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Problem 2.1.1 Prove that for all vectors u in V , there is a unique vector v in

V such that u + v = 0.

Proof Assume that for some vector u in V there are distinct vectors v1 and v2

in V such that u + v1 = 0 and u + v2 = 0. Then

v1 = v1 + 0 by VS 3

= v1 + (u + v2) by our assumption that u + v2 = 0

= (v1 + u) + v2 by VS 2

= (u + v1) + v2 by VS 1

= 0 + v2 by our assumption that u + v1 = 0

= v2 + 0 by VS 1

= v2 by VS 3

Thus we have a contradiction (since we assumed that v1 and v2 are distinct),

and may conclude that there can be only one vector v in V such that u+ v = 0.

�

Problem 2.1.3 Prove that for all vectors u in V , and all real numbers a,

(i) 0 · u = 0

(ii) −u = (−1) · u

(iii) a · 0 = 0.

Proof Let u be a vector in V and let a be a real number. (i) By VS 6,

0 · u = (0 + 0) · u = 0 · u + 0 · u.

So, by problem 2.1.2, 0 · u = 0.

(ii) By VS 8 and VS 6,

u + (−1) · u = 1 · u + (−1)u = (1 − 1) · u = 0 · u.

But, by part (i), 0 · u = 0. So u + (−1) · u = 0. Thus (−1) · u is the additive

inverse of u, i.e., (−1) · u = (−u).
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(iii) By VS 3 and VS 5,

a · 0 = a · (0 + 0) = a · 0 + a · 0.

So, by problem 1.1.2 again, a · 0 = 0. �

Problem 2.15 Let S be a subset of V . Show that L(S) = S iff S is a subspace

of V .

Proof Let X be the set of all subspaces of V that contain S as a subset. So

L(S) = ∩X . Since S is a subset of each element of X , it is certainly a subset of

the intersection of all those elements, i.e., S ⊆ ∩X . So S ⊆ L(S). This much

holds without any special assumptions about S. But if S is itself a subspace of

V , i.e., S ∈ X , then it is also true that ∩X ⊆ S, and so L(S) ⊆ S. Thus, if S

is a subspace of V , it follows that L(S) = S. Conversely, if L(S) = S, then S is

certainly a subspace of V , since the linear span of any subset of V is a subspace

of V . �

Problem 2.17 Show that two finite dimensional vector spaces are isomorphic

iff they have the same dimension.

Proof Let V = (V, +, 0, ·) and V
′ = (V ′, +′, 0

′, ·′) be finite dimensional

vector spaces. Assume first that there exists an isomorphism Φ : V → V ′.

Let n = dim(V). If n = 0, then V = {0} and V ′ = {Φ(0)} = {0′}. So,

dim(V′) = 0 = dim(V). Thus we may assume n ≥ 1. Let S = {u1, ..., un}

be a basis for V. We claim that S′ = {Φ(u1), ..., Φ(un)} is a basis for V
′ and

therefore, in this case too, dim(V ) = dim(V ′).

First, we verify that S′ is linearly independent. Assume to the contrary that

there exist coefficients a1, ..., an, not all 0, such that

a1 ·
′ Φ(u1) +′ ... +′ an ·′ Φ(un) = 0

′.

Since Φ is linear it follows that

Φ(a1 · u1 + ... + an · un) = a1 ·
′ Φ(u1) +′ ... +′ an ·′ Φ(un) = 0

′.

Hence, since ker(Φ) = 0, a1 ·u1+ ...+an ·un = 0. But this is impossible since S

is a basis (and, therefore, linearly independent). So S′ is linearly independent,

as claimed.

Next, we verify that L(S′) = V ′. Let u′ be any vector in V ′. Since Φ maps

V onto V ′, there is a vector u in V such that Φ(u) = u′. Since S is a basis for

V , there exist coefficients a1, ..., an such that u = a1 · u1 + ... + an · un. Hence,

by the linearity of Φ again,

u′ = Φ(u) = Φ(a1 · u1 + ... + an · un) = a1 ·
′ Φ(u1) +′ ... +′ an ·′ Φ(un).
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Thus u′ is in L(S′). Since u′ was an arbitrary vector in V ′, L(S′) = V ′. Thus,

S′ is a basis for V
′, as claimed.

Conversely, assume that V and V
′ both have dimension n. If n = 0, then

V = {0} and V ′ = {0′}. So the trivial map Φ that takes 0 to 0
′ qualifies as an

isomorphism between the vector spaces. (It is certainly a bijection. And it is

linear since, by VS 3,

Φ(0 + 0) = Φ(0) = 0
′ = 0

′ + 0
′ = Φ(0) + Φ(0)

and, for all real numbers a,

Φ(a · 0) = Φ(0) = 0
′ = a · 0′ = a · Φ(0).

(Here we use the fact that a · 0 = 0, which we have from problem 1.1.3.)

So we may assume that n ≥ 1. Let S = {u1, ..., un} be a basis for V , and

let S′ = {u′

1
, , ..., u′

n
} be a basis for V ′. We define a map Φ : V → V ′ as

follows. Given any vector u in V , it can be expressed uniquely in the form

u = a1 · u1 + ... + an · un. We take Φ(u) to be a1 ·
′ u′

1
+′ ... +′ an ·′ u′

n
. We claim

that, as defined, Φ is an isomorphism.

First, it is injective, i.e., ker(Φ) = {0}. For suppose Φ(u) = 0
′ for some

vector u = a1 ·u1 + ... + an ·un. Then 0
′ = Φ(u) = a1 ·

′ u′

1
+′ ... +′ an ·′ u′

n
. And

therefore, since S′ is linearly independent, all the coefficents ai must be 0, i.e.,

u = 0. Thus, ker(Φ) = 0, as claimed.

Next, Φ maps V onto V ′. For let u′ be any vector in V ′. It can be expressed

as u′ = a1 ·
′ u′

1
+ ... + an ·′ u′

n
. Hence, if u = a1 · u1 + ... + an · un, Φ(u) = u′. So

Φ[V ] = V ′, as claimed.

Finally, Φ is linear. For given any vectors u = a1 · u1 + ... + an · un and

v = b1 · u1 + ... + bn · un in V , and any real number a, it follows (by VS 1, VS

2, and VS 6) that

Φ(u + v) = Φ((a1 + b1) · u1 + ... + (an + bn) · un)

= (a1 + b1) ·
′ u′

1
+′ ... +′ (an + bn) ·′ u′

n

= (a1 ·
′ u′

1
+′ ... +′ an ·′ u′

n
) + (b1 ·

′ u′

1
+′ ... +′ bn ·′ u′

n
)

= Φ(u) +′ Φ(v),

and (by VS 5 and VS 7) that

Φ(a · u) = Φ(a · (a1 · u1 + ... + an · un))

= Φ((aa1) · u1 + ... + (aan) · un)

= (aa1) ·
′ u′

1
+ ... + (aan) ·′ u′

n

= a ·′ (a1 ·
′ u′

1
+ ... + an ·′ u′

n
)

= a ·′ Φ(u).

So we are done. �
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