Geometry and Spacetime David B. Malament

Model Solutions for Odd-Numbered Problems in Section 2.1

Problem 2.1.1 Prove that for all vectors u in V, there is a *unique* vector v in V such that u + v = 0.

Proof Assume that for some vector u in V there are *distinct* vectors v_1 and v_2 in V such that $u + v_1 = \mathbf{0}$ and $u + v_2 = \mathbf{0}$. Then

v_1	=	$v_1 + 0$	by VS 3
	=	$v_1 + (u + v_2)$	by our assumption that $u + v_2 = 0$
	=	$(v_1+u)+v_2$	by VS 2
	=	$(u+v_1)+v_2$	by VS 1
	=	$0 + v_2$	by our assumption that $u + v_1 = 0$
	=	$v_2 + 0$	by VS 1
	=	v_2	by VS 3

Thus we have a contradiction (since we assumed that v_1 and v_2 are distinct), and may conclude that there can be only one vector v in V such that $u + v = \mathbf{0}$. \Box

Problem 2.1.3 Prove that for all vectors u in V, and all real numbers a,

- (i) $0 \cdot u = \mathbf{0}$ (ii) $-u = (-1) \cdot u$
- (iii) $a \cdot \mathbf{0} = \mathbf{0}$.

Proof Let u be a vector in V and let a be a real number. (i) By VS 6,

$$0 \cdot u = (0+0) \cdot u = 0 \cdot u + 0 \cdot u.$$

So, by problem 2.1.2, $0 \cdot u = 0$.

(ii) By VS 8 and VS 6,

$$u + (-1) \cdot u = 1 \cdot u + (-1)u = (1-1) \cdot u = 0 \cdot u.$$

But, by part (i), $0 \cdot u = \mathbf{0}$. So $u + (-1) \cdot u = \mathbf{0}$. Thus $(-1) \cdot u$ is the additive inverse of u, i.e., $(-1) \cdot u = (-u)$.

(iii) By VS 3 and VS 5,

$$a \cdot \mathbf{0} = a \cdot (\mathbf{0} + \mathbf{0}) = a \cdot \mathbf{0} + a \cdot \mathbf{0}.$$

So, by problem 1.1.2 again, $a \cdot \mathbf{0} = \mathbf{0}$. \Box

Problem 2.15 Let S be a subset of V. Show that L(S) = S iff S is a subspace of V.

Proof Let X be the set of all subspaces of V that contain S as a subset. So $L(S) = \cap X$. Since S is a subset of each element of X, it is certainly a subset of the intersection of all those elements, i.e., $S \subseteq \cap X$. So $S \subseteq L(S)$. This much holds without any special assumptions about S. But if S is itself a subspace of V, i.e., $S \in X$, then it is also true that $\cap X \subseteq S$, and so $L(S) \subseteq S$. Thus, if S is a subspace of V, it follows that L(S) = S. Conversely, if L(S) = S, then S is certainly a subspace of V, since the linear span of any subset of V is a subspace of V. \Box

Problem 2.17 Show that two finite dimensional vector spaces are isomorphic iff they have the same dimension.

Proof Let $\mathbf{V} = (V, +, \mathbf{0}, \cdot)$ and $\mathbf{V}' = (V', +', \mathbf{0}', \cdot')$ be finite dimensional vector spaces. Assume first that there exists an isomorphism $\Phi : V \to V'$. Let $n = \dim(\mathbf{V})$. If n = 0, then $V = \{\mathbf{0}\}$ and $V' = \{\Phi(\mathbf{0})\} = \{\mathbf{0}'\}$. So, $\dim(\mathbf{V}') = 0 = \dim(\mathbf{V})$. Thus we may assume $n \ge 1$. Let $S = \{u_1, ..., u_n\}$ be a basis for \mathbf{V} . We claim that $S' = \{\Phi(u_1), ..., \Phi(u_n)\}$ is a basis for \mathbf{V}' and therefore, in this case too, $\dim(V) = \dim(V')$.

First, we verify that S' is linearly independent. Assume to the contrary that there exist coefficients $a_1, ..., a_n$, not all 0, such that

$$a_1 \cdot \Phi(u_1) + \dots + a_n \cdot \Phi(u_n) = \mathbf{0}'.$$

Since Φ is linear it follows that

$$\Phi(a_1 \cdot u_1 + \dots + a_n \cdot u_n) = a_1 \cdot \Phi(u_1) + \dots + a_n \cdot \Phi(u_n) = \mathbf{0}'.$$

Hence, since $\ker(\Phi) = \mathbf{0}$, $a_1 \cdot u_1 + \ldots + a_n \cdot u_n = \mathbf{0}$. But this is impossible since S is a basis (and, therefore, linearly independent). So S' is linearly independent, as claimed.

Next, we verify that L(S') = V'. Let u' be any vector in V'. Since Φ maps V onto V', there is a vector u in V such that $\Phi(u) = u'$. Since S is a basis for V, there exist coefficients a_1, \ldots, a_n such that $u = a_1 \cdot u_1 + \ldots + a_n \cdot u_n$. Hence, by the linearity of Φ again,

$$u' = \Phi(u) = \Phi(a_1 \cdot u_1 + \dots + a_n \cdot u_n) = a_1 \cdot \Phi(u_1) + \dots + a_n \cdot \Phi(u_n).$$

Thus u' is in L(S'). Since u' was an arbitrary vector in V', L(S') = V'. Thus, S' is a basis for \mathbf{V}' , as claimed.

Conversely, assume that **V** and **V'** both have dimension n. If n = 0, then $V = \{\mathbf{0}\}$ and $V' = \{\mathbf{0}'\}$. So the trivial map Φ that takes **0** to **0'** qualifies as an isomorphism between the vector spaces. (It is certainly a bijection. And it is linear since, by VS 3,

$$\Phi(0+0) = \Phi(0) = 0' = 0' + 0' = \Phi(0) + \Phi(0)$$

and, for all real numbers a,

$$\Phi(a \cdot \mathbf{0}) = \Phi(\mathbf{0}) = \mathbf{0}' = a \cdot \mathbf{0}' = a \cdot \Phi(\mathbf{0}).$$

(Here we use the fact that $a \cdot \mathbf{0} = \mathbf{0}$, which we have from problem 1.1.3.) So we may assume that $n \geq 1$. Let $S = \{u_1, ..., u_n\}$ be a basis for V, and let $S' = \{u'_1, ..., u'_n\}$ be a basis for V'. We define a map $\Phi : V \to V'$ as follows. Given any vector u in V, it can be expressed uniquely in the form $u = a_1 \cdot u_1 + ... + a_n \cdot u_n$. We take $\Phi(u)$ to be $a_1 \cdot u'_1 + ... + a_n \cdot u'_n$. We claim that, as defined, Φ is an isomorphism.

First, it is injective, i.e., $\ker(\Phi) = \{\mathbf{0}\}$. For suppose $\Phi(u) = \mathbf{0}'$ for some vector $u = a_1 \cdot u_1 + \ldots + a_n \cdot u_n$. Then $\mathbf{0}' = \Phi(u) = a_1 \cdot u_1' + \ldots + u_n \cdot u_n'$. And therefore, since S' is linearly independent, all the coefficients a_i must be 0, i.e., $u = \mathbf{0}$. Thus, $\ker(\Phi) = \mathbf{0}$, as claimed.

Next, Φ maps V onto V'. For let u' be any vector in V'. It can be expressed as $u' = a_1 \cdot u'_1 + \ldots + a_n \cdot u'_n$. Hence, if $u = a_1 \cdot u_1 + \ldots + a_n \cdot u_n$, $\Phi(u) = u'$. So $\Phi[V] = V'$, as claimed.

Finally, Φ is linear. For given any vectors $u = a_1 \cdot u_1 + \ldots + a_n \cdot u_n$ and $v = b_1 \cdot u_1 + \ldots + b_n \cdot u_n$ in V, and any real number a, it follows (by VS 1, VS 2, and VS 6) that

$$\Phi(u+v) = \Phi((a_1+b_1) \cdot u_1 + \dots + (a_n+b_n) \cdot u_n)$$

= $(a_1+b_1) \cdot u'_1 + \dots + (a_n+b_n) \cdot u'_n$
= $(a_1 \cdot u'_1 + \dots + a_n \cdot u'_n) + (b_1 \cdot u'_1 + \dots + b_n \cdot u'_n)$
= $\Phi(u) + \Phi(v),$

and (by VS 5 and VS 7) that

$$\Phi(a \cdot u) = \Phi(a \cdot (a_1 \cdot u_1 + \dots + a_n \cdot u_n))$$

= $\Phi((aa_1) \cdot u_1 + \dots + (aa_n) \cdot u_n)$
= $(aa_1) \cdot u'_1 + \dots + (aa_n) \cdot u'_n$
= $a \cdot (a_1 \cdot u'_1 + \dots + a_n \cdot u'_n)$
= $a \cdot \Phi(u).$

So we are done. \Box