
CHAPTER ONE

PRINCIPLES

In this chapter we discuss the principles that underlie our definition of
observer. We then illustrate the principles by two examples of observers, one
fabricated and one realistic.

1. Introduction

Science seeks, among other things, unity in diversity. One goal of the theoreti-
cal scientist is to find unifying structures and causal laws which encompass, as
special cases, the explanations accepted for specific phenomena or properties
of individual systems. Behind (e.g.) the diversity of atomic and subatomic
phenomena, from the gravitational attraction of atoms to the chromatic prop-
erties of quarks, theoretical physicists seek a unity, a unified field theory, which
encompasses as special cases the explanations accepted for these phenomena.
Similarly, behind the diversity of possible algorithms, from the recognition of
primes to the scheduling of traveling salesmen, computer scientists have found
a unity of structure, the Turing machine, which encompasses as special cases
all algorithms.

But behind the diversity of perceptual capacities (e.g., stereovision, au-
ditory localization, sonar echolocation, haptic recognition) no such unity has
been found. The field of perception has no unifying formalism remotely ap-
proaching the scope and precision of those found in physics and other natural
sciences. This is perhaps not surprising. Before one can unify one first needs
something to unify. In the case of perception one first needs theories of spe-
cific perceptual capacities that (1) are mathematically rigorous, (2) agree with
the empirical (e.g., psychophysical) data, and (3) work. And these have, until
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recently, been in very short supply.
But there is now reason for guarded optimism. The last few years have

witnessed the genesis of just such theories. We now have theories of (e.g.)
stereovision that are mathematically rigorous, that are not too comical to the
psychophysicists, and that actually (sometimes) work when one implements
them in computer vision systems. Theories with similar salutary properties
are on offer for aspects of visual-motion perception, the perception of shad-
ing and texture, object recognition, and light source detection. With this
growing collection of rigorous theories comes a growing temptation: viz., the
temptation to wade around in this collection of theories in search of structural
commitments that are common to them all. If such we find, from these we
might fashion a unifying formalism which encompasses each theory, perhaps
every perceptual theory, as a special case.

We have succumbed to the temptation. And, as you might have guessed,
we think we have found something. This book records where we have looked,
what structural commitments we have encountered in theory after theory, and
what unifying structures we have, in consequence, constructed.

Perhaps the most fundamental is a structure we call an “observer.”1 An
observer is, roughly, the static structure common to all theories of perceptual
capacities we have so far studied. Much of this chapter and the next are
devoted to the explication of this structure, so we shall not dwell on it here.
Instead we shall enter claims and disclaimers regarding this structure.

First a disclaimer. There are, of course, many perceptual capacities whose
theories we have not yet studied, and far more capacities, e.g., in the modalities
of taste and smell, for which there simply are no adequate theories. Our
own training is in visual perception, with the consequence that the examples
adduced throughout this book are primarily visual.

Now for a claim. To make things more interesting, we shall stick out our
necks and advance the definition of observer as a unifying structure not simply
for some capacities in vision but, rather, for all capacities in all modalities.
Accordingly, we propose the following observer thesis: To every perceptual ca-
pacity in every modality, whether that capacity be biologically instantiated or
not, there is naturally associated a formal description which is an instance of

1 The term “observer” is, we have found to our dismay, already used exten-
sively in the theory of linear dynamical systems. It was introduced by David
Luenberger (Luenberger, 1963; O’Reilly, 1983). An observer, in Luenberger’s
theory, infers the state of a linear dynamical system, with the purpose of using
this information for feedback control. We do not yet know what relationship,
if any, exists between our observers and Luenberger’s.
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the definition of observer.
This thesis is vulnerable to disconfirmation by counterexample. As new

capacities are studied, or as the structure of existing theories of specific capac-
ities are reexamined, capacities may be found whose formal structures are not
instances of the definition of an observer. And given the definition’s foundation
in a somewhat small collection of specific theories this eventuality is, despite
our efforts to the contrary, not impossible. If it happens, then the definition
will be, in consequence, further refined or entirely replaced by a more adequate
structure.

After defining an observer in chapter two, we set it to work on several
problems in perception and cognitive science. One problem is to define the
concept transduction. Some relevant intuitions here are that transduction in-
volves the conversion of energy from one physical form (say light) to another
(say neural impulses); that transduced properties are, in a certain sense, illu-
sion free; that in the case of vision it is properties of light that are transduced
and the transducer is the retina; and that in the case of audition it is prop-
erties of sound that are transduced and the transducer is the cochlea. But
turning such intuitions into a workable definition has proved difficult; it is a
remarkable fact about the field of perception that such a basic concept is as
yet ill-defined. It indicates, perhaps, that not all the relevant intuitions can
simultaneously be granted. Indeed, some get sacrificed in the observer-based
definition we propose.

We also employ observers in an effort to define the theory neutrality of
observation. Philosophers still debate about the proper intuitions for this
term: some argue that to say observation is theory neutral is to say that
the truth of observation reports is independent of any empirical hypotheses;
others argue that it means that scientific beliefs do not “cognitively penetrate”
perception, i.e., roughly, that the beliefs one holds do not alter one’s perceptual
apparatus—the intuition here being that if observation is in this sense theory
neutral then two scientists could hold competing theories and yet agree on
the data that they observe in critical experiments. We employ observers not
to settle the empirical issue (viz., is observation in fact theory neutral) but,
rather, simply to define it. To this end we first propose relational definitions
for the terms cognitive and cognitive penetration. We then formulate the claim
that observation is theory neutral to be the claim that the relation cognitive
is, in the appropriate context, an irreflexive partial order. This development,
together with the definition of transduction mentioned above, leads to a novel
functional taxonomy of the mind. This taxonomy is discussed briefly in chapter
two and more extensively in chapter nine.

Observers capture, so we claim, the static structure common to all percep-
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tual capacities. But perception is notably active: it involves learning, updating
perspective, and interacting with the observed. To account for these aspects of
perception an entity other than the observer—a dynamical entity—is needed.
We propose one, viz., the participator. Participators are developed in chapters
six through nine, so we content ourselves here to make two comments. First,
the relationship between participators and observers is particularly simple: col-
lections of observers serve as state spaces for the dynamics of participators. So
one might say that participators, not observers, turn out to be the real stars of
the show. Observers simply serve as states in the state spaces of participators.
Second, the dynamics of participators is stochastic, and its asymptotic behav-
ior, in particular the stabilities of its asymptotic behavior, can be used to define
conditions in which the perceptual conclusions of observers are “matched to
reality.” This is the topic of chapter eight.

Observation is of interest not only to philosophers, perceptual psycholo-
gists, and cognitive scientists, but also to physicists studying the problem of
measurement (see, e.g., Greenberger 1986). The problem of measurement is
roughly that, contrary to the assumptions of classical physics, it now appears
that one cannot ignore the effects of the measurement process on the system
being measured, especially if the system is very small or moves very fast. In-
deed, it is widely held that elementary particles behave one way when they
are not being measured, viz., according to the Schrodinger equation (in the
nonrelativistic case), but behave another way when they are being measured,
viz., according to von Neumann’s “collapse” of the wavefunction. Perceptual
psychology has heretofore had little to offer the measurement theorists, be-
cause its insights and advances have not been expressed in a language of the
requisite generality and mathematical precision. One purpose of this book is
to advance the exchange of ideas between these two disciplines. To this end,
chapter ten presents some preliminary thoughts on the relationship of observer
mechanics and quantum mechanics.

2. Principles

Our wading about in current theories of specific perceptual capacities has led
us to conclude that three principles are crucial to understanding the structure
of these theories. These three principles underlie our definition of observer:

1. Perception is a process of inference.

2. Perceptual inferences are not, in general, deductively valid.

3. Perceptual inferences are biased.
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These principles have been discussed before, in one form or another, many
times in the literature on perception.2 We consider them in turn.

Perception is a process of inference.
The term “inference” has, particularly among psychologists, connotations we
want to avoid. To some the claim that perception is a process of inference
implies the view that consciousness is an essential aspect of perception; to
others it implies the view that perceptual processing is “top down” as opposed
to “bottom up.” By using the term we mean neither to imply nor to deny
either view.

An inference, as we use it throughout this book, is simply any process of
arriving at conclusions from given premises. The premises and conclusions of
an inference together constitute an argument. For example:

Premise: A retinal image has two dimensions.
Premise: A cup has three dimensions.
Conclusion: A retinal image of a cup has fewer dimensions than a cup.

Premises and conclusions are propositions. Just what propositions are is
the subject of debate among philosophers. For our purposes, however, a propo-
sition is that which can be true or false. A proposition may be expressed, as in
the example above, by a declarative sentence of English; it may be expressed by
a well-formed formula in, say, the standard propositional calculus; it may also
be expressed by a probability measure on some space. In this latter case one
can, for example, interpret the measure as a set of statements, one statement
for each event in the space; each statement specifies the probability (e.g., the
relative frequency) of its corresponding event. So interpreted, a probability
measure expresses a set of statements, each either true or false; it therefore
expresses a proposition. We note this because, as we shall see, probability
measures conveniently represent the conclusions of perceptual inferences.

Figure 1.1 illustrates the inferential nature of perception. This figure
contains two sets of curved lines lying, of course, in the plane of the page.
However, what one perceives is not simply curved lines in a plane, but a pair
of curved surfaces (“cosine surfaces”) in three dimensions. Only with effort
can you see the curved lines as simply lying in a plane, though the fact that
they are printed on paper makes this unquestionable.

2 Some examples are Helmholtz (1910), Gregory (1966), Fodor (1975), and
Marr (1982).



6 PRINCIPLES 1–2

FIGURE 1.1. Two cosine surfaces. Even though this figure is in fact planar it appears
three-dimensional. This suggests that a failed inference underlies your perception of
this figure, an inference whose premises derive from the two-dimensional arrays of
curves on the page and whose conclusion is the three-dimensional interpretation you
perceive. Indeed, the conclusion of your inference is not just one three-dimensional
interpretation, but two. To see the other interpretation, slowly rotate the figure and
observe the behavior of the raised “hills.”

To a first approximation, we can describe one’s perception of Figure 1.1
as an inference with the following structure: the premise is the set of curved
lines in a plane, and the conclusion is the set of perceived surfaces embedded
in three dimensions.3 Or we can give a finer description in terms of a series of
inferences, inferences first about patterns of light and dark in two dimensions,
then about line segments in two dimensions, then about extended curves in two
dimensions, and finally about a surface in three dimensions. Vision researchers
argue, as they should, over the details of a proposed sequence of inferences, but
this is irrelevant to the point made here: perception is a process of inference.

Another illustration of this point is stereovision, a perceptual ability some-
times exploited by movie makers in the creation of “3-D” movies. These movies
superimpose two slightly different images in each frame and, by wearing spe-
cial glasses, the viewer is shown one image in the left eye and the other in the
right. If all is done correctly, the viewer does not perceive two separate and
flat images, but one image in three dimensions. The resulting perception of

3 To avoid cumbersome language, we sometimes fail to distinguish between a
proposition and its representation. However, a premise must be a proposition—
and a set of curved lines in a plane is not a proposition but a representation.
Similarly, a conclusion must be a proposition—and a perceived surface is not
a proposition but a representation.
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depth can be striking.
Perception in stereo can be described as an inference with the following

structure: the premises are the disparities between two, slightly different, flat
images, and the conclusion is the perceived depth. Again, one can give a more
detailed series of inferences, inferences first, say, about light and dark in two
dimensions, then about two-dimensional line segments, then about disparities
in the positions of line segments between the two images, and finally about
depth. But our conclusion is the same: perception is a process of inference.

Other examples abound. Consider our ability to recognize an individual
by listening to them talk. The premise here is, say, certain vibrations at the
eardrum, and the conclusion is the identity of the individual. Consider our
ability to localize a sound source. The premise is a difference in intensity and
in phase of the sound wave at the two ears, and the conclusion is the position
of the source in three dimensions. Consider a child’s acquisition of a language.
The premise can be taken to be a finite set of sentences in the language (pre-
sented by parents and friends), and the conclusion to be the grammar of the
language. Or consider one’s structural comprehension of a spoken sentence.
The premise is, say, a finite sequence of phonemes, and the conclusion de-
scribes the syntactic structure of the sentence. The same inferential structure
underlies face recognition, haptic recognition, color perception—in fact, we
suggest, it underlies every conceivable act of perception, whether biologically
instantiated or not.

Perceptual inferences are not, in general, deductively valid.
A natural question to ask about an inference is this: What is the evidential
relationship between the premises and the conclusion? Do the premises support
the conclusion or not?

One can judge the evidential relationship between the premises and the
conclusion of an inference by two standards: deductive validity and inductive
strength. An argument is deductively valid if the conclusion is logically implied
by the premises; equivalently, but more intuitively, it is deductively valid if the
conclusion makes no statement not already contained, at least implicitly, in the
premises. An argument is said to be inductively strong if it is not deductively
valid, but the conclusion is probable given that the premises are true.4 The
following arguments are deductively valid.

Premise: John is a boy.

4 For a lucid discussion of this, we recommend Skyrms (1975).
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Premise: John has brown hair.
Conclusion: John is a boy with brown hair.

Premise: All cars have wheels.
Premise: All wheels are round.
Conclusion: All cars have round wheels.

Premise: Bill is a boy with brown hair.
Conclusion: Some boys have brown hair.

Premise: All emeralds are green.
Premise: Everyone has an emerald.
Conclusion: My emerald is green.

We display these arguments not simply to give concrete examples, but also
to counter a common misconception, namely that deductively valid inferences
have general premises and specific conclusions whereas, in contrast, inductively
strong inferences have specific premises and general conclusions. Of the four
arguments given, the first has specific premises and a specific conclusion, the
second has general premises and a general conclusion, the third has specific
premises and a general conclusion, and the fourth has general premises and a
specific conclusion. All four arguments are deductively valid. The distinction
between deductive validity and inductive strength lies not in the generality
or specificity of the premises and conclusions, but rather in the evidential
relationship that obtains between them.

The following argument is not deductively valid.

Premise: John is 93.
Conclusion: John will not do a double back flip today.

This argument is not deductively valid because the conclusion, though very
likely to be true given the premise, is not in fact logically implied by the
premise. John could surprise us, even though the odds are very long.

Now back to perception. It is widely acknowledged, among those who take
perception to be a process of inference, that the inferences typical of perception
are not deductively valid. Consider again the cosine surfaces of Figure 1.1. We
found that one’s perception of this figure could be described as an inference
whose premise is the set of curved lines in a plane, and whose conclusion is a
pair of surfaces embedded in three dimensions. Now this premise in no way
constrains one by logic to conclude that the lines lie on any particular surface.
One could conclude, as the visual system does, that they lie on cosine surfaces;
or one could conclude, as is in fact the case, that they lie on a planar surface.
With little imagination, one could concoct many different surfaces on which
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the lines might lie. Since one is not required either by the rules of logic or the
theorems of mathematics to conclude that they lie on any particular surface,
the inference here is not deductively valid.

Consider the example of stereo perception. We said that the premise is a
set of two slightly different, flat images and that the conclusion is some per-
ceived scene in three dimensions. As in the previous example, the premise in no
way compels one by logic to accept any particular conclusion about the struc-
ture of the scene. Although the visual system arrives at one conclusion, there
are many other conclusions which are logically compatible with the premise.
One could conclude, for instance, that the scene is flat, a conclusion that is
correct but overlooked by the visual system when one views a 3-D movie.

Once again, other examples abound: the inferences involved in voice recog-
nition, auditory localization, face recognition, haptic recognition, language ac-
quisition, and color perception are not deductively valid. This is typical of
perceptual inferences.

Perceptual inferences are biased.
The conclusions reached by our perceptual systems are not logically dictated
by the premises they are given; this fact does not stop them. When, for
instance, one views Figure 1.1 one’s visual system reaches, as we have seen,
a unique conclusion about a surface in three dimensions. When one views
a stereo movie, one’s visual system again reaches a unique conclusion about
depths.

In the absence of logical compulsion, people systematically reach certain
perceptual interpretations and not others; their perceptual inferences are bi-
ased. We consider later (chapter eight) what it means for such biases to be
justified; for now we simply illustrate them. We start by considering again our
perception of Figure 1.1. We have said that the premise of the inference here
is the curved lines lying in the plane of the page, and that the conclusion is a
pair of cosine surfaces. All normal human viewers reach the same conclusion,
even though logic compels none to do so, and even though there are many
other plausible conclusions; in this way our inferences here all share a common
bias.

Another feature of the figure also exposes this bias. Consider the cosine
surface to the left in the figure. Observe that it appears organized into a set of
raised concentric “hills,” one circular hill meeting the next along the dashed
contours. Now slowly rotate the figure so as to turn it upside down, and watch
the behavior of the hills. The hills remain intact until you rotate the figure
through a quarter turn, then suddenly the entire surface appears to change,
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old hills vanishing and new hills appearing. Observe that the new hills no
longer meet along the dashed contours; these contours now lie on the crests
of the hills. We find, then, that our perceptual inference is biased toward one
interpretation when the figure is upright, and toward a different interpretation
when the figure is inverted. One might maintain that rotating the figure alters
the premises presented to the visual system; one is not surprised then that it
reaches different interpretations. We agree. However, if one says this then one
must admit that each small rotation of the figure also alters the premises. But
note: one’s bias about the hills remains unchanged for most such rotations;
one’s inference sticks to a single bias through one range of rotations, and then
shifts to another bias for the remaining rotations, indicating that the observer’s
bias, not just its premises, determines the perceptual interpretation.

Our perception in stereo provides another example of perceptual bias. The
premise, in the case of 3-D movies, is a pair of planar images. The conclusion is
typically not planar, but is some particular assignment of depth to the various
elements of the images. Since no particular assignment is favored by logic, the
only way to avoid reaching a biased conclusion would be to reach no conclusion
(or stick to the given images).

As another example, consider the following demonstration. Place two
dozen small black dots on a clear plastic beach ball. View the ball with one
eye at a distance of about three meters. If the lighting is such that there are no
specular reflections from the ball, you will perceive the dots to lie on a single
plane, not on a sphere. Now spin the ball at about eight revolutions per minute.
View the ball as before and you will see clearly the spherical arrangement of
the dots. If you continue to watch you will see the ball appear to reverse its
direction of spin. This visual ability to recover the three-dimensional structure
of objects from their changing two-dimensional projections onto the retina is
called “structure from motion.”5

The inference here has the following structure: the premise is a sequence
of images of dots in two dimensions, and the conclusion is the pair of spheri-
cal interpretations in three dimensions (one with the correct direction of spin,
one with an incorrect direction). The inference is not deductively valid: there
are infinitely many interpretations in three dimensions one could give for the
sequence of images without violating the rules of logic or the theorems of
mathematics. However, our visual systems reach the two spherical interpreta-
tions. To explain this, some perceptual psychologists have suggested that our
visual systems are biased toward rigid interpretations, namely interpretations

5 There is a vast literature on this subject. We suggest the discussions found
in Ullman (1979) and Marr (1982).
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in which all points maintain fixed relative positions in three dimensions over
time.6 Other psychologists have suggested a bias toward planar or fixed-axis
interpretations. Still others suggest that the bias cannot be simply described.
These are issues of great interest to vision researchers, but the details are
irrelevant here. What is relevant is the need for some bias.

Where do these biases come from? Why does an observer exhibit one bias
instead of some other? How are they justified? These are difficult questions
which we discuss throughout the book.

3. Bug observer

In this and the next section we consider two examples of visual observers,
examples designed to illustrate the principles that underlie our definition of
observer. The examples are chosen for their perspicuity and their mathematical
simplicity. They are not intended to be a representative sampling of all the
work done in perception. In fact, the first example is fabricated. However,
in chapter two we consider seven real examples, all of which are drawn from
recent work in perception.

Imagine a world in which there are bugs and one-eyed frogs that eat
bugs. The bugs in this world come in two varieties—poisonous and edible.
Remarkably, the edible bugs are distinguished from the poisonous ones by the
way they fly. Edible bugs fly in circles. The positions, radii, and orientations
in three-dimensional space of these circles vary from one edible bug to another,
but all edible bugs fly in circles. Moreover, no poisonous bugs fly in circles.
Instead they fly on noncircular closed paths, paths that may be described by
polynomial equations.

The visual task of a frog in such a world is obvious. To survive it must
visually identify and limit its diet to those bugs that fly in circles. How does
the frog determine which bugs fly in circles? First, the frog’s eye forms a two-
dimensional image on its retina of the path of the bug. If the path is a circle,
then its retinal image will be an ellipse.7 The contrapositive is, of course,
also true: If the retinal image is not an ellipse, then the path is not a circle.
Therefore the frog may infer with confidence that if the retinal image of a path

6 Again the literature is extensive. We suggest Wallach and O’Connell
(1953), Gibson and Gibson (1957), Green (1961), Hay (1966), and Johans-
son (1975).

7 For simplicity, we assume parallel projection from the world onto the
retina.
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is not an ellipse then the bug is poisonous. In this case the frog does not eat
the bug.

The frog needs to eat sometime. What can the frog infer if the retinal
image is an ellipse? It is true, by assumption, that if the path is a circle then its
retinal image will be an ellipse. But the converse, viz., if the image is an ellipse
then the path is a circle, is in general not true. For example, elliptical paths
also have elliptical images. With a little imagination one can see that many
strangely curving polynomial paths have elliptical images. In fact, for any
unbiased measure on the set of polynomial paths having elliptical images, the
subset of circles has measure zero. So the converse inference, from elliptical
images to circular paths, is almost surely false if one assumes an unbiased
measure. Putting this in terms relevant to the frog, if the image is an ellipse
then the bug is almost surely poisonous, assuming an unbiased measure. If the
image is not an ellipse then the bug is certainly poisonous.

This situation presents the frog with a dilemma each time it observes an
elliptical image. It can refuse to eat the bug for fear it is poisonous, in which
case the frog starves. Or it can eat the bug and thereby risk its life. Regardless
of its choice, the frog will almost surely perish.

This is a world harsh on frogs, but one which can be made kinder by a
simple stipulation about the paths of poisonous bugs. Stipulate that poisonous
bugs almost never trace out paths having elliptical images. So, for example,
poisonous bugs almost never trace out elliptical paths. (This is not to say, nec-
essarily, that poisonous bugs go out of their way to avoid these paths. One can
get the desired effect by simply stipulating, say, that there are approximately
equal numbers of edible and poisonous bugs and that all polynomial paths are
equally likely paths for poisonous bugs. Then only with measure zero will a
poisonous bug happen to traverse a path having an elliptical image.) This is
equivalent to stipulating that the measure on the set of paths having elliptical
images is not unbiased, contrary to what we assumed before. In fact it is to
stipulate that this measure is biased toward the set of circles. With this ad-
justment to the world frogs have a better chance of surviving. Of course it is
still the case that each time a frog eats a bug it risks its life. The frog stakes
its life on the faith that the measure on bug paths is biased in its favor. But
then the frog has little choice.

Presumably the frog makes visual inferences about things other than bugs,
so we will call its capacity to make visual inferences about bugs its “bug ob-
server.” This bug observer is depicted in Figure 2.1. The cube labelled X is
the space of all possible bug paths, whether poisonous or edible.8 An unbiased

8 This cubic representation implies no statement about the dimensionality
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measure on this space will be called µX . The wiggly line labelled E denotes
the set of circular bug paths. E has measure zero in X under any unbiased
measure µX . This is captured pictorially by representing E as a subset of X
having lower dimension than X. A biased measure on X that is supported on
E will be called ν. The square labelled Y is the space of all possible images of
bug paths, whether poisonous or edible. The map π from X to Y represents
orthographic (parallel) projection from bug paths to images of bug paths. An
unbiased measure on the space Y will be called µY . Y is depicted as hav-
ing dimension lower than X because the set of all paths in three dimensions
which project onto a given path in the plane is infinite dimensional (by any
reasonable measure of dimension on the set of all paths). The curve labelled
S represents the set of ellipses in Y , i.e., S = π(E). S has measure zero in Y

under any unbiased measure µY . This is captured pictorially by representing
S as a subset of Y having lower dimension than Y .

We now interpret Figure 2.1 in terms of the inference being made by the
bug observer. The space Y is the space of possible premises for inferences of
the observer; the space X is the space of possible paths. Each point of Y
not in S represents abstractly a set of premises whose associated conclusion is
that the event E of the observer has not occurred. Each point of S represents
abstractly a set of premises whose associated conclusion is a probability mea-
sure supported (having all its mass) on E. To each point of S is associated a
different probability measure on E. This probability measure can be induced
from the probability measure ν on E and the map π by means of a mathemat-
ical structure called a conditional probability distribution, to be discussed in
chapter two. We call π the “perspective” of the bug observer.

In summary, a lesson of the bug observer is this: the act of observation
unavoidably involves a tendentious assumption on the part of the observer.
The observer assumes, roughly, that the states of affairs described by E oc-
cur with high probability, even though E often has small measure under any
unbiased measure µX on X. (More precisely, the observer assumes that the
conditional probability of E given S is much greater than one would expect un-
der an unbiased measure.) This is to assume that the world effects a switch of
event probabilities such that the observer’s interpretations have a good chance
of being correct. The kindest worlds switch the probabilities so that an ob-
server’s interpretation is almost surely correct. In this case the measure in the
world is not unbiased; it is completely biased towards the interpretations of
the observer.

One can put this another way. The utility of the bug observer depends on

of the space of all closed curves (in R3) represented by level sets of polynomials.
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FIGURE 2.1. Bug observer.

the world in which it is embedded. If it is embedded in a world where states
of affairs represented by points in π−1(S) are all equally likely, then it will be
useless. Put it in a world where states of affairs represented by points of E
occur much more often than those represented by all other points of π−1(S),
and it is quite valuable. An observer must be tuned to reality. And no finite
set of observers can ever determine if the world in which they are embedded
effects the necessary switch from the unbiased to the biased measure. They
must simply operate on the assumption that it does; perception involves, in
this sense, unadulterated faith.

4. Biological motion observer

The bug observer discussed in the previous section was chosen primarily for
its simplicity; it permitted the examination of some basic ideas with minimal
distraction by irrelevant details. In this section we construct an observer that
solves a problem of interest to vision researchers.

The problem is the perception of “biological motion,” particularly the lo-
comotion of bipeds and quadripeds. Johansson (1973) highlighted the problem
with an ingenious experiment. He taped a small light bulb to each major joint
on a person (ankle, knee, hip, etc.), dimmed the room lights, turned on the
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small light bulbs, and videotaped the person walking about the room. Each
frame of the videotape is dark except for a few dots that appear to be placed
at random, as shown in Figure 3.1. When the videotape is played, the dots are
perceived to move, but the perceived motion is often in three dimensions even
though the dots in each frame, when viewed statically, appear coplanar. One
often perceives that there is a person, and that the person is walking, running,
or performing some other activity. One can sometimes recognize individuals
or accurately guess gender.

To construct an observer, we must state precisely what inference the ob-
server must perform: we must state the premises, the conclusions, and the
biases of the inference. Now for the perception considered here, the relevant
inference has, roughly, this structure: the premise is a set of positions in two
dimensions, one position for each point in each frame of the videotape; the
conclusion is a set of positions in three dimensions, again one position for each
point in each frame of the videotape. Of course, this is not a complete de-
scription of the inference for we have not yet specified how many frames of
how many points will be used for the premises and conclusions, nor have we
specified a bias.

A bias is needed to overcome the obvious ambiguity inherent in the stated
inference: if the premises are positions in two dimensions, and the conclusions
are to be positions in three dimensions, then the rules of logic and the theorems
of mathematics do not dictate how the conclusions must be associated with
the premises; given a point having values for but two coordinates there are
many ways to associate a value for a third coordinate. We are free to choose
this association and, thereby, the bias.

If we wish to design a psychologically plausible observer, we must guess
what bias is used by the human visual system for the perception of these
biological motion displays. To this end, let us consider if a bias toward rigid
interpretations will allow us to construct our observer.

When we observe the displays, we find that indeed some of the points
do appear to us to move rigidly: the ankle and knee points move together
rigidly, as do the knee and hip points, the wrist and elbow, and the elbow
and shoulder. Our perception does indicate a bias toward rigidity. We observe
further, however, that not all points move rigidly: the ankle and hip do not,
nor do the wrist and shoulder, the wrist and hip, and so on. It appears, in
fact, that our bias here is only to see some pairs of points moving rigidly.

This suggests that we try to construct a simple observer, one that has as
its premises the coordinates in two dimensions of just two points over several
frames, and that associates the third coordinate in such a way that the two
points move rigidly in three dimensions from frame to frame. We assume
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FIGURE 3.1. One frame from a biological motion display.

that each point can be tracked from frame to frame. (This tracking is called
“correspondence” among students of visual motion and is itself an example of
a perceptual bias, namely an assumption, unsupported by logic, that a point
in a new position is the same point that appeared nearby in the preceding
frame.)

Now this inference must involve distinguishing those premises that are
compatible with a rigid interpretation from those that are not, for as we noted
above, we see some pairs of points as rigidly linked and others as not. This is
to be expected: of what value is an observer for rigid structures if its premises
are so impoverished that they cannot be used to distinguish between rigid
and nonrigid structures? This suggests what is, in fact, an important general
principle, the discrimination principle:

3.2. An observer should have premises sufficiently informative to distinguish
those premises compatible with its bias from those that are not.

We shall now find that it is not possible to construct our proposed observer
so that it satisfies this principle. To see this, we must first introduce notation.
Denote the two points O and P . Without loss of generality, we always take
O to be the origin of a cartesian coordinate system. The coordinates in three
dimensions of P relative to O at time i of the videotape are pi = (xi, yi, zi). We
denote by p̂i = (xi, yi) the coordinates of P relative to O in frame i that can
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be obtained directly from the videotape. This implies that p̂i can be obtained
from pi by parallel projection along the z-axis. If the observer is given access
to n frames of the videotape, then each one of its premises is a set {p̂i}i=1,...,n.

We will find that no matter how large n is, all premises {p̂i}i=1,...,n are
always compatible with a rigid interpretation of the motion of O and P in
three dimensions over the n frames. That is, there is always a way to assign
coordinates zi to the pairs (xi, yi) so that the resulting vectors always have
the same length in three dimensions. Therefore this observer violates the
discrimination principle.

To see this, we write down a precise statement of the rigidity bias using
our notation. This bias says that the square of the distance in three dimensions
between O and P in frame 1 of the tape, namely the distance x2

1 + y2
1 + z2

1 ,
must be the same as the square of this distance in any other frame i, namely
the distances x2

i + y2
i + z2

i , 1 < i ≤ n. We can therefore express the rigidity
bias by the equations

x2
1 + y2

1 + z2
1 = x2

i + y2
i + z2

i , 1 < i ≤ n.

This gives n − 1 equations in the n unknowns z1, . . . , zn. Clearly this system
can be solved to give a rigid interpretation for any premise {(xi, yi)}i=1,...,n

(= {p̂i}i=1,...,n). Therefore the observer contemplated here violates the dis-
crimination principle and is unsatisfactory.

Ullman (1979) has shown that one can construct an observer using a
bias of rigidity if, instead of using two points as we have tried, one expands
the premises to include four points. He found that three frames of four points
allow one to construct an observer satisfying the discrimination principle. This
valuable result can explain our perception of visual motion in many contexts.
Unfortunately we cannot use Ullman’s result here, for in the biological motion
displays only pairs of points move rigidly, not sets of four.

Perhaps we could resolve the problem by selecting a more restrictive bias.
Further inspection of the displays reveals the following: pairs of points that
move together rigidly in these displays also appear, at least for short durations,
to swing in a single plane.9 The ankle and knee points, for instance, not only
move rigidly but swing together in a planar motion during a normal step.
Similarly for the knee and hip. The plane of motion is, in general, not parallel
to the imaging plane of the videotape camera. All this suggests that we try
to construct an observer with a bias toward rigid motions in a single plane.
We will find that we can construct an observer with this bias, an observer

9 For some discussion on this, see Hoffman and Flinchbaugh (1982); Hoff-
man (1983).
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that requires only two points per frame and that satisfies the discrimination
principle.

Equations expressing this bias arise from the following intuitions. If two
points are spinning rigidly in a single plane then the points trace out a circle
in space, much like the second hand on a watch. (The circle may also be trans-
lating, but by foveating one point such translations are effectively eliminated.)
The circle, when projected onto the xy-plane, appears as an ellipse. Therefore
if two points in space undergo rigid motion in a plane their projected motion
lies on an ellipse. If we compute the parameters of this ellipse we can recover
the original circle and thereby the desired interpretation.

To compute the ellipse, we introduce new notation. Call the two points
P1 and P2. Denote the coordinates in three dimensions of point Pi in frame j
by pij = (xij , yij , zij). Denote the two-dimensional coordinates of Pi in frame
j that can be obtained directly from the videotape by p̂ij = (xij , yij). If the
observer is given access to n frames of the tape, then its premise is the set
{p̂ij}i=1,2;j=1,...,n.

The xij and yij coordinates of each point p̂ij satisfy the following general
equation for an ellipse:

ax2
ij + bxijyij + cy2

ij + dxij + eyij + 1 = 0. (3.3)

Each frame of each point gives us one constraint equation of this form,
where the xij and yij are known and a, b, c, d, e are five unknowns. Note that
(3.3) is linear in the unknowns. Two frames give four constraint equations (one
equation for each point in each frame), but there are five unknowns. Therefore
each premise is compatible with an interpretation of rigid motion in a plane.

Three frames give six constraint equations in the five unknowns. For
generic choices of xij and yij these six equations have no solutions, real or
complex, for the five unknowns.10 This is exactly what we want. To say that
for a generic choice of xij and yij our constraint equations have no solutions is
to say that, except for a measure zero subset, all premises are incompatible with
any (rigid and planar) interpretation. Furthermore, the constraint equations
are all linear, so that if the equations do have solutions then generically they

10 Remarkably, one can prove this by finding one concrete choice of the xij
and yij for which the six equations have no (real or complex) solutions. Proof
by concrete example is possible in this case since, for systems of algebraic
equations, the number of solutions is an upper semicontinuous function of the
parameters. This fact often allows one to determine the number of interpreta-
tions associated to each premise rather easily. For more on this, see Hoffman
and Bennett (1986).
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have precisely one solution for an ellipse. This ellipse, in turn, can be the
projection of one of only two circles, circles that are reflections of each other
about a plane parallel to the xy-plane. So if a premise is compatible with at
least one interpretation then generically it is compatible with precisely two
interpretations (the two circles). Thus to each premise in S is associated,
generically, a conclusion measure supported on two points of E (where E is
the set of rigid planar interpretations).

It is not true that if the premise is compatible with at least one inter-
pretation then it always has precisely two interpretations. Within the set
of premises that are compatible with at least one rigid-planar interpretation
there is a subset of measure zero that is compatible with infinitely many such
interpretations—namely, those {p̂ij}i=1,2;j=1,...,3 for which the Equations 3.3
give infinitely many solutions.

The abstract structure of the biological motion observer is the same as
that of the bug observer shown in Figure 2.1; the meaning of the sets X, Y , E,
S, and of the map π is different, but the abstract structure is the same. In fact,
we propose that all observers have this same abstract structure, and capture
this proposal formally in the next chapter where we define the term observer.
For the biological motion observer the space X is the space of all triples of the
three-dimensional coordinates of the second point relative to the first point,
i.e., X = R9. This space represents the framework for expressing the possible
conclusions of the biological motion observer. Each point in X represents
some motion over three units of time of two points in three-dimensional space,
where one of the two points is taken to be the origin at each instant of time.
The space Y is the space of all triples of the two-dimensional coordinates of
the second point relative to the first, i.e., Y = R6. This space represents the
possible premises of the biological motion observer. Each point in Y represents
three views of the two points. The map π is projection from X to Y induced
by orthographic projection from R3 to R2. E is a measure zero subset of X
consisting of those triples of pairs of points in three-dimensional space whose
motion is rigid and planar. S is the image of E under π, S = π(E). Each
premise in S consists of three views of two points such that the motion of the
points is along an ellipse. To each premise in S is associated a conclusion, viz.,
a probability measure on E. This structure, represented abstractly in Figure
2.1, can also be represented as follows:

X = R9 ⊃ E = rigid planar motionsyπ yπ
Y = R6 ⊃ S

(3.4)


