Geometry and Spacetime
David B. Malament

Model Solutions for Odd-Numbered
 Problems in Section 2.1

Problem 2.1.1 Prove that for all vectors u in V, there is a unique vector v in V such that $u+v=\mathbf{0}$.

Proof Assume that for some vector u in V there are distinct vectors v_{1} and v_{2} in V such that $u+v_{1}=\mathbf{0}$ and $u+v_{2}=\mathbf{0}$. Then

$$
\begin{aligned}
v_{1} & =v_{1}+\mathbf{0} & & \text { by VS } 3 \\
& =v_{1}+\left(u+v_{2}\right) & & \text { by our assumption that } u+v_{2}=\mathbf{0} \\
& =\left(v_{1}+u\right)+v_{2} & & \text { by VS } 2 \\
& =\left(u+v_{1}\right)+v_{2} & & \text { by VS } 1 \\
& =\mathbf{0}+v_{2} & & \text { by our assumption that } u+v_{1}=\mathbf{0} \\
& =v_{2}+\mathbf{0} & & \text { by VS } 1 \\
& =v_{2} & & \text { by VS } 3
\end{aligned}
$$

Thus we have a contradiction (since we assumed that v_{1} and v_{2} are distinct), and may conclude that there can be only one vector v in V such that $u+v=\mathbf{0}$.

Problem 2.1.3 Prove that for all vectors u in V, and all real numbers a,
(i) $0 \cdot u=\mathbf{0}$
(ii) $-u=(-1) \cdot u$
(iii) $a \cdot \mathbf{0}=\mathbf{0}$.

Proof Let u be a vector in V and let a be a real number. (i) By VS 6,

$$
0 \cdot u=(0+0) \cdot u=0 \cdot u+0 \cdot u .
$$

So, by problem 2.1.2, $0 \cdot u=\mathbf{0}$.
(ii) By VS 8 and VS 6,

$$
u+(-1) \cdot u=1 \cdot u+(-1) u=(1-1) \cdot u=0 \cdot u
$$

But, by part (i), $0 \cdot u=\mathbf{0}$. So $u+(-1) \cdot u=\mathbf{0}$. Thus $(-1) \cdot u$ is the additive inverse of u, i.e., $(-1) \cdot u=(-u)$.
(iii) By VS 3 and VS 5,

$$
a \cdot \mathbf{0}=a \cdot(\mathbf{0}+\mathbf{0})=a \cdot \mathbf{0}+a \cdot \mathbf{0}
$$

So, by problem 1.1.2 again, $a \cdot \mathbf{0}=\mathbf{0}$.

Problem 2.15 Let S be a subset of V. Show that $L(S)=S$ iff S is a subspace of V.

Proof Let X be the set of all subspaces of V that contain S as a subset. So $L(S)=\cap X$. Since S is a subset of each element of X, it is certainly a subset of the intersection of all those elements, i.e., $S \subseteq \cap X$. So $S \subseteq L(S)$. This much holds without any special assumptions about S. But if S is itself a subspace of V, i.e., $S \in X$, then it is also true that $\cap X \subseteq S$, and so $L(S) \subseteq S$. Thus, if S is a subspace of V, it follows that $L(S)=S$. Conversely, if $L(S)=S$, then S is certainly a subspace of V, since the linear span of any subset of V is a subspace of V.

Problem 2.17 Show that two finite dimensional vector spaces are isomorphic iff they have the same dimension.

Proof Let $\mathbf{V}=(V,+, \mathbf{0}, \cdot)$ and $\mathbf{V}^{\prime}=\left(V^{\prime},+^{\prime}, \mathbf{0}^{\prime}, .^{\prime}\right)$ be finite dimensional vector spaces. Assume first that there exists an isomorphism $\Phi: V \rightarrow V^{\prime}$. Let $n=\operatorname{dim}(\mathbf{V})$. If $n=0$, then $V=\{\mathbf{0}\}$ and $V^{\prime}=\{\Phi(\mathbf{0})\}=\left\{\mathbf{0}^{\prime}\right\}$. So, $\operatorname{dim}\left(\mathbf{V}^{\prime}\right)=0=\operatorname{dim}(\mathbf{V})$. Thus we may assume $n \geq 1$. Let $S=\left\{u_{1}, \ldots, u_{n}\right\}$ be a basis for \mathbf{V}. We claim that $S^{\prime}=\left\{\Phi\left(u_{1}\right), \ldots, \Phi\left(u_{n}\right)\right\}$ is a basis for \mathbf{V}^{\prime} and therefore, in this case too, $\operatorname{dim}(V)=\operatorname{dim}\left(V^{\prime}\right)$.

First, we verify that S^{\prime} is linearly independent. Assume to the contrary that there exist coefficients a_{1}, \ldots, a_{n}, not all 0 , such that

$$
a_{1} \cdot^{\prime} \Phi\left(u_{1}\right)+^{\prime} \ldots+^{\prime} a_{n} \cdot^{\prime} \Phi\left(u_{n}\right)=\mathbf{0}^{\prime}
$$

Since Φ is linear it follows that

$$
\Phi\left(a_{1} \cdot u_{1}+\ldots+a_{n} \cdot u_{n}\right)=a_{1} \cdot^{\prime} \Phi\left(u_{1}\right)+^{\prime} \ldots+^{\prime} a_{n} \cdot^{\prime} \Phi\left(u_{n}\right)=\mathbf{0}^{\prime}
$$

Hence, since $\operatorname{ker}(\Phi)=\mathbf{0}, a_{1} \cdot u_{1}+\ldots+a_{n} \cdot u_{n}=\mathbf{0}$. But this is impossible since S is a basis (and, therefore, linearly independent). So S^{\prime} is linearly independent, as claimed.

Next, we verify that $L\left(S^{\prime}\right)=V^{\prime}$. Let u^{\prime} be any vector in V^{\prime}. Since Φ maps V onto V^{\prime}, there is a vector u in V such that $\Phi(u)=u^{\prime}$. Since S is a basis for V, there exist coefficients a_{1}, \ldots, a_{n} such that $u=a_{1} \cdot u_{1}+\ldots+a_{n} \cdot u_{n}$. Hence, by the linearity of Φ again,

$$
u^{\prime}=\Phi(u)=\Phi\left(a_{1} \cdot u_{1}+\ldots+a_{n} \cdot u_{n}\right)=a_{1} \cdot^{\prime} \Phi\left(u_{1}\right)+^{\prime} \ldots+^{\prime} a_{n} \cdot^{\prime} \Phi\left(u_{n}\right)
$$

Thus u^{\prime} is in $L\left(S^{\prime}\right)$. Since u^{\prime} was an arbitrary vector in $V^{\prime}, L\left(S^{\prime}\right)=V^{\prime}$. Thus, S^{\prime} is a basis for \mathbf{V}^{\prime}, as claimed.

Conversely, assume that \mathbf{V} and \mathbf{V}^{\prime} both have dimension n. If $\mathrm{n}=0$, then $V=\{\mathbf{0}\}$ and $V^{\prime}=\left\{\mathbf{0}^{\prime}\right\}$. So the trivial map Φ that takes $\mathbf{0}$ to $\mathbf{0}^{\prime}$ qualifies as an isomorphism between the vector spaces. (It is certainly a bijection. And it is linear since, by VS 3,

$$
\Phi(\mathbf{0}+\mathbf{0})=\Phi(\mathbf{0})=\mathbf{0}^{\prime}=\mathbf{0}^{\prime}+\mathbf{0}^{\prime}=\Phi(\mathbf{0})+\Phi(\mathbf{0})
$$

and, for all real numbers a,

$$
\Phi(a \cdot \mathbf{0})=\Phi(\mathbf{0})=\mathbf{0}^{\prime}=a \cdot \mathbf{0}^{\prime}=a \cdot \Phi(\mathbf{0}) .
$$

(Here we use the fact that $a \cdot \mathbf{0}=\mathbf{0}$, which we have from problem 1.1.3.) So we may assume that $n \geq 1$. Let $S=\left\{u_{1}, \ldots, u_{n}\right\}$ be a basis for V, and let $S^{\prime}=\left\{u_{1}^{\prime},, \ldots, u_{n}^{\prime}\right\}$ be a basis for V^{\prime}. We define a map $\Phi: V \rightarrow V^{\prime}$ as follows. Given any vector u in V, it can be expressed uniquely in the form $u=a_{1} \cdot u_{1}+\ldots+a_{n} \cdot u_{n}$. We take $\Phi(u)$ to be $a_{1}!^{\prime} u_{1}^{\prime}+{ }^{\prime} \ldots{ }^{\prime}{ }^{\prime} a_{n}{ }^{\prime} u_{n}^{\prime}$. We claim that, as defined, Φ is an isomorphism.

First, it is injective, i.e., $\operatorname{ker}(\Phi)=\{\mathbf{0}\}$. For suppose $\Phi(u)=\mathbf{0}^{\prime}$ for some vector $u=a_{1} \cdot u_{1}+\ldots+a_{n} \cdot u_{n}$. Then $\mathbf{0}^{\prime}=\Phi(u)=a_{1} \cdot{ }^{\prime} u_{1}^{\prime}+^{\prime} \ldots+^{\prime} a_{n} \cdot{ }^{\prime} u_{n}^{\prime}$. And therefore, since S^{\prime} is linearly independent, all the coefficents a_{i} must be 0 , i.e., $u=\mathbf{0}$. Thus, $\operatorname{ker}(\Phi)=\mathbf{0}$, as claimed.

Next, Φ maps V onto V^{\prime}. For let u^{\prime} be any vector in V^{\prime}. It can be expressed as $u^{\prime}=a_{1}{ }^{\prime} u_{1}^{\prime}+\ldots+a_{n}{ }^{\prime} u_{n}^{\prime}$. Hence, if $u=a_{1} \cdot u_{1}+\ldots+a_{n} \cdot u_{n}, \Phi(u)=u^{\prime}$. So $\Phi[V]=V^{\prime}$, as claimed.

Finally, Φ is linear. For given any vectors $u=a_{1} \cdot u_{1}+\ldots+a_{n} \cdot u_{n}$ and $v=b_{1} \cdot u_{1}+\ldots+b_{n} \cdot u_{n}$ in V, and any real number a, it follows (by VS 1 , VS 2 , and VS 6) that

$$
\begin{aligned}
\Phi(u+v) & =\Phi\left(\left(a_{1}+b_{1}\right) \cdot u_{1}+\ldots+\left(a_{n}+b_{n}\right) \cdot u_{n}\right) \\
& =\left(a_{1}+b_{1}\right) \cdot \cdot^{\prime} u_{1}^{\prime}+^{\prime} \ldots+^{\prime}\left(a_{n}+b_{n}\right) \cdot^{\prime} u_{n}^{\prime} \\
& =\left(a_{1} \cdot^{\prime} u_{1}^{\prime}+^{\prime} \ldots+^{\prime} a_{n}!^{\prime} u_{n}^{\prime}\right)+\left(b_{1} \cdot^{\prime} u_{1}^{\prime}+^{\prime} \ldots+^{\prime} b_{n} \cdot^{\prime} u_{n}^{\prime}\right) \\
& =\Phi(u)+^{\prime} \Phi(v)
\end{aligned}
$$

and (by VS 5 and VS 7) that

$$
\begin{aligned}
\Phi(a \cdot u) & =\Phi\left(a \cdot\left(a_{1} \cdot u_{1}+\ldots+a_{n} \cdot u_{n}\right)\right) \\
& =\Phi\left(\left(a a_{1}\right) \cdot u_{1}+\ldots+\left(a a_{n}\right) \cdot u_{n}\right) \\
& =\left(a a_{1}\right) \cdot^{\prime} u_{1}^{\prime}+\ldots+\left(a a_{n}\right) \cdot^{\prime} u_{n}^{\prime} \\
& =a \cdot^{\prime}\left(a_{1} \cdot^{\prime} u_{1}^{\prime}+\ldots+a_{n}!^{\prime} u_{n}^{\prime}\right) \\
& =a \cdot^{\prime} \Phi(u) .
\end{aligned}
$$

So we are done.

