(b1, b2)

)
+ φ2(·)

+βφ2(·)
(
φ0(·)V 20(b1, b2) + φ1(·)V 21(b1, b2)

)
= 0.

where φ0(·), φ1(·), and φ2(·) is shorthand for φ0(p1, p2; 0, 0, b1, b2), φ1(p1, p2; 0, 0, b1, b2),
and φ2(p1, p2; 0, 0, b1, b2), respectively. Next assume d12(b1, b2) = d21(b1, b2) = 1 and
obtain pricing decisions given compatible products, p1(1, 1, b1, b2) and p2(1, 1, b1, b2),
in state (b1, b2) ∈ B♦ by solving the analogous system of first-order conditions for p1

and p2.

3. Compute the value functions given incompatible products, U1(0, 0, b1, b2) and U2(0, 0, b1, b2),
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in state (b1, b2) ∈ B♦:

U1(0, 0, b1, b2) = φ1(p1(·), p2(·); 0, 0, b1, b2)p1(·)
+β

(
φ0(p1(·), p2(·); 0, 0, b1, b2)V 10(b1, b2)

+φ1(p1(·), p2(·); 0, 0, b1, b2)V 11(b1, b2)

+φ2(p1(·), p2(·); 0, 0, b1, b2)V 12(b1, b2)
)
,

U2(0, 0, b1, b2) = φ2(p1(·), p2(·); 0, 0, b1, b2)p2(·)
+β

(
φ0(p1(·), p2(·); 0, 0, b1, b2)V 20(b1, b2)

+φ1(p1(·), p2(·); 0, 0, b1, b2)V 21(b1, b2)

+φ2(p1(·), p2(·); 0, 0, b1, b2)V 22(b1, b2)
)
,

where p1(·) and p2(·) is shorthand for p1(0, 0, b1, b2) and p2(0, 0, b1, b2), respectively.
Compute analogously the value functions given compatible products, U1(1, 1, b1, b2)
and U2(1, 1, b1, b2), in state (b1, b2) ∈ B♦.

4. Determine compatibility decisions in state (b1, b2) ∈ B♦:

d12(b1, b2) = d21(b1, b2)

=

{
1 if U1(1, 1, b1, b2) > U1(0, 0, b1, b2), U2(1, 1, b1, b2) > U2(0, 0, b1, b2),
0 otherwise.

Note that d12(b1, b2) = d21(b1, b2) = 1 if and only if both firms strictly prefer compat-
ible over incompatible products, meaning that neither firm is willing to deviate from
compatibility and that ties are broken in favor of incompatibility.

5. Compute the value functions in state (b1, b2) ∈ B♦:

V1(b1, b2) = U1(d12(b1, b2), d21(b1, b2), b1, b2),

V2(b1, b2) = U2(d12(b1, b2), d21(b1, b2), b1, b2).

Once the computations for a state are completed, the algorithm moves on to another
state. After all states have been visited, the algorithm updates the current guess for
the value functions by assigning Ṽ1(b1, b2) ← V1(b1, b2) and Ṽ2(b1, b2) ← V2(b1, b2), where
(b1, b2) ∈ B♦. This completes the iteration. Our procedure is thus a Gauss-Jacobi scheme.
See Judd (1998) for a comparison of Gauss-Jacobi and Gauss-Seidel schemes.

The algorithm continues to iterate until the relative change in the value and the policy
functions from one iteration to the next is below a pre-specified tolerance. See Doraszelski
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& Judd (2004) for a detailed discussion of stopping criteria.

2 Static Equilibrium: Business Gift Effect

In what follows we provide sufficient conditions for the business gift effect to harm the firm
with the larger installed base. Let N = 2 and consider the effect on, say, firm 1’s demand
from having compatible instead of incompatible products:

φ1 (p1, p2; (1, 1) , (b1, b2))− φ1 (p1, p2; (0, 0) , (b1, b2))

=
exp (θg (b1 + λb2)− p1)

exp (v0) + exp (θg (b1 + λb2)− p1) + exp (θg (b2 + λb1)− p2)

− exp (θg (b1)− p1)
exp (v0) + exp (θg (b1)− p1) + exp (θg (b2)− p2)

.

Rearranging yields:

φ1 (p1, p2; (1, 1) , (b1, b2))− φ1 (p1, p2; (0, 0) , (b1, b2))

=
[

exp (θg (b1 + λb2)− p1) + exp (θg (b2 + λb1)− p2)
exp (v0) + exp (θg (b1 + λb2)− p1) + exp (θg (b2 + λb1)− p2)

]
×

[
exp (θg (b1 + λb2)− p1)

exp (θg (b1 + λb2)− p1) + exp (θg (b2 + λb1)− p2)

]

−
[

exp (θg (b1)− p1) + exp (θg (b2)− p2)
exp (v0) + exp (θg (b1)− p1) + exp (θg (b2)− p2)

]
×

[
exp (θg (b1)− p1)

exp (θg (b1)− p1) + exp (θg (b2)− p2)

]

= ∆c (b1, b2, λ)Ωc (b1, b2, λ)−∆in (b1, b2)Ωin (b1, b2) .

∆c (b1, b2, λ) and ∆in (b1, b2) measure the market size, for the case of compatible and
incompatible products respectively, in terms of total demand for the two firms as a pro-
portion of total demand including the outside option. The market expansion effect from
making products compatible is then necessarily positive if

∆c (b1, b2, λ)−∆in (b1, b2)

=
exp (θg (b1 + λb2)− p1) + exp (θg (b2 + λb1)− p2)

exp (v0) + exp (θg (b1 + λb2)− p1) + exp (θg (b2 + λb1)− p2)

− exp (θg (b1)− p1) + exp (θg (b2)− p2)
exp (v0) + exp (θg (b1)− p1) + exp (θg (b2)− p2)

> 0.

This is true as long as λ > 0 and g′ > 0.
The business gift effect concerns the impact of compatibility on each firm’s share of
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market demand (excluding the outside option). It is measured by:

Ωc (b1, b2, λ)− Ωin (b1, b2)

=
exp (θg (b1 + λb2)− p1)

exp (θg (b1 + λb2)− p1) + exp (θg (b2 + λb1)− p2)

− exp (θg (b1)− p1)
exp (θg (b1)− p1) + exp (θg (b2)− p2)

.

Since Ωc (b1, b2, 0) = Ωin (b1, b2), we have

Ωc (b1, b2, λ) = Ωin (b1, b2) +
∫ λ

0

(
∂Ωc

(
b1, b2, λ

′)

∂λ′

)
dλ′.

Moreover, since

∂Ωc (b1, b2, λ)
∂λ

=
exp (θg (b1 + λb2)− p1) exp (θg (b2 + λb1)− p2)

[exp (θg (b1 + λb2)− p1) + exp (θg (b2 + λb1)− p2)]
2 ×

θ
[
b2g

′ (b1 + λb2)− b1g
′ (b2 + λb1)

]
,

we have
sign

{
∂Ωc (b1, b2, λ)

∂λ

}
= sign

{
b2g

′ (b1 + λb2)− b1g
′ (b2 + λb1)

}
. (A1)

It follows that if b2g
′ (b1 + λ′b2

)− b1g
′ (b2 + λ′b1

)
≷ 0 for all λ′ ∈ (0, λ),then Ωc (b1, b2, λ)−

Ωin (b1, b2) ≷ 0.
The business gift effect is said to harm the firm with the larger installed base when

its market share declines with compatibility. That is, if b1 > b2, then Ωc (b1, b2, λ) −
Ωin (b1, b2) < 0. Using (A1), a sufficient condition is:

b2g
′ (b1 + λb2) < b1g

′ (b2 + λb1) , λ ∈ (0, 1) . (A2)

Since b1 > b2, a sufficient condition for (A2) is:

g′ (b2 + λb1) ≥ g′ (b1 + λb2) , λ ∈ (0, 1) . (A3)

Since b1 > b2 implies b1 + λb2 ≥ b2 + λb1, (A3) holds when g is linear or concave. Thus, if
there is a constant or diminishing marginal effect of the installed base on a product’s value,
then the business gift effect harms the firm with the larger installed base and benefits the
firm with the smaller installed base.
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The business effect also harms the larger firm when spillovers are complete (λ = 1):

Ωc (b1, b2, 1)− Ωin (b1, b2) < 0

⇔ exp (θg (b1 + b2)− p1)
exp (θg (b1 + b2)− p1) + exp (θg (b2 + b1)− p2)

<
exp (θg (b1)− p1)

exp (θg (b1)− p1) + exp (θg (b2)− p2)
⇔ exp (θg (b1 + b2)− p1) exp (θg (b2)− p2) < exp (θg (b1)− p1) exp (θg (b2 + b1)− p2)

⇔ exp (θg (b1 + b2)− p1 + θg (b2)− p2) < exp (θg (b1)− p1 + θg (b2 + b1)− p2)

⇔ g (b2) < g (b1) ⇔ b2 < b1

because g′ > 0.
In sum, product compatibility reduces the market share of the firm with the larger

installed base when either g is linear or concave and/or λ is sufficiently close to one. For
the business gift effect to instead imply that the smaller firm’s market share is reduced
with compatible products, necessary conditions are that λ ¿ 1 and g is sufficiently convex.
However, we do not yet have a numerical that shows that the business gift effect can harm
the smaller firm.

3 Dynamic Equilibrium: Flat and Rising Equilibria

In the main paper we focus on Tipping and Compatibility equilibria in order to showcase the
primary dynamic forces of our model. Table A1 reports the type of equilibrium for an array
of values for λ ∈ {0, .5, 1}, θ ∈ {1, 2, 3, 4}, and δ ∈ {0, .01, . . . , .2}. As can be seen, Tipping
and Compatibility equilibria arise in a part of the parameter space where compatibility
matters, network effects are not weak, and the rate of customer turnover is neither too low
(so that the state stays away from the bounds) nor too high (so the “investment” incentive
is not weak). Outside this region, other types of equilibria arise. Below we discuss these
Flat and Rising equilibria in more detail.

It is important to keep in mind that the types of equilibria, helpful as they are in
understanding the range of behaviors that can occur, lie on a continuum and thus morph
into each other as we change the parameter values.

A Flat equilibrium is a modest perturbation of a static equilibrium. Figure A1 presents
an illustrative example. Not surprisingly, a Flat equilibrium arises when dynamic effects
are minimal because the network effect is weak (θ is low), spillovers are absent (λ = 0), or
customer turnover is high (δ is high). Note that when δ is high, there is little point for firms
to compete aggressively for customers in order to build an installed base since the gains are
likely to fritter away due to customer turnover; in other words, the return to investment
is low when the depreciation rate is high. Given that in a Flat equilibrium a firm largely
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ignores its rival’s installed base when setting its own price, it is not surprising that the
industry evolves towards a symmetric structure. Figure A1 illustrates.

A Rising equilibrium is characterized by a fairly monotonic policy function for which
price is increasing in a firm’s own base but relatively insensitive to its rival’s base; an
example is shown in Figure A2. Products are typically incompatible. This equilibrium
arises when compatibility does not impact demand (λ = 0) or when the rate of customer
turnover rate is very low. Again the industry evolves towards a symmetric structure.

4 Welfare: Consumer Surplus

Given our demand specification, the expected consumer surplus in state b is (Anderson,
de Palma & Thisse 1992, p. 45):

w (b) = ln


exp (v0) +

N∑

i=1

exp


vi + θg


bi + λ

∑

j 6=i

dijdjibj


− pi





 .

Let W (b) denote the expected net present value of consumer surplus in state b defined
as

W (b) = E

( ∞∑

t=0

βtw(bt) | b0 = b

)
,

where bt is the state in period t. Theorem 3.22 in Kulkarni (1995) shows that W (b) satisfies
the recursive equation

W (b) = w(b) + β
∑

b′∈B

qb,b′W (b′),

where B =
{

(b1, b2, . . . , bN ) ∈ {0, 1, . . . , M}N
}

is the state space and qb,b′ is the probability
that next period’s state is b′ given that this period’s state is b. This equation can be written
in matrix form as

(I − βQ)W = w,

where W and w are column vectors and Q is a square matrix. Since Q is a stochastic matrix
and β ∈ [0, 1), I − βQ is invertible and we can compute the expected net present value of
consumer surplus as

W = (I − βQ)−1w.
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