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1 Formal (sentential) quantum logic

First we introduce a formal language L for sentential logic. The primitive symbols are:

(a) an infinite supply of sentential letters: A1, A2, A3, ...

(b) connectives: ¬ & ∨

(c) left and right parentheses: ( )

The set of sentences in L, Sent(L), is defined by induction:

(1) Every sentential letter Ai is a sentence in L.

(2) If ϕ and ψ are sentences in L, then so are: (¬ϕ) (ϕ ∨ ψ) (ϕ&ψ).

(We shall use lower case Greek letters as metalinguistic variables ranging over sentences in L, and upper

case Greek letters as variables ranging over sets of sentences in L. Where confusion cannot arise, we

sometimes drop outer parentheses.)

Now we define the relations of logical implication (or entailment) that characterize classical logic and

“quantum logic”. To make the two look as much alike as possible, we present the first definition (for the

classical case) in a slightly non-standard form.

Let a CL-valuation be a pair (S, t), where S is a non-empty set and t is a map from Sent(L) to P(S),

the power set of S, satisfying the following conditions:

(C1) t(¬ϕ) = t(ϕ)c (= the complement of the set t(ϕ) relative to S)

(C2) t(ϕ&ψ) = t(ϕ) ∩ t(ψ)

(C3) t(ϕ ∨ ψ) = t(ϕ) ∪ t(ψ)

for all sentences ϕ and ψ in L. We say that Γ classically implies (or entails) ψ, and write Γ |=CL ψ, if,

for all CL-valuations (S, t),

∩{t(ϕ) : ϕ ∈ Γ} ⊆ t(ψ).

So, in particular, if Γ is finite with elements ϕ1, ..., ϕn, Γ |=CL ψ if

t(ϕ1) ∩ ... ∩ t(ϕn) ⊆ t(ψ).

In the usual fashion, we write ϕ |=CL ψ rather than {ϕ} |=CL ψ, and write |=CL ψ if ψ is classically

implied by the empty set of sentences in L. Notice that ϕ |=CL ψ iff, for all CL-valuations (S, t),

t(ϕ) ⊆ t(ψ); and |=CL ψ iff, for all CL-valuations (S, t), t(ψ) = S. (The latter assertion follows from the

fact that the intersection of the empty set (of subsets of S) is S.)

In parallel, we take a QL-valuation to be a pair (H, v) where H is a Hilbert space1 and v is a map

from Sent(L) to L(H), the set of all (closed) subspaces of H, satisfying the following three conditions
1I will review basic facts about Hilbert spaces in class.
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(Q1) v(¬ϕ) = v(ϕ)⊥ (= the orthocomplement of the subspace v(ϕ) in H)

(Q2) v(ϕ&ψ) = v(ϕ) ∩ v(ψ)

(Q3) v(ϕ ∨ ψ) = the span of v(ϕ) and v(ψ), i.e., the smallest subspace of H containing both v(ϕ) and

v(ψ)

for all sentences ϕ and ψ in L. We say that Γ quantum logically implies (or entails) ψ, and write Γ |=QL ψ,

if, for all QL-valuations (H, v),

∩{v(ϕ) : ϕ ∈ Γ} ⊆ v(ψ).

The expressions ϕ |=QL ψ and |=QL ψ are understood in parallel to their counterparts above. So, for

example, |=QL ψ is equivalent to the assertion that, for all QL-valuations (H, v), v(ψ) = H.

The relation |=QL behaves just like |=CL in many respects. For example, the following hold for all

sentences ϕ, ψ, and θ in L.

(1) ϕ |=QL (ϕ ∨ ψ) and ψ |=QL (ϕ ∨ ψ)

(2) (ϕ |=QL θ and ψ |=QL θ) =⇒ (ϕ ∨ ψ) |=QL θ

(3) {ϕ, ψ} |=QL (ϕ&ψ)

(4) (ϕ&ψ) |=QL ϕ and (ϕ&ψ) |=QL ψ

(5) |=QL ¬(ϕ&¬ϕ)

(6) |=QL (ϕ ∨ ¬ϕ)

(7) ϕ |=QL ¬(¬ϕ) and ¬(¬ϕ) |=QL ϕ

(8) ((ϕ&ψ) ∨ (ϕ&θ)) |=QL (ϕ&(ψ ∨ θ)) and (ϕ ∨ (ψ&θ)) |=QL ((ϕ ∨ ψ) & (ϕ ∨ θ))

(9) ¬(ϕ&ψ) |=QL (¬ϕ ∨ ¬ψ) and (¬ϕ ∨ ¬ψ) |=QL ¬(ϕ&ψ)

(10) ¬(ϕ ∨ ψ) |=QL (¬ϕ&¬ψ) and (¬ϕ&¬ψ) |=QL ¬(ϕ ∨ ψ)

There are, however, significant differences. In particular, the “other half” of the distributive law fails,

i.e., it is not the case that

(ϕ&(ψ ∨ θ)) |=QL ((ϕ&ψ) ∨ (ϕ&θ))

for all ϕ, ψ, and θ. For example,

(A1&(A2 ∨A3)) 2QL ((A1&A2) ∨ (A1&A3)).

To see this, consider a two-dimensional Hilbert space, and take v(A1), v(A2), and v(A3) to be any three

(distinct) one-dimensional subspaces. Then we have
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v(A1&(A2 ∨A3)) = v(A1) ∩ (v(A2) span v(A3)) = v(A1) ∩ H = v(A1)

but

v((A1&A2) ∨ (A1&A3)) = v(A1&A2) span v(A2&A3) = 0 span 0 = 0,

where 0 is the 0-dimensional space. So the first is not a subset of the second.

Here is one more example of a difference. It is not the case that

Γ ∪ {ϕ} |=QL (ψ&¬ψ) =⇒ Γ |=QL ¬ϕ.

for all Γ, ϕ, and ψ (though it is the case that

ϕ |=QL (ψ&¬ψ) =⇒ |=QL ¬ϕ

for all ϕ and ψ). In particular, we have

{A1, (¬A1 ∨ ¬A2), A2} |=QL ((A1&A2)&¬(A1&A2)),

but

{A1, (¬A1 ∨ ¬A2)} 2QL ¬A2.

To verify the latter, negative claim, consider a two-dimensional Hilbert space, and let v(A1) and v(A2)

be any two (distinct) one-dimensional subspaces that are not orthogonal. Then v(A1)
⊥ and v(A2)

⊥ are

also distinct one-dimensional subspaces. So

v(¬A1 ∨ ¬A2) = v(A1)
⊥ span v(A2)

⊥ = H,

and therefore

v(A1) ∩ v(¬A1 ∨ ¬A2) = v(A1) ∩ H = v(A1).

But v(A1) is not a subspace of v(A2)
⊥, since v(A2) is not orthogonal to v(A1). Thus it is not the case

that

v(A1) ∩ v(¬A1 ∨ ¬A2) ⊆ v(¬A2).

We have not included the conditional ‘→’ as a primitive symbol. Let’s consider three ways we might

introduce it as a defined symbol. Let’s construe:

(ϕ→1 ψ) as an abbreviation for (¬ϕ ∨ ψ)

(ϕ→2 ψ) as an abbreviation for ¬(ϕ&¬ψ)

(ϕ→3 ψ) as an abbreviation for (¬ϕ ∨ (ϕ&ψ)).

The formulas on the right are equivalent in classical logic for all ϕ and ψ. But they are not in quantum

logic. It turns out that there (ϕ →1 ψ) and (ϕ →2 ψ) are equivalent for all ϕ and ψ, but they are not
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equivalent to (ϕ →3 ψ) in all cases. It also turns out that →3 is, in a sense, a better choice for the

conditional in “quantum logic” than the others because “it behaves more like the material conditional in

classical logic”. To make this assertion precise, we consider three basic rules of inference that the material

conditional satisfies in classical logic. They are:

Modus Ponens (MP): From Γ1 |= ϕ and Γ2 |= (ϕ→ ψ) infer Γ1 ∪ Γ2 |= ψ.

Modus Tollens (MT): From Γ1 |= ¬ψ and Γ2 |= (ϕ→ ψ) infer Γ1 ∪ Γ2 |= ¬ϕ.

Conditional Proof (CP): From Γ ∪ {ϕ} |= ψ infer Γ |= (ϕ→ ψ).

The status of the three rules in quantum logic, when formulated in terms of →1 , →2 , and →3 , is as

follows.

MP MT CP

→1 no no no

→2 no no no

→3 yes yes no

Table 1: Do the rules hold in quantum logic?

Thus, CP does not hold for any of candidates! But MP and MT hold, at least, in the case of →3.

Problem 1.1. Provide counterexamples for all the negative entries in the table. (Hint: All can be

handled using the sort of simple valuation over a two-dimensional space that has been used repeatedly to

this point. For example, MP fails in quantum logic for the conditional →1 because we have A1 |=QL A1

and ¬A1 ∨A2 |=QL ¬A1 ∨A2, but not {A1, (¬A1 ∨ A2)} |=QL A2. Thus we get a violation of MP if we

take Γ1 = {A1}, Γ2 = {(¬A1 ∨A2)}, φ = A1, ψ = A2.)

2 The interpretation of quantum logic

Putnam’s View (as presented in [3])

(a) All propositions considered in QM have truth values at all times.

(b) The connectives in QL have the same meaning as in classical logic.

(c) Γ |=QL ψ is to be understood as the assertion that, for every state of the system in question, if all

ϕ ∈ Γ are true in that state, then so is ψ.

Possible Alternative View

(a′) The “propositions” considered in QM only have truth values under appropriate conditions of re-

alization (possibly conditions of measurement, but not necessarily so). For this reason, the term

‘proposition’ is not really appropriate. One might use ‘eventuality’ instead.
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(b′) The connectives in QL do not have the same meaning as in classical logic. For example, to as-

sert (ϕ&ψ) is to assert that ϕ and ψ are co-realizable, and that (in some common conditions of

realization) both are true.

(c′) Γ |=QL ψ is to be understood as the following assertion: every realization of (all the “propositions”

in) Γ is a realization of ψ, and for every state of the system in question, and every realization of Γ,

if all ϕ ∈ Γ are true in that state (and that realization), then so is ψ.

For example, consider the conjunction “The photon is linearly polarized in direction d1 and is linearly

polarized in direction d2”, where d1 and d2 are oblique to one another. On Putnam’s view, the assertion

is false (no matter what the state of the photon). In contrast, one might maintain that the assertion

simply makes no sense. It is not even false.

Remarks

(1) On the second view, quantum logic is not incompatible with classical logic. The two have different

subject matters.

(2) One might try to argue against Putnam’s second claim (b) by citing the fact that the relation |=QL

does not respect the classical truth tables for negation, conjunction, and disjunction. But a stronger

point can be made. |=QL does not respect any truth tables for these connectives. (This point has

been stressed by Geoffrey Hellman [2]. We discuss it further in part 4.)

(3) One should not think that the “alternate view” is without difficulties of its own. Indeed, the EPR

argument can be construed as an argument against it. For any direction d, one can bring about the

conditions under which it is meaningful to attribute linear polarization in direction d to the right

side photon by performing an experiment on the left side that in no way causally affects it. So how

can one avoid the conclusion that it was meaningful to attribute linear polarization in direction d

to the particle “all along”?

3 The “twin slit paradox”

In this section, we first reconstruct Putnam’s attempted resolution of the “twin slit paradox”, and then

present a response by Peter Gibbins [1].

Let

‘A1’ stand for “The particle passes through slit 1.”

‘A2’ stand for “The particle passes through slit 2.”

‘A3’ stand for “The particle arrives in (small) region R on the screen.”
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On Putnam’s analysis, the “twin slit paradox” consists in the fact that we seem to be able to derive

prQM (A3|(A1 ∨A2)) =
1

2
prQM (A3|A1) +

1

2
prQM (A3|A2), (3.1)

even though, as a matter of experimental fact, prQM (A3|(A1 ∨ A2)) does not satisfy this additivity

condition. Instead prQM (A3|(A1 ∨ A2)) exhibits interference effects. The derivation makes use of the

following assumptions.

(a) prQM (A1&A2) = 0.

(b) prQM (A1) = prQM (A2).

(c) Conditional probabilities are defined by the classical quotient formula, i.e., for all ϕ and ψ,

prQM (ϕ|ψ) =
prQM (ϕ&ψ)

prQM (ψ)
.

(d) For all ϕ and ψ, if prQM (ϕ&ψ) = 0, then prQM (ϕ ∨ ψ) = prQM (ϕ) + prQM (ψ).

(e) For all ϕ and ψ,
ϕ |=CL ψ =⇒ prQM (ϕ) ≤ prQM (ψ).

It goes as follows. First, by (c),

prQM (A3|(A1 ∨A2)) =
prQM (A3&(A1 ∨A2))

prQM (A1 ∨A2)
. (3.2)

Since (A3&(A1 ∨A2)) and ((A3&A1)∨ (A3&A2)) are classically equivalent, it follows by two invocations

of (e) that

prQM (A3&(A1 ∨A2)) = prQM ((A3&A1) ∨ (A3&A2)). (3.3)

Since ((A3&A1)&(A3&A2)) |=CL (A1&A2), it follows by (a) and (e) that

prQM ((A3&A1)&(A3&A2)) = 0,

and hence, by (d),

prQM ((A3&A1) ∨ (A3&A2)) = prQM (A3&A1) + prQM (A3&A2). (3.4)

So, combining (3.2), (3.3), and (3.4), we have

prQM (A3|(A1 ∨A2)) =
prQM (A3&A1)

prQM (A1 ∨A2)
+

prQM (A3&A2)

prQM (A1 ∨A2)
. (3.5)

But now, by (a), (d), and (b), we also have

prQM (A1 ∨A2) = prQM (A1) + prQM (A2) = 2 prQM (A1) = 2 prQM (A2).
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So we express (3.5) in the form

prQM (A3|A1 ∨A2) =
prQM (A3&A1)

2 prQM (A1)
+
prQM (A3&A2)

2 prQM (A2)
.

The additivity condition (3.1) now follows by (c).

There is no question that the additivity condition follows from the five listed assumptions. The

derivation is correct in that sense. Putnam’s resolution of the “paradox” is to deny assumption (e).

Without it, one cannot get to line (3.3). The sentences (A3&(A1 ∨ A2)) and ((A3&A1) ∨ (A3&A2))

are not equivalent in quantum logic, he argues, and there is no reason to assume, indeed there is good

empirical reason to deny, that their respective probabilities in QM are equal.

Gibbins has a very simple, but it would appear devastating, objection to this proposed resolution.

Presumably, Putnam cannot object to the weakened assumption

(e′) For all ϕ and ψ,

ϕ |=QL ψ =⇒ prQM (ϕ) ≤ prQM (ψ).

And it is the case that a one-way version of the distributive law holds in QL:

((A3&A1) ∨ (A3&A2)) |=QL A3&(A1 ∨A2).

So it would seem that he cannot object to the following weakened version of (3.3):

prQM (A3&(A1 ∨A2)) ≥ prQM ((A3&A1) ∨ (A3&A2)).

Moreover, since (A3&A1)&(A3&A2) |=QL (A1&A2), the full strength of (e) is not needed for (3.4); (e′)

suffices. So (by the remainder of the proof, which nowhere uses (e)), we see that assumptions (a) - (d),

(e′) collectively imply

prQM (A3|A1 ∨A2) ≥
1

2
prQM (A3|A1) +

1

2
prQM (A3|A1).

But even this one way version of the additivity condition is in conflict with experiment. As a re-

sult of destructive interference, there will always be regions R on the screen for which the probability

prQM (A3|A1 ∨A2) is strictly less than the sum on the right hand side!

4 The connectives in quantum logic are not truth functional

We remarked in part two that the connectives in quantum logic are not truth functional. Here we make

the claim precise and prove it.

Our formulation of the semantics for classical sentential logic in part one was a bit non-standard. More

often it is formulated in terms of “truth tables”. One first takes a (classical) truth value assignment to

be a map t from Sent(L) to the set {T, F} satisfying the following conditions
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(C1′) t(¬ϕ) = T iff t(ϕ) = F

(C2′) t(ϕ&ψ) = T iff t(ϕ) = T and t(ψ) = T

(C3′) t(ϕ ∨ ψ) = T iff t(ϕ) = T or t(ψ) = T (or both)

for all sentences ϕ and ψ in L. (The conditions, of course, reflect the standard truth tables for negation,

conjunction, and (inclusive) disjunction.) Then one says that a set of sentences Γ in L (classically) implies

(or entails) a sentence ψ in L if, for all classical truth value assignments t, if t(ϕ) = T for all sentences

ϕ in Γ, then t(ψ) = T . (It is easy to check that this formulation is equivalent to the one given earlier.)

Our task is to show that no parallel “truth table” characterization of |=QL is possible, i.e., it is not

possible to move from |=CL to |=QL simply by changing conditions (C1′)-(C3′) so as to reflect the entries

in some non-classical truth table.

Let T be a set of maps t : Sent(L) → {T, F}. Let us say that T respects the truth functionality of

negation if, for all t, t′ in T , and all ϕ, ϕ′ in Sent(L),

t(ϕ) = t′(ϕ′) =⇒ t(¬ϕ) = t′(¬ϕ′).

Similarly, let us say that T respects the truth functionality of conjunction if, for all t, t′ in T , and all ϕ,

ϕ′, ψ, ψ′ in Sent(L),

(t(ϕ) = t′(ϕ′) and t(ψ) = t′(ψ′)) =⇒ t(ϕ&ψ) = t′(ϕ′&ψ′).

Finally, let us say that T respects the truth functionality of disjunction if, for all t, t′ in T , and all ϕ, ϕ′,

ψ, ψ′ in Sent(L),

(t(ϕ) = t′(ϕ′) and t(ψ) = t′(ψ′)) =⇒ t(ϕ ∨ ψ) = t′(ϕ′ ∨ ψ′).

Then we can formulate our claim this way.

Proposition 4.1. Let T be a set of maps t : Sent(L) → {T, F}. Then it is not the case that T satisfies

both of the following conditions.

(TF1) T respects the truth functionality of at least two of the three connectives in L.

(TF2) For all ϕ and ψ, ϕ |=QL ψ iff for all t ∈ T , if t(ϕ) = T then t(ψ) = T .

Proof. Assume that T satisfies condition (TF2). Since A1 2QL ¬A1, there exists a map t in T such that

t(A1) = T and t(¬A1) = F . It follows that if T respects the truth functionality of negation, then for all

t in T and all ϕ, t(ϕ) = T =⇒ t(¬ϕ) = F . Similarly, since ¬A1 2QL A1, there exists a map t in T such

that t(¬A1) = T and t(A1) = F . Hence, if T respects the truth functionality of negation, it must be the

case that for all t in T and all ϕ , t(ϕ) = F =⇒ t(¬ϕ) = T . Thus

(N) If T respects the truth functionality of negation, then for all t in T and all ϕ,

t(¬ϕ) = T iff t(ϕ) = F.
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In effect, we have shown that if condition (TF2) holds, and if negation in “quantum logic” can be charac-

terized in terms of any truth table, then it must be the standard classical truth table that characterizes

it.

Analogous assertions hold for conjunction and disjunction. Since A1 2QL A2 there exists a map t in

T such that t(A1) = T and t(A2) = F . It follows that

t(A1&A1) = T since A1 |=QL A1&A1

t(A1&A2) = F since (A1&A2) |=QL A2

t(A2&A1) = F since A2&A1) |=QL A2

t(A2&A2) = F since (A2&A2) |=QL A2

t(A1 ∨A1) = T since A1 |=QL (A1 ∨A1)

t(A1 ∨A2) = T since A1 |=QL (A1 ∨A2)

t(A2 ∨A1) = T since A1 |=QL (A2 ∨A1)

t(A2 ∨A2) = F since (A2 ∨A2) |=QL A2.

Hence

(C) If T respects the truth functionality of conjunction, then for all t in T and all ϕ, ψ

t(ϕ&ψ) = T iff t(ϕ) = T and t(ψ) = T.

(D) If T respects the truth functionality of disjunction, then for all t in T and all ϕ, ψ

t(ϕ ∨ ψ) = T iff t(ϕ) = T and t(ψ) = T (or both).

(These are just the classical truth table characterizations for conjunction and negation.) It only remains

to consider the three cases.

(case 1) Assume T respects the truth functionality of conjunction and disjunction. Then it follows

from (C), (D), and condition (TF2), that

A1&(A2 ∨A3) |=QL (A1&A2) ∨ (A1&A3).

This is a contradiction since this inference is not valid in quantum logic.

(case 2) Assume T respects the truth functionality of negation and conjunction. Then it follows from

(N), (C), and (TF2) that

A1&¬(A1&A2) |=QL ¬A2.

Again we have a contradiction since this inference is not valid in quantum logic.

(case 3) Assume T respects the truth functionality of negation and disjunction. Then it follows from

(N), (D), and (TF2) that

¬(¬A1 ∨ ¬(¬A1 ∨ ¬A2)) |=QL ¬A2.

This inference is not valid in quantum logic either. So, again, we have a contradiction.
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