ECON 224A

TIME SERIES ECONOMETRICS

Spring 2010

Professor: Fabio Milani, fmilani@uci.edu
Office Hours: SSPA 3145, Mon 10.30-12.00 PM

Time and Location: Th 5.00 PM - 7.40 PM, SSPA 3132

Grading:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>15%</td>
</tr>
<tr>
<td>Referee Report on VAR paper</td>
<td>10%</td>
</tr>
<tr>
<td>In-Class Presentations</td>
<td>15%</td>
</tr>
<tr>
<td>Final Exam or Time Series Paper</td>
<td>60%</td>
</tr>
</tbody>
</table>

There will be about 2-3 assignments in the quarter. You can work in groups, but each member has to turn in the homework individually. You can choose to take a final written exam at the end of the course or, instead, to work on a time series paper, which should be submitted by the end of the quarter. The exam and the paper will be the main determinants of your grade. The paper can be on a topic of your choice, but it needs to be done using some of the techniques learned in class. It’s better if you start thinking about the paper immediately.

In addition, you will have to prepare a referee report chosen from the list of papers on VARs (more later in the course). During almost all lectures, there will be some in-class presentations in which you will be in turn responsible of presenting one of the topics or one paper in the syllabus.

Course description:

The course is an introduction to time series econometrics, with special emphasis on Bayesian methods. The topics we’ll study include AR, MA, ARMA models, Stationarity, Deterministic and Stochastic Trends, Structural Breaks, VAR, Structural VAR, Bayesian VAR models, and Dynamic Factor models. We will see how to estimate state-space models, which are useful to estimate general equilibrium macroeconomic models, but can be employed in other fields as well. We will focus on linear rational expectations model with normal shocks, but we’ll also discuss the estimation issues that arise for nonlinear/non-normal models and for models with near-rational expectations.
The most comprehensive book if you are interested in learning time series is Hamilton (1994), although it focuses mostly on the classical, rather than Bayesian approach. A less technical book is Enders, which can be useful if you are interested in learning the techniques, but do not want to go into the details of the theory. The book by Lutkepohl and Kratzig is another good choice on applied time series, and Lutkepohl is another choice for a theory book. A Bayesian-oriented time series book is Bauwens, Lubrano, and Richard (1999). A Bayesian book, not really focused on time series, but useful is Koop (2004).

For the last part of the course (estimation of state-space, macro models), there are now a number of useful references, some of those available for free online or in newly published books (Schorfheide lecture notes, and books by Canova, and by DeJong and Dave).

Books:

Time Series Analysis, Hamilton

Time Series for Macroeconomics and Finance, Cochrane

Applied Time Series Econometrics, Enders

Applied Time Series Econometrics, Lutkepohl and Kratzig

New Introduction to Multiple Time Series Analysis, Lutkepohl

Bayesian Econometrics, Koop

Bayesian Inference in Dynamic Econometric Models, Bauwens, Lubrano, and Richard

State-Space Models with Regime Switches, Kim and Nelson

Methods for Applied Macroeconomic Research, Canova

Estimation and Evaluation of DSGE Models, Lecture Notes, Schorfheide

An Introduction to Modern Bayesian Econometrics, Lancaster

Reading List - PRELIMINARY

(Highly recommended readings are indicated by a ‘*’)

1. **Time Series Models: AR, MA, ARMA. Stationarity, Estimation.**
 *Hamilton
 Enders
 *Cochrane

2. **Nonstationarities. Deterministic and Stochastic Trends, Unit Root Tests (Classical vs. Bayesian View)**
 *Hamilton
 Enders
 Sims and Uhlig (1991)
3. Structural Breaks. Tests
 *Hamilton
 Enders

4. Forecasting.
 *Hamilton

5. VAR, Impulse Responses, SVAR
 *Sims (1980), "Macroeconomics and Reality," *Econometrica*
 Hamilton (1994)
 Enders
 Leeper, and Zha (2003), "Modest policy interventions," *Journal of Monetary Economics*
 Stock and Watson (2001), "Vector Autoregressions," *Journal of Economic Perspectives*
 Fernandez Villaverde, J., Rubio Ramirez, J. and Sargent, T. (2005) The ABC and (D's) to understand VARs, forthcoming AER.
Christiano, Eichenbaum, and Evans, Monetary Policy Shocks: What Have We Learned and to What End?

Christiano, L., Eichenbaum, M and Vigfusson, R., What Happens After a Technology Shock?

6. Bayesian VARs

Canova, Methods for Applied Macroeconomic Research

Litterman (1986), “Forecasting with Bayesian Vector Autoregressions - five years of experience”, JBES

TV Coefficients/TV Volatilities:
Hamilton (1994)
Kim and Nelson (1999)
Carter and Kohn (1994), On Gibbs sampling for state space models, Biometrika

Primiceri (2005), "Time Varying Structural Vector Autoregressions and Monetary Policy", RES

7. State-Space Models, Kalman Filter
Hamilton (1994)

Hamilton, "State-Space Models" Handbook of Econometrics, Volume 4

Kim and Nelson

Canova

Schorfheide, Estimation and Evaluation of DSGE Models, Lecture Notes

8. Dynamic Factor Models, Factor-Augmented VARs

tba

9. Bayesian Estimation of DSGE Models

Schorfheide, Estimation and Evaluation of DSGE Models, Lecture Notes

Schorfheide (2000)

10. **Models with Time-Varying Volatility, GARCH, Stochastic Volatility**
 - Pitt and Shephard (1999)
 - Particle Filter notes
 - Justiniano and Primiceri (2005)
 - Amisano and Tristani (2006)

11. **Regime-Switching Models**
 - Kim and Nelson
 - Hamilton (1994)
 - Sims and Zha (2006)

12. **Nonlinear Models**

 tba

13. **Bayesian Model Comparison, Bayesian Model Averaging**
 - Koop
 - Madigan, Raftery