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Abstract. Monocular observers perceive as three-dimensional (3D) many displays that depict three 
points rotating rigidly in space but rotating about an axis that is itself tumbling. No theory of 
structure from motion currently available can account for this ability. We propose a formal theory 
for this ability based on the constraint of Poinsot motion, i.e., rigid motion with constant angular 
momentum. In particular, we prove that three (or more) views of three (or more) points are sufficient 
to decide if the motion of the points conserves angular momentum and, if it does, to compute a 
unique 3D interpretation. Our proof relies on an upper semicontinuity theorem for finite morphisms 
of algebraic varieties. We discuss some psychophysical implications of the theory. 
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1 Introduction 

Monocular observers can perceive three-dim- 
ensional (3D) structures and motions in dynamic 
two-dimensional (2D) displays. This ability has 
generated a substantial body of literature, both 
theoretical [1]-[17] and experimental [18]-[25]. 
Yet it appears that no theory so far proposed can 
account for our perception of certain simple dis- 
plays. These displays depict three points moving 
rigidly in space about an axis that is itself rotat- 
ing in space. Such, for example, would be the 
motion of the three points were they attached to 
a precessing top. Detailed psychophysical stud- 
ies of these displays remain to be done, but the 
verdict of casual observation is clear: one sees 
the points in three dimensions, rotating rigidly 
about a tumbling axis. 

*This work was supported by National Science Founda- 
tion grants IRI-8700924 and DIR-9014278 and by Office of 
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A well-known theorem of Ullman and Frem- 
lin [15] cannot explain this percept because the 
theorem requires three orthographic views of 
four noncoplanar points, whereas these displays 
have but three points. A theorem by Hoff- 
man and Bennett [8] also cannot explain this 
percept because the theorem, although it needs 
but three orthographic views of three points, 
requires that the points rotate rigidly about a 
single fixed axis, whereas these displays exhibit 
tumbling motion. Other theoretical accounts 
fail on similar grounds: they require too many 
points or else require the points to move in ways 
less general than the motions actually depicted 
(and perceived) in these displays. 

This circumstance led us to consider further 
constraints or assumptions that human vision 
might employ to interpret visual motion. A 
promising constraint, and the one we study here, 
is a constraint from classical mechanics: a freely 
moving rigid body, a body subject to no net 
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torque, moves in such a manner that its angular- 
momentum vector remains constant [26], [27]. 
The behavior of such a rigid body, described by 
Poinsot [28] in 1834, is called Poinsot motion. 

To keep our discussion reasonably self-con- 
tained we briefly review some relevant classi- 
cal mechanics. We then use the constraint of 
Poinsot motion, together with an upper semi- 
continuity theorem from algebraic geometry, to 
prove a theorem about the inference of 3D 
structure from image motion. Finally we dis- 
cuss some psychophysical implications. 

For efficiency in locating numbered items, 
we number all theorems, lemmas, proposi- 
tions, remarks, and displayed equations in a 
single sequence. 

2 Conservat ion  of  Angular  M o m e n t u m  

In this section we briefly review the mechanics 
of a rigid body in motion. More details can be 
found in standard texts [26], [27]. 

Consider a rigid body made up of N points 
that have masses rn~ and positions ri with respect 
to an origin O. If the instantaneous angular 
velocity of the body is w, then the instantaneous 
linear velocity v,: of each point mass is 

vi = w x ri, (1) 

where x denotes the cross product of vectors. 
The angular momentum L of the body about O 
is then the sum of the angular momenta of the 
point masses: 

N 

L = E miri x vi, (2) 
i=1 

which by (1) can be written 

N 

L = ~ mirl × (w × ri) = Iw, (3) 
i=1 

where we view I as a symmetric rank-2 tensor 
(or a symmetric operator) that depends on the 
r; and rn{. It is called the inertia tensor of the 
body. We can represent I as a matrix as follows. 
Recalling that 

a x (b x c) = b ( a .  c) - c ( a .  b), 

where • denotes the dot product of vectors, we 
can rewrite (3) as 

N 

Iw = ~ [mir~w--m{ri(r{. w)]. (4) 
i=1 

Here ri denotes the length of the vector r~. 
Thus I, written as an operator, is 

N 

I = E (mlr~l - mirir~), (5) 
i=1 

where 1 is the identity operator and r~ is the 
linear functional that takes dot product with 
ri. If we write ri in terms of components as 
ri = (zi, Yi, zi), then the corresponding matrix 
expression for I is 

I= ' N 2 ) 

(6) 

If we rotate our coordinate system by some rota- 
tion matrix A, then the components of the inertia 
tensor change by a similarity transformation: 

I ' =  AIA T, (7) 

where A T denotes the transpose of A. 

PROPOSITION 8. If N = 2, then rl and r2 are 
linearly independent if and only if the matrix I 
is nonsingular. 

Proof. In view of (7), it suffices to prove the 
proposition after application of an arbitrary ro- 
tation A. Moreover, by multiplying by 1 /m 1, 
we may assume ml = 1. Thus we may take 
rl = (1, 0, 0) and r2 = (a, b, 0) for some a, b. 
Let m denote the mass at r2. We then obtain 

I = 
rob - m a b  0 ) 

-mab  rna 2 + 1 0 . 
0 0 m(a 2 + b 2) + 1 

Hence 

mb - m a b  ) =  O, 
det I  = 0 *~ det - m a b  ma 2 + 1 
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which holds when mb 2 = O, i.e., when r2 = arl. 

The eigenvectors of the inertia tensor are 
called the principal axes of the body. Any axis of 
symmetry of a body is a principal axis, and any 
plane of symmetry of a body is perpendicular 
to a principal axis. Each inertia tensor I has 
a uniquely associated inertia ellipsoid with equa- 
tion 

f i r  = 1. (9) 

The principal axes of the inertia tensor and of its 
associated elllipsoid are coincident. We discuss 
next the dynamical import of the principal axes. 

According to classical mechanics, the behavior 
of the angular momentum is governed by the law 

dL 
dt N, (10) 

where N denotes the total torque about the 
point O. If N= O, i.e., if the body is subject to 
no net torque about the origin of the coordinate 
system, then it undergoes Poinsot motion: the 
angular velocity vector traces out a polhode on 
the inertia ellipsoid [26]-[32]. There are several 
cases. If the body has an axis of symmetry, 
then its general motion is easily described: the 
angular-velocity vector w precesses in a circle of 
fixed radius about the axis of symmetry. If w is 
parallel to the axis of symmetry, then the motion 
is rotation with constant angular speed about a 
fixed axis, viz., the symmetry axis. Indeed, a 
necessary condition for w to be constant is that 
it be directed along a principal axis of the inertia 
tensor. Such fixed-axis motion is stable if w lies 
along an axis of maximum or minimum moment 
of inertia, but it is unstable if w lies along the 
axis of intermediate moment of inertia. If the 
body is not symmetric about any axis, then the 
motion of w is more complex: the polhodes 
are fourth-order curves on the inertia ellipsoid 
(examples can be found in [29]-[32]). 

We wish to investigate the constraint of con- 
stant angular momentum, a constraint that is 
formulated only for the case of continuous mo- 
tion. In this case we can find, for any pair 
of times to and t + to, an element of SO(3, R) 
that rotates the object from its position at time 
to to its position at time t + to. This element 

of SO(3,R) can be represented by a 3 x 3 ma- 
trix. Its eigenvectors of eigenvalue unity and 
its trace give, respectively, a canonical axis and 
a canonical angle of rotation about this axis, 
which rotate the object from its position at time 
to to its position at time t + to. In general, 
of course, an object does not undergo strictly 
fixed-axis motion during an interval t. In this 
case the canonical axis and angle represent a 
weighted time average of the instantaneous an- 
gular velocities of the body during the interval t. 
Any rotation, whether finite or infinitesimal, has 
a canonical axis and angle associated with it. If 
the angle of rotation is vanishingly small, the 
canonical axis and angle correspond (up 'to first 
order in t) to the actual angular velocity at that 
instant of time. 

In this article we are interested in the discrete- 
time version of rigid motion with constant an- 
gular momentum. As above, we assume that 
our rigid body consists of N point masses, with 
N > 3. We are interested in the positions 
of these points in three dimensions at succes- 
sive instants {tj} of time, instants separated by 
time intervals that are of equal length and that 
are small relative to the rate of motion of the 
body. We must formulate the constant-angular- 
momentum condition in this setting. For this 
purpose we first define (discrete-time) angular- 
velocity vectors for each interval, i.e., for each 
pair of successive positions of the body points. 
We use a 3D coordinate system in which one 
given point of the body remains fixed at the 
origin. This is a noninertial system and hence is 
dependent on the chosen point. The discrete- 
time angular momentum will be calculated with 
this point as the origin of our coordinate sys- 
tem. Such a choice is justified up to first order 
in t if the point is not undergoing large angular 
accelerations in the time intervals. The motiva- 
tion for this choice of coordinates is to "rood 
out" the average motion of the body in our cal- 
culations. By "foveating" one of the N points 
of the body we are precisely eliminating the 
translation of this point. If we were to foveate 
the center of mass, then we would eliminate all 
translation and be left with pure rotation. How- 
ever, our approach does not, in general, result 
in the center of mass being foveated; in fact, 
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it is impossible, in general, to find the center 
of mass of three points over three views. In 
this coordinate system having one point fixed at 
the origin there is a rotation Mj of R 3 (i.e., an 
element of SO(3, R)) that carries the positions 
of the points of the body at time tj to their 
positions at time tj+l. If the degenerate case 
for which Mj is the identity is excluded, there 
will be a unique line ly through the origin such 
that M s is a rotation about l o through some 
angle 0j. Note that there are countably many 
choices for Oj that differ by integer multiples 
of 27r. The vectors wj on the line lj satisfy 
Mjw~ =w~. Our (discrete-time) angular-velocity 
vector for the time interval [tj, tj+l] will be 
such a wj, subject to the additional condition 
that Iwjl = sinOj, where Oj is a choice of an- 
gle of the rotation. Note that for small angles 
Oj the number sin0~ is very close to 0~ (where 
Oj is measured in radians). The advantage of 
choosing sin0j instead of Oj itself for the length 
of wj is that this choice can be expressed by 
an algebraic equation (see below). In addition, 
using sin0j instead of Oj reduces the ambiguity 
in 0, so that now wj has but a twofold ambiguity, 
corresponding to choice of orientation. We will 
see below that this remaining ambiguity does 
not affect our result. 

To summarize, our discrete-time angular- 
velocity vector wj for the motion from time 
tj to time tj+l is specified by the equations 

Mjwj = wj, ( l la)  

Iwjl = sinOj. ( l lb)  

At each time tj we define the inertia tensor 
Ij by using (7), in which we substitute the co- 
ordinates of our N points at time tj. (Here 
we are assuming that the inertia tensor does 
not change significantly over the time interval.) 
We then define the (discrete-time) angular mo- 
mentum vector for the time interval [tj, tj+l] to 
be Ijwj. The constant (discrete-time) angular- 
momentum constraint may then be written 

Ijwj = b+lWj+l Vj. (12) 

It should be stressed that this is only a discrete- 
time angular momentum; its construction was 
motivated by conservation of its continuous-time 

analog. However, the question of how one ver- 
sion relates to the other is as yet unresolved. 
The most we can conclude is that our discrete 
version of the angular momentum is in some 
sense the time average of the real angular mo- 
mentum in each interval. Given such sparse 
data, this is the best approximation that we can 
make in the sense that other reasonable defini- 
tions of discrete-time angular momentum yield 
approximations to the continuous-time angular 
momentum that are no better than ours. 

The motivation for our definition of discrete- 
time angular momentum is the following. Recall 
the definition of angular momentum in contin- 
uous time: 

L(t) = I(t)co(t), 

where I(t) is the inertia tensor at time t and co(t) 
is the instantaneous angular velocity at time t. 
We construct co explicitly from the Lie derivative 
of the family of orthogonal rotations correspond- 
ing to the motion of the rigid object. Let O(t) 
denote the matrix in SO(3,R) representing ro- 
tation of a rigid object. (To each rigid object we 
can associate an orthogonal coordinate system 
fixed in the body. O is the rotation between 
this body system and the inertial system that we 
take to be the body system at time to.) Then 
co(to) is the vector such that 

Oq(to) d-~-t[ r=co(t0)  x r .  
to 

Here O-l(to)(dO/dt)lto is in the Lie algebra 
so (3,R). Now every rotation in SO(3,R) is 
equivalent to a rotation about a fixed axis, i.e., 
every A ~ I C SO(3, R) has a unique fixed 
direction ~ such that A ~  = ~, where the hats 
indicate normalization to a unit vector and I 
is the identity rotation. This is true for both 
finite and infinitesimal rotations. In the case of 
fixed-axis motion the matrices O(t) are similar to 

cos0(t) sin0(t) i ) 
-sin0(t) cos O(t) 

o 0 

for the appropriate choice of coordinates. No- 
tice that dO(t)/dt = Ico(t)l. Intuitively, for suf- 
ficiently small intervals of time the body is 
undergoing almost fixed-axis motion, so that in 
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the limit as t ~ to it is also true that ~ ~ ~(t0). 
We can see this also from the definition of the 
Lie derivative at to. Let ~(t) be the fixed direc- 
tion of O(t)  for t near to. Then 

d___OO = lim O ( t ) -  I 
dt t ~ to t - to to 

and 

d_~_ to w(t0) = tlim-~ to O(t)~(t)t - -to I+( t )  = 0 Vt, 

so that ~(t) --, c~(t0). If we let 

lw(t)l - t -1to cos i (Tr  0(~) - 1)  

and recall that the trace (denoted Tr) of a ma- 
trix is invariant under similarity transformations, 
then we obtain 

lim Iw(t)l  = I~(to) l .  

3 Inferring 3D Structure 

We are interested in the use of the Poinsot con- 
straint for the purpose of inferring the depth (z) 
coordinates of moving points from their (ortho- 
graphic) projections on the image (x, y) plane. 
Mathematically, this amounts to plugging in the 
x and y coordinates (in the system of equations 
consisting of (12) together with equations ex- 
pressing rigidity of motion) and eliminating the 
wj's, thereby obtaining values for the unknown 
z's. This can be done, with effort, for particu- 
lar numerical values of the (z, y)'s. However, 
because of the complexity of the equations, it is 
very difficult to extract closed-form expressions 
for the z's in terms of the (x, y)'s. Our desired 
result, however, asserts that 1) when there are 
solutions, there are generically exactly two, and 
2) for generic (x, y) data there are no solutions. 
How can we hope to obtain such results in the 
absence of some closed-form expression for the 
z's? The key is to exploit the algebraicity of the 
system of equations: for the first assertion we 
use results from algebraic geometry that state 
that under suitable conditions the number of 

solutions to a system of polynomial equations, 
equations depending on certain parameters, is 
an upper semicontinuous function of those pa- 
rameters in a very strong sense. This tech- 
nique enables us, in effect, to obtain the desired 
results simply by checking several test points. 
For the second assertion we show that the di- 
mension of the solution set of our equations 
is suitably small. For more details about the 
algebro-geometric terminology and techniques 
the reader is referred to the appendix. 

Here is our main result: 

THEOREM 13. Suppose that three (or more) unit 
point masses move in space. Moreover suppose 
that three (or more) distinct images of the point 
masses are obtained, at equally spaced intervals 
of time, by using orthographic projection. Then 
the following two statements are true: 

1. Uniqueness. If the point masses move rigidly 
in space and conserve discrete-time angular 
momentum, i.e., they satisfy equation (12) 
above, then the images are compatible, gener- 
ically, with precisely two 3D interpretations 
in which the point masses move rigidly and 
conserve angular momentum with respect to 
one of the points. The two interpretations 
are mirror reflections of each other about the 
imaging plane. 

2. Measure-zero-distinguished premises. For ge- 
neric motions of the point masses (e.g., non- 
rigid and nonconservative motions) generi- 
cally chosen images are compatible with no 
3D interpretations in which the point masses 
move rigidly and conserve angular momen- 
tum with respect to one of the points. This 
implies that false targets have Lebesgue mea- 
sure zero. 

Proof. We take one of the three points to be 
the origin O of a Cartesian coordinate system 
whose z axis is taken to be orthogonal to the 
imaging plane. (This is the coordinate system in 
which we will make our calculations of angular 
momentum.) We let rij = (xij, Yij, zij), where 
i = 1, 2 and j = 1, 2, 3, denote the position 
vector of point mass i in frame j relative to 
O. (We use the term f rame to denote the 3D 
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situation at an instant of time; the term view 
denotes a 2D image.) The constraint that the 
point masses move rigidly over the three frames 
leads to six equations (studied previously in [8]): 

r l l  " r l l  = r 1 2 "  r12 = r13"  r13, (14) 
r21 . r21  = r22 . r 2 2  = r23 . r23  , ( 1 5 )  

rll "r21 = r12 - r 2 2  = r13 . r 2 3 .  (16) 

Equations (14) and (15) state that the lengths 
of the position vectors r~j remain constant over 
frames, whereas (16) states that the angle be- 
tween the two position vectors in each frame 
remains constant. In these equations the com- 
ponents x~ and y~j are known from the image 
data and the six components z~j must be solved 
for. Equations (14)-(16) have, generically, 64 
solutions. Hence for these equations alone false 
targets have full measure. Thus the role of the 
angular-momentum constraint (12) is, first, to 
reduce the number of solutions from 64 to two 
and, second, to make the measure of false tar- 
gets zero. 

If the vectors r~j satisfy the rigidity constraints 
(14)-(16), then the successive frames are related 
by rotations. Hence there are (discrete-time) 
angular-velocity vectors wl and w2 associated, 
respectively, to the rotation from frame 1 to 
frame 2 and to the rotation from frame 2 to 
frame 3 (see equation (11)). According to our 
conventions, conservation of angular momentum 
in discrete time is then expressed by the equation 

I l W l  = I2W2, (17) 

where Ij denotes the inertia tensor in frame j 
(see equations (3)if). We will call (14)-(17) the 
Poinsot constraint. A collection of unit point 
masses whose motion satisfies the Poinsot con- 
straint is a collection that moves rigidly and 
whose motion conserves (discrete-time) angu- 
lar momentum. 

The strategy of our proof is to show that the 
set of 6-tuples of vectors {(r~j), i = 1, 2; j = 
1, 2, 3} representing, as above, a body under- 
going Poinsot motion is a variety Ec in C is 
whose projection onto the space C 12 of image 
data {(x~j, yij)} is a so-called finite morphism. 
We are ultimately interested in the set E of 
points in Ec with real coordinates. The proof 

of the first assertion of our theorem then hinges 
on the application of the upper semicontinu- 
ity theorem for finite morphisms (see appendix, 
Theorem A5) to the finite morphism Ec ~ C 12 
and on its interpretation for E. The second as- 
sertion of the theorem is proved by showing that 
the dimension of E is suitably small. One im- 
mediate problem in handling E c is that, of the 
equations (14)-(17) that define Poinsot motion, 
one of them - equation (17 ) -  involves variables 
other than (xij, Y~i, zo). In fact, it involves 
wl and w2. We are thus led to construct an 
appropriate space in whch wl and w2 are well- 
defined functions, in order to obtain a solution 
variety for (14)-(17) in this space, and then to 
project this variety back into (xij, yij, zij)-space, 
thereby obtaining Ec. To ensure the finiteness 
of the morphism Ec ~ C 12 we will need to keep 
good control over the various algebraic aspects 
of this construction. 

The following proof is organized into 10 steps, 
labeled A through J. Each step begins with a 
less technical discussion of what is to be accom- 
plished in that step and then proceeds with the 
technical details. For those interested in follow- 
ing the proof in detail, this organization should 
help to see its logical structure. For those not 
interested in following the proof in detail, the 
less technical discussions at the start of each 
step should give the general idea and intuitive 
meaning of the proof. 

Step A. Our first task 
terms of components 

k(z j) = - 

= - 

: 3 ( Z l j )  = Z21 --  

f 4 ( z i j )  = Z21 --  Zi3 q" C 4 = 0 ,  

fs(zij) = ZllZ21 - z12z22 -F (I 5 ----- O, 

f 6 ( z i j )  = ZllZ21 --  Z13Z23 "k" (16 = 0 ,  

is to analyze (14)-(16). In 
(14)-(16) may be written 

+ = o, (18) 

z23 + (12 = 0, (19) 

Z22 q- C 3 = O, (20) 

(21) 

(22) 

(23) 

where 

(1, = x21 + - 4 - 

- -  - -  Y I 3 ~  

(13 = : 1  + y 2  _ _ y i 2 ,  

= --  --  Y23, 

(24) 

(25) 

(26) 

(27)  
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R.c C Xc = C lg zq)} 

" l  J." 

Yc = C 

Fig. 1. Structural setting for Rc, which is defined by equations (18)-(23). 

i =  1 , 2 ; j =  1 , 2 , 3  

C5 = X11X21 "+" YllY21 - -  X12X22 -- Y12Y22, (28) 

C6 = XllX21 + YllY21 -- X13X23 -- Yt3Y23, (29) 

Equations (18)-(23) can be regarded as defin- 
ing an anne  variety Re (for rigidity) in a 
complex affine space Xc = {(xij, yij, zij)]i  = 
1 , 2 ; j  = 1, 2, 3} = C 18. Since we are given 
the (x~.j, ylj) from the images, we can view 
the (x~j, y~j) as parameters in these equa- 
tions. The space of all possible parameters 
is a complex anne  space Yc = { (X i j ,  yij) li = 
1 , 2 ; j  = 1, 2, 3} = C 12. Xc and Yc are re- 
lated by a morphism ~r : Xc ---* }Pc given by 
(x~j, y~j, zij) H (xij, y~j). For each parameter 
point y 6 Yc the set ~r -1 ({y}) is a six-dimensional 
(6D) complex affine space with coordinates z¢j. 
Figure 1 displays the various spaces and maps. 

Step B. We now want to show that for generic 
choices of the x~j and ylj, i.e., for generic choices 
of the constants ci, that (a) equations (18)-(23) 
have only finitely many solutions for the un- 
known zij's and (b) these equations have no 
additional solutions at infinity when we view the 
6D space of possible z~j's as being embedded 
in a 6D projective space. In the terminology 
of algebraic geometry, this means that if we re- 
strict the map ¢r : Re --* Yc (mentioned in the 
previous paragraph) away from a nongeneric 
measure-zero subset of Yc, then the result is a 
so-called finite morphism. (A technical defini- 
tion of finite morphism is given in the appendix.) 
The next few paragraphs are devoted entirely to 
proving that 7r is a finite morphism. The reader 
not interested in the details of this proof can 
now skip to step C. 

For each choice of parameters y = { ( x i j  , 
Y~j)} 6 Yc we can view the complex anne  

space 7 r - l ( { y } )  ---- C 6 as an affine open sub- 
set of complex projective space p6(C). In this 
sense p6(C) = C6Ul'5(C), where we call the pro- 
jective space PS(C) the points at infinity relative 
to our original affine space C 6. Algebraically, 
this is expressed in coordinates as follows: As 
a system of homogeneous coordinates on p6(C) 
we take {{Zij}, T}  and let 

Z~j (30) Zij -.~ -7""  

The space FS(c) at infinity is then the locus T = 
0 in p6(C). Its homogeneous coordinates are the 
{Zij}. (For more details a good first reference 
is Fulton [35].) Let Re denote the closure of 
Re in p6(C) x Yc. Re is defined by a collection 
of homogeneous polynomials in {{Z/s}, T} that 
may be obtained from the polynomials fl ,  -.-, fo 
in {z/t} that define Re in C 6 x Yc. To do this we 
first take the ideal I generated by fl,  . .- ,  f6 in 
the polynomial ring C[x;j, yij, zij]. (I  is the set 
of all polynomials that can be written in the form 
glfl  + " "  +gnf,, for some polynomials 91, . . . ,  g,~ 
in xij, yij, zij.) Now, for each f in I, view f as 
a polynomial in the {zij} whose coefficients are 
polynomials in {(xij, yij)}. Let deg~ f denote 
the degree of f with respect to the z variables 
only. Then, if d = deg z f ,  by using (30) we see 
that F = Td f  is a homogeneous polynomial of 
degree d in {{Zij}, T}. The projective variety 
Re is the one defined by all such F's (i.e., by 
the F's that come by means of this procedure 
from all the f ' s  in I). 

We continue to use the notation 7r for the 
projection map p6(C) x Yc ~ Yc. Define Ry = 
R c N Ir-t({y}), ~ = ~cc 71Tr-l({y}). R~ and 
R:j have concrete descriptions as follows: A 
point y ~ Yc corresponds to particular numerical 
values (in C) for {(xij, yij)}. Thus, given any 
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R c  C ~ x C '2 = 

n fq 
/ ~  c: l ' 6 ( Q  x C n = 

k 
C 12 = 

Fig. 2. Structural setting for R c and R o 

Xc 

II 
d x :f,"c 

I ~ ( Q  x Yc 

{ x q  , Yii , zq  } 

{ Z i j  , ~tij , Zij , T }  

rc v j} 

polynomial f in the variables {(zij, yij, zq)}ij, 
for any v 6 Y we can evaluate {(xlj, Vlj)} at v 
and obtain a polynomial in the zlj only (with 
coefficients in C). Denote  this polynomial by 
fv. With this notation R:, is the affine variety in 
C 6 defined by f l y , . . . ,  f6.,. Similarly, R---~u is the 
projective variety in p6(C) defined by the /;y. 
Figure 2 displays the various spaces and maps. 

We will now show that R.~ / = R:~ (for V out- 
side of a measure-zero subset of Yc), i.e., we will 
show that the system of homogeneous polynomi- 
als F described above has no solutions at infinity. 
To compute solutions at infinity we set T = 0 in 
each F and obtain a homogeneous polynomial 

in {Zij} only. From the way in which F is 

obtained from f it is clear that F is nothing 
other  than the part of f that has the highest 
degree in the z~j, except that we replace zlj by 
Zij. To carry out our computation here we need 
to note that the ideal I generated by fl . . . .  , f6 
contains, in particular, the polynomials 

2 f7 = z21fl + z12f3 -- (Z21Z11 at" Z12Z22)f5 

= C3Z~2 --  C5ZllZ21 + CLZ21 --  C5Z12Z22 

= 0,  ( 3 1 )  
2 

f8 = 221Y2 + z13f4 --  (ZllZ21 + Z13Z23)f6 

= C4Z23 -- C6ZllZ21 + C2221 -- C6ZI3Z23 

= O. ( 3 2 )  

Associated to these fl . . . .  , fs are the homoge- 

neous polynomials /;1, . . . ,  Fs: 

& =  

/ ; : =  

/;3 = 

F 4 =  

/ ;5= 

/;6 = 

/;7 = 

F s =  

Zf1 - Zf2 + q T  z = 0, (33) 

Z2~ - Z23 + c2T z = 0, (34) 

z~l - z~2 + ~3T 2 = o, (35) 
Z21 --  Z23 + C4 T2 = 0,  (36) 
ZnZzl  - ZleZ22 + csT 2 = 0, (37) 

Z l l Z 2 1  - Z13Z23 + c 6 T  2 = 0, (38) 

c3Z22 - c5Z11Z21 at" CLZ221 -- c5~12Z22 

0, (39) 

c4Z123 - c6Z11Z21 + e2Z221 - c6Z13Z23 

0. (40) 

Setting T = 0 in F1, . . . , / ;8 ,  we obtain 

F 1  = 

~'4 = 

F6- - -  

F7 = 

Fs = 

Z~1 - Za22 = 0, (41) 

Z ~ I -  Z~3 = 0, (42) 

zza - Z22 = 0 , (43) 

Z21 - Z23 = 0, (44) 

Z l l Z 2 1  - Z12Z22 = 0, (45) 

Z l l Z 2 1  - Z13Z23 = 0, (46) 

c3Z22 - C5Zll Z21 + c1Z21 - c5Z12Z22 

0, (47) 

c4Z23 - ¢6ZI1Z21 + c2Z21 - c6Z13Z'23 

O. (48) 
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The solutions to  F I ,  . . . ,  F8 in pS(c),  with ho- 
mogeneous  coordinates {Zi;}, are the points in 
Re at infinity. Observe that although f7 and 
fs are in the ideal generated by fl . . . .  , f6 it is 

N 

not the case that F7 and Fs are contained in 

the ideal generated by F1 . . . .  , F6. For instance, 
any assignment of values to the Zij such that 
211 = Z12 = Z13 and Z21 = Z22 --" Z23 are solu- 
tions to F1, . . . ,  F6 but are not solutions to  F7 

and Fs (for generic values of q ,  . . . ,  c6). 
Equations (41)-(46) have at most the solu- 

tions Z11 = -t-Z12 = ±Z13, Z21 = =IzzZ22 = @Z23. 
For any choices of these signs we can express all 

the Z~.j in terms of, say, Zll and Z21. F7 a n d  ~'a 
then become homogeneous quadratic polynomi- 
als in Zll and Z21, say Gv, Gs, whose coefficients 
are expressions in c l , . . . ,  c6. Thus for generic 
choices of q ,  . . . ,  c6, i.e., for (xlj, yij) outside of 
some proper  closed subvariety 7)1 c Yc, equa- 
tions Gv and Ga will be independent,  and hence 
Z11 = Z21 = 0 will be the unique solution. (In 
fact, if G7 = AZ~1 + BZalZ21 + CZ21, Gs = 
D Z  f, "at" EZI1Z21- I -FZ21  , where A, B, C, D, E, F 
are polynomials in cl . . . .  , c6, then 7)1 is the va- 
riety in C 12 where the three determinants 

D E ' D ' F 

all vanish.) It follows that the unique solution 
to the system (41)-(48) is Zij = 0 for all i and j ,  
but this does not correspond to a point in PS(C) 
(the points in PS(C) correspond to lines through 
the origin in zi;-space). We have thus shown 
that there are no solutions at infinity for R u for 
y ¢ 7 ? 1 ,  i.e., that R.~ = R:~ y t D l .  Let Yc,1 = 
Yc -7)1 ,  and let Rc now denote the variety in 
Xc,1 = Yc.1 x C 6 defined by (18)-(23). We have 
shown that Rc contains no points at infinity. 
Thus while Rc is a priori a closed subvariety of 
Yc, 1 x C 6, it is, moreover,  a subvariety of Yc, 1 x 
p 6 ( C ) ,  i.e,, it is the projective variety defined by 

F1, . . . ,  Fs. We have shown, then, that this Re 
is actually a closed subvariety of Yc, a x p6(C). 

Hence  the projection map Rc ~ Yc,1 is a 
projective morphism. In fact, Re ~ Yc, a is 
a finite morphism. Namely, by Fact A4 in the 
appendix it suffices to show that for y E Yc,1 the 
set R v consists of finitely many points. But if it 

Puz C C 6xYc,1 = Xc,l  

Yc,1 = Yc,1 = Y c - D 1  

Fig. 3. Map 7r, which when restricted to Rc, is a finite 
morphism. 

contained infinitely many points it would have 
a positive dimensional component ,  which would 
then intersect the p5 at infinity, i.e., we would 
then have Rv ~ Ry, a contradiction. 

We summarize as follows: There is a proper  
subvariety 7) 1 of Yc = C12, so that if we de- 
note Yc, l = Y c -  7)1 and we let Re denote  
the subvariety of Xc, 1 = Yc, 1 x C 6 defined by 
il . . . . .  f6 = 0 (equations (18)-(23)), then 
the projection 7r " Rc ~ Yc, 1 is a finite morphism 
(as illustrated in figure 3). 

Step C. At this point we have established that 
¢r : Rc ~ Yc, 1 is a finite morphism, where ¥c, 1 
is obtained from Yc by deleting a measure-zero 
subset of nongeneric image data. To get unique- 
ness of interpretations and to assure that the 
measure of false targets is zero we now need to 
impose the constraint of conservation of angular 
momentum, viz., Itwl = I2w2. To construct wl 
and w2 we must first construct discrete-time ro- 
tation matrices O~ and Oz; 01 takes the vector 
ril to the vector ri2 and 02 takes r~2 to r;3. Then 
wl will be an eigenvector of O1 whose length 
encodes the amount of rotation from frame 1 
to frame 2 and w2 will be an eigenvector of O2 
whose length encodes the amount  of rotation 
from frame 2 to frame 3. 

We now explicitly construct the matrix O1. 
The construction for O2 is analogous. In what 
follows we will use an overbar to denote  nor- 
malization to a unit vector. We first note 
that if the vectors r l j  , rzj are linearly indepen- 
dent, the following three unit vectors define or- 
thonormal coordinates in frame j : r I j  , rlj  × r2j ,  

and (rlj x r25) x r15. The rotation of these or- 
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thonormal coordinates (and therefore of the 
points) from frame 1 to frame 2 is then given 
by the matrix 

r12 
O 1 = r12 x r22 [ rN  x rE1 • 

(r12 x r22) x r12 \(r11 x r21) x rll 
(49) 

The normalizations to unit vectors used in the 
definition of O1 involve square roots, which are 
not polynomial functions. Since our method of 
proof requires that we use polynomial equations 
exclusively, we must rework the definition of O1 
to make it polynomial. The mathematical details 
of this reworking are contained in the next few 
paragraphs. The reader not interested in the 
details of this reworking can skip to Step D. 

To make our rotation matrices algebraic it 
will now be convenient to introduce variables 
corresponding to the lengths of the vectors rlj 
and r~j x rEj so that we can represent these 
lengths in polynomial expressions. To do this 
we introduce variables lj, nj, where j = 1, 2, 3, 
satisfying the equations 

n 2 = r l j ' r l j ,  (50) 

12 = (r U x r2j). (rlj x r2~). (51) 

In terms of components these equations may 
be written 

2 x2j y ~ j - z Z j = o ,  (52) n j - -  

and 

12 __ ( X l j Y 2 j  --  a72jYl j )  2 --  ( X 2 j Z l j  --  X l j Z 2 j )  2 

-- ( Y l j Z 2 j  --  Y 2 j Z l j )  2 -~ O, (53)  

where j = 1, 2, 3. Now (52) and (53), together 
with (18)-(23), can be regarded as defining a va- 

riety Rc in X~ = Xc,1 x {(nj, lj), j = 1, 2, 3} = 
Xc,1 x C 6 = Yc, l x C 12. The projection q from 
X~ to Xc, 1 (which forgets the nj and lj) induces 

a finite morphism Rc --+ Rc; in fact, according 
to (52) and (53), nj and lj satisfy monic poly- 
nomials whose coefficients are functions on Rc. 

Using the variables 15, nj (where j = 1, 2, 3) 
introduced above, we can rewrite the matrix 

Oj as 

( r 1 2 / n  2 ) T  ( r l l /n l  , ~ 
0 1 = r12 x r22//2 rll x r21//1 ] , 

(r12 x r22 ) x r12/(n2 12) (rll x r21 ) x r l l / (n  1 ll) ] 
(54a) 

( r i 3 / n 3 ) T (  r12/   , 
0 2 = r13 x r23//3 r12 x r22/l 2 ] . 

(r13 x r23 ) x r13/(n 3/3) (r12 x r22 ) x rl2/(n 2 12)/  
(54b) 

Note that for a given set of r i /s  there are 
many matrices O1, 02 corresponding to different 
choices of sign for the I/s and nj's; each point of 

the variety Re corresponds to one such choice, 

i.e., for each point of Re there is precisely one 
matrix O1 and one matrix 02. These matrices 
have the property that Ojrij = -t-ri,j+l (i = 1, 2). 
Therefore to ensure that the Oj have the desired 
meaning we will impose the equations 

Ojrlj=r,: , j+l,  j =  1,2, i =  1,2, (55) 

Det O 1 = Det 02 = 1. (56) 

Thus the rlj are related by the rigid rotations Oj 
in SO(3, C). These equations define a subvariety 

R~ of Rc. Since Re --* Rc is finite, / ~  ~ Rc is 
finite and is therefore projective by Fact A3 in 
the appendix. 

For these matrices to make sense, i.e., in 
order that none of the lj's or nj's be zero, we 
must restrict our attention to those arrays {rij} 
for which rlj and r2j are linearly independent 
for j = 1, 2, 3. A sufficient condition for this is 
that the projections of raj and r2j into the image 
plane be independent. Thus let 792 c Yc = C12 
denote the set of those {(xlj, yij)}ij in which 
(xlj, Yl~) and (x2~, Y2j) are dependent for at 
least one value of j, 1 _< j _< 3. "DE is a variety in 
C 12 defined by the vanishing of the appropriate 
determinants. We will let Y c ,  2 = Y c -  (791 t_J 
"/)2), XC, 2 = Yc, 2 × C6, and X~z ' 2 = XC, 2 X C 6. 

We will now use the symbol Rc to denote the 
variety in Xc,2 defined by (18)-(23); we will 
let R~ denote the variety in X~, 2 defined by 
(51) and (52). The point is that with this new 
notation the projections R~ ~ Rc and Re 
Yc,2 are finite morphisms and at each point 
1 a = { ( x i j ,  Y i j ,  Zi j ,  n j ,  l j ) }  o f  / ~  the matrices 
Ol(r') and O2(r') defined in (54) and (55) make 
sense (see figure 4). Indeed, if at a point r' E R~ 
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c x&,2 = gc,2x csxc6 

"2. 1 1' 
Rc C Xc,2 = Yc,2 x C  -~ 

Yc,2 = Yc,z = Y c - ( : P l  u : P 2 )  

{xq ,  yq, zq,  I], r~.} 

( x q ,  yq ,  zq}  

( x q ,  gq } 

Fig. 4. R c which is defined by (18)-(23), and R~ which is defined additionally by (49), (50), and (56). To each point r ~ in 
! R e are associated the rotation matrices O1 and 02. 

the coordinates {(zij, yi~, zij, nj, lj)} are all real 
numbers, then Ol(r') and O2(r') are rotation 
matrices in SO(3, R); Ol(r t) sends rlt to ri2 (i = 
1, 2) and O2(r') sends r;2 to ri3 (i = 1, 2). 

Step D. We now consider vector variables wl 
and w2, representing possible discrete-time an- 
gular velocities (see section 2), where each 
wj varies on a copy of C 3. (For the reader 
following the technical details we form the 
variety R~ x C3x  C 3, on which we have co- 
ordinates x;j, YO, zij, nj, l j ,  Wl, W 2. It is on this 
variety that we can formulate our conservation 
equations.) 

First of all, according to equations (11), which 
define the w 5, we must impose the eigenvector 
conditions 

Olwt = wl, (57) 

O2w2 = W2. (58)  

Secondly, we impose the conservation equation 

IlWl = I2w2. (59) 

Finally, we must impose the length conditions 
(11) for wl and w2. We use the fact that if O 
is a matrix that expresses a rotation through an 
angle 0 about some axis, then 

cos 0 = Tr(O) - 1 
2 (60) 

It follows that 

sin20 1 (Tr(O~) - 1 )  2 
= - ( 6 1 )  

Hence or length condition (11) on wj implies 
the equations 

wj " wj = l - (Tr(Oj) - l ) 2 " 2  (62) 

In the following few paragraphs we will show 
that the number of complex solutions to these 
constraint equations is generically not more than 
two. The reader not interested in the mathe- 
matical details can skip to step E. 

We are interested in the subvariety E'~ of 
R~ x C 3 x C 3 defined by (57)-(59) and (62) (see 
figure 5). We can complete E~ to a projective 

- -  - ' 3 7  variety E~ over R~:  E c is the projective com- 
pletion of E~ in the w-coordinates, i.e., / ~  is 

' ~ is the closure a subvariety of R c x C 6 and E c 
of /5~ in R~: xp6 (c ) .  Now let E L be the im- 

age of E~ in R~ by means of p, and let Ec be 
the image of E~ in Re by means of the mor- 
phism q op, where p • R~ x p6(C) --, R~ and 
q : R~ ~ Re are the projections. Both p and 
q are projective morphisms, as we have seen. 
Therefore q o p is projective (Fact A1 in the ap- 
pendix). Since a projective morphism is closed 
(Fact A2 in the appendix), it follows that Ec 
is a closed subvariety of Re. Since Re is finite 
over Yc, 2 and Ec C Re is closed, it follows that 
~rlz c : Ec ~ Yc,1 is finite. 

Now since ~r : Ec ~ Yc.2 is a finite morphism, 
by Theorem 13 we find the following: 

RESULT 63. Tc = {y E Yc,2 I rr-~({Y}) n Ec 
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E~ C R ' c x C 3 x C  3 

N N 
Eg: c x r'6(O c a x e 6 ( c )  

Et: c c x '  C,2 

Ec C Rc C Xc,2 

1 
Yc,2 

{xij ,  Vii, zi/, I], rb. , wl ,  w2 } 

Fig. 5. E~ which is defined by (18)-(23), (49), (50), (56)-(59), and (62). E~ is the projective completion of E~ in the wj 
variables. 

contains more than two points} is a closed sub- 
variety of YC,2" 

Note that the fact that Tc is a closed subvariety 
of YC, 2 means that Tc has measure zero in Yc,2. 

Step E. Up to this point all of our results 
have concerned complex solutions to our con- 
straint equations. We are, of course, ultimately 
interested in the real solutions. In the follow- 
ing paragraphs we will define a set E of real 
vectors rij that satisfy our constraint equations. 
This will be essential in finding the number of 
real solutions to our equations. Recall that 
the map 7r : R TM ~ 11,12 takes {Xij, Yij, Zij} to 
{x~j, Yij}. As a matter of notation let S = 7r(E). 
Intuitively, S represents the set of all displays 
that are consistent with a Poinsot motion in- 
terpretation. The next few paragraphs will be 
devoted to showing (a) for generic s 6 S, the set 
~r-l(S) n E contains exactly two points (which 
correspond to 3D interpretations that are mu- 
tual reflections in the x, y plane) and (b) the 
set 7r-1(S)n E has Lebesgue measure zero in 
X ( =  RlS). The reader not interested in the 

mathematical details can now skip to Step E 
Result 63 is all that we need to extract from 

the complex geometry of our equations. We 
now consider the underlying real geometry. Let 
E", E", E ~, E denote, respectively, the subsets 
of E~, E~, EL, Ec of points with real coordi- 
nates. As illustrated in figure 6, we let 

Y = Yc, 2 n R 12 

X = Xc ,  2 n R ~s 

X'--_ & N R  24, 

R = R c N X ,  
R' = R~c N X', 
s = ~ ( z )  c Y. 

( =  R 12 - ('D 1 U 792) N R12), 

(= Y x R 6 ) ,  

We note that all the polynomial equations 
defining the variety E~ have real coefficients 
and that the maps E~ ~ E L ~ Ec ~ C 12 are 
induced by projections and hence are defined 
over R. Thus E", E', and E are R-varieties, S 
is a semialgebraic set (see the appendix), and 
E "  ~ E --+ S C R 12 are R-morphisms. (Note 
that E may equally well be defined as the image 
of E" in X2.) 
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E't C X '  x R 6 C R 24 × R 6 

N N 
E '--7 C X' x F6(R)  C R z4 x I ~ ( R )  

I, 1, 
E' C ,1~ C X '  = X × R 6 C R 24 

I. I' 
E C R C  X = Y x R 6 c R  18 

I- I- 
s C Y = Y c , 2 A R  12 C R  12 

= R 12 - ( D 1  U D 2 )  ClR n 

{xq ,  Vq, zq ,  rb. , l/, wj} 

{ x q ,  Vii, zq ,  rb. , lj } 

{zq,vq, zq} 

Fig. 6. Relationships between the real spaces involved in the proof of Theorem 13. 

Since E~: = p(E~) and Ec = q(E~) by def- 
inition, we have E' C p(E") and E c q(E'). 
We will show that E" = E". Moreover, we 
will show that E'  = p(E") and E = q(E') (the 
corresponding statement is false in general for 
complexified maps of real varieties). These re- 
sults mean that the points of E represent 3D 
motions for which the Poinsot constraint holds 
in the ordinary sense and not in some virtual 
sense for infinite or complex-valued angular ve- 
locities as an artifact of our equations. Precisely, 
we show the following: 

CLAIM 64 

(a) E " =  E". 
(b) E = q(E'). 
(c) E '  = p(E"). 

Proof. Let r' E R', so that O l ( r '  ) and O2(r ' )  
are in SO(3, R). Moreover, neither O1 nor 02 is 
the identity matrix since otherwise q ,  e3 and c5 
(or c2, c4, and c6) would be 0, so that r' would 
project to :D1, the possibility of which we have 

excluded. Now any nontrivial matrix in SO(3, R) 
has a unique (up to scalar multiple) nonzero 
eigenvector of eigenvalue 1, which is a real vec- 
tor. Now we have noted that the inertia operator 
I2, say, is nonsingular provided that r12, r22 are 
linearly independent (see Proposition 8). There- 
fore (since we are working over the complement 
of 7)2) equation (59) may be written 

W 2 = ~21l lWl . 

Thus the variation of (wl, w2) is restricted by 
equations (57)-(59) to a one-dimensional (1D) 
vector space: If (a, b, c) = v is a (real) eigenvec- 
tor for O1 of eigenvalue 1, we can take this space 
to be the 1D subspace of C 3 x C 3 consisting 
of those points of the form (tv, tIzlIlv), t E C. 

Equation (62) for j = 1 is then t2(a  2 + b 2 + c 2) = 
kl, where 

kt = 1 - Tr(O1 )) - 1 

is a real nonnegative constant that depends on 
¢. Hence, since a 2 + b 2 + c 2 > 0, we have 
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E C X 

-1 I- 
s C Y 

Fig. Z Spaces and maps involved in the statement of Theo- 
rem 13. 

t ER ,  with 0 < t < c o .  Thus equations (57)- 
(59) and (62) have no simultaneous solutions at 
infinity (in the wl and w2 variables), i.e., every 
point of E~ lying over a real point r' in E c 
is in fact in £~ and is real. This proves parts 
(a) and (b) of Claim 64. Also if r E R has 
real Coordinates {(xij, yij, zij)}, then if r' E R' 
projects to r, it follows that r' also has real 
coordinates {(x;j, ylj, zlj, nj, lj)} since the n 5 
and lj are the squared lengths of real vectors. 
This proves part (c) of Claim 64. 

We summarize: E is the set of 6-tuples 
{(xij, yij, Zij)}i=l.2;j=l,2.3 of vectors in R 3 that 
are nondegenerate in the sense that they do not 
give image data in 791 U 792 and that represent 
a body exhibiting Poinsot motion. 5' consists of 
those nondegenerate real image data {(x;j, Yis)} 
for which there exists real {zij}, so that the ar- 
ray {(x~j, y~j, zlj)} is in E, i.e., S consists of 
those nondegenerate real image data that can 
be interpreted as arising from a Poinsot motion 
in three dimensions. Assertions 1 and 2 of our 
main Theorem 13 may now be stated in terms 
of E, S, X, Y (see figure 7): 

1. For generic s E S, the set ~r-l(S)nE contains 
exactly two points (which correspond to 3D 
interpretations that are mutual reflections in 
the x, y plane). 

2. The set 7r-1(S)N E has Lebesgue measure 
zero in X. 

Step E The next few paragraphs will be de- 
voted to finding the irreducible components of 
E. Intuitively, a set W is irreducible only if 
it cannot be decomposed into distinct subcom- 
ponents, each component being the zero set of 
a distinct set of polynomials. For example, in 

R 2 the solution set to the equation xy = 0 is 
not irreducible since it has two distinct compo- 
nents, viz., the x axis (i.e., y = 0) and the y 
axis (i.e., x = 0). The reason we want to find 
the irreducible components of E is that these 
irreducible components will be used later in our 
proof in conjunction with an upper semicontinu- 
ity theorem from algebraic geometry. The reader 
not interested in the mathematical details can 
now skip to Step G. 

Let rt be the map that associates to any array 
in E the vectors in its first two frames, i.e, 

r /((r l l ,  r21), (r12, r22), (r13, r23)) 

= ( ( r n ,  r21), (1"12, r22)). 

Thus r/: E --+ (R3) 4 = R 12. (Note that this R 12 

is different from the R 12 containing Y, which 
consists of the projections into the x, y plane of 
the vectors in all three frames.) 

Let F denote the set of all ((rll, r21), 
(r12, r22)) in R 12 such that 

Property 65. For some O1 E SO(3, R), O1(ril) = 
rlz, / = 1, 2. 

Property 66. The projections into the x, y plane 
of rll and r21 are linearly independent. 

We claim that o(E) = F. It is clear that 
~(E) C F since Property 66 holds for any ar- 
ray E because we have excluded the degenerate 
locus 792. Thus the content of the claim is 
that given ((rn, r2a), (r12, r22)) E F, there ex- 
ists a pair of vectors (r13, r23) and a rotation 
02 E SO(3, R) such that O2(ri2) = ri3 (where 
i = 1, 2) and the (discrete-time) angular mo- 
mentum of the motion (rn, r21) H (ra2, r22) is 
the same as that of the motion (r12, r22) 
(ra3, r23). This means that w2 = I21Iw> Now 
Ij is determined by (rlj, r2j), j = 1, 2, so that 
I1, I2 are determined by the point of F. More- 
over, O1 is uniquely determined by the point 
of F since the vectors in the first frame are 
linearly independent and a rotation of R 3 is 
uniquely determined by its effect on two lin- 
early independent vectors. Finally, wl is de- 
termined by O1 up to a factor of ±1 by the 
conditions that wa is parallel to the axis of ro- 
tation of O1 and t h a t  IWl[ 2 = sin 20, where 0 



is the angle of the rotation expressed by O1. 
Choose one of the two possible values of wl, 
and let wz = I~-ll~w~. Now any vector w is a 
discrete-time angular velocity vector for some 
rotation O. In fact, O is the rotation about an 
axis parallel to w through an angle 0 such that 
sin20 = Iwl 2. Notice that this does not uniquely 
determine 0. However,  by choosing one such 0 
we obtain an O as desired. In our case choose 
an 02 for w2 in this manner. We can then let 
(r13, r23) = 02(r12,  r22), and then it is clear that 
((rll , rE1), (r12 , r22), (r13 , r23)) is in E. 

F is an irreducible variety in R 3. .F iS isomor- 
phic to the product variety V × SO(3, R), where 
V is the set of points (rxl, r21) E R 3 × R 3, which 
are linearly independent.  In fact, we have al- 
ready noted that in view of the independence, 
O1 is uniquely determined by the vectors in 
question. V is the complement  of the variety 
W in R 3 × R 3 (defined by the 2 × 2 minors of 
the matrix) 
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Step G. At this point we have established that 
the real solutions E to our constraint equations 
have at most four irreducible components.  We 
now consider each of the irreducible components  
of E, which we have denoted by Ek. We denote  
their images under the map ~r by Tr(Ek) = Sk. 
Since the Ek are irreducible, so also are the Sk. 
Intuitively, Sk consists of image data {xij, yij} 
that are compatible with real solutions to our 
constraint equations, i.e., that give rise to so- 
lutions {Xij, y,:j, Zij} contained in Ek. We will 
now develop more detailed information about  
the irreducible sets 5'k. The reader not inter- 
ested in the mathematical details can now skip 
to Step H. 

Since the codimension of W in R 3 x R 3 is at least 
2, V = R 3 x R 3 - W is connected. Moreover,  
it is nonsingular (since it is an open subset of 
R 3 x R3).  Hence  V is irreducible (appendix, Fact 
A8). Moreover  SO(3, R) is irreducible since 
it is a connected (algebraic) group (appendix, 
Fact A9). Hence  the product V x SO(3, R) 
is irreducible (appendix, Fact A10), so that F 
is irreducible. 

We now look more closely at the map rl : 
E ~ F.  In particular, we want to study the 
set r l - l (P)  for a point P = ((r11, r21), (r12, r22)) 
in F.  As we noted above, P determines I1 
and 12 uniquely and it determines O1 uniquely, 
whence it determines wl up to a factor of +1. 
Hence  w2 is determined up to ~1 by the relation 
W 2  ----" I21llwl. Each point in r / - l (P)  is then of 
the form 

We now ask, I s /~  irreducible? We know that 
E has an irreducible image by the algebraic 
map ~ and that E is generically a four-sheeted 
cover of r/(E). Thus each irreducible component  
must be a union of sheets, which may be more 
precisely stated as follows: 
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Sk are irreducible semialgebraic sets (since they 
are algebraic images of the irreducible varieties 
Ek; see appendix, Fact, A7) and that S = U~,Sk. 
It follows from Result 68 that 

RESULT 69. If { e l ,  . . . ,  e4} are as in Result 
68, then each S~: contains at least one of the 
7 r ( e l ) , . . .  , 71(e4). 

Since each irreducible component of S is one 
of the Sk and since all the S~ have the same 
dimension (of 9), it follows that "generic on Sk 
for all k" implies "generic on S." Therefore to 
prove assertion 1 of Theorem 13 it suffices to 
prove the following: 

Assertion 70. For each k, for generic s E S~, 
the set 7r-l({s})n E contains exactly two points, 
which correspond to configurations that are re- 
flections of each other in the z, y plane. 

Now for any e E E the point e' in X, 
which represents the reflection of e, is also 
in E; this is true because the equations 
for the Poinsot constraint are invariant un- 
der the transformation z;j ~ -z;j .  Since 
by the definition of S the set Tr-~({s})N E 
contains at least one point, it follows that 
~r-l({s}) N E contains at least two points for 
all s E S. Hence to show Assertion 70 it suf- 
fices to show that if T~, = {s E Sk [zr-l({s}) N 
E has more than two points}, then dim T~, < 
dimSk. Now 7r-l({s}) M E C 7r-l({s}) M Ec. 
Hence T~, C Sx; M Tc, where Tc is as in Re- 
sult 63. Therefore to prove Assertion 70 it 
suffices to prove the following: 

Assertion 71. For each k = 1 , . . . ,  n it is the 
ease that dim(To rq S~:) < dim SA, (where Tc is as 
in Result 63. 

Step H. We have just finished a careful examina- 
tion of the sets Sx,. Recall that each set S~. con- 
sists of image data {zlj, y~} that are compatible 
with real solutions to our constraint equations 
in Ek. We will now show that for generic image 
data in each Sk the number of real solutions to 
our constraint equations is precisely two. Here 
is where we explicitly use the upper semiconti- 

nuity theorem. When this theorem is used, it 
suffices to find one point in each Sk for which 
there are precisely two real solutions to our 
constraint equations and no complex solutions. 
Finding such points constitutes a rigorous proof 
that for generic image data in each Sk there are 
precisely two real solutions. We now produce a 
point on each Sk for which there are precisely 
two real solutions. The reader not interested in 
the mathematical details can now skip to Step I. 

Now Tc cl Sk is a closed subvariety of the 
irreducible semialgebraic set Sk in the sense 
that it is the locus of points of SA: defined by the 
vanishing of certain polynomials. In fact, it is the 
subvariety for which the real and imaginary parts 
of the complex polynomials defining Tc vanish 
separately. It is a fact (appendix, Fact A l l )  
that a proper subvariety of an irreducible variety 
has positive codimension. Therefore it remains 
only to show that Tc C? 6'k is a proper subvariety 
of S~,. To do this we need only produce one 
point sk E S#. (for each k) such that 7r-l(sk)nEc 
contains exactly two points, both of which are in 
E, i.e., have real coordinates. For this purpose, 
in view of Result 69 we will choose a concrete 
point P E ~(E) such that 0- I (P)  = {el, . . . ,  e4},  
we will let st, = 7r(e~,), and we will then simply 
check 7r-l(s~,)nE for each of these sk. (If there 
are fewer than four components we will thereby 
have done some unnecessary checking, but this 
is, of course, harmless.) 

For our point P we choose 

P = (((7.00000, 2.00000, 3.00000), 

(5.00000, 1.00000, 9.00000)), 

((6.39369, 1.42001, 4.37085), 

(3.01394, 1.30948, 9.80823))), (72) 

(where the numbers are truncated decimals de- 
rived from double-precision computations). We 
then compute that the corresponding ek's are 

el = (P, ((5.43181, 0.678917, 5.6599), 

(0.988604, 1.71018, 10.1537))), (73) 

e2 = (P, ((-4.16471, 5.60007, 3.64615), 

(-1.00359, 10.2764, 0.623041))); 

(74) 

e3 = ( P ,  ((-2.71738, 7.32657, 0.968083), 
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(2.94818, 9.90028,-0.54107))), 

(75) 

(76) 

e4 = (/9, ((6.87914, 2.40542, 2.98183), 

(4.94038, 1.33405, 8.9896))), 

with the associated sx:'s: 

sl = (((7.00000, 2.00000), (5.00000, 1.00000)), 

((6.39369, 1.42001), (3.01394, 1.30948)), 

((5.43181, 0.678917), 

(0.988604, 1.71018))), (77) 

s2 = (((7.00000, 2.00000), (5.00000, 1.00000)), 

((6.39369, 1.42001), (3.01394, 1.30948)), 

((-4.16471, 5.60007), 

(-1.00359, 10.2764))), (78) 

• ~3 ---- (((7.000001 2.00000), (5.00000, 1.00000)), 

((6.39369, 1.42001), (3.01394, 1.30948)), 

((-2.71738, 7.32657), 

(2.94818, 9.90028))), (79) 

84 = ( ( (7 .00000,  2 .00000) ,  (5 .00000,  1.00000)) ,  

((6.39369, 1.42001), (3.01394, 1.30948)), 

((6.87914, 2.4O542), 

(4.94038, 1.33405))). (80) 

In practice, the easiest way to compute 7r -a ({s}) 
n E  is first to compute 7r-l({s})n Rc. In fact, 
(see [8]) for each point of Y the equations 
(14)-(16) defining Rc have 64 solutions, which 
may be computed explicitly. Beginning with one 
of our st,'s, then, we can check systematically 
which of these 64 explicitly computed points 
in ~r-l({s})n R satisfy the Poinsot constraint 
(embodied by the equations (57)-(59), (62)). 
We know a priori that e~, and its reflection in the 
x, y plane, viz., el,, both satisfy the constraint; 
the question is whether there are any other 
points that satisfy it. Having carried out these 
computations (using Mathematica), we find that 
for each k = 1, . . . ,  4 the set 7r-1({s})N E = 

Step L We have now found that for generic im- 
age data in each of the four sets Sk the number 
of real solutions to our constraint equations is 
precisely two. We did this by examining concrete 
test cases, finding all the real solutions to our 

equations, and then invoking the upper semicon- 
tinuity theorem. But we must now be concerned 
with one issue: the multiplicity of these real so- 
lutions. Recall that if f ( z )  = (z - zo)'~g(z) is a 
polynomial with a zero at z0 and with g(zo) ~ 0, 
then the multiplicity of the solution z0 is n. For 
instance, the polynomial y = x 2 can be rewrit- 
ten as y(x) = ( x -  0) 2 , so that the solution 0 
has multiplicity two. We must now establish 
that each of the real solutions to our equations 
that were found in our concrete test cases have 
multiplicity one. The reason we must do this is 
that solutions with multiplicity n can break up 
into n distinct solutions if the parameters to the 
equations change (which they do along each SA,). 
In the case of the parabola y = x 2, for instance, 
the solution at 0 becomes two solutions near 0 
if the parabola is translated very slightly down 
the Y axis. To determine the multiplicity of our 
real solutions, we will now apply a Jacobian test 
to each solution. The reader not interested in 
the mathematical details can skip to Step J. 

We now check that, for each k, both el,, and 
' have multiplicity one as points on the fiber of % 

Ec over sk, i.e., that they are nonsingular points 
of the fiber. Since Ec is a subvariety of Rc, it 
suffices to show that they have multiplicity one 
in the fiber of Re over s~. To show this we may 
apply the Jacobian criterion for nonsingularity 
to the fiber of Rc over s~,: It suffices to show 
that the Jacobian matrix 

(0j ) 
0-~m/' l , m = l  . . . .  ,6 ,  

has nonzero determinant when evaluated at ek 
or e~,, (here the six functions f are as given in 
(18)-(23) and the six z,, 's are what we have 
elsewhere called the six z~j's). This determinant 
is easy to compute and is, in fact, far from 
zero in each case. One might wonder whether 
our evaluation of the Jacobian determinant is 
subject to rounding error due to the use of 
floating point arithmetic. It is. However, this 
is not a problem, since (a) we want only to 
ascertain that this determinant is not zero and 
(b) the values of the determinant we obtained 
were far from zero, so that they could not be 
due simply to rounding error. This concludes 
the proof of the assertion 1 of Theorem 13. 
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Step J. The final step in our proof is to show that 
the (Lebesgue) measure of false targets is zero. 
This follows from the fact that the image data S 
that are compatible with Poinsot interpretations 
have measure zero in the set of all possible 
image data. The argument is presented more 
precisely in the following paragraph. 

We now prove the second assertion of Theo- 
rem 13. We have seen that dim(S) = 9, so that 
S has Lebesgue measure zero in R 12. Since only 
points of S have interpretations that satisfy the 
Poinsot constraint, we are done. Now to see 
further that this implies that false targets have 
measure zero, observe that since S has measure 
zero in R 12, it follows that 7r -1 (S) has Lebesgue 
measure zero in R is and afortiori ~r-1(S)-E has 
Lebesgue measure zero in R is. But ~ r - l ( s ) -  E 
is precisely the set of false targets: It is the 
set of those 3D arrays that are not in E, i.e., 
that do not represent Poinsot motions but that 
produce image data in S, i.e., image data that 
have a Poinsot interpretation. This concludes 
the proof of assertion 2 of Theorem 13. 

4 F o r m u l a t i o n  as an  Observer  

Theorem 13 licenses a class of inferences: The 
premises for these inferences are certain dy- 
namical images; the conclusions are certain 3D 
structures in motion. The abstract form of these 
inferences can be described as follows (see fig- 
ure 8). The set of possible premises is the set 
Y = R 12 of all possible three views of two vectors 
(we can now restrict our consideration to real 
numbers and ingore the complex numbers that 
arose in the course of the proof). The set of pos- 
sible conclusions is the set X = R is of all possi- 
ble 3D interpretations for elements of Y. Those 
interpretations satisfying the Poinsot constraint 
form a nine-dimensional subset B of X. The 
conclusions X and premises Y are related by 
a function 7r given by (xq, yq, zq) ~ (xq, Yij),  
and for each premise y c Y the set Ir-l({y}) 
is the set of all 3D conclusions compatible with 
the premise y. Those premises y that have at 
least one compatible conclusion that satisfies the 
Poinsot constraint form a subset S of Y. Clearly, 
S = w(E). Moreover, S has Lebesgue measure 

l /l; 

<25> 
Fig. 8. Observer structure of the Poinsot motion inference. 

zero in I/. Thus for most y E  Y none of the 
compatible conclusions satisfies the Poinsot con- 
straint, and hence the probability of false targets 
for this inference is zero. For premises 8 E S 
the number of compatible conclusions that sat- 
isfy the Poinsot constraint is, generically, two. 
Therefore the conclusion associated to such an 8 
is best thought of as a probability measure, say, 
~/.~, supported on these two conclusions. The 
weight given to a particular conclusion by this 
measure can be thought of as the frequency with 
which that interpretation is perceived, given that 
one is viewing the display s. 

Thus the inference of structure from mo- 
tion examined here is specified by a six-tuple 
(X, Y, E, S, 7r, r/). This six-tuple precisely satis- 
fies the definition of observer given in observer 
theory [36], [37]. According to the observer the- 
sis [36], [37] every perceptual capacity, whether 
instantiated in neurons or in silicon, can be de- 
scribed as an instance of a single formal struc- 
ture, viz., the observer. 

DEFINITION 81. An observer is a six-tuple (X, 
Y, E, S, 7r, r/) where 
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1. X and Y are measurable spaces. E is an 
event of X. 5' is an event of Y. Points of X 
and Y are measurable. 

2. 7r is a mesurable map from X onto Y such 
that 7r(E) = S. 

3. r~ is a Markovian kernel that associates to 
each point s of S a probability measure on 
E that gives the set 7r-l(s)n E a probability 
of one. 

The present theory of structure from Poinsot 
motion is a specific example in support of the 
observer thesis. 

5 Implications and Comments 

The analysis presented here is a departure 
from previous analyses in an interesting respect: 
Whereas previous analyses of the inference of 
3D structure from image motion have relied 
exclusively on kinematical and geometrical con- 
straints, such as rigid motion or fixed-axis mo- 
tion, the present analysis introduces a dynamical 
constraint-Poinsot  motion. The dynamical na- 
ture of this constraint is evident in its use of the 
inertia tensor, which incorporates the masses 
of the moving points, and in its assumption 
that there is no net force acting on the system 
of points. 

The present analysis is, of course, but a first 
step in this direction. We have assumed, for 
instance, that all the visible points have equal 
masses and that these masses alone determine 
the appropriate inertia tensor. This assumption 
will not, in general, be valid. If this assumption 
is nevertheless used by human vision, we should 
be able to concoct displays that are systemati- 
cally misperceived by subjects in ways predicted 
by the foregoing analysis. However, it might be 
theoretically possible to infer, from the motion 
of the visible points, more detailed information 
about the true inertia tensor of the body to which 
the points are attached. If so, it would be of 
some interest to ask psychophysically whether 
human vision can, from displays of structure 
from motion, infer such information. Indeed, 
pilot experiments carried out in our laboratory 
suggest that human subjects can infer dynamical 

properties of moving points from 2D displays. 
In these experiments subjects were shown dis- 
plays of three points undergoing Poinsot motion. 
In each display one point had a high mass, one 
had an intermediate mass, and one had a low 
mass. The ratio of these masses was an inde- 
pendent variable of the experiment; the ratios 
were 16:1:1/16 or 4:1:1/4 or 2:1:1/2 or 1:1:1. 
The subject's task was to view the Poinsot mo- 
tion display for roughly 30 s (exactly 900 distinct 
frames) and then to choose which one of the 
three points was of intermediate mass. The dis- 
plays were controlled so that subjects could not 
use a simple strategy based on only the rela- 
tive 2D velocities of the points to perform the 
task. In particular, the point of lightest mass 
was not always the point with the fastest average 
2D speed. The pilot data suggest that subjects 
can determine well above chance which of the 
three points has intermediate mass. This re- 
sult indicates that human vision might well use 
dynamical constraints for the interpretation of 
motion. It also suggests that further theoreti- 
cal analyses should be pursued, along the lines 
of the analysis presented here but relaxing the 
assumption that all the points have equal mass. 
(Some other psychophysical studies also suggest 
that subjects can infer information about the 
relative masses of colliding disks just from their 
2D motions [38]-[41]. Such experiments are, of 
course, quite different from the one just pro- 
posed, but their positive results can be taken 
as encouraging: Perhaps relative masses can 
be inferred as well from displays of structure 
from motion.) 

Human vision might make assumptions about 
the general form of the inertia tensor. For ex- 
ample, it would be convenient to assume that 
the body has an axis of symmetry, so that the 
inertia tensor has a twofold degeneracy (two of 
the eigenvalues are equal). In this case one 
can show that Poinsot motion of the body has 
constant magnitude of angular velocity. There- 
fore one could pursue an analysis based on 
constraint equations (14)-(16) and, instead of 
equation (17), use the following equation, which 
states that the magnitude of the angular velocity 
is constant: 
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r12 " r l l  + (r12 × r22) .  ( ~ )  

+[( r12  × r22 ) × r12 ] • [ ( r l l  x r21 ) × r l l ]  

= r13 . r12  + ( ~ ' ( ~  

+[(r13 x r23 ) x r13 ] . [(r12 x r22 ) x r12 ] (81)  

A number of empirical studies suggest that axes 
of symmetry (local and global) are important in 
the visual perception of motion [3], [4], [42], 
[43] and in mental rotations of mental images 
[44]-[47]. 

One might just drop equations (14)-(16) alto- 
gether, i.e., drop the assumption of rigidity, and 
see what can be inferred about 3D structure and 
motion by using the above equation alone or by 
using the more general equation (17). There 
are many directions to go in pursuing dynam- 
ical, as opposed to kinematical, constraints in 
the perception of structure from motion. 

One interesting consequence of pursuing dy- 
namical constraints is that one automatically 
gets 3D interpretations in which the motion 
is smooth. If one just uses the kinematical 
constraint of rigid motion, then an object can 
undergo arbitrary accelerations and jerks from 
frame to frame and still satisfy the rigidity con- 
straint. The same is true for a fixed-axis motion 
constraint or a planar motion constraint. How- 
ever, the human visual perception of 3D struc- 
ture is greatly impaired for displays involving 
such jerks and accelerations, even when care is 
taken to avoid any problems due to failure of 
point correspondence [15] from frame to frame. 
Human vision seems to prefer smooth inter- 
pretations of the motion; dynamical constraints 
such as Poinsot motion may provide just the 
right notion of smoothness. 

Appendix: Some Results from Algebraic Geom- 
etry 

We now briefly review some basic terminology 
and facts from algebraic geometry that are used 
in the proof of Theorem 13. We work first with 
the complex numbers C, even though our ulti- 
mate interest is in solutions to equations over the 
real numbers R. For any positive integer n, C n 
denotes the set of ordered n-tuples of com- 
plex numbers; we call it n-dimensional complex 

affine space. The usual coordinates on this space 
are called affine coordinates. P"(C) denotes n- 
dimensional complex projective space. By def- 
inition, the points of W(C) are the lines (1D 
complex linear subspaces) through the origin in 
C TM. The ordinary coordinates on this C n+l 
are called homogeneous coordinates for P'~(C). 
Thus the homogeneous coordinates of a point 
in P ' (C) are specified only up to scalar multi- 
plication. We note that the origin in C n+l does 
not, by itself, correspond to any point of Pn(C). 

We are interested in solutions of polynomial 
equations on affine and projective spaces. Given 
a collection of polynomials in the affine coor- 
dinates of C ~, the locus of points in C n where 
these polynomials vanish is called the affine (al- 
gebraic) variety determined by the polynomials. 
Similarly, given a collection of homogeneous 
polynomials in the coordinates of C '~+1 (a poly- 
nomial is homogeneous if all its monomials have 
the same total degree), there is a well-defined 
set of lines through the origin on which these 
polynomials vanish. The corresponding set of 
points in P'~(C) is called the projective variety 
determined by the polynomials. 

Let V be a variety, affine or projective. In 
any case it can be shown that V is covered by 
open sets each of which is an affine variety. 
Now every affine variety U can, by definition, 
be represented as a set of points in some affine 
space C", as we have described above. In this 
sense, given any polynomial function on C n we 
can restrict it to U. The functions on U ob- 
tained in this manner will be called polynomial 
functions on U. Now if V is an arbitrary vari- 
ety and f is a function defined locally on V, it 
is called a polynomial function on V if it is a 
polynomial function on each affine open set U 
of V contained in its domain of definition. 

If W is a variety, a subset W' c W is called 
a closed subvariety of W if there exist, locally, 
polynomial functions fl, . . . ,  fn on W such that 
W' = {w E Wi l l (W)  . . . . .  f~(w) = 0}. A 
variety W is called irreducible if whenever W' 
and W" are closed subvarieties of W such that 
W = W'U W", then W = W' or W = W". 

Let V, W be any varieties. V and W may 
be affine, projective, or suitable open subsets 
of affine or projective varieties. A mapping 
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: V --* W is called a morphism if for any 
polynomial function 9 on W, 9otp is a polynomial 
function on V. A morphism ~ is called projective 
if V is representable as a closed subvariety of 
W x P'~(C) (for some r 0 in such a way that 
is induced by the projection of W x P"(C) onto 
W. We can then think of V as a family of 
projective varieties {Vw} in P"(C) parametrized 
by the points of W, where Eo is ~ - l (w)  c 
V. A morphism ~ is called a finite morphism 
if the polynomial functions on V are locally 
obtained from the polynomial functions on W 
by adjoining finitely marly new functions, each 
of which satisfies a monic polynomial whose 
coefficients are polynomial functions on W. This 
will be true, for example, if the new functions are 
pth roots (for some p) of  polynomial functions 
on W. A morphism ~ is called quasi finite if 
~ - l (w)  is a finite set for all w in W. Finite 
morphisms are quasi finite, but the converse is 
false in general. 

Our  proof  will use the following: 

FACT A1. The composition of projective mor- 
phisms is projective [33, II, Exer. 4.9]. 

FACT A2. The image of a projective morphism 
~o : V ~ W is a closed subvariety of W [33, II, 
Thin. 4.9]. 

FACT A3. A finite morphism is projective. (This 
follows directly from the definition of finite mor- 
phism given above.) 

FACT A4. A quasi-finite projective morphism is 
finite [33, III, Cor. 11.5]. 

One of our main tools is the following: 

THEOREM A5. Suppose ~ : V ~ W is a finite 
morphism. Then for any integer n the set 

{w E Wl~p-l (w) has at least n points} 

is a closed subvariety of W. 

Sketch of Proof. This theorem may be stated 
equivalently as follows: Let  N : W ~ Z be the 
function defined by N(w) = number of points 
in V~,; then N is upper semicontinuous for the 

Zariski topology of W. It follows directly from 
the definitions that if 9) : V ~ W is a finite 
morphism, then p.Ov is a coherent Ov¢ module. 
By [33, II, Exer. 5.8] the function w ~ rk~o~p.Ov 
is then Zariski upper semicontinuous on W, 
where rkw~.Ov denotes the rank at w of the 
Ow-module  ~.Ov. Finally, we conclude with 
the fact that if ~ : V ~ W is a finite morphism, 
rkw~,,Ov is equal to the number  of points in 
~ - l (w)  (counted with multiplicities). 

We will also need some facts about  real alge- 
braic varieties. A real affine variety V is a subset 
of R" defined by the vanishing of a collection of 
polynomials in n variables with real coefficients; 
V is also called an algebraic set. The notion of 
a polynomial function on V is defined just as in 
the complex case, except that now we consider 
only real polynomials. Similarly, we define a 
morphism ~ : V ~ W of real varieties to be a 
map that associates polynomial functions on W 
to polynomial functions on V. We note that if 
U is any complex variety in C n, the set of real 
points of U (i.e., U n  R 7') is a real variety; in fact, 
it is defined in R" by the real and imaginary parts 
separately of the complex polynomials defining 
U in C". R" itself is a variety defined by the 
polynomial that is identically 0. A semialgebraic 
set in R" is a subset defined by a collection of 
polynomial inequalities and equalities, i.e., by a 
collection of relations of the form 

f i = O ,  9; > 0 ,  h k > 0 ,  

where the {fi}, {9;}, and {hk} are finite sets 
of polynomials. 

FACT A6. If ~o : R "' ---, R '~2 is a morphism and 
V C R", is a variety, then ~(V) is a semialgebraic 
set in R "~2. (This is the famous theorem of 
Tarski-Seidenberg; see, e.g., [48, section 2.Z8] 
or [49]. 

If A C R" is a set, the Zariski closure of 
A, denoted Z(A), is the smallest algebraic set 
containing A; it exists because the intersection 
of any collection (finite or infinite), of  algebraic 
sets is again an algebraic set. Z(A) is the variety 
defined by all those polynomals that vanish on 
A. An algebraic set V is irreducible if for any 
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algebraic sets W1 and W2, V = W 1 U W 2 = ~ V  = 
W1 or V = W2. A semialgebraic set S in R " 
is irreducible if Z(S)  is irreducible; this is so 
if and only if the polynomials that vanish on S 
form a prime ideal in the ring R[zl ,  . . . ,  z,,] of 
polynomial functions on R"[48, section 2.8.3]. It 
follows from this and Fact A6 that the following 
is true: 

Z ( W n S )  c W n V ,  so that dim Z ( W n S )  <_ 
dim W n V < dim V, i.e., dim Z ( W  n S) < 
dim Z(S).  We conclude using the fact that 
dim(S) = dim Z(S)  for any semialgebraic set S 
[48, section 2.8.2]. 
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FACT A7. If ~ : R" ~ R'" is a projection 
morphism and A is an irreducible semialgebraic 
set of R", then ~(A) is an irreducible semialge- 
braic set. 

Let V be an algebraic set in R '~, and let 
z E V. V is nonsingular of dimension d at x 
if there is a neighborhood U of z in R n and 
if there are n - d polynomials f~ . . . . .  f,,_a such 
that V n U  = {u E U l f l (u)  . . . . .  f,~_d(u) = 0} 
and the gradients ~Tfi(z), i = 1, . . . ,  n - d, are 
linearly independent.  A variety is nonsingular 
if it is nonsingular at every point. We need the 
following facts: 

FACT A8. A nonsingular, connected variety 
is irreducible. (This follows from [50, sec- 
tion 2.2.6.]). 

From this we get 

FACT A9. A connected algebraic group is irre- 
ducible. 

We will also need the following: 

FACT A10. The product of irreducible varieties 
is irreducible [48, section 2.8.3.]. 

FACT A l l .  Suppose S is an irreducible semi- 
algebraic set in R" and W an algebraic set in 
R n. Suppose W n S is properly contained in S. 
Then d im(W n S) < dim S. 

c 
To prove this let V = Z(S).  Then W n S ~ V. 

But then d im(W n V) < dim V by [50, section 
2.2.9] (which asserts that Fact A l l  holds for the 
special case that S is an algebraic set). Now 
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