Geometry and Spacetime
David B. Malament

Model Solutions for Odd-Numbered Problems in Section 2.4

Problem 2.4.1 Prove that for all vectors u and v in V,

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)
$$

Proof Let u and v be vectors in V. Then

$$
\begin{aligned}
\|u+v\|^{2}+\|u-v\|^{2} & =<u+v, u+v>+<u-v, u-v> \\
& =2<u, u>+2<v, v> \\
& =2\left(\|u\|^{2}+\|v\|^{2}\right) .
\end{aligned}
$$

Problem 2.4.3 (The measure of a straight angle is π.) Let p, q, r be (distinct) collinear points, and suppose that q is between p and r (i.e., $\overrightarrow{p q}=a \overrightarrow{p r}$ with $0<a<1)$. Show that $\measuredangle(p, q, r)=\pi$.
Proof Since $\overrightarrow{p q}=a \overrightarrow{p r}$, we have $\overrightarrow{q p}=-a \overrightarrow{p r}$ and $\overrightarrow{q r}=(1-a) \overrightarrow{p r}$. Hence,

$$
<\overrightarrow{q p}, \overrightarrow{q r}>=<-a \overrightarrow{p r},(1-a) \overrightarrow{p r}>=-a(1-a)\|\overrightarrow{p r}\|^{2}
$$

and, since $0<a<1$,

$$
\|\overrightarrow{q p}\|\|\overrightarrow{q r}\|=\|-a \overrightarrow{p r}\|\|(1-a) \overrightarrow{p r}\|=a(1-a)\|\overrightarrow{p r}\|^{2}
$$

It follows that

$$
\cos (\measuredangle(p, q, r))=\frac{<\overrightarrow{q p}, \overrightarrow{q r}>}{\|\overrightarrow{q p}\|\|\overrightarrow{q r}\|}=-1
$$

The only number between 0 and π whose cosine is -1 is π. So, $\measuredangle(p, q, r)=\pi$.

Problem 2.4.5 (Right Angle in a Semicircle Theorem) Let p, q, r, o be (distinct) points such that (i) p, o, r are collinear, and (ii) $\|\overrightarrow{o p}\|=\|\overrightarrow{o q}\|=\|\overrightarrow{o r}\|$. (So q lies on a semicircle with diameter $L S(p, r)$ and center o.) Show that $\overrightarrow{q p} \perp \overrightarrow{q r}$, and so $\measuredangle(p, q, r)=\frac{\pi}{2}$.
Proof By (i), we have $\overrightarrow{o p}=a \overrightarrow{o r}$ for some a. Hence, $\|\overrightarrow{o p}\|=|a|\|\overrightarrow{o r}\|$ and, therefore, by (ii), $|a|=1$. Now a cannot be 1 . For if $\overrightarrow{o p}=\overrightarrow{o r}$, then

$$
\overrightarrow{o p}=\overrightarrow{o r}+\overrightarrow{r p}=\overrightarrow{o p}+\overrightarrow{r p}
$$

And so it would follow that $\overrightarrow{r p}=\mathbf{0}$, which is impossible since p and r are distinct. So $a=-1$ and $\overrightarrow{o p}=-\overrightarrow{o r}$. This implies that

$$
\overrightarrow{q r}=\overrightarrow{q b}+\overrightarrow{o r}=-\overrightarrow{o q}-\overrightarrow{o p} .
$$

We also clearly have

$$
\overrightarrow{q p}=\overrightarrow{q \sigma}+\overrightarrow{o p}=-\overrightarrow{o q}+\overrightarrow{o p}
$$

Hence, by (ii) again,

$$
\begin{aligned}
<\overrightarrow{q p}, \overrightarrow{q r}> & =<-\overrightarrow{o q}+\overrightarrow{o p},-\overrightarrow{o q}-\overrightarrow{o p}>=<\overrightarrow{o q}, \overrightarrow{o q}>-<o p, o p> \\
& =\|\overrightarrow{o q}\|^{2}-\|\overrightarrow{o p}\|^{2}=0
\end{aligned}
$$

Thus, $\overrightarrow{q p} \perp \overrightarrow{q r}$ and

$$
\cos (\measuredangle(p, q, r))=\frac{<\overrightarrow{q p}, \overrightarrow{q r}>}{\|\overrightarrow{q p}\|\|\overrightarrow{q r}\|}=0 .
$$

The only number between 0 and π whose cosine is 0 is $\frac{\pi}{2}$. So, $\measuredangle(p, q, r)=\frac{\pi}{2}$.

