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Putnam gives a strongly realist account of quantum logic. This has been 
criticised as suggesting a hidden variable interpretation for quantum mechanics. 
Friedman and Glymour have done this in the framework of noncontextual 
hidden variable theories, which, however, does not fully represent Putnam's 
ideas. Here Putnam's approach to quantum logic is understood in terms of 
contextual truth-value assignments. The concept of a measurement is discussed. 
It follows that in order to reproduce quantum mechanical predictions a kind of 
disturbance is necessary, which is then analyzed. Finally, it is shown that the 
Putnam approach does not escape proofs of nonlocality, and thus shares, 
indeed, the unwelcome features of a hidden variable theory. 

1. I N T R O D U C T I O N  

In many  of  Hilary Pu tnam's  writings on quan tum logic, beginning 
with his well-known Pu tnam (1968), and cont inuing with Pu tnam (1974) 
and Fr iedman and Pu tnam (1978), a s trong form o f  realism was present, in 
which definite values were ascribed simultaneously to all observables o f  an 
individual sys t em)  This is well illustrated by the following [adapted f rom 
Pu tnam (1968, pp. 184-185) and Pu tnam (1974, pp. 52-53)].  Consider  an 
n-dimensional  Hilbert space ~ .  Associated with a maximal  (nondegener-  
ate) observable X is a decomposi t ion o f  the Hilbert space with respect to 
atomic proposi t ions (corresponding to the eigenvectors o f  X):  

= X I V X 2 V " " " V X n 

Under  any interpretation, this is a true proposi t ion.  Its t ruth is unders tood 
by Pu tnam as meaning that  the observable X has indeed a value corre- 
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sponding to one of the xi. As the reasoning is independent of the particular 
choice of X, Putnam concludes that the system possesses values for all 
nondegenerate observables (Putnam, 1968) or, in fact, a state vector rela- 
tive to each nondegenerate observable (Putnam, 1974). He then interprets 
measurements as simply revealing those preexisting values. 

Strongly realist positions in the interpretation of quantum mechanics 
typically run into difficulties with no-hidden-variables theorems. However, 
Putnam has denied that his quantum logical interpretation is a hidden 
variable theory (Putnam, 1974, pp. 49-50; see further Putnam, 1968, pp. 
188, 191, 197). And also Stairs (1983), while not thinking that 'value-defin- 
iteness' can be convincingly upheld (he argues for a more modest form of 
realism), states that, if successfully defended, the approach would give us 
'all the benefits of a hidden variable account and none of the grief' (Stairs, 
1983, pp. 584-585). It is this claim we wish to prove mistaken. 

In order to develop at all an analogy between Putnam's ideas and the 
situation where one has quantum mechanics and an underlying hidden 
variable theory, we must be able to make a distinction between the logic, 
which is quantal, and an underlying interpretation, which in some sense is 
classical, as done in Friedman and Glymour (1972) and in Redhead (1987, 
Chapter 7). The interpretation corresponds then to some hidden ontology. 
Putnam's original claim was that quantum logic is 'the' true logic (Putnam, 
1968, p. 184; 1974, p. 53), and this rules out the possibility of a classical 
metalogic. However, Redhead (1987, pp. 166-167) has argued that in this 
case any 'strong realism' in Putnam's position would be nothing but a play 
with words. Also, Putnam has revised his position at least since Putnam 
(1981), and accepts now the idea of a classical interpretation as legitimate 
(Putnam, 1994). Granted that we have such a framework, it is then possible 
to exploit the tension between the quantal nature of the logic and the 
classicity of the interpretation in terms of the standard no-hidden-variables 
theorems. One version of this program has been carried out by Friedman 
and Glymour (1972). They consider a number of possible truth valuations 
on the logic, and show that the Kochen and Specker (1967) theorem places 
restrictions on them which contradict Putnam's aims. However, their 
strategy applies only if one interprets Putnam as advocating a noncontex- 
tual assignment of truth values, while Putnam's suggestions seem rather to 
fit the pattern of a contextual hidden variable theory [for this distinction, 
see Shimony (1984)]. Accordingly, in this paper we develop a contextual 
version of Friedman and Glymour's program, concentrating on the treat- 
ment of measurements and the problem of disturbance. Eventually, we 
show that Stairs' own proof of nonlocality for (contextual) hidden variable 
theories (Stairs, 1983, pp. 579-581) applies also in the case of Putnam's 
quantum logic. These features undermine the realist and individualist 
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appeal of the Putnam approach: it may have the advantages of a hidden 
variable theory, but it shares also the grief. 

2. PUTNAM AND CONTEXTUALITY 

In the following we adopt the formalism of partial Boolean algebras 
(PBA), which Putnam turns to in Friedman and Putnam (1978). Instead of 
giving up distributivity, in a PBA one has a primitive two-place relation 
called compatibility, the logical connectives being defined only for pairs of 
compatible propositions. The essential literature, especially the papers by 
Specker and by Kochen and Specker, is contained in Hooker  (1975). In this 
terminology, what Friedman and Glymour do is to show that there are 
fairly well-behaved mappings from a typical quantum mechanical PBA 
onto the Boolean algebra {T,F}, but that these cannot be homomor- 
phisms. In fact, the Kochen-Specker  result shows that these PBAs always 
have even a finite subalgebra which does not admit PBA-homomorphisms 
onto {T, F}. In the spin-1 example (Friedman and Glymour, 1972, p. 27) 
it is easy to see that for any truth valuation of the kind Friedman and 
Glymour are considering there will be a direction x such that all three 
propositions o'x = 1, ax = 0, and a x = - 1 are assigned the truth value F. In 
Friedman and Glymour's words, we cannot 'maintain that in every quan- 
tum system every observable has a precise value' (p. 27). But now the idea 
of  a measurement which is both revealing truth values and nondisturbing 
breaks down: if we do not want to say that the 'measurement' might be 
unfaithful, telling us that, say, ax = 1, while leaving the system as it was in 
an 'FFF' state, then at least in some cases 'it must be admitted that 
measurement effects a change in what is true of [ . . . ]  the quantity 
measured' (Friedman and Glymour, 1972, p. 27). This we shall refer to as 
a strong disturbance by the measurement. 

Our question now is: can Putnam really be understood as implying the 
existence of such truths valuations? And our answer is: no, he cannot. In 
Putnam (1974, p. 52-53) he suggests that a quantum mechanical system 
possesses many different state vectors, in fact, a state vector for each 
nondegenerate observable. One finds similar statements in Friedman and 
Putnam (1978, p. 309) and Putnam (1981, p. 211). He further says that 
only one of these state vectors can be known to pertain to the system at 
any given time (Putnam, 1974, p. 53). And assigning a state vector to the 
system seems to depend on the choice of some perspective (Friedman and 
Putnam, 1978, p. 314; Putnam, 1981, p. 211) [see also the equivalence of 
'perspectivalism' and 'quantum logic' in Putnam (1994)]. Notice that each 
nondegenerate observable is uniquely associated with an orthonormal basis 
in the Hilbert space. This basis, seen as a set of propositions, generates a 
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maximal Boolean subalgebra B of the PBA, and a truth valuation on B can 
be defined by specifying that exactly one of these propositions is true, i.e., 
by specifying a (state) vector ~9 B in the corresponding basis. From this 
point of view, it appears natural to read Putnam as suggesting that the 
interpretation of the logic is given not by one single truth valuation defined 
on the whole of the PBA, but by a collection of partial truth valuations 
defined on maximal Boolean subalgebras of the logic. 

Borrowing the terminology from Redhead (1987, p. 164), we define a 
Putnam state to be a pair (B, ~OB) where B is a maximal Boolean subalgebra 
of the PBA of propositions, and 08 is a Boolean truth valuation, i.e., a 
PBA-homomorphism 

~'B: B-+{T,F} 

onto the two-point (partial) Boolean algebra {T, F}. We now consider 
Putnam (1974) as suggesting that the interpretation of the logic (the 
ontology of the system) is defined by the collection of all Putnam states, 
one for each maximal Boolean subalgebra of the algebra of propositions. 
Every proposition b possesses a truth value relative to each (B, OB) with 
b eB. These values need not necessarily match across different Boolean 
subalgebras, and this enables Putnam to escape a Kochen-Specker contra- 
diction. Further, every observable, being associated via its spectral resolu- 
tion with (at least) one maximal Boolean subalgebra, has (at least) one 
precise value. The measurement of an observable can now be understood as 
revealing the value of the observable determined by a Putnam state. If  there 
is more than one such value (which will in general be the case for a 
nonmaximal observable), the measurement will involve selection of a 
maximal Boolean subalgebra, but in any case it will not strongly disturb 
the system. (Since truth values of propositions and values of observables 
are closely linked, we shall often mix loosely talk about the two.) 

3. MEASUREMENTS AND DISTURBANCE 

In Putnam's understanding, a measurement simply reveals the value of 
an observable which is already possessed by the system. Measurements do 
not create values nor induce mysterious state transitions in the system. 
Further, all possible values for measurement results preexist any act of 
measurement, and the choice of performing one measurement rather than 
another is merely a matter of perspective (Putnam, 1968, pp. 186-187; 
1974, pp. 49-51). In the framework of Putnam states, the natural descrip- 
tion of a measurement is that it consists in the assignment of a Putnam 
state to the system. This fulfills Putnam's basic desideratum that when we 
want to measure the value of an observable, there is a preexisting value 
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which is revealed without being disturbed. However, if there is no link at, 
all between different Putnam states (and the fact that there is no link is 
what allows this account to escape the criticism of Friedman and Gly- 
mour), it is not clear that this notion of measurement will truly represent 
a quantum mechanical measurement. It seems that we should get no 
information about the results of measurements of other, incompatible 
observables (or even partially compatible ones, see below). If  our idea of a 
measurement is that it reveals definite truth values of propositions (which 
under any reading is what Putnam requires), is it possible that it should 
give information also about outcomes of different measurements which we 
know empirically to obey the statistical predictions of quantum mechanics? 
Putnam is aware of this, and he argues using Gleason's theorem that once 
given information about the truth values of certain propositions, the 
structure of the logic forces upon us the choice of the corresponding 
quantum mechanical states as giving us probabilities (interpreted as epis- 
temic) on the rest of the algebra (Friedman and Putnam, 1978, p. 313). 
There is a detailed discussion of probabilities in the paper by Friedman and 
Putnam (1978), precisely in the sense of probabilities conditional on the 
results of previous measurements. They treat in particular the problem of 
defining probabilities conditional upon a nonmaximal measurement, i.e., 
the question of the L/iders rule, and they claim that they can reproduce all 
the statistical predictions of quantum mechanics in a very natural way. Or 
better still: their aim is to show that the basic (nonprobabilistic) concepts 
of the Putnam interpretation are sufficient to derive, in a sense as logical 
necessities, also the statistical predictions of quantum mechanics. We shall 
discuss these claims (especially the problem of the Liiders rule) in a 
separate paper. Here we wish to analyze instead what the necessary 
consequences are, at the level of the truth value assignments, of requiring 
that the quantum mechanical predictions be reproduced. 

We start by reasoning analogously to Friedman and Glymour. Single 
measurements or measurements of compatible observables do not present 
any problems. But if one tries to account even for the simplest predictions 
of quantum mechanics concerning successive measurements of incompat- 
ible observables, one is forced to admit that a measurement cannot be 
faithful as well as nondisturbing. Consider for example measuring the spin 
of a particle first in the x direction, then in the y direction, and again along 
the x axis. Quantum mechanics tells us that the two spin-x measurements 
will not always yield the same result. In order to accommodate this in the 
Putnam account, one has to admit either that the last measurement is 
unfaithful, but then it is not revealing any preexisting value at all, or else 
that the measurement of the spin in the y direction, although not disturbing 
the value that is being measured (no strong disturbance), does, in fact, 



1840 Bacciagaluppi 

disturb the value of the spin along the x axis! We shall call this a weak 
disturbance of the system. In the concrete case of a spin-1 particle we have 

( a x = l )  v ( a x = 0 )  v ( a  x = - l ) = ( a y = l )  V ( a y = 0 )  V ( ~ y = - l ) = l  

where 1 is the unit of the algebra; thus both propositions are trivially true. 
According to Putnam's ontology, the particle has both a spin-x and a 
spin-y state. Let us say the respective Putnam states assign the value T to 
a x = 1 and a v = 0. If  we perform an x measurement, this will reveal the 
(~< -)truth of a x = 1. If  we subsequently perform a y measurement, this 
will yield that ay = 0 is (~y-) t rue .  But now, for a further measurement of 
spin in the x direction, quantum mechanics predicts the following out- 
comes: 

Prob(ax = 1) = �89 

Prob(o- x = 0) = 0 

1 Prob(ax = - 1) = 

We infer that during the spin-y measurement, the particle has a 50% 
chance of retaining the value 1 of spin-x it had prior to the spin-y 
measurement, and a 50% chance of flipping to the value - 1 .  In fact, we 
can calculate these probabilities by the usual Born rule for quantum 
mechanical statistics. 

One may legitimately ask if Putnam has not just swept the problem 
(the 'mysterious physical disturbance') under the carpet. Not  only do 
we have a disturbance of the system, but while the Putnam states 
obviously deterministically fix the outcomes of measurements, in general 
the associated weak disturbance seems to be stochastic and to follow the 
same pattern as the projection postulate! Putnam might have a reply 
here. Actually, he does accept that in general measurements will disturb 
the values of magnitudes other than those being measured (Putnam, 1968, 
p. 186). But with a 'judo-like manoeuvre'  [adapting a phrase from Shimony 
(1984)], he refers to Gleason's theorem, and turns the fact that the 
truth valuations change during the spin-y measurement into a logical 
necessity (Putnam, 1968, p. 186). As Putnam states it, the physics has to 
comply with the true logic, which is quantum logic (Putnam, 1974, p. 53). 
Values of other Putnam states than the one associated with the measure- 
ment are disturbed, but they are then ready for any further measurement 
we may want to perform. From this point of view weak disturbance, far 
from being an ad hoc device for recovering quantum mechanical predic- 
tions, can be interpreted as a direct consequence of the structure of the 
logic. 
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4. K O C H E N - S P E C K E R  AND WEAK DISTURBANCE 

Even if that is so, a further discussion of how weak disturbance 
manifests itself will show that the price one has to pay in order to 
reproduce the quantum mechanical predictions is high. Indeed, now that 
the phenomenon of weak disturbance provides a link between different 
Putnam states, Kochen and Specker will come back with a vengeance. 

Take a Putnam state (B, ~B). It  defines values for observables associ- 
ated with the subalgebra B and for no other observables. In ordinary 
quantum mechanics, instead, when the quantum state is Os (seen as a 
vector), one can predict with probability 1 the value of just any observable 
A of which ~ is an eigenstate, irrespective of  whether A commutes with 
the maximal observables associated with the subalgebra B or not. I f  we 
consider a spin-1 particle and use the Kochen-Specker  theorem, we can 
find five directions in space, say, x,y, z, y ' ,  z ~, such that (x, y, z) and 
(x, y~, z ')  are orthogonal triads, and such that if A and B are the maximal 
Boolean subalgebras generated by the propositions ax = 0, ay = 0, az = 0 
and ax = 0, a>., = 0, az, = 0, respectively, then the Putnam states (A, ~'A) and 
(B, ~ , )  assign the following truth values to the propositions: 

f 
ax = 0~-~ T Iax=O~-+F 

~A" a>, = 0 ~ F and ~ , :  a>., = 0 ~ T 

a= = 0 ~--~ F Lo-z, = 0 ~--, F 

This now is a 'perverse' situation in which we have two quantum mechan- 
ical observables sharing an eigenvector (partial compatibility), and two 
Putnam states assigning contradictory truth values to the corresponding 
proposition! Now consider a measurement associated with A. This selects 
the Putnam state (A, OA), and will reveal that o- x = 0 is T. Similarly, a 
B-measurement,  which selects (B, ~8), will yield that a X = 0 is F. The 
predictions of  quantum mechanics are that after a measurement of  a 
maximal observable associated with A, measurement of  one associated with 
B will necessarily yield that o- x = 0 is T. In order to explain this in the 
Putnam framework, weak disturbance has to be invoked. But this time we 
infer that measurement of  (A, ~A) has disturbed the truth values assigned 
according to (B, ~ )  not merely stochastically, but with certainty. In this 
case, the disturbance is weak, by definition, only due to the fact that it is 
not disturbing what one is looking at; but indeed it is stronger than the 
disturbance induced by a quantum mechanical measurement, because it 
induces a transition from a homomorphism defined by one vector to a 
homomorphism corresponding to a vector orthogonaI to the first one. And 
this is the case because the Putnam-state formalism is, in fact, more 
contextual than orthodox quantum mechanics. 
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5. VARIABLES UNDER THE CARPET 

The Putnam interpretation provides contextual value assignments for 
all observables of a quantum system. These value assignments determine 
the results of measurements, and it is claimed that they are always 
distributed over an ensemble of systems such as to recover the quantum 
mechanical predictions. We thus have a theory which is at least formally 
equivalent to a deterministic contextual hidden variable theory. We cau- 
tiously say the equivalence is formal, because Putnam emphasizes that his 
approach is not in the spirit of a hidden variable interpretation (Putnam, 
1974, pp. 49-50). As a matter of fact, hidden variables are physical 
variables which, if known, would permit a (more) complete description of 
the system than the one given by quantum mechanics. Putnam instead 
insists that thinking of giving any more complete representation of a 
quantum system is logically inconsistent. Nevertheless, even formal analo- 
gies with hidden variable theories are enough to derive unwelcome features. 
In particular, we expect the Putnam approach to be also more nonlocal 
than orthodox quantum mechanics. In fact, as a deterministic hidden 
variable theory, it should exhibit parameter dependence in an EPR setup, 
instead of outcome dependence (see Shimony, 1986, pp. 188ff, 191if). We 
shall not spell this out in terms of Bell inequalities, but of an 'algebraic' 
proof of nonlocality, in the tradition inaugurated by Heywood and Red- 
head (1983) and by Stairs (1983), i.e., of a result involving a nonprobabilis- 
tic contradition with quantum mechanics if one postulates a suitable 
locality condition. Our proof is in fact the same as Stairs', but applied to 
the Putnam-state formalism. 

In order to derive nonlocality, we use again weak disturbance, adapt- 
ing the Kochen-Specker example to the case of a 2-particle system 
consisting of two spin-I particles in the singlet state ~sing" The state can 
always be written as 

1 
g, sing-- /~ (Icr~ = 1>[~ = - 1 >  - [ ~  =O>l a2 = 0 > +  - -  - = 1>) 

~ g  

irrespective of the direction x, and it is characterized by the strict anticor- 
relation of measured spin values for the two particles along any axis x. In 
this composite system, maximal Boolean subalgebras will be generated by 
sets of propositions of the form 

= 0 ^ = 01 u {x, y, : } ,  y ' ,  :')} 
with {a~ = 0, o-1~ = 0, a I = 0} and {a~, = 0, ay 2, = 0, ~r~. = 0}, respectively, 
generating maximal Boolean subalgebras of the PBA of propositions for 
particles 1 and 2. Call these maximal Boolean subalgebras respectively A1 



Putnam's Quantum Logic 1843 

and B2, and the subalgebra of the composite system (which has a tensor 
product structure) A1| B2. The Putnam state (A)|  B2, O A~ | e2) associated 
with A: |  B 2 of course defines truth values for the propositions in A~ and 

1 0 with the propositions in B z. Indeed, we can identify, e.g., ax = 

2 2 = 0) : 0 ^ ( a  2, 0 v o - v . = 0 v o ' z ,  0".u = 

which is a proposition of the combined system, and so on. In other words, 
for any A: and B 2, 

(A1, ~A ,| ~) and (B2, 0A,| 

are well-defined Putnam states on the two particles, respectively. Given a 
particular subalgebra of one of the subsystems (say A:), in general different 
Putnam states (A: | B 2, ~.~: 0,2)  and (A1 | B;,  t)A, | of the combined 
system will not define a unique Putnam state for particle 1. This is the case 
because the two homomorphisms O.~| and ~AL| need not a priori 
match on A~. In the following, however, we shall assume that for any A~, 
B2, and B;_ as above, 

(and similarly with particles 1 and 2 interchanged). That is, we assume that 
for each subsystem (say 1) the Putnam states of the combined system define 
'reduced' Putnam states of the form (A1, 0A ~), where 

independently of the choice of B2. This corresponds to Heywood and 
Redhead's (1983, p. 487) condition of ontological locality (OLOC). It is an 
essential assumption for the following argument, because it guarantees that 
one can assign well-defined truth values to propositions referring only to 
one particle, and thus perform genuinely local measurements on either of 
the two subsystems. Consider again the Putnam states (A, OA) and (B, 0n) 
of the previous section, or better (AI,tPA:) and (B:, ~9,~) referring to 
particle t, and (Bz, 0e2) accordingly for particle 2. We have 

I a :  = 0 ~-+ T Ia.l=O~-+F 

~A,: ja.l. O ~ F  and 0 B I "  ~fflr' = 0 b--I' T 

La. :  =0~-+ e [ a ! , = 0 ~ - + F  

2 0, 2 =0 ,  and while (B2, ~tB2 ) makes truth-value assignments for a x = ay. 
a 2, = 0. In what follows we shall be forced to conclude that the disturbance 
we have described earlier now acts nonlocally. 

1 = 0 is T and If we perform a Bl-measurement, we reveal that o-~. 
o-~ = 0 is F. In order to respect the predictions of quantum mechanics, we 
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have to say that a subsequently performed B2- measurement will yield that 
2 = 0 is F. If  we start with an A 1 -measurement on 2 = 0 is T and so that ~r x fly, 

1 0. Because the particle 1 instead, we shall obtain the value T for ~x = 
system is in the singlet state, we conclude that a later B2-measurement will 

2 = 0 is T: what in the case of  one particle was now necessarily yield that o- x 
0 dependent on simply context dependence of  values (truth value of  ax = 

measurement of A1 or B~) has now become parameter dependence of the 
2 0 on whether a measurement of  A l or Bl is performed truth value of o'x = 

on particle 1. If we assume, as we said before, that the Putnam state 
(B2, 0B2) is well defined, we have to admit that either the measurement of 
B~ or the measurement of A1 nonlocally disturbed the truth-value assign- 
ments of  0B2. The only alternative we have is to deny that reduced Putnam 
states as above are well-defined. This will rid us of the disturbance at a 
distance, but it explains parameter dependence by introducing a full-blown 
nonlocal contextualism, in which truth values of  propositions are in general 
only defined relative to the maximal Boolean subalgebras of the global PBA 
of propositions (referring to the composite system). Our conclusions are 
perfectly analogous to the ones of  Heywood and Redhead. As a matter of 
fact, the Putnam approach is equivalent to the one they h~ve in mind ['to 
de-Ockhamize QM h la van Fraassen,' (Heywood and Redhead, 1983, p. 
485)]. Our assumption that local Putnam states are well-defined corre- 
sponds exactly to their ontological locality, and the nonlocal disturbance 
corresponds in Heywood and Redhead's (1983, p. 488) terminology to a 
violation of  environmental locality (ELOC). Thus, a H e y w o o d - R e d h e a d -  
Stairs proof  of nonlocality can be used to strengthen Stairs' own argument 
in Stairs (1983) against the strongly realist position in quantum logic. 

6. CONCLUSIONS 

A shadow cabinet theory: that would be a most fitting description for 
the Putnam interpretation. The results of  any measurement we may choose 
to perform are already there, just as a shadow cabinet is ready for 
whenever it is voted in. But while politics at least can (perhaps) be 
described by classical logic, quantum mechanical systems cannot. This has 
the consequence that such an account of quantum logic has all distinctive 
properties of a hidden variable theory, in particular nonlocal effects at the 
level of the 'hidden variables.' On the other hand, the Putnam approach 
also has some quite appealing features: indeed, it provides a realist and 
individualist account of quantum systems. However, in our opinion, one of 
the major desiderata for a realist, individualist interpretation is that such a 
scheme may have additional explanatory power as compared with the 
Copenhagen interpretation, and in particular that it may open up the 
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possibility for measurements to be analyzed as physical processes. We do 
not feel, however, that Putnam achieves this. While he justly criticises 
Copenhagen for having 'erected into an article of faith in the state of 
Denmark that there can be no [ . . .  ] theory [of measurement]' (Putnam, 
1968, p. 183), if in Putnam's account the disturbance induced by measure- 
ments is a logical necessity, then it is just as unanalyzable as Copenhagen's. 
One is left with a vaguely uncomfortable feeling that Putnam dissolves the 
problems by f iat,  and that he might perhaps be proving too much. 

If  the Putnam interpretation does not seem satisfactory, this does not 
mean that quantum logic forbids an ontologically realist picture altogether. 
The example of Jauch and Piron (1969) and Stairs' (1983) arguments show 
that one can take the logic seriously as reflecting the ontology of the 
system, thus eliminating the tension between logic and ontology: proposi- 
tions compatible with the state vector can be given truth values, while the 
others are considered merely as potential. Indeed, it is worth keeping in 
mind that there are alternative possibilities for trying to implement a 
realist, individualist program, and that Putnam's quantum logical interpre- 
tation is but one interpretation of quantum logic. 
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