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1 Introduction

Evidence occupies a central role in philosophy. Within philosophy of science specifically, evidence, and its

quality, constitutes the basis on which the debate between realists and anti-realists as understood today is,

or should be, adjudicated.1 Within this debate, an informal notion of the “quality of evidence” from Jean

Perrin’s experimental work on Brownian motion has for decades been offered as an explanation of the shift

in epistemic attitudes toward the atomic hypothesis among prominent scientists at the turn of the 20th

century.2 The shift in attitude was from viewing the atomic hypothesis as a merely instrumentally useful

hypothesis (anti-realism) to viewing it as a well-established theory (realism). Assuming that the shift in

epistemic attitudes was caused by the distinctive quality of Perrin’s evidence, one goal for philosophers

of science has been to characterize what makes evidence, such as Perrin’s, good.

It is helpful to think of the various accounts that have been offered for evaluating evidence as falling

along a spectrum. On one end of this spectrum, there are informal accounts provided by Quine (1976)

and Maddy (2007, 398f, 406). On the other end, there are highly formal presentations in inductive

logic, confirmation theory and formal epistemology.3 In between these two extremes, there are semi-

formal proposals due to Achinstein (2001) and Roush (2005), which approach the evaluation of evidence

probabilistically, but independently of statistics. Finally, there are statistical approaches to the evaluation

of evidence, which have slowly began penetrating philosophical discussions with some authors calling on

philosophers to pay more attention to these statistical approaches to evaluating evidence.4

Here my goal is to characterize, from a statistical perspective, what made the evidence from Perrin’s

experiments on Brownian motion good. In order to accomplish this goal, I will focus specifically on

Perrin’s granule-displacement experiments that confirmed Einstein’s diffusion model of the motion of

suspended particles in a dilute solution. One reason for just focusing on the granule-displacement exper-
1See especially Psillos (2018), Psillos (2021) and Stanford (2021).
2See Glymour (1980), Salmon (1984), Mayo (1996), Maddy (1997), Achinstein (2002), Maddy (2007), Stanford (2009),

Psillos (2011), Psillos (2014) and Smith and Seth (2020) for a sample of some of the recent views that have been offered on
this topic.

3See Carnap (1962), Fitelson (2007) and Pettigrew (2016) for examples of some of the work that is done here. See Earman
(1992) and Sprenger and Hartmann (2019) for a comprehensive overview and detailed bibliographies.

4See Edwards, Lindman, and Savage (1963), Edwards (1992), Royall (1997), Mayo (2000), Royall (2004),
Forster and Sober (2004), Fitelson (2007), Sober (2008), Mayo and Spanos (2011), Gelman and Shalizi (2013), Mayo (2013),
Morey, Romeijn, and Rouder (2013), Reid and Cox (2015), Morey, Romeijn, and Rouder (2016), Gelman and Hennig
(2017), Mayo (2018), Rouder and Morey (2019), and Fletcher and Mayo-Wilson (forthcoming) for a representative sam-
ple.
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iments is that the confirmation of Einstein’s model by these experiments has been lauded by many as

some of the most convincing evidence that came out of Perrin’s laboratory.5 Another reason for focusing

on these experiments is that the observations can be modeled using well-known statistical models (see

the next section). I will argue that the quality of Perrin’s statistical evidence that confirmed Einstein’s

model was good because it was highly specific and discriminating. The specificity and discriminating

character of his evidence can be understood using Bayes Factors (see section 4 below for a discussion of

Bayes Factors).

Nevertheless, one may have the following worry about my strategy. The worry is that Perrin himself

makes no statistical arguments using Bayes Factors or the other common measures of statistical evidence,

which I discuss in the next section. In fact, Perrin did not even calculate probable errors. So isn’t my

account ahistorical in the sense that it leaves out the actual context of Perrin’s experimental work? This

context involved “eye-balling” the data for conclusions as was done in almost all 19th century chemical

and epidemiological research, despite the widespread knowledge of Laplace’s work on probability and of

least squares and its connection with Gaussian distributions.

In response to this worry, let me say that my goal is to show what a Bayesian statistical account, using

Bayes Factors, of Perrin’s experimental work would look like and not to argue that, in fact, this is what

Perrin did. The advantage of the account which I intend to provide is that it can illuminate some of the

existing accounts of the quality of Perrin’s evidence that have been offered in the literature while avoiding

some of their shortcomings. Consider, for example, Salmon’s argument for scientific realism about atoms

and molecules. According to Salmon (1984, 213 – 227), Perrin provided strong evidence for the atomic

hypothesis by compiling, in Les Atomes (1913), converging values for Avogadro’s Number from a variety

of independent experiments. He argues that it would be “an utterly astonishing coincidence” to have

values for Avogadro’s Number from different independent experiments all converging to approximately

the same value unless there was a common causal explanation — atoms and molecules. As I will show

in what follows (see section 6 below), one can use Bayesian statistical analysis to illuminate the force of,

and intuition underlying, Salmon’s argument. The specific improvement to what Salmon did is that not

only do I single out all the experiments that Salmon cites, but I also provide explicit statistical models

for them and show how the experiments are linked using a Bayesian meta-analysis.

Now consider more recent authors. On the one hand, Mayo (1996, Ch. 7) has a compelling discussion,

from a Frequentist perspective, of the severe testing and statistical reasoning involved in Perrin’s confir-
5See Smith and Seth (2020, 154). It is worth mentioning that Perrin performed at least three types of experiments on

Brownian motion: vertical-gradient experiments, granule-displacement experiments and granule-rotation experiments. See
Nye (1972) and Smith and Seth (2020) Chapter 4 and for a detailed discussion of these experiments. In Psillos (2011) and
Psillos (2014), Psillos focuses on the vertical-gradient experiments. I do not wish to claim that my analysis of the experiment
I focus on extends to these experiments. I believe that these other experiments would require a different account to make
sense of how or whether they provided strong evidence and what this evidence was for.
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mation of Einstein’s model. She eschews any Bayesian characterization of this episode because Perrin’s

reasoning did not involve any explicit specification of prior credences.6 On the other hand, Achinstein

(2002), Psillos (2011) and Psillos (2014)’s arguments for scientific realism about atoms and molecules

involve assumptions about what the value of the prior credences must be in order for their arguments to

work. Smith and Seth (2020, 81, n. 13) find these assumptions ad hoc.7 In what follows, unlike Mayo, I

provide a Bayesian statistical perspective of Perrin’s confirmation of Einstein’s model. It is not my inten-

tion to criticize Mayo’s illuminating error-statistical/severe testing perspective of Perrin’s evidence; nor

am I interested in the question of realism about atoms. My intention is to provide a correct retrospective

Bayesian statistical perspective of Perrin’s evidence for the first time (to the best of my knowledge) as

an alternative perspective to Mayo’s influential account of the same episode. At the same time, I will

show how my approach avoids the objection of ad hoc specification of priors that has been raised against

Achinstein and Psillos.

Here’s how I have organized the rest of my paper. In the following section, I set the stage for what I

mean by statistical evidence and why this matters for my account. This section is followed by another

section with a detailed scientific and philosophical analysis of the reasoning or arguments involved in

specifying the relevant theoretical models and statistical models that are involved in evaluating Perrin’s

evidence. In section 4, I give a quick overview of the Bayesian approach to statistical inference and

Bayes Factors, which I use to characterize of the quality of Perrin’s evidence. In section 5 and 6 I briefly

discuss the pros and cons of using Bayes Factors to quantify statistical evidence and draw some lessons for

philosophy of science. Remaining questions for my account are addresed in section 7 before I conclude.

2 What is Statistical Evidence?

Before proceeding, let me say more about what I mean by “statistical evidence” and why I want to

characterize Perrin’s evidence from a Bayesian statistical perspective. Statistical evidence is a form of

evidence, somewhere between the semi-formal and formal accounts on the spectrum just mentioned. First,

it is evidence because it shares what is common to the genus of evidence, namely, a capacity to impact

our epistemic attitudes towards a claim or our dispositions to act, which are influenced by claims that

we accept. The disjunction in the preceding sentence is important because on a widely-held, standard

and non-technical understanding of the meaning of “evidence”, evidence has to do with belief and must

always impact our epistemic attitudes or beliefs about a claim. I am not disputing this understanding.
6See Mayo (1996, 232, 242).
7The problem of specifying prior credences is related to the problem of unconceived alternatives. It has been discussed

by Roush (2005) and Stanford (2009) in connection to the problem of the “Catch-all Hypothesis”. See section 6 below for
how my account can avoid this problem.
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Rather, I am claiming that it is too narrow because: (i) it leads us to preclude certain items in the

world as evidence; and (ii) it prevents us from making certain comparisons we would like to make, for

example, between statistical evidence in classical statistics and statistical evidence in Bayesian statistics.

To broaden our discussion of evidence, I propose to refer to the widely-held, standard account of evidence

as the epistemic role of evidence and distinguish this from the indicative role of evidence such as making

decisions using statistical evidence. Second, it is a form or kind because it can be distinguished as a

species under the broader genus of evidence. The species of evidence have differentiating features, which

are suggested by the modifier or adjective. Some of the species (non-exhaustive) of this genus are: direct

evidence, historical evidence, indirect evidence, legal evidence, observational evidence, and propositional

evidence. One view in epistemology, in fact, is that evidence is propositional.8 Propositional evidence is,

roughly, a fact p — where p is a proposition — that confirms or justifies a given belief token.9

Of course there is some overlap between these species. Legal evidence is often propositional evidence

since legal evidence is a fact that is admissible in a legal context such as a court of law. At the same time,

legal evidence can include some pieces of historical evidence such as eye-witness reports or testimonies.

Direct evidence often includes observational evidence such as seeing a smoking gun. Statistical evidence

itself can offer indirect evidence for facts, i.e., propositional evidence.10 One can try to make distinctions

between all these kinds of evidence precise. But making these distinctions lies beyond the scope of this

paper. I mention these various ways of talking about evidence to justify speaking of evidence more broadly

and also insofar as it allows me to focus entirely on statistical evidence within statistics, as opposed to:

(i) informal ordinary-life discussions of these other kinds of evidence in epistemology, and (ii) the formal

discussions of evidence E, hypothesis H and theory T (where E, H and T are unqualified) that is the

bread and butter of inductive logic or formal epistemology.

What distinguishes statistical evidence from evidence E in formal epistemology are two things: (i) the

random character of statistical evidence, and (ii) the requirement of a statistical model of the observed

data. In fact, these two distinguishing features of statistical evidence are linked. The random character

of statistical evidence depends on the statistical model for data. Here’s what I mean. A measure of

statistical evidence is a real-valued function whose inputs are statistics. A statistic, by definition, is any

function t(x) of actual data x = (x1, x2, . . . , xn). In the context of parametric statistical inference, the

data is modeled as a realization of a finite vector X = (X1, X2, . . . , Xn) of observations, measurements

etc. For i in 1, 2, . . . , n, each Xi is a random variable that has a probability distribution function f(Xi;θ)

8See Williamson (2000, Ch. 9, 10) and Brown (2015) for the notion of propositional evidence. See Joyce (2004) for a
helpful summary and appraisal of Williamson’s account of evidence.

9Williamson (2000, 194) writes, “Propositions are the objects of propositional attitudes, such as knowledge and belief;
they can be true or false; they can be expressed relative to contexts by ‘that’ clauses.”

10Compare with Mayo (2018, 435)’s discussion of direct and indirect uses of probabilities.
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that belongs to a parametric family, members of which are identified by the specific value of the parameter

vector θ they take. The model of the data is known as the sampling model. In the Frequentist approach

to statistics, a statistical model just consists of the sampling model for the data. As we shall see in section

5 below, a Bayesian statistical model requires not just a sampling model for the data, but also a prior

model on anything the data conditionally depend on that we would like to incorporate into our analysis.

For example, suppose the experiment is to determine the coefficient of thermal expansion of a steel rod.

Here the results of independent repeated measurements of the length of the rod (at a given temperature)

can be modeled as the components of a vector X from the Normal or Gaussian parametric family of

distributions. In the case of the normal or Gaussian parametric family, θ = (µ, σ2) is a vector consisting

of the mean (µ) and variance (σ2) of the distribution. If x = (x1, x2, . . . , xn) are the actual outcomes of

those measurements, a statistic such as the mean t(x) = x̄ =
∑n

i xi/n is clearly a function of the data,

which can be used in statistical inference: (i) to estimate µ; or (ii) to test hypotheses regarding µ.

Since a function of a random variable is a random variable, a statistic is a random variable. This

means that a measure of statistical evidence is a random variable insofar as it takes random variables as

inputs. This also means that regardless of what one’s attitude towards the evidential value of p-values,

confidence intervals, likelihood ratios, odds-ratios, Bayes Factors, and Mayo’s Severity Function is; it

remains the case that these are all measures of statistical evidence in the various schools of statistics

on this picture.11 To be sure, some of these measures do not have an epistemic evidential role.12 The

p-value, for example, is not a conditional probability assuming the null hypothesis is true. This is because

on the Frequentist interpretation of probability, which is the interpretation that p-values are based on,

statistical hypotheses are not repeatable events (so, statistical hypotheses cannot be modeled as random

variables). Moreover, confidence intervals do not indicate our degree of belief or epistemic confidence

about the boundaries within which a parameter might lie. The reason is that confidence intervals (which

are based on the Frequentist interpretation of probability) are random variables while parameters (on the

Frequentist approach to statistics) are unknown but not random.

The foregoing discussion is intended to restrict the scope of my paper and to provide some background

to what I mean by “statistical evidence”. By focusing on the evaluation of the quality of Perrin’s evidence

from a Bayesian statistical perspective, I am signaling two things. Firstly, I am signaling that I will be

interested in Bayesian statistics not Bayesian formal epistemology. On the one hand, Bayesian statistics

is one approach to statistical inference. Among the things that distinguishes Bayesian statistics, from

say, classical Frequentist statistics, is that on the Bayesian approach one can consider prior distribution
11Mayo’s Severity Function is discussed in Mayo (2018, 143ff.).
12Compare with Fletcher and Mayo-Wilson (forthcoming).
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functions on parameters.13 On the other hand, Bayesian formal epistemology or Bayesianism is a philos-

ophy or school of thought that addresses questions in the theory of knowledge and confirmation theory.

This philosophy has two distinguishing features: (i) an epistemic interpretation of probability as coherent

graded beliefs or credences and (ii) the use of Bayes’ theorem as an inductive rule through one form or

another of conditionalization.14 One reason for restricting my interest here is pragmatic, i.e., I don’t have

much to say about Bayesian formal epistemology. Another reason for focusing on Bayesian statistics

is that Bayesian methods in epistemology sometimes mask the subtleties that underly actual Bayesian

and non-Bayesian statistical modeling and inference. Given these reasons, I am signaling, secondly, my

agreement with Mayo (2018, 73) who writes:

[T]he Bayesian epistemologist invites trouble by not clearly spelling out corresponding statis-

tical models. They seek a formal logic, holding for statements about radiation, deflection, fish,

or whatnot. I think this is a mistake. That doesn’t preclude a general account for statistical

inference; it just won’t be purely formal.15

In actual Bayesian statistical modeling, judicious choices of suitable prior probability distributions (to

represent prior ignorance, for example) and Markov chain Monte Carlo methods to compute posterior

distributions, make Bayesian methods in statistics very subtle business.16 Elaborate tools for model

checking and diagnostics are also being advocated for.17 This means that care must be taken in going from

the famous example, which serves to motivate Bayes’ theorem by exposing base-rate fallacies in diagnostic

medical testing, and the use of “Bayesian methods” in philosophy of science, where the distinction between

Bayesian statistics and Bayesian epistemology isn’t always made.18

Finally, by focusing on evaluating evidence from a statistical perspective I can distinguish between

the following levels:

(1) Substantive or fundamental theories

(2) Theoretical models of these substantive theories
13Barnett (1999) gives a good overview of the various paradigms of statistical inference. Compare with Bernardo and Smith

(2000) and Part III of Bandyopadhya and Forster (2011). For the information-theoretic approach to model selection and
statistical inference see Burnham and Anderson (2002).

14See Sprenger and Hartmann (2019)
15A point related to the one Mayo makes here can be made using Woodward’s distinction between data and phenomena.

Woodward argues that one needs to use statistical methods, at least in science, to analyze data before one can infer that
they have evidence for the existence or nonexistence of a phenomenon. See Woodward (2011), Bogen and Woodward (1988),
and especially Woodward (1989, 409). More recently, Norton in Norton (2003) and Norton (2021) has also expressed his
opposition to an entirely formal account of inductive inference.

16See Efron and Hastie (2016, Ch. 13) for a good discussion.
17See Morey, Romeijn, and Rouder (2013).
18See Magnus and Callender (2004) for discussion of the base-rate fallacy in the context of the realism-antirealism debate

in philosophy of science.
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(3) Statistical models of the theoretical models

I will return to this three-level distinction in section four and seven below. For now, I summarize

the description and relationships between these levels. Sentences in a theory (substantive or not) specify

constraints. For example, in the theoretical model of a substantive theory such as kinematics, a constraint

can be that there is linear relationship between velocity and time for a body in uniform motion. A

statistical modeler will use data to evaluate the validity of the constraints using a statistical model that

captures those theoretical constraints. Because data collected from measurement processes typically

involve errors or uncertainties, we need to use statistical methods to handle these uncertainties using

the statistical models before drawing inferences about the theoretical models or substantive theories.

Typically, at least in science, it is statistical evidence at the level of statistical models that (indirectly)

impacts our beliefs about theoretical claims or hypotheses at level (1) and level (2).

In what follows, I make use of this three-level distinction in characterizing what made the quality of

Perrin’s evidence for the discontinuity of matter good (see section 4 and section 7 below). There is a

hydrodynamical theoretical model given by Langevin’s equation at the level of theoretical models, and a

statistical model for the granule displacements based on Einstein’s diffusion model for Brownian motion

at the level of statistical models. It is the statistical evidence supporting the Gaussian distribution of

granule displacements that I use to argue that Perrin had obtained strong statistical evidence for the

discontinuous structure of matter, which is assumed in the derivation of Langevin’s hydrodynamical

model of Brownian motion. The discontinuous structure of matter in this hierarchy will be at the level

of substantive or fundamental theories. I discuss all these interrelated parts of my account more fully in

what follows, especially in section 7.

3 Perrin’s Evidence

3.1 Einstein’s Diffusion Model

In the previous section, I have said what I mean by statistical evidence and why that matters for my

account. Here I want to say what Perrin’s statistical evidence was. For this I need to say what the

statistical model is and how it was supported by the data or observations that Perrin made. In this

subsection I discuss what the statistical model is, in the next subsection I discuss what theoretical model

it is a model of. In the next section I say why the evidence for this statistical model provided strong

evidence for the theoretical model it is a model of.

The statistical model in Perrin’s granule experiments on Brownian motion was suggested by Einstein’s
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Projections (in µm) comprised between First Series Second Series
ni (found) ni(calculated) ni(found) ni(calculated)

0 and 1.7 38 48 48 44
1.7 and 3.4 44 43 38 40
3.4 and 5.1 33 40 36 35
5.1 and 6.8 33 30 29 28
6.8 and 8.5 35 23 16 21
8.5 and 10.2 11 16 15 15
10.2 and 11.9 14 11 8 10
11.9 and 13.6 6 6 7 5
13.6 and 15.3 5 4 4 4
15.3 and 17.0 2 2 4 2

Table 1: Calculated and observed ni in two series of experiments

1905 diffusion model for Brownian motion.19 Assuming the equipartition of energy among the three

degrees of freedom and Van’t Hoff’s Law that extends the ideal gas law to dilute solutions; Einstein’s

diffusion model made a prediction for how many granules would be displaced from mean position (the

origin) after a given time due to osmotic pressure. The prediction was that the number ni of suspended

granules between two fixed points a and b on the the x-axis that would be displaced from the mean (the

origin) after a given time t would be given by the following formula.20

ni = n×
∫ b

a

1√
2Dt

√
2π

e−
1
2

(
x2

2Dt

)
dx

The integrand is the familiar Gaussian or normal probability distribution function. This formula says

that the predicted ni is given by multiplying the area under this function (the definite integral between a

and b), which is a probability, with the total number of suspended granules n. In other words, Einstein’s

diffusion model for Brownian motion predicted that the statistical model of the displacements of the n

suspended granules is Gaussian or normal with a mean of 0 and a variance or mean squared displacement

ξ2 = 2Dt.21 D is the diffusion coefficient and t is the time interval. Using Einstein’s model, Perrin and

his graduate student M. Chaudesaigues made the calculation for t = 30 seconds of the predicted number

ni of gamboge particles that would be displaced within intervals that were multiples of 1.7µm. They

then recorded the number ni of particles observed within these intervals alongside their predicted values

in Table 1.22

19See Einstein (1905)’s “On the Movement of Small Particles Suspended in a Stationary Liquid Demanded by the Molecular-
Kinetic Theory of Heat” translated by A. D. Cowper and reprinted in Einstein (1956, 1 – 17).

20Although the displacements happen on the surface of the liquid, the equipartition of energy allows us to take projections
of this displacement on the x-axis and analyze the displacement there.

21The notation of ξ2 instead of σ2 for mean squared displacement follows Smith and Seth (2020).
22This table is taken from Perrin (1910, 64 - 65).
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The data above show a close match between predicted values by Einstein’s model and observed values

from Perrin’s experiments. They confirm a statistical model. Specifically, the data confirmed that the

statistical model for the displacements of n suspended granules on the x-axis after time t is Gaussian

with a mean of 0 and variance (or mean squared displacement) of ξ2 = 2Dt. It is standard practice

among statisticians (both Bayesian and Frequentist) to write this statistical model using the following

shorthand:

x(t) ∼ N(0, 2Dt)

Here x(t) denotes the displacement on the x-axis after time t. This shorthand is read as “The displace-

ments on the x-axis are normally distributed with a mean of 0 and variance of 2Dt.” I shall make use of

this shorthand freely in what follows.

But what is the significance of this confirmation? Since Perrin’s experimental work was geared towards

confirming the molecular-kinetic theory, the significance of this confirmation lies in what can be inferred to

exist on the basis of this evidence. The questions now are: (1) what can be inferred to exist? And (2) how

can we understand the quality of the evidence that justifies us in making those inferences? The answer to

the first question involves showing that there must be some force sustaining the motion of the particles

in Brownian motion. The answer to the second question involves making assumptions about the nature

of this force and checking whether the nature of this force, as assumed, is supported by Perrin’s evidence

for Einstein’s diffusion model. It will emerge in what follows that assumptions regarding the nature of

this force can be used to specify two competing hydrodynamical models (models based on forces due to

the surrounding liquid on which the Brownian particles are suspended). One of these hydrodynamical

models is compatible with the liquid behaving like a continuum fluid at a scale immediately below that

of Brownian particles, while the other is incompatible with the liquid behaving like a continuum fluid

at that scale. It is this specification of competing models that I will use to support my argument that

Perrin’s evidence was good because it was highly specific and discriminating.

For these reasons, confirmation of the predicted statistical model for granule displacements from Ein-

stein’s diffusion model is important for my argument because the statistical evidence Perrin obtained

supporting the statistical model, can be construed as specific and discriminating evidence for a hydrody-

namical model, which is formulated assuming the existence of the force sustaining Brownian motion. To

this end, in subsections 3.2 – 3.3, I will be concerned with answering the first question by analysing the

reasoning involved in making the inference about what exists. In section 4 I will give my answer to the

second question, which is: “why was the evidence that warranted this inference good?”
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3.2 There are highly localized and irregular pressure fluctuations

In order to show that there must be some force sustaining the motion of the particles in Brownian motion,

I will refer to Einstein’s 1907 paper written in response to Svedberg’s 1906 publication of the results he

had obtained concerning Brownian motion.23 This paper is important for my argument because one of

the arguments in it is that there must exist random impulsive forces acting on suspended granules if

hydrodynamics is to be reconciled with the kinetic theory of heat.24 From a hydrodynamical point of

view — the appropriate level of description of Brownian motion — the best candidate for these impulsive

forces are highly localized and irregular pressure fluctuations.25 Therefore, this paper contains the answer

to our first question, which is: what can be inferred to exist? In this subsection I summarize the reasoning

involved in Einstein’s argument.

From the kinetic theory of heat, the mean velocity v̄ of a suspended particle of mass m can be

determined using

m
v2

2
=

3

2
kBT (1)

kB = R
NA

is Boltzmann’s constant, R is the ideal gas constant, NA is Avogadro’s Number, and T is

the absolute thermodynamic temperature. Equation (1) expresses the familiar idea that temperature

is proportional to average kinetic energy. For particles in colloidal platinum solutions such as the ones

Svedberg had prepared v̄ = 8.6cms−1.26

Now suppose that the only force acting on the suspended particle undergoing Brownian motion is a

viscous drag force, i.e., a force due to liquid friction that decelerates the particle. Newton’s second law

of motion for this particle of mass m is:

m
dv

dt
= −ζv (2)

ζ = 6πrη is a damping term (i.e., a term that determines the rate of deceleration) that depends on η the

viscosity of the liquid and r the radius of the spherical particle. This equation ignores the inertia of the

particle and says that the dynamics of the suspended particle is only governed by Stokes’ Law.27

23The Einstein paper is reprinted in Einstein (1956, 63 – 67) as “Theoretical Observations on the Brownian Motion.”
24Compare with Munson, Young, Okiishi, and Huebsch (2009, 97) for the modern hydrodynamical modeling of pressure.
25Einstein was indeed using background information in order to arrive at an informative prior specification of the model

space of Brownian motion. Some of this background information can be traced back to the work of the French physicist Léon
Gouy. In 1889 and 1895, Gouy had performed careful experiments and published his results of these experiments thereby
considerably narrowing down the space of theoretical explanations for Brownian motion. Nye writes, “Gouy excluded all
exterior causes except the internal agitation of a liquid, and stated that [Brownian movement] is a direct and visible proof of
the modern hypothesis of the nature of heat.” See Nye (1972, 27 – 29). As will emerge below, the model space for Brownian
motion can be narrowed down even further into a mutually exclusive and exhaustive set of two models: a continuity of
matter model vs. a discontinuity of matter model.

26The assumptions in Einstein’s calculations here are: m = 2.5× 10−15g, kB = 1.38× 10−23m2kgs−2K−1 and T = 292K.
27See Munson, Young, Okiishi, and Huebsch (2009, 493 – 500) for a derivation of Stokes’ Law and the validity of the
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If (2) is the hydrodynamical law governing Brownian motion, one can show that for a colloidal platinum

particle suspended in water, it would take 3.3× 10−7 seconds for it to lose one-tenth of its velocity. This

means that at the macroscopic time-scale of a laboratory measurement (about 30 seconds), the particle

would have lost almost all of its velocity through hydrodynamic friction or viscous drag.

But since Brownian motion was known to be incessant, equation (2) is not the true dynamical law

governing the motion of a particle undergoing Brownian motion. This means that in order to maintain

the average v demanded by the kinetic theory of heat (8.6cms−1), the suspended particle must experience

rapid impulses from somewhere. Here’s how Einstein (1956, 66) puts it:

We have to modify this conception [equation (2) above], we must assume that the particle gets

new impulses to movement during this time by some process that is the inverse of viscosity,

so that it retains a velocity which on an average is equal to
√
v2.

This modification was implemented by Langevin in 1908 leading to the celebrated Langevin equation.28

m
dv

dt
= −ζv + F (t) (3)

In arguing that F (t) exists, one cannot beg the question by assuming a priori that it is due to molecular

impacts.29 Notice as well that Einstein only says that we must assume “new impulses by some process.”

Compare this with how Smith and Seth (2020, 236) describe the situation:

Pressure-gradients must be present in the liquid even though it is in thermodynamic equi-

librium. The local pressure-gradients must be associated with and hence arising in conjunc-

tion with highly localized, extraordinarily rapid pressure fluctuations occurring continually

throughout the liquid.

Therefore, the most one can say, from a hydrodynamical point of view, is that the source of F (t) are

pressure impulses or fluctuations on the suspended granules from the ambient fluid. These fluctuations

happen locally, on extremely short time-scales, and haphazardly.

3.3 Evidence for discontinuity

In the previous subsection, I have answered the first question, namely: what can be inferred to exist?

I showed that F (t) must be included in an accurate hydrodynamical model for Brownian motion. I

assumption that inertia can be ignored.
28See the translation of the Langevin paper in Langevin (1997).
29See Smith and Seth (2020, 237ff) for some of the arguments why one must not assume this. Compare with Stanford

(2009, 257) who discusses Roush (2005)’s modest atomic hypothesis.
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now want to give an answer to the second question, namely: why was the quality of Perrin’s evidence

good? This involves showing that the confirmation of the Gaussian distribution variance ξ2 = 2Dt of the

statistical model provides strong statistical evidence for a hydrodynamical model of Brownian motion

that includes F (t). But such a hydrodynamical model implies the discontinuity of matter at a level

immediately below that of the suspended granules. Therefore, the main goal of this subsection is to show

how Perrin’s statistical evidence confirming the statistical model is also evidence for the discontinuity of

matter.30 I will use the implied discontinuity of matter by a hydrodynamical model that includes F (t)

in my argument that Perrin’s evidence was specific and discriminating in section 4.

First, let me rewrite equation (3) above explicitly in terms of x(t), i.e., displacement in the x-direction.

m
d2x

dt2
= −ζ

dx

dt
+ F (t) (4)

Langevin solved this equation for the mean squared displacement x(t)2 = ξ2 = 2Dt in an “infinitely

more simple” way than Einstein. The solution of this equation obtained by Langevin himself (and more

rigorously by others after him) was obtained by making two kinds of assumptions. One kind was based

on the kinetic theory of heat, namely, that at thermal equilibrium the distribution of the velocities of

suspended granules will be the Maxwell-Boltzmann distribution. This was a simplifying assumption

since it meant that one could use mv2

2 = 1
2kBT instead of individual velocities for each particle. The

other assumptions were statistical assumptions about F (t). In fact, in solving the eponymous equation

by making the following statistical assumptions about F (t), Langevin was the first to employ methods

which were later used for solving what are now called stochastic differential equations.31

(a) F (t) = 0

Since F (t) is a fluctuating force on the surface of a fluid at rest in thermal equilibrium, assumption (a)

says that F (t) must have zero mean even though it can vary widely and wildly across the surface of the

fluid on very short timescales.

(b) ⟨F (t), F (t′)⟩ = 2ζkBTδ(t
′ − t)

⟨·, ·⟩ is the autocorrelation function in Mazo (2002)’s notation. By making it proportional to the Dirac

delta function (δ(t′−t)), assumption (b) says that the fluctuating forces are sharp, rapid and uncorrelated

at different but very short timescales.32 Some authors take condition (a) and (b) together as implying

that F (t) is a Gaussian white noise process.33

30See Stein (2021) where my framing of the Perrin case is very close to Poincaré’s understanding of the atomic debates.
The issue, as Poincaré saw it, was to decide between continuous and discontinuous approaches to chemical physics.

31For a rigorous discussion of the mathematics and methods involved in solving the Langevin equation, see Mazo (2002)
and Coffey, Kalmykov, and Waldron (2004).

32See Arfken and Weber (2001, 84 – 88) for discussion of the Dirac delta function.
33See Gardiner (1983, 69) and compare with Mazo (2002, 59 – 63) and Coffey, Kalmykov, and Waldron (2004, 12).

12



(c) ⟨F (t), x(t)⟩ = 0

Finally, assumption (c) says that the fluctuating impulsive pressure forces are independent of position.

The key point here is that by assuming the kinetic theory of heat and using these three statistical

assumptions about F (t), Langevin solved equation (4) for the mean squared displacement x(t)2 obtaining

x(t)2 = ξ2 = 2Dt. Now recall that Perrin and M. Chaudesaigues used Einstein’s diffusion model to predict

ni. The very close match between observed ni and predicted ni that Perrin tabulated was evidence that

the distribution of ni on the x-axis is Gaussian with mean 0 and variance ξ2 = 2Dt. Since the variance of

this distribution can be obtained from the Langevin dynamical equation, evidence for Einstein’s model

is evidence for a hydrodynamical model of Brownian motion in which F (t) has the properties (a) –

(c).34 But such a hydrodynamical model implies that the substructure of the ambient fluid at a scale

immediately below that of the granules is discontinuous.

In order to see this discontinuity, recall that according to continuum fluid mechanics, the pressure

F (t) depends on, or is related to, position x(t). This follows because the Navier-Stokes Equations together

with the Continuity Equation are a set of four equations in four unknowns: three equations involving flow

velocity components in the three spatial directions (Navier-Stokes) and one equation involving pressure

gradients (the Continuity Equation).35 This means the system of equations is determined. In particular,

given x(t) in a fluid and the flow velocities at x(t) from Navier-Stokes, one can solve for F (t) although

a solution cannot always be obtained by analytical means. The existence of this solution assumes that

F (t) and x(t) are related in the way specified by the system of equations. Since this system of equa-

tions characterizes the behavior of continuous fluids, the assumption that F (t) is uncorrelated with x(t)

(assumption (c) above) is incompatible with the substructure of the ambient fluid surrounding a particle

undergoing Brownian motion having a continuous description. Therefore, this substructure, at a scale

immediately below the granules, must be discontinuous.36

Further, from the Continuity Equation, we know that pressure at one point in a fluid is transmitted to

adjacent points continuously according to the pressure gradients within that fluid. This means that given

some pressure gradient, the pressure F (t) at a point x(t) and time t determines the pressure F (t′) at a

different but adjacent point x′(t′) at time t′. But the assumption that F (t) and F (t′) are uncorrelated

(assumption (b) above) at short-time scales is incompatible with the substructure of the ambient fluid

being continuous at a scale below that of the granules.37 Thus, obtaining data verifying ξ2 = 2Dt would

be very unlikely assuming continuity of the ambient fluid at that scale. The fluid must be discontinuous
34Actually only properties (b) and (c) are required to infer the discontinuous structure of matter at a scale immediately

below those of the granules.
35See Munson, Young, Okiishi, and Huebsch (2009, 42, 271).
36Compare with Smith and Seth (2020, 237)
37Compare with Smith and Seth (2020, 238).
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at that scale.

Before moving on to the next section, let me be clear in order to avoid potential misunderstanding. It

is known that hydrodynamics assuming continuum fluid mechanics depends on the type of fluid and the

scale of the physical processes being modeled. Hydrodynamics may be formulated assuming a continuous

fluid description (where Navier-Stokes and the Continuity Equation apply), if the associated molecular

mean free path λ is small compared to a typical length scale of the problem L. The mean free path is the

mean distance traveled by a molecule of the fluid between collisions with other molecules. A quantitative

measure for identifying the scales at which continuity applies is provided by the dimensionless ratio

Kn = λ
L known as Knudsen number. So in saying that the assumption of continuity of the ambient fluid

at that scale is incompatible with the data verifying ξ2 = 2Dt, what I mean is that scales or levels of

description matter. At the scale at which Brownian Motion is happening the assumption of continuity

is no longer valid because Kn approaches 1, which is considered the upper limit of the continuum

hypothesis.38 The non-zero F (t) is introduced at the microscale where Brownian motion is happening

by the Langevin equation and the statistical assumptions for F (t) only apply at this scale. But at this

scale or level of description, because the pressure fluctuations F (t) are uncorrelated with position x(t)

and at different times, a shift of perspective to incorporate discontinuity is required to explain the data

from the experiments.

4 Why was Perrin’s evidence good?

The previous section was helpful in specifying the hydrodynamical model space, which I will use to

characterize the quality of Perrin’s evidence using Bayes Factors. Before offering this characterization,

let me first give an overview of what Bayes Factors are.

On a Bayesian statistical approach, the first thing to note is that we are justified (by the theorems of de

Finnetti and later Diaconis and Freedman (1980) on exchangeability) to speak of probability distributions

on parameters — effectively treating parameters as random variables. This turns out to have a huge

payoff because it naturally leads to hierarchical models, where we use higher level probability models of

the parameters, which appear on lower level sampling models of the data, to capture dependencies in our

data, especially where such dependencies seem reasonable enough to capture. Using a hierarchical model,

a Bayesian statistician will not only use the sampling model for the data f(Xi|θ) for i = 1, 2, . . . , n; but

also a prior model π(θ) for all the parameters θ in the sampling model. Such a statistician may even have

a prior on the models p(Mj) for j = 1, 2, . . . , k themselves, possibly continuing this hierarchy as high up

as they please using hyperparameters. We shall see in section 5 below how a Bayesian hierarchical model
38See section 1.2.2 in Katopodes (2018) and compare with section 9.9.2 in Rapp (2022).
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can be used to analyse Salmon (1984)’s argument.

For now, in order to illustrate the fundamental ideas of a Bayesian statistical model and for the sake

of my subsequent argument, suppose that we have observed data X = (X1, X2, . . . , Xn). Suppose also

that we are just comparing two theoretical models M1 and M2. For each model M1 and M2 there is a

corresponding Bayesian statistical model, which has two parts. The first part, which is common to both

Frequentist and Bayesian approachers, is a sampling model for the data. We write the sampling models

as:

Xi |θ1,M1 ∼ f(Xi |θ1,M1) for i = 1, 2, . . . , n

Xi |θ2,M2 ∼ f(Xi |θ2,M2) for i = 1, 2, . . . , n

Here θ1 and θ2 are a set of parameters in the statistical models associated with model M1 and model M2.

The second part of a Bayesian statistical model, which is its distinguishing feature from a Frequentist

statistical model, is a prior model on the parameters in the respective sampling models. We write the

prior models as:

θ1 |M1 ∼ π(θ1)

θ2 |M2 ∼ π(θ2)

Now suppose that p(M1) and p(M2) are the prior probabilities on the theoretical models, then Bayesian

statistical inference uses Bayes’ theorem to find the posterior probabilities on the theoretical models as:

p(M1 |θ1,X) =
L(X |θ1,M1)π(θ1 |M1)p(M1)∑2
i=1 L(X |θi,Mi)π(θi |Mi)p(Mi)

p(M2 |θ2,X) =
L(X |θ2,M2)π(θ2 |M2)p(M2)∑2
i=1 L(X |θi,Mi)π(θi |Mi)p(Mi)

The terms L(X |θ1,M1) and L(X |θ2,M2) that appear in the expression for finding the posterior prob-

abilities are the joint distributions of the data X under the respective models. These terms are called

likelihood functions by statisticians.39 Marginal likelihood functions involve integrating out the parame-
39Note that for a Frequentist, the likelihood functions are not conditional distributions; rather the likelihood functions are

joint distributions of the data for a fixed value of the parameters θ. For this reason, a Frequentist will write the likelihood
function as L(X;θ,M) to distinguish her approach from the Bayesian approach.
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ters θ1 and θ2 in their respective parameter spaces Θ1 and Θ2. That is:

L(X |M1) =

∫
Θ1

L(X |θ1,M1)π(θ1 |M1)dθ1

L(X |M2) =

∫
Θ2

L(X |θ2,M2)π(θ2 |M2)dθ2

So we may write the posterior probabilities of M1 and M2 as:

p(M1 |X) =
L(X |M1)p(M1)∑2
i=1 L(X |Mi)p(Mi)

(5)

p(M2 |X) =
L(X |M2)p(M2)∑2
i=1 L(X |Mi)p(Mi)

(6)

when we are interested in the posterior probabilities just given the data X.

Dividing equation (5) by equation (6) we get:

p(M1 |X)

p(M2 |X)
=

L(X |M1)p(M1)

L(X |M2)p(M2)
(7)

Rearranging the terms in equation (7) suitably we get:

p(M1 |X)
p(M1)

p(M2 |X)
p(M2)

=
L(X|M1)

L(X|M2)
(8)

The right hand side of equation (8) can be used to quantify the relative predictive accuracy of our models.40

This quotient is the Bayes Factor. The left hand side of equation (8) quantifies the ratio with which our

credences for each model updated given some data X. The equality between the left and right hand side

of equation (8) connects the relative strength of evidence — how much we are led to update our credences

for the competing models given some data — with Bayes Factor, which is the relative predictive accuracy

of our models.

A more intuitive way of thinking about the Bayes Factor is this: Bayes Factor quantifies the relative

strength of our evidence for a given model in terms of the specificity and discriminating character of

that evidence. This way of thinking is valid because there are two ways that the Bayes Factor can be

high: either the numerator is high relative to the denominator or the denominator is low relative to the

numerator. On the one hand, we can say that a relatively high value for the numerator quantifies the
40See Rouder and Morey (2019).
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specificity of our evidence given M1. A relatively high value is in effect saying that this is the sort of

evidence that is very likely given M1 when comparing it to M2. The evidence is more specific to M1

than M2. On the other hand, we can say that a relatively low value for the denominator quantifies how

discriminating our evidence is. A relatively low value indicates that this sort of evidence or data is very

unlikely given M2 when comparing it to M1. The evidence discriminates against, or rules out, M2. In

sum, we can say that since the strength of our evidence is reflected by how much we are led to update

our relative credences in light of it (the left hand side), the evidence in favor of some model is strong or

good if it is specific and discriminating (the right hand side).

Here’s how I apply Bayes Factor to evaluate the quality of Perrin’s statistical evidence for the Gaussian

distribution of displacements. Let M1 be a hydrodynamical model for Brownian motion which includes

F (t) and in which the ambient fluid is discontinuous. The alternative M2 is a hydrodynamical model

for Brownian motion which does not include F (t) with its assumed properties, i.e., the substructure of

the ambient fluid even at a level immediately below that of the granules is a continuum. M1 leads to

the statistical model discussed in section 3.1. With this model specification, let the marginal likelihoods

under M1 and M2 be L(X |M1) and L(X |M2), respectively.

On the one hand, L(X |M1) is very high relative to L(X |M2) because Perrin’s evidence confirming

that the statistical model of the Gaussian distribution of displacements has variance ξ2 = 2Dt was

very specific under the assumption that matter is discontinuous at the scale of the particles undergoing

Brownian motion, i.e., under M1. By “specific” here I am referring to the close match between predicted

values by the model and actually observed values in the two series of experiments (see Table 1). The

specificity also arises because the Langevin dynamical equation leads to the variance 2Dt of the statistical

model of displacements. Since D is related to Avogadro’s number NA by

D =
RT

NA6πrη

the specificity of Perrin’s evidence for the discontinuity of matter comes from here as well since we can use

the estimated D from the distribution of displacements to estimate NA and compare it to its theoretical

value (see section 6 below).

On the other hand, because the Langevin dynamical equation in which F (t) has the properties (a) –

(c) is incompatible with the ambient fluid being a continuum, L(X |M2) is very low relative to L(X |M1).

It is also relatively low because one of the parameters in the associated statistical model, D, is a function

of NA — a key quantity in the molecular-kinetic theory of gases and heat. But since we are assuming

that M2 is formulated within an alternative theoretical framework to the molecular-kinetic theory of gases

and heat, M2 cannot include a function of NA as a parameter. And any theoretical model that did not
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include a function of NA as a parameter would be incompatible with the statistical data on displacements,

meaning the likelihood of that data given that model would be very low relative to an alternative that

includes NA.

Let me say a bit more here. My claim is that there is no other way to get the predicted mean square

displacements unless one uses a hydrodynamical model with an F (t) term satisfying conditions (a) –

(c). Whether this term is needed to make sense of the data is the entire question at issue, and it is

by showing that this is needed that Perrin establishes the relevant facts, summarized by “atoms exist”

or the determination of NA. In other words, I am claiming that the close match between theoretical

predictions of NA and actual estimates of NA from statistical experiments would be very unlikely on

theoretical models for Brownian motion that either don’t include an F (t) term or explicitly make use

of a function of NA in their derivations. An example of a theoretical model in this category would be

Ostwald’s energetics.41

At the same time, I believe that a continuum theorist (working in, say, continuum fluid dynamics)

can still accept the statistical assumptions on F (t) because she recognizes that Knudsen number is close

to one at the scale of Brownian motion. So nothing I have said impugns continuum fluid dynamics. The

pressure gradients at appropriate levels of descriptions required by continuum fluid dynamics are in fact

smooth (or at least continuous) and the hydrodynamical phenomena that can be modeled faithfully by

the Navier-Stokes and the Continuity Equation at macroscales can still be modeled as such. So it is true

that one both has a continuum description of fluid dynamics at the macroscale, but also hydrodynamical

models at the scale of Perrin’s experiments on Brownian motion which, in fact, show that matter is

discontinuous.

Taking together these two points about the relatively high and relatively low values of L(X |M1) and

L(X |M2) respectively, it follows that L(X |M1)
L(X |M2)

≫ 1, i.e., the resulting Bayes Factor comparing M1 to M2

is much greater than 1. But this large Bayes Factor means that the quality of Perrin’s evidence for the

discontinuity of matter at a scale immediately below that of the suspended granules was good because it

was highly specific and discriminating.

5 Pros and Cons of using Bayes Factors

Although the Bayes Factor looks like a likelihood ratio statistic commonly found in Frequentist hypothesis

testing, it is important to emphasize that Bayes Factor is not simply a likelihood ratio statistic. I mention

this partly to justify my choice of analyzing Perrin’s evidence from a Bayesian perspective as opposed to a

non-Bayesian or Frequentist perspective. The first distinguishing feature is that we got Bayes Factor from
41Smith and Seth (2020, 333 - 341)
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the ratio of marginal likelihoods — not likelihoods — by integrating out the parameters. This technique

of marginalization is not possible within a Frequentist framework where prior models on parameters,

which are required in order for this to work, are not considered. This technique turns out to offer the

Bayes Factor more flexibility to compare all sorts of models with each other than is possible within

the Frequentist framework. There are thus several advantages to using Bayesian methods to quantify

the relative evidence we have for any theoretical models. The first advantage is that the probability

distributions in the sampling models given the theoretical models do not necessarily have to belong to

the same parametric family as is typically the case in the case of likelihood ratio based statistics in

the Frequentist framework. Secondly, the vector of parameters are not necessarily nested, again, as is

typically the case in other likelihood ratio based test statistics in the Frequentist framework.

These clear advantages have to be tempered with some of the well known disadvantages of using

Bayes Factors for model comparison or quantifying the strength of evidence. First, Bayes Factors clearly

depend on the prior model on parameters. We can see this by looking at how we calculated the marginal

likelihoods for each model Mi for i = 1, 2

L(X |Mi) =

∫
Θi

L(X |θi,Mi)π(θi|Mi)dθi

Now the problem for Bayes Factors has to do with using uninformative priors on the parameters. An

uninformative prior is a prior that is chosen in such a way that its influence on the posterior distribution

is as small as possible. With an uninformative prior, statisticians want to eliminate as much bias as they

can from their analysis. A typical uninformative prior on a parameter such as the mean µ of a continuous

random variable X is a uniform distribution π(µ) over the entire real line R, also known as a flat prior.

The problem is that the uninformative prior in this case turns out to be an improper prior. The sense

in which it is improper is that it is not a probability distribution function since it is not normalized,

i.e.,
∫
R π(µ)dµ = ∞. So the marginal likelihood functions are undefined in this case and so is the Bayes

Factor. For this reason, Bayes Factors are highly sensitive to the prior model on parameters.

Another problem with Bayes Factors is that Bayes Factors are not calibrated. What this means,

among other things, is that there is no way to tell what it means to say that a Bayes Factor is “large” in

the same principled way that one can say a given likelihood ratio based statistic in Frequentist settings

is large, where one considers the sampling distribution of the statistic. To be sure, there are guidelines

based a scale given by Jeffreys (1961) (see Table 2) for how to intepret the magnitude of a Bayes Factor

but this not the same thing as calibrating Bayes Factor.42 In order to calibrate Bayes Factors one would

need, not only to address the question of “largeness” but also to specify how often a given value of Bayes
42See Kass and Raftery (1995).
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B12 =
L(X|M1)
L(X|M2)

2loge(B12) Evidence against M2

1 to 3 0 to 2 Not worth more than a bare mention

3 to 20 2 to 6 Positive

20 to 150 6 to 10 Strong

> 150 > 10 Very strong

Table 2: Guidelines for interpreting the magnitude of Bayes Factor

Factor is expected to occur with a certain choice of a statistical model.43

6 Some Lessons

In discussing the pros and cons of using Bayes Factors, I believe now is a good time to return to something

I mentioned in the introduction, namely, that Bayes Factors can be used to draw out the force of Salmon

(1984, 224)’s “coincidence argument” to a common cause — atoms and molecules. The best way (I can

think of) to understand Salmon’s argument from a Bayesian statistical perspective is to use a hierarchical

Bayesian model for meta-analysis.

Here is why think a Bayesian hierarchical model for meta-analysis is appropriate here. The first reason

involves what the goal of a meta-analysis is. As a method for summarizing and integrating the findings

of research studies in a particular area, meta-analysis aims to provide a combined analysis of related

studies in order to indicate the overall strength of the evidence for, say, a beneficial effect of a treatment

under study, or the value of important parameters found in theoretical models. Essentially, meta-analysis

involves pooling information across multiple studies each designed to address the same scientific question

with the goal often being to estimate a single effect measure common to all studies.

This brings me to the second reason why the Bayesian hierarchical model is appropriate here. What

is crucial for Salmon’s argument is that the different experiments (5 in total) all lead to converging values

of Avogadro’s Number NA. Referring to the four papers that Perrin published in 1908 in the Comptes

rendus of the Académie des Sciences, Salmon (1984, 216) writes:

It is of the greatest importance to our story to note that these papers included not only

the precise value of Avogadro’s number ascertained on the basis of his study of Brownian

movement, but also a comparison of that value with the results of several other determina-
43The calibration of Bayes Factors is related to the problem raised by Mayo (2018) and others (see the discussion following

O’Hagan (1995)’s paper) that Bayes Factor can be used to find evidence for a wrong model. Addressing these concerns lies
beyond the scope of this paper, but is a fruitful avenue for further work on understanding the philosophy of Bayes Factors
as a measure of evidence and is part of work-in-progress by the author of this paper.
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Source of Theoretical Model NA = g(θ) Estimate for NA(×1022)

Brownian Motion NA = RT
D6πrη 65 - 70.5

Alpha Decay NA = F
2e0

62 - 71

X-ray diffraction NA = 8M
ρa3

61.5

Blackbody Radiation NA = R
kB

61 - 62

Electrochemistry NA = QM
me0ν

60 - 90

Table 3: The Five Ways of Determining NA

tions based upon entirely different methods, including Rutherford’s study of radioactivity and

Planck’s work on blackbody radiation.

He writes, later, that:

If there were no such micro-entities as atoms, molecules, and ions, then these different experi-

ments designed to ascertain Avogadro’s number would be genuinely independent experiments,

and the striking numerical agreement in their results would constitute an utterly astonish-

ing coincidence...We can say, very schematically, that the coincidence to be explained is the

“remarkable agreement” among the values of NA that result from independent determinations.

Given Salmon’s own emphasis on the relatedness (they all lead to approximately the same value of NA)

and independence of the experiments, it makes sense to use a Bayesian meta-analysis using hierarchical

models. The point I wish to make for understanding Salmon’s argument (bracketing the issue of a

common-cause) is that a Bayesian hierarchical model for meta-analysis has a distinct advantage when

it comes to explaining this agreement between the different experiments whose goal is to estimate NA;

and when it comes to saying why the body of evidence constitutes strong evidence for theoretical models

which include specific predictions for NA.

Let us consider the five theoretical models that Salmon considers (See Table 3).44 Let Xi for i =

1, . . . , 5 denote the observed values of Avogadro’s number from each study. We can then write the

sampling model as:

Xi|θi
ind∼ f(Xi |θi) for i = 1, 2, . . . , 5

This sampling model says that within each study i = 1, 2, . . . , 5 the observed values of Avogadro’s number

Xi are jointly but independently distributed according to a distribution f(Xi |θi) that depends on θi.
44The figures in the table are taken from Perrin (1910, 90). Compare with Smith and Seth (2020, 260), and Smith and Seth

(2020, 369, n.8) for the values of NA from the experiments on X-ray diffraction by the Braggs.
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For example, in the Brownian motion displacement experiments, θ = D, the diffusion coefficient, which

for given t can be estimated from the variance ξ2 = 2Dt of the normal distribution. In the blackbody

radiation experiments the key parameter to be estimated is θ = kB.

Another way of thinking about what the sampling model is saying is this. For each theoretical model,

NAi is the key theoretical parameter whose value is to be determined using the Xi. NAi in turn is some

function g(θi) of the parameters θi for i = 1, . . . , 5, which appear in the statistical models associated with

each theoretical model. Therefore, for each experiment the joint distribution of the observed Avogadro

number Xi is f(Xi|NAi) where NAi is the “true value” for Avogadro’s number in experiment i. This way

of thinking is valid since g−1(NAi) gives θi. See Table 3.

I do a meta-analysis using a Bayesian hierarchical model by placing a prior on NAi conditional on

a theory that unifies all the studies. One candidate theory is the theory that matter is discontinuous.

Call this theory M1. According to this theory, the NAi are from a common distribution with unknown

parameter NA, which is the true value for Avogadro’s number that we want to estimate by pooling from

all the five experiments.45 To complete the hierarchical Bayesian model I write:

NAi

iid∼ h(NA) for i = 1, 2, . . . , 5

NA |M1 ∼ η(NA |M1)

Now suppose that p(M1) represents our epistemic probability that matter is discontinuous. In meta-

analysis of the experimental estimates for NA, we are interested in the posterior distribution:

p(NA|θi, Xi,M1) for i = 1, 2, . . . , 5

By Bayes’ theorem the posterior distribution is proportional to the joint distribution of NA, Xi, θi and

M1 for i = 1, . . . , 5. By marginalizing out θi from this joint distrubution we can write

p(NA|X,M1) ∝ L(X|NA,M1)η(NA|M1)p(M1)

where L(X|NA,M1) is now the marginal likelihood of the data.

I am now in a position to explain how my Bayesian meta-analysis explains why Salmon would find

this convergence of values of NA to be a very compelling argument for a common cause and how that

impacts our epistemic beliefs. For fixed η(NA |M1) and p(M1), the posterior distribution p(NA |X,M1)

45As of 2018 the Committee on Data for Science and Technology (CODATA) places the value of Avogadro’s Number at
60.2214076× 1022 mol−1.
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depends on the data through L(X |NA,M1). If the true NA is 60× 1022, then the posterior distribution

will have more mass around values of NA that are around that number since all the Xi’s are in fact close

to 60× 1022.

Now suppose that we are interested in comparing the estimate of NA conditional on M1 to the estimate

of NA conditional on an alternative theory M2. M2 here can be a different unifying theory, which we

want to use to carry out the same meta-analysis we have done using M1. To achieve a jointly exhaustive

set of theories, let M2 be the theory that says matter is continuous at the microscale. Suppose we also

assign the same prior probabilities η(NA |M2) and p(M2) to M2 as we did for M1. In this case, it is

precisely the Bayes Factor L(X|NA,M1)
L(X|NA,M2)

that will be used to compare the two models. On the one hand,

the theoretical models that M1 unifies in the meta-analysis all have very close and specific values for

Xi conditional on NA being around 60 × 1022. In my account, I have shown that this specificity comes

in because the parameters in the statistical models θi are different functions of NA. So using these

parameters in the statistical models unified by M1, we are more likely to observe values of Xi in Table 3

than we would if we used a different theory like M2. A quantitative and precise way of saying this is that

Bayes Factor L(X|NA,M1)
L(X|NA,M2)

in favor of M1 would high. This is the explanation for why Salmon would find

this convergence of values of NA to be a very compelling argument for a common cause. It is important

to emphasize, however, that I have offered this explanation without appealing to any causal explanation.

Because my explanation has focused entirely on considering the relevant statistical models, I believe that

I can avoid the problem of unconceived alternatives which face accounts of causal explanations such as

Salmon’s. I believe that this constitutes a significant virtue of my account. I return to this point below.

I can now also say how I avoid the objection of ad hoc specification of priors. I do this by distinguishing

the question I am asking from that which Achinstein and Psillos are asking. My question is: what made

the quality of Perrin’s statistical evidence good? Achinstein and Psillos’s question is: how were prominent

scientists convinced of the truth of the atomic hypothesis in light of Perrin’s evidence? Both Achinstein

and Psillos answer their question in terms of how prior credences were updated in light of the data. Let

M1 be the atomic hypothesis and M2 be an alternative to it. They need p(M1) to be 0.5 or “not too low”

in order that p(M1|X) > p(M2|X) after updating. These are the prior specifications that Smith and Seth

find ad hoc. Because I am asking a different question, the answer to my question depends entirely on

Bayes Factor L(X|M1)
L(X|M2)

. Thus, by asking a different question and characterizing the strength of evidence

in terms of relative predictive accuracy using Bayes Factor, I can avoid making ad hoc specification of

priors.
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7 Some remaining questions

There are several questions one may ask at this point. First, one may ask: how faithful is my specification

of the model space to this historical episode? In performing his experiments, Perrin was certainly focused

on confirming the molecular-kinetic theory or the existence of atoms and molecules. In fact, philosophers

who discuss Perrin are also often concerned with the implications of Perrin’s work for the existence

question. So why am I not presenting the models involved in this historical episode in terms of those that

assert the existence of atoms and molecules and those that don’t?

Here are my reasons. Perrin cannot possibly have provided strong evidence for atoms and molecules

because the actual details of atomic structure require quantum mechanics, which was unavailable to

Perrin in 1908 – 1913. This means that if Perrin was providing definitive evidence for anything, it is

for something that is compatible with both classical physics (including the kinetic theory) and quantum

physics. My specification of the model space has this compatibility.

Essentially, by emphasizing the need to focus on statistical evidence, I am capable of making fine

distinctions between the following levels, which I also described briefly in section 2:

(1) Substantive or fundamental theories

(2) Theoretical models of these substantive theories

(3) Statistical models of the theoretical models

The action in the atomic debates I have zoomed in on happens at level (3) — statistical models of

the theoretical models. My argument is that Perrin provided strong statistical evidence for the statis-

tical model of the Gaussian distribution of displacements. Using a meta-analysis of the five ways for

determining NA, I have also argued that Perrin could rightly claim to have provided strong evidence

that NA is around 60 × 1022 mol−1. The strength of evidence for the theoretical models is inherited

upwards if one believes that the statistical models are adequate for capturing the theoretical predictions

and constraints demanded by the theoretical models at level (2). For example, if one accepts that the

variance of the statistical model for the displacements is 2Dt, then one accepts the statistical model as

an adequate model for checking the theoretical constraints imposed by Einstein’s diffusion model and the

hydrodynamical model for Brownian motion that leads to the Langevin equation. In this case, the strong

statistical evidence accrues to the theoretical model higher up in level (2). Moving up the hierarchy to

substantive theories is more complicated for reasons that Stanford (2009) has discussed having to to do

with the problem of unconceived alternatives and the “Catch-all Hypothesis”.

In considering how to move the strength of Perrin’s statistical evidence up to the level (1), I chose

to specify the model space at level (1) as M1 — discontinuity of the ambient fluid immediately below
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the granules, and M2 — continuity of the ambient fluid immediately below the granules; because this is

the only retrospective, and consistent, way of saying that Perrin provided strong evidence for something

without begging the question or failing to consider all serious alternatives. This model specification at

level (1) has the advantage of including dichotomous and exhaustive models, which means it avoids the

“Catch-all Hypothesis” problem (i.e., the problem of exhaustively specifying, in model space, the logical

complement of a given hypothesis in order to compute L(X)) discussed in Stanford (2009) in relation to

the problem of unconceived alternatives.46

Second, and finally, one may ask: if in order to compute Bayes Factors one needs to specify at least

two competing models, what is (or are) the alternative statistical model(s) that I am comparing pairwise

with Einstein’s statistical model? Einstein’s statistical model says ξ2 = 2Dt and I say that the evidence

for this model gives a high Bayes Factor in favor of M1. But what would the Bayes Factor be if we

considered explicit alternatives to Einstein’s statistical model? For example, why not have ξ2 = 2Dt2

or ξ2 = 2D
√
t or ξ2 = constant for all t or ξ2 = 2Dt−1 and so on? The challenge raised by this last

question is pressing when one realizes that there are infinitely many explicit alternative statistical models

that one can specify and that this list of explicit alternative models cannot be exhaustively specified or

enumerated. If so, then I have still not shown that the “Catch-all Hypothesis” problem can be avoided.

Here’s why I believe the problems raised by this question for my account are only apparent. Recall

that at level (2) both Einstein and Langevin were led to their derivations by assumptions about the nature

of F (t) that sustains Brownian motion. Both found that assuming discontinuity, which is exhibited by

the random pressure fluctuations F (t) at the micro-scale; the mean squared displacement of colloidal

particles ξ2 would have to increase with time. This means that on alternative models, which did not

include F (t), the mean squared displacement of the colloidal particles would have to either (i) decrease

over time; or (ii) remain constant. Thus, the exhaustive hydrodynamical model space (discontinuous vs.

continuous) can be used to partition the statistical model space as follows:

1. Models with increasing ξ2 over time t

2. Models with decreasing ξ2 over time t

3. Models with ξ2 = 0 or some constant for all t

As a partition, it is exhaustive of the space and we can thus avoid the “Catch-all Hypothesis” problem.

Further, statistical models with decreasing ξ2 over time t would require ξ2 to be a monotonically decreasing

function of time. This would mean that rather than spread out over time according to Einstein’s diffusion

model (from regions of high concentration to regions of low concentration), the particles in Brownian
46Compare Smith and Seth (2020, 238 – 239).
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motion would be clustering or moving closer to the mean position (origin). This is very improbable given

the facts we know about diffusion. So models with decreasing ξ2 over time t can be ruled out. This

leaves models with increasing ξ2 over time t and models with ξ2 = 0 or some constant for all t. Models

with ξ2 = 0 or some constant are impossible because it would mean no concentration gradient or osmotic

pressure for diffusion to take place. This means that the only possibilities for any model in the statistical

model space for Brownian motion are ones in which ξ2 increases over time t. One does not need to specify

explicitly what the form of ξ2 in these models has to be as the alternative statistical model to the actual

one in which ξ2 = 2Dt. The reason is that the only free parameter to be estimated in these statistical

models is D, the diffusion coefficient. Let M∗
1 be another statistical model for the displacements in

which ξ2 is a different increasing function of time and D∗ be the estimated diffusion coefficient for this

model that is within ε distance of the estimated diffusion coefficient D in the statistical model M1 with

ξ2 = 2Dt. Then Perrin’s statistical evidence shows that M∗
1 will be practically indistinguishable from

M1. This means that they will both have high a Bayes Factor in their favor compared to any model in

which ξ2 is constant or a decreasing function of time and we may choose either M1 or M∗
1 .

8 Conclusion

In conclusion, let me recapitulate the main points of my paper. I have argued that the quality of Perrin’s

statistical evidence can be characterized as specific and discriminating using Bayes Factors. My argument

involved focusing on the data involved in Perrin’s confirmation of the statistical model of displacements of

particles in Brownian motion according to Einstein’s diffusion model. While focusing on this statistical

model, I also analyzed the space of hydrodynamical models for Brownian motion carved out by the

Langevin dynamical equation, which leads to the variance, ξ2 = 2Dt, of the statistical model. This

specification of the theoretical model space was the crucial step in arguing that Perrin provided strong

evidence for the discontinuity of matter, while also avoiding the “Catch-all Hypothesis” problem and the

ad hoc specification of priors objection that has been directed at Bayesian perspectives of this historical

episode.
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